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a b s t r a c t

With the advent of 5G technology that presents enhanced communication reliability and ultra-low

latency, there is renewed interest in employing cloud computing to perform high performance but

computationally expensive control schemes like nonlinear model predictive control (MPC). Such a

cloud-based control scheme, however, requires data sharing between the plant (agent) and the cloud,

which raises privacy concerns. This is because privacy-sensitive information such as system states and

control inputs has to be sent to/from the cloud and thus can be leaked to attackers for various malicious

activities. In this paper, we develop a simple yet effective affine masking strategy for privacy-preserving

nonlinear MPC. Specifically, we consider external eavesdroppers or honest-but-curious cloud servers

that wiretap the communication channel and intend to infer the plant’s information including state

information and control inputs. An affine transformation-based privacy-preservation mechanism is

designed to mask the true states and control signals while reformulating the original MPC problem

into a different but equivalent form. We show that the proposed privacy scheme does not affect the

MPC performance and it preserves the privacy of the plant such that the eavesdropper is unable to

identify the actual value or even estimate a rough range of the private state and input signals. The

proposed method is further extended to achieve privacy preservation in cloud-based output-feedback

MPC. Simulations are performed to demonstrate the efficacy of the developed approaches.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and

similar technologies.

1. Introduction

Model predictive control (MPC) is an optimal control paradigm
that can explicitly handle system constraints and has enjoyed
great successes over the past decade (Allenspach & Ducard, 2021;
Li et al., 2019; Liu et al., 2016; Mayne, 2014). Despite their
outstanding performances, conventional MPC implementations
involve solving an online optimization problem that requires sub-
stantial computation power, especially for nonlinear and complex
systems. This hinders the deployment of MPC in many resource-
limited cyber–physical systems with real-time constraints such
as autonomous vehicles and mobile robots. Cloud-based MPC –
outsourcing the heavy computation to the cloud with superior
computational resources – has received renewed attention (Li
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et al., 2023; Schlüter & Darup, 2020; Sultangazin & Tabuada,

2021), partly attributed to the advancement in 5G technologies

that can provide reliable communication with negligible latency.

In brief, cloud computing is a unified platform that pro-

vides on-demand computing power and data storage services to

users (Grossman, 2009). The cloud can offer superior compu-

tational capabilities to execute advanced (and computationally

expensive) control strategies like nonlinear MPC, as well as in-

corporate real-time crowdsourced information as a preview to

increase situational awareness and enhance system performance

(Li et al., 2017, 2014, 2016; Ozatay et al., 2014). A general setup

for cloud-based MPC is as follows. First, the plant sends the

measured (or estimated) states to the cloud. The cloud then

solves a pre-specified MPC problem and sends back the op-

timal control actions. The system evolves over one step and

the process is then repeated. The aforementioned setup has

several advantages, including high performance (if the communi-

cation has negligible latency), easy deployment, and convenient

modification when needed, among others. However, the system

states/measurements and control actions need to be transmitted

between the cloud and the local agent, raising concerns that
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outsourcing computation to a cloud might leak private infor-

mation (e.g., sensor measurements and system states) to an

eavesdropper or an untrusted cloud. In fact, several studies have

shown that exposing local agent’s information to connectivity

can indeed lead to security vulnerabilities and various malicious

activities (Munteanu et al., 2018; Petit & Shladover, 2015; Xu

et al., 2021).

Considering the aforementioned concerns and the growing

awareness of security in cyber–physical systems, it is impera-

tive to protect the privacy of agents if cloud-based control is

used. As such, several privacy preservation schemes for cloud-

based MPC have been proposed, which can be mainly cate-

gorized into homomorphic encryption-based methods (Alexan-

dru et al., 2018; Darup, Redder, Quevedo, 2018; Darup, Red-

der, Shames et al., 2018; Schlüter & Darup, 2020) and algebraic

transformation based methods (Naseri et al., 2022; Sultangazin

& Tabuada, 2021; Xu & Zhu, 2015, 2017). The homomorphic

encryption-based methods exploit cryptography to mask privacy-

sensitive information (e.g., system states) while still enabling the

cloud to perform the MPC computation with encrypted data.

In Darup, Redder, Shames et al. (2018), homomorphic encryption

is used to design a secure explicit MPC scheme for linear systems

with state and input constraints. The encrypted fast gradient

method and proximal gradient method are developed in Alexan-

dru et al. (2018) and Darup, Redder, Quevedo (2018), respectively,

to achieve implicit MPC for linear systems with input constraints.

Despite strong privacy guarantees for the cloud-based MPC, the

induced encryption and decryption procedures are quite com-

putationally heavy, which is thus not suitable for systems with

limited onboard resources and stringent real-time constraints.

Different from the homomorphic encryption-based methods,

the algebraic transformation-based approaches rely on introduc-

ing transformation maps that act as masks, rendering the real

signals of a local agent indiscernible by the attacker. More specif-

ically, the main idea of the algebraic transformation methods is

to design appropriate transformation maps to protect privacy-

sensitive signals and construct a different but equivalent MPC

problem. Without knowing the original MPC problem, the cloud

will solve the equivalent MPC problem and provide the plant

with the corresponding optimal control action. By using inverse

transformation maps, the plant can recover the optimal control

action to the original problem. This idea has been initially applied

to accomplish privacy preservation in optimization (Mangasarian,

2011; Wang et al., 2011; Weeraddana et al., 2013; Weeraddana

& Fischione, 2017) and then extended to cloud-based MPCs. For

example, in Xu and Zhu (2015), non-singular matrices are utilized

to produce a transformation mechanism for linear MPC in the

networked control system. In Xu and Zhu (2017), orthogonal

matrices are combined with homomorphic encryption to design

a hybrid privacy preservation scheme for output-feedback MPC.

In Naseri et al. (2022), random transformations are utilized to

achieve privacy preservation for set-theoretic MPC. Furthermore,

isomorphisms and symmetries are adopted in Sultangazin and

Tabuada (2021) as a source of transformation to protect the

privacy of system signals.

In this paper, a privacy-preserving cloud-based nonlinear MPC

framework is developed to protect system privacy (e.g., states,

inputs) via an affine transformation scheme (which is a form

of algebraic transformation). We first show that if the cloud

is an honest-but-curious adversary or there exists an external

eavesdropper, the conventional cloud-based MPC architecture

cannot protect the private information of the plant. An affine

transformation-based privacy mechanism is then designed to

mask the real system state and input signals. With the affine

transformation, we reformulate the original MPC problem into

a different but equivalent one, which is solved by the cloud.

The solution to the equivalent MPC problem is then received

by the local agent and transformed via simple inverse affine

transformation to recover the solution to the original problem. A

privacy definition is introduced to show that the proposed affine

transformation scheme can protect the private system state and

input signals from being inferred by the attacker.

The major contributions of this paper include the following.

First, we develop a privacy-preserving cloud-based MPC for a

class of nonlinear systems. While studies on privacy-preserving

cloud MPC for linear systems exist (see e.g., Alexandru et al.

(2018), Darup, Redder, Quevedo (2018), Darup, Redder, Shames

et al. (2018), Naseri et al. (2022), Schlüter and Darup (2020),

Sultangazin and Tabuada (2021) and Xu and Zhu (2015, 2017)),

to the authors’ best knowledge, this is the first work on privacy-

preserving cloud MPC for a class of nonlinear systems with gen-

eral constraints. Using cloud computing for nonlinear and com-

plex systems makes the most practical sense, as recent advances

in compact and powerful onboard computation units are en-

abling real-time implementations for linear MPCs (but still not for

nonlinear MPCs) (Bemporad et al., 2018). We mask the privacy-

sensitive signals via affine transformation and reformulate a com-

patible nonlinear MPC that is equivalent to the original problem,

thus with no performance degradation. Furthermore, the affine

transformation method is light-weight in computation, which

makes it easily applicable to cloud-based control. Second, a new

privacy definition, ∞-diversity with unbounded diameter, is in-

troduced that is suitable for the considered real-time cyber–

physical systems. Third, we extend the developed framework to

cloud-based nonlinear output-feedback MPC to achieve privacy

preservation for nonlinear systems with only output feedback.

Finally, simulation examples are presented to demonstrate the

efficacy of the developed framework. The proposed approach

draws inspiration from algebraic transformation-based methods

developed for linear systems (Sultangazin & Tabuada, 2021; Xu &

Zhu, 2015, 2017), but there exist significant differences between

our work and these references. The scheme proposed in Xu and

Zhu (2015) is limited to special objective functions and linear

input constraints, and in Xu and Zhu (2017), neither state nor

input constraints are considered. In contrast, our approach is

designed to address more general MPC problems, encompass-

ing nonlinear systems, objective functions described by general

quadratic form, and accounting for state and input constraints.

To conceal sensitive information, we employ an affine transfor-

mation mechanism and communication protocol similar to that

presented in Sultangazin and Tabuada (2021). However, different

from the work of Sultangazin and Tabuada (2021) which quan-

tifies privacy via the dimension of the manifold that describes

the diversity experienced by the adversary, we tailor the pri-

vacy notion for cloud-based nonlinear state-feedback and output-

feedback MPC by using set cardinality and diameter. Note that

the set dimension-based privacy quantification in Sultangazin

and Tabuada (2021) is derived based on the state/input/output

matrices of linear systems and cannot be directly applied to non-

linear systems. Our privacy notion works for general nonlinear

systems, and it requires that after observing the released data,

the adversary has infinite uncertainties on each of its interested

entries and the difference between the possible uncertainties

could be arbitrarily large.

The rest of this paper is organized as follows. Section 2 in-

troduces the problem formulation including cloud-based MPC

and the attack model. Section 3 presents the developed privacy

preservation scheme via affine transformations. We then extend

the scheme for output-feedback MPC in Section 4. Simulations are

presented in Section 5, and finally Section 6 concludes this paper.
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Fig. 1. Cloud-based conventional MPC architecture.

2. Problem formulation

In this section, we present the relevant background of the

considered privacy-preserving cloud-based MPC problem. Specifi-

cally, we first introduce the conventional cloud-based MPC frame-

work with no privacy protection, followed by a description of the

privacy attack model considered in this paper.

2.1. Cloud-based MPC

We consider a class of nonlinear systems which can be de-

scribed by the following control-affine discrete-time model:

x(k + 1) = Φ(x(k), u(k)) = f (x(k)) + g(x(k))u(k), (1)

where x(k) ∈ R
n is the system state, u(k) ∈ R

m is the control

input, Φ(·, ·) ∈ R
n, f (·) ∈ R

n and g(·) ∈ R
n×m are nonlin-

ear continuous functions characterizing the system dynamics. At

each sampling instant k, the following nonlinear MPC problem is

solved:

P − 1 : min
Uk

JN (x(k),U k)=

N−1
∑

i=0

(x⊤
i|kQxi|k+q⊤xi|k+u⊤

i|kRui|k+r⊤ui|k)

+ x⊤
N|kQf xN|k + q⊤

f xN|k,

s.t. xi+1|k = f (xi|k) + g(xi|k)ui|k, i = 0, . . . ,N − 1,

xi|k ∈ X , i = 1, . . . ,N − 1,

ui|k ∈ U, i = 0, . . . ,N − 1,

xN|k ∈ Xf ,

x0|k = x(k),U k =
[

u⊤
0|k, . . . , u

⊤
N−1|k

]⊤
,

(2)

which is a receding horizon optimal control problem with state

and input constraints. In (2), JN (·, ·) ∈ R is the cost function

with Q ∈ R
n×n, q ∈ R

n, R ∈ R
m×m, r ∈ R

m, Qf ∈ R
n×n

and qf ∈ R
n being weighting matrices and vectors; xi|k and ui|k

are, respectively, the predicted system state and the input i time

steps ahead of current time instant k; N ∈ N+ is the prediction

horizon; X ⊂ R
n and U ⊂ R

m are state and input constraint sets,

respectively, and Xf ⊂ R
n is the terminal set.

In a conventional MPC, the optimization problem (2) is solved

at each time step based on the current state x(k), and the first

element of the optimal input sequence U
∗
k =

[

u∗⊤
0|k, . . . , u

∗⊤
N−1|k

]⊤

is applied to the system, i.e., u(k) = u∗
0|k, and the system evolves

over one step. The process is then repeated. With gentle assump-

tions and by appropriately selecting the weighting matrix Qf and

terminal set Xf , the resulting closed-loop system can achieve

guaranteed recursive feasibility and asymptotical stability (Rawl-

ings et al., 2017).

The optimization problem in (2) is a nonlinear programming

problem that requires significant computation power, which is

very challenging to solve onboard considering limited onboard

computation and stringent real-time constraints for many cyber–

physical systems. This challenge is exacerbated when the dimen-

sion of the system state and the prediction horizon are large.

To address this problem, cloud-based MPC is a viable frame-

work where complex computations are outsourced to the cloud

that has superior computational power. Specifically, the common

cloud-based MPC architecture is shown in Fig. 1, which includes

the following two phases:

• Handshaking Phase: The plant sends
{

f (·), g(·),Q , q, R, r,Qf , qf ,X ,U,Xf

}

to the cloud, that is, the necessary information for the cloud

to set up the nonlinear programming problem in (2).

• Execution Phase: At each time step k, the plant first sends

its state x(k) to the cloud. Then the cloud computes u(k) by

solving the optimization problem (2) and sends the resul-

tant u(k) to the plant. Finally, the plant applies u(k) to the

actuators and the system evolves over one step.

2.2. Attack model

As described above, for the conventional cloud-based MPC,

the plant needs to provide the cloud with the system state,

dynamic model, objective function, and constraints, which may

contain confidential information that needs to be protected from

an external eavesdropper or the untrusted cloud. In this paper,

we consider the following two attack models:

• Eavesdropping attacks are attacks in which an external eaves-

dropper wiretaps communication channels to intercept ex-

changed messages in an attempt to learn the information

about sending parties.

• Honest-but-curious attacks are attacks in which the

untrusted cloud follows all protocol steps correctly but is

curious and collects all received intermediate data in an

attempt to learn the information about the plant.

In particular, we consider the case that the privacy-sensitive

information is contained in the system state x(k) and input u(k).

When cloud-based MPC is adopted in some specific areas, such as

intelligent vehicles and smart grids, the disclosure of the system

state and input information may induce safety risk (McDaniel

& McLaughlin, 2009; Petit & Shladover, 2015). For example, for

cooperative control of multiple connected vehicles, the system

state and input usually include vehicles’ location and velocity

messages, which should be well protected to prevent adversaries

from using such information to secretly track a vehicle (Corser

et al., 2016; Dotzer, 2005) and from engaging in further malicious

activities (Hubaux et al., 2004; Xue et al., 2014). In its Readiness

Report, the National Highway Traffic Safety Administration ac-

knowledges various privacy issues that must be addressed when

implementing vehicle communications, including preventing lo-

cation tracking (National Highway Traffic Safety Administration,

2014). It is clear that the attacker can successfully eavesdrop on

the messages x(k) and u(k) when the conventional cloud-based

MPC architecture introduced in Section 2.1 is adopted. The objec-

tive of this paper is to develop a masking mechanism to redesign

the exchanged information between the plant and the cloud

such that an equivalent MPC problem is solved without affecting

system performance while preventing the external eavesdropper

or untrusted cloud from inferring the system state and input.

3. Main results

In this section, we present our privacy-preserving cloud-based

nonlinear MPC framework. We first show that by applying affine

3
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masking on the states and controls, and transforming the cost
terms and system dynamics accordingly, the transformed non-
linear MPC problem solved on the cloud is equivalent to the
original problem. We then show that this affine transformation
can protect the privacy of the system states and inputs by virtue
of indistinguishability.

3.1. Affine masking and problem reformulation

Inspired by the works (Sultangazin & Tabuada, 2021; Xu & Zhu,
2015, 2017) that exploit linear transformations for linear MPCs, in
this section, we design affine transformation maps to accomplish
the privacy protection for the considered cloud-based nonlinear
MPC. Specifically, two invertible affine maps ιx(·) := {Px, tx} and
ιu(·) := {Pu, tu} are introduced to transform the state x(k) and
input u(k) to the new state x̄(k) and input ū(k), as follows:

x̄(k) = ιx(x(k)) = Px(x(k) + tx),

ū(k) = ιu(u(k)) = Pu(u(k) + tu),
(3)

where Px ∈ R
n×n, Pu ∈ R

m×m are arbitrary invertible matrices, and
tx ∈ R

n, tu ∈ R
m are arbitrary non-zero vectors with compatible

dimensions. From (1) and (3), it follows that the transformed
system state evolves according to the following dynamics:

x̄(k + 1) = Φ̄(x̄(k), ū(k)) = f̄ (x̄(k)) + ḡ(x̄(k))ū(k), (4)

where f̄ (·) ∈ R
n and ḡ(·) ∈ R

n×m are defined as

f̄ (x̄(k)) = Px
(

f ◦ ι−1
x (x̄(k)) − g ◦ ι−1

x (x̄(k))tu + tx
)

,

ḡ(x̄(k)) = Pxg ◦ ι−1
x (x̄(k))P−1

u ,
(5)

with ◦ denoting function composition and ι−1
x (·) being the inverse

operation of ιx(·), i.e., ι
−1
x (x̄(k)) = P−1

x x̄(k) − tx. As will be shown
below, the affine maps are able to mask the real system state
x(k) and input u(k) to protect the privacy, and in the cloud a
new optimization problem with respect to x̄(k), ū(k), and the new
system dynamics (4) is solved. Specifically, with the affine maps
{Px, tx} and {Pu, tu}, one can show that P − 1 can be transformed
into the following problem:

P − 2 : min
Ūk

J̄N (x̄(k), Ū k)=

N−1
∑

i=0

(x̄⊤
i|kQ̄ x̄i|k+q̄⊤x̄i|k+ū⊤

i|kR̄ūi|k+ r̄⊤ūi|k)

+ x̄⊤
N|kQ̄f x̄N|k + q̄⊤

f x̄N|k,

s.t. x̄i+1|k = f̄ (x̄i|k) + ḡ(x̄i|k)ūi|k, i = 0, . . . ,N − 1,

x̄i|k ∈ X̄ , i = 1, . . . ,N − 1,

ūi|k ∈ Ū, i = 0, . . . ,N − 1,

x̄N|k ∈ X̄f ,

x̄0|k = x̄(k), Ū k =
[

ū⊤
0|k, . . . , ū

⊤
N−1|k

]⊤
,

(6)

where Q̄ ∈ R
n×n, q̄ ∈ R

n, R̄ ∈ R
m×m, r̄ ∈ R

m, Q̄f ∈ R
n×n, and

q̄f ∈ R
n are defined as

Q̄ = P−⊤
x QP−1

x , q̄ = P−⊤
x q − 2P−⊤

x Qtx,

R̄ = P−⊤
u RP−1

u , r̄ = P−⊤
u r − 2P−⊤

u Rtu,

Q̄f = P−⊤
x Qf P

−1
x , q̄f = P−⊤

x qf − 2P−⊤
x Qf tx.

(7)

Moreover, in (6), X̄ , X̄f and Ū are the corresponding constraint
sets of X , Xf and U under the affine maps {Px, tx} and {Pu, tu},
respectively. This indicates that ∀x ∈ X , ιx(x) = Px(x + tx) ∈ X̄ ;
vice versa ∀x̄ ∈ X̄ , ι−1

x (x̄) = P−1
x x̄ − tx ∈ X (similarly for Xf , X̄f

and U , Ū).
After introducing the affine maps, compared to the conven-

tional cloud-based MPC in Section 2.1, our privacy-preserving
cloud-based nonlinear MPC architecture is modified as shown in
Fig. 2:

Fig. 2. Cloud-based privacy-preserving MPC architecture with affine masking.

• Handshaking Phase: Given the affine maps {Px, tx} and

{Pu, tu}, the plant transforms its system dynamics, objective

function, and constraint sets into
{

f̄ (·), ḡ(·), Q̄ , q̄, R̄, r̄, Q̄f , q̄f , X̄ , Ū, X̄f

}

and sends them to the cloud to provide necessary infor-

mation for the cloud to set up the nonlinear programming

problem (6).

• Execution Phase: At each time step k, the plant first encodes

x(k) into x̄(k) with {Px, tx} and sends x̄(k) to the cloud. Then

the cloud computes ū(k) by solving the optimization prob-

lem (6) and sends the solution ū(k) to the plant. Finally, the

plant uses {Pu, tu} to decode ū(k), i.e., u(k) = ι−1
u (ū(k)) =

P−1
u ū(k) − tu, and then applies the resultant u(k) to the

actuators. The system then evolves over one step.

Remark 1. Compared to the conventional MPC architecture, the

privacy-preserving MPC architecture requires the plant to mask

the real state x(k) into x̄(k) and decode ū(k) into u(k) by using the

affine transformation. The affine transformation relies on matrix

multiplication, whose time complexity is no greater than O(n3),

where n is the dimension of the transformed variables.

Note that under the privacy-preserving cloud-based MPC ar-

chitecture, the exchanged information between the plant and the

cloud during the execution phase is x̄(k) and ū(k), instead of the

actual system state x(k) and input u(k). In the sequel, we first

show that the transformed MPC problem solved on the cloud is

equivalent to the original MPC problem, and we then show that

the privacy of x(k) and u(k) is protected.

Assumption 1. Both the external eavesdropper and untrusted

cloud can get access to the exchanged information between the

plant and the cloud, i.e., x̄(k) and ū(k), but they do not have any

prior knowledge about the dynamic system, affine transformation

scheme, and the affine maps {Px, tx} and {Pu, tu}.

Lemma 1. Under the affine transformation mechanism, the op-

timization problem P − 2 is equivalent to P − 1, i.e., if Ū
∗

k =
[

ū∗⊤
0|k, . . . , ū

∗⊤
N−1|k

]⊤
is a local (resp. global) minimizer of P − 2,

then the transformed control via inverse mapping U
∗
k =

[

u∗⊤
0|k, . . . , u

∗⊤
N−1|k

]⊤
=

[

(P−1
u ū∗

0|k − tu)
⊤, . . . , (P−1

u ū∗
N−1|k − tu)

⊤
]⊤

is a local (resp. global) minimizer of P − 1.

Proof. Let X̄
∗

k =
[

x̄∗⊤
0|k, . . . , x̄

∗⊤
N|k

]⊤
and X

∗
k =

[

x∗⊤
0|k, . . . , x

∗⊤
N|k

]⊤
be

the state sequences corresponding to Ū
∗

k and U
∗
k , respectively.

As Ū
∗

k is a minimizer of P − 2, X̄
∗

k and Ū
∗

k satisfy the dynamic

model (4) and the constraints described by
{

X̄ , Ū, X̄f

}

. According

to (3) and the formulation of problem P − 1 and P − 2, it can be

concluded that if U∗
k is the inverse mapping of Ū

∗

k under {Pu, tu},
then X

∗
k and U

∗
k are the state and input sequences of dynamic

4
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system (1) and X
∗
k is the inverse mapping of X̄

∗

k under {Px, tx}. In

problem P − 2, X̄ , X̄f and Ū are defined as the corresponding
constraint sets of X , Xf and U under the affine maps {Px, tx}

and {Pu, tu}, respectively. Therefore, if X̄
∗

k and Ū
∗

k satisfy the

constraints described by
{

X̄ , Ū, X̄f

}

, then X
∗
k and U

∗
k will satisfy

the constraints described by
{

X ,U,Xf

}

.
With our designed state and control transformations in (3), the

cost term transformations in (7), and the definitions of JN (·, ·) and
J̄N (·, ·), it can be shown that

JN (x(k),U k) = J̄N (x̄(k), Ū k) + ϱ, (8)

where ϱ =
∑N−1

i=1

(

t⊤x Qtx − q⊤tx + t⊤u Rtu − r⊤tu
)

+t⊤x Qf tx−q⊤
f tx ∈

R is a constant. We now use proof by contradiction, that is, we

assume that Ū
∗

k is a local (resp. global) minimizer of problem
P − 2 within domain Ūlocal but U

∗
k is not a local (resp. global)

minimizer of problem P − 1 within domain Ulocal, where Ūlocal is
the corresponding domain of Ulocal under the affine map {Pu, tu}.
This means that there exists an optimal sequence (other than U

∗
k)

U
∗∗
k =

[

u∗∗⊤
0|k , . . . , u

∗∗⊤
N−1|k

]⊤
∈ Ulocal such that

JN (x(k),U
∗∗
k ) < JN (x(k),U

∗
k). (9)

Let Ū
∗∗

k =
[

ū∗∗⊤
0|k , . . . , ū

∗∗⊤
N−1|k

]⊤
=

[

(Pu(u
∗∗
0|k + tu))

⊤, . . . ,

(Pu(u
∗∗
N−1|k + tu))

⊤
]⊤

∈ Ūlocal. According to (8), (9) can be rewrit-
ten as

J̄N (x̄(k), Ū
∗∗

k ) + ϱ < J̄N (x̄(k), Ū
∗

k) + ϱ, (10)

which contradicts the assumption that Ū
∗

k is a local (resp. global)
minimizer of problem P − 2. The proof is complete. □

Lemma 1 reveals that the transformed MPC problem is a
different yet equivalent form of the original MPC problem. Thus,
if the original MPC ensures properties such as recursive feasibil-
ity and asymptotical stability, then the transformed formulation
preserves these theoretical guarantees.

3.2. Privacy preservation

We next discuss the privacy notion used in this paper. As
mentioned in the previous section, the attacker aims to infer
the system state x(k) and control input u(k). Under the privacy-
preserving cloud-based MPC architecture discussed above, the
attacker will have access to x̄(k) and ū(k) at each time step k, and
we need to show that for any κ ∈ N+, x[0,κ] = {x(0), . . . , x(κ)}
and u[0,κ] = {u(0), . . . , u(κ)} cannot be identified from x̄[0,κ] =
{x̄(0), . . . , x̄(κ)} and ū[0,κ] = {ū(0), . . . , ū(κ)}. To facilitate the
following development, two triples Ω and Ω̄ are defined as

Ω =
{

{f (·), g(·)} , JN (·, ·),
{

X ,U,Xf

}}

,

Ω̄ =
{{

f̄ (·), ḡ(·)
}

, J̄N (·, ·),
{

X̄ , Ū, X̄f

}}

.
(11)

It can be seen that the triples Ω and Ω̄ can be used to define
the optimization problem in (2) and (6), respectively. We call
{

x[0,κ], u[0,κ]

}

a solution to the optimization problem (2) defined

by Ω if
{

x[0,κ], u[0,κ]

}

is a trajectory of the nonlinear system
{f (·), g(·)} where the control input u(k) at each time step k is
solved by minimizing objective function JN (·, ·) under constraints

described by
{

X ,U,Xf

}

. Moreover, we use Ω
{Px,tx,Pu,tu}
HHHHHH⇒ Ω̄ to

denote that Ω̄ is the transformed triple of Ω under the affine
maps {Px, tx} and {Pu, tu}.

Given Ω̄ , for any feasible input sequence x̄[0,κ] and output
sequence ū[0,κ] received by the attacker, the set ∆Ω̄ (x̄[0,κ], ū[0,κ])
is defined as

∆Ω̄ (x̄[0,κ], ū[0,κ]) = {x[0,κ], u[0,κ] : ∃{Px, tx, Pu, tu} and Ω

s.t. x̄(k) = Px(x(k) + tx), ū(k) = Pu(u(k) + tu),

Ω
{Px,tx,Pu,tu}
HHHHHH⇒ Ω̄, and

{

x[0,κ], u[0,κ]

}

is the solution to Ω}.

(12)

Essentially, the set ∆Ω̄ (x̄[0,κ], ū[0,κ]) includes all possible val-
ues of {x[0,κ], u[0,κ]} that can be transformed into {x̄[0,κ], ū[0,κ]}
with corresponding affine maps {Px, tx, Pu, tu}. The diameter of
∆Ω̄ (x̄[0,κ], ū[0,κ]), a metric that measures the distance (dissimilar-
ity) between its elements, is defined as

Diam∆Ω̄
(x̄[0,κ], ū[0,κ]) = sup

w,w′∈∆Ω̄ (x̄[0,κ],ū[0,κ])

⏐

⏐w − w′
⏐

⏐

min
, (13)

where
⏐

⏐w − w′
⏐

⏐

min
= minl∈{1,...,(n+m)(κ+1)}

⏐

⏐wl − w′
l

⏐

⏐ with wl and

w′
l being the lth element of w and w′, respectively. Note that

⏐

⏐w − w′
⏐

⏐

min
is used to quantify the minimum element difference

between w and w′. If
⏐

⏐w − w′
⏐

⏐

min
= δ, where δ is an arbitrarily

positive constant, then ∀l ∈ {1, . . . , (n + m)(κ + 1)}, we have
⏐

⏐wl − w′
l

⏐

⏐ ≥ δ.

Definition 1 (∞-Diversity with Unbounded Diameter). The privacy
of the actual system state x[0,κ] and input u[0,κ] is preserved if
(1) the cardinality of the set ∆Ω̄ (x̄[0,κ], ū[0,κ]) is infinite, and (2)
Diam∆Ω̄

(x̄[0,κ], ū[0,κ]) = ∞.

In the ∞-Diversity with Unbounded Diameter privacy defined
above, the first condition requires that there are infinitely many
sets of {x[0,κ], u[0,κ]}, {Px, tx, Pu, tu} and Ω that can generate the
same {x̄[0,κ], ū[0,κ]} received by the attacker. As a result, it is
impossible for the attacker to use {x̄[0,κ], ū[0,κ]} to infer the actual
system state and input information. Moreover, the second con-
dition requires that the difference between the possible values
of each element in {x[0,κ], u[0,κ]} could be arbitrarily large, and
thus the attacker cannot even approximately estimate (e.g., find
a finite range or uniquely determine a portion of) the private
signals.

We now show that the affine transformation mechanism can
achieve privacy preservation based on Definition 1.

Theorem 1. Under the affine masking mechanism described in
Section 3.1, the system states and control inputs are ∞-diversity-
with-unbounded-diameter private, that is, the attacker cannot infer
the actual system state x(k) and input u(k) with any guaranteed
accuracy.

Proof. We prove Theorem 1 by proving the two conditions in
Definition 1. We first show that under the affine masking scheme,
the cardinality of the set ∆(x̄[0,κ], ū[0,κ]) is infinite. Specifically,

given the sequence {x̄[0,κ], ū[0,κ]} and Ω̄ accessible to the attacker,
for arbitrary affine maps ι′x(·) := {P ′

x, t
′
x} and ι′u(·) := {P ′

u, t
′
u} such

that P ′
x and P ′

u are invertible, a sequence {x′
[0,κ], u

′
[0,κ]} and Ω

′ can

be uniquely determined. Recall that {x′
[0,κ], u

′
[0,κ]} should satisfy

x̄(k) = P ′
u(x

′(k)+ t ′x) and ū(k) = P ′
uu

′
k + t ′u, which indicates that the

sequence {x′
[0,κ], u

′
[0,κ]} can be determined by

x′(k) = ι′−1
x (x̄(k)) = (P ′

x)
−1x̄(k) − t ′x,

u′(k) = ι′−1
u (ū(k)) = (P ′

u)
−1ū(k) − t ′u.

(14)

Based on (14) and Ω̄ , Ω ′ can be further obtained by following
the similar procedure introduced in Section 3.1. As there exist in-
finitely many such affine maps {P ′

x, t
′
x, P

′
u, t

′
u}, there exist infinitely

many {x′
[0,κ], u

′
[0,κ]} andΩ

′ such that via proper affine transforma-
tions, the attacker will receive the same accessed information:
{x̄[0,κ], ū[0,κ]} and Ω̄ , which thus satisfies the first condition in
Definition 1.

We now prove the second condition in Definition 1. For any
w,w′ ∈ ∆Ω̄ (x̄[0,κ], ū[0,κ]) (i.e., {x[0,κ], u[0,κ]}, {x

′
[0,κ], u

′
[0,κ]} ∈

∆Ω̄ (x̄[0,κ], ū[0,κ])) with {Px, tx, Pu, tu} and {P ′
x, t

′
x, P

′
u, t

′
u} being the

corresponding affine maps, we have

x(k) = P−1
x x̄(k) − tx, x′(k) = (P ′

x)
−1x̄(k) − t ′x,

u(k) = P−1
u ū(k) − tu, u′(k) = (P ′

u)
−1ū(k) − t ′u.

(15)

5
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Based on (15), it can be obtained that

⏐

⏐w − w′
⏐

⏐

min
=

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

(P−1
x − (P ′

x)
−1)x̄(0) − (tx − t ′x)
...

(P−1
x − (P ′

x)
−1)x̄(κ) − (tx − t ′x)

(P−1
u − (P ′

u)
−1)ū(0) − (tu − t ′u)
...

(P−1
u − (P ′

u)
−1)ū(κ) − (tu − t ′u)

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

min

=

⏐

⏐

⏐

⏐

(Iκ+1 ⊗ (P−1
x − (P ′

x)
−1))x̄[0,κ] − 1κ+1 ⊗ (tx − t ′x)

(Iκ+1 ⊗ (P−1
u − (P ′

u)
−1))ū[0,κ] − 1κ+1 ⊗ (tu − t ′u)

⏐

⏐

⏐

⏐

min

≥

⏐

⏐

⏐

⏐

1κ+1 ⊗ (tx − t ′x)

1κ+1 ⊗ (tu − t ′u)

⏐

⏐

⏐

⏐

min

−

⏐

⏐

⏐

⏐

(Iκ+1 ⊗ (P−1
x − (P ′

x)
−1))x̄[0,κ]

(Iκ+1 ⊗ (P−1
u − (P ′

u)
−1))ū[0,κ]

⏐

⏐

⏐

⏐

max

,

(16)

where ⊗ is the Kronecker product, Iκ+1 ∈ R
(κ+1)×(κ+1) is the

identity matrix, and 1κ+1 ∈ R
κ+1 is the column vector with all

the entries being ones. Furthermore, by using (13) and (16), the

diameter of the set ∆Ω̄ (x̄[0,κ], ū[0,κ]) can be derived as follows:

Diam∆Ω̄
(x̄[0,κ], ū[0,κ]) = sup

w,w′∈∆Ω̄ (x̄[0,κ],ū[0,κ])

⏐

⏐w − w′
⏐

⏐

min

≥ sup
tx,t

′
x∈R

n,tu,t
′
u∈Rm

⏐

⏐

⏐

⏐

1κ+1 ⊗ (tx − t ′x)

1κ+1 ⊗ (tu − t ′u)

⏐

⏐

⏐

⏐

min

− inf
Px,P

′
x∈R

n×n,Pu,P
′
u∈Rm×m

⏐

⏐

⏐

⏐

(Iκ+1 ⊗ (P−1
x − (P ′

x)
−1))x̄[0,κ]

(Iκ+1 ⊗ (P−1
u − (P ′

u)
−1))ū[0,κ]

⏐

⏐

⏐

⏐

max

= ∞.

(17)

Thus, the second condition in Definition 1 is satisfied. □

By following the arguments from the proof of Theorem 1,

it is clear that there exist infinitely many sets of Ω (i.e., sys-
tem dynamics, cost function, and constraint sets) such that via

proper affine transformation, the attacker will receive the same

accessed information Ω̄ . Therefore, the attacker cannot exploit

Ω̄ to uniquely determine the actual Ω . Due to the complicated
structure of Ω , defining metrics to quantify the difference be-

tween the accessible valuations of Ω is non-trivial and needs to

be further studied.

Remark 2. Due to communication overhead or resource con-

straint, elements in the affine maps {Px, tx} and {Pu, tu} cannot be
arbitrary large numbers in practical applications. To

disguise the real state and input information, it is beneficial for

the plant to choose suitable affine maps such that the trans-
formed data

{

x̄[0,κ], ū[0,κ]

}

is quite different from the actual one
{

x[0,κ], u[0,κ]

}

. Generally, within a bounded set confined by com-

munication overhead or resource constraint, the plant can choose

Px, Pu and tx, tu that are distant (in the sense of Frobenius
norm, for example) from the identity matrix and zero vector,

respectively, to achieve this purpose.

3.3. Discussion on privacy notion and protection scheme

Definition 1 is an extension to the l-diversity (Machanavajjhala
et al., 2007) which has been widely adopted in formal privacy

analysis on attribute privacy of tabular datasets and has recently

been extended to define privacy in linear dynamic networks (Lu
& Zhu, 2020). Essentially, l-diversity requires that there are at

least l different possible values for the privacy-sensitive data

attributes, and a greater l indicates greater indistinguishability.

Definition 1 extends the l-diversity notion by requiring that there

exist infinitely many possible sets of states/inputs and affine

transformation combinations that can generate the same accessi-

ble information for the adversary (∞-diversity). In addition, the

difference of the states/inputs in these sets can be arbitrarily large

(unbounded diameter). This makes the adversary unable to iden-

tify the actual value or even estimate a rough range or a portion of

the private parameters. Furthermore, the conventional l-diversity

works for discrete-valued setting, whereas Definition 1 is tailored

to the considered cloud-based nonlinear MPC with sensitive at-

tributes being continuous-valued. In the following, we discuss the

differences between the proposed privacy definition/scheme and

other existing privacy notions/schemes (e.g., differential privacy,

homomorphic encryption, and affine transformation).

The privacy notions based on statistics or information theory

have been widely utilized in the security community, such as

differential privacy, entropy, and mutual information. Differential

privacy approaches inject random noises into private data in

such a way that the adversary cannot infer the private data

with high probability (Dwork & Roth, 2014; Huang et al., 2012).

For cloud-based nonlinear MPC, such persistent noise injection

mechanism will inevitably deteriorate system performance and

potentially lead to the violation of state and input constraints,

while the proposed privacy definition with the affine masking

scheme does not affect system performance as the transformed

problem is equivalent to the original one as shown in Section 3.1.

Moreover, both entropy and mutual information-based privacy

preservation rely on explicit statistical models of source data and

side information (Nekouei et al., 2019; Sankar et al., 2013), which,

however, are not generally available in the considered cloud-

based MPC problem as the state and input signals of the system

may not follow any probabilistic distribution.

Various homomorphic encryption-based methods have been

designed for privacy-preserving linear MPC, and both semantic

security and secret sharing have been used to define privacy.

Semantic security requires that no additional information about

a plaintext can be inferred using its ciphertext by the adversary.

It is worth noting that the encryption techniques with seman-

tic security guarantees (Alexandru et al., 2018; Darup, Redder,

Quevedo, 2018; Darup, Redder, Shames et al., 2018; Schlüter &

Darup, 2020) only allow the cloud (which has the public key

but not the private key) to perform simple linear mathematical

operations on encrypted data, making them applicable only for

linear systems and difficult, if not impossible, to be extended

to the considered nonlinear system with complicated operations.

In addition, secret sharing allows to divide and reconstruct se-

cret data in such a way that the individual shareholders reveal

nothing about the secret (Shamir, 1979). It is an effective tool to

achieve privacy-preserving cloud-based control (Darup & Jager,

2019; Schlor et al., 2021) but it requires using multiple share-

holders/clouds that are not colluding, resulting in a more complex

system structure. Instead of relying on data division and sharing

to multiple shareholders, the proposed method exploits affine

transformation to mask sensitive system information, which does

not require multiple clouds to facilitate the design of privacy

preservation scheme.

The proposed affine masking scheme is inspired by the al-

gebraic transformation-based works designed for linear systems

but there exist several differences. In Xu and Zhu (2015), the

linear MPC problem with linear input constraints is first trans-

formed into a quadratic problem, and then a transformation

mechanism based on non-singular matrices is designed to mask

sensitive information. Xu and Zhu (2017) combine orthogonal

matrices with homomorphic encryption to design a hybrid pri-

vacy preservation scheme for non-constrained linear MPC. Note

that their transformation mechanisms are designed for specific

linear MPC forms and thus cannot be applied to the considered

nonlinear MPC with state and input constraints. In Sultangazin

and Tabuada (2021), the dimension of the manifold describing

the diversity experienced by the adversary is used as a measure

6
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of privacy. The derivation of the set dimension based privacy
notion relies on the system’s linear characteristics, and thus it
is difficult (if not impossible) to extend this notion to nonlinear
systems. In this paper, we exploit the set cardinality and diameter
to quantify the privacy for cloud-based nonlinear MPC, which
applies to general nonlinear systems with constraints and can
provide stronger privacy guarantees. Furthermore, in Naseri et al.
(2022), the transformation-based technique is incorporated into
set-theoretic MPC to protect the privacy of a linear system subject
to bounded disturbance, while no rigorous notion is introduced
to analyze the privacy guarantees. Our work focuses on pri-
vacy preservation in nonlinear MPC and the development of the
privacy notion.

Although the proposed method circumvents some issues that
arise in existing privacy notions, it has certain limitations. One
limitation is that it does not consider the case in which the ex-
ternal eavesdropper or untrusted cloud has auxiliary information
about the dynamic system and the affine transformation scheme
(see Assumption 1), whereas differential privacy and semantic
security are immune to arbitrary auxiliary information.

Remark 3. In summary, the proposed affine masking strategy for
nonlinear state-feedback MPC makes two technical contributions.
First, we tailor the affine masking technique to conceal sensitive
information and reformulate the original nonlinear MPC into an
equivalent formulation, achieving privacy preservation without
compromising control performance. Different from homomorphic
encryption-based methods that are limited to linear MPC and
incur tedious encryption and decryption procedures, the pro-
posed strategy is applicable to a class of control-affine nonlinear
systems and is computationally efficient. Second, we introduce
a new privacy definition that uses both set cardinality and di-
ameter to facilitate the privacy quantification for nonlinear MPC.
Existing transformation-based approaches rely on linear system
characteristics, while our privacy notion extends the existing ap-
proaches to preserve privacy for nonlinear systems and employs
the set cardinality and diameter to measure the uncertainties on
each element of interest to the adversary, making it applicable to
nonlinear systems with constraints.

4. Extension to output-feedback MPC

The aforementioned cloud-based MPC methods require that
all system states are measurable to perform the state-feedback
control. However, for some systems, not all states are accessible
but an output vector is available for output feedback control de-
signs. Therefore, in this section, we extend the privacy-preserving
cloud-based MPC design to the output-feedback case. Specifically,
let y(k) ∈ R

p be the system output described by

y(k) = Cx(k), (18)

where C ∈ R
p×n. We assume that the system is observable and

the state x(k) can be estimated via a high-gain observer (Khalil,
2002) in the following form:

x̂(k + 1) = Φ(x̂(k), u(k)) + H(y(k) − Cx̂(k)), (19)

where x̂(k) ∈ R
n is the estimate of x(k) and H ∈ R

n×p is the
gain matrix. The estimated state x̂(k) is then fed into the MPC
problem (2) to obtain the solutions. Under the output-feedback
case, the conventional cloud-based MPC is typically implemented
as follows:

• Handshaking Phase: The plant sends
{

f (·), g(·),Q , q, R, r,Qf , qf ,X ,U,Xf ,H, C
}

to the cloud, which are necessary information for the cloud
to perform state estimation and subsequent MPC based on
the estimated state.

• Execution Phase: At each time step k, the plant first sends

y(k) to the cloud. Then the cloud estimates the system

state x̂k via (19), computes u(k) based on x̂k by solving the

optimization problem shown in (2) and sends u(k) to the

plant. Finally, the plant applies u(k) to the actuators and the

system evolves over one step.

The objective now is to avoid leaking the privacy-sensitive

information y(k), x̂(k), and u(k) to the attacker. Similar to (3), an

invertible affine map is introduced to mask y(k) as follows:

ȳ(k) = ιy(y(k)) = Py(y(k) + ty), (20)

where Py ∈ R
p×p is an invertible matrix and ty ∈ R

p is an offset

vector. According to (3), (18) and (20), it can be obtained that

ȳ(k) = C̄ x̄(k) + σ̄y, (21)

with C̄ ∈ R
p×n and σ̄y ∈ R

p being defined as

C̄ = PyCP
−1
x , σ̄y = Py(−Ctx + ty). (22)

Moreover, from (4), (19) and (21), it can be shown that x̄(k) can

be estimated with ȳ(k) via the following observer:

ˆ̄x(k + 1) = Φ̄( ˆ̄x(k), ū(k)) + H̄(ȳ(k) − C̄ ˆ̄x(k) − σ̄y), (23)

where H̄ ∈ R
n×p is given by

H̄ = PxHP
−1
y . (24)

The cloud-based privacy-preserving MPC under the output-

feedback setup can then be performed with the following modi-

fied procedures:

• Handshaking Phase: Given the affine maps {Px, tx}, {Pu, tu}

and
{

Py, ty
}

, the plant transforms its system dynamics, ob-

jective function, constraint sets and observer into
{

f̄ (·), ḡ(·), Q̄ , q̄, R̄, r̄, Q̄f , q̄f , X̄ , Ū, X̄f , H̄, C̄, σ̄y
}

and sends them to the cloud.

• Execution Phase: At each time step k, the plant first encodes

y(k) into ȳ(k) = Py(y(k)+ty) and sends ȳ(k) to the cloud. Then

the cloud estimates the system state via (23), computes

ū(k) by solving the optimization problem (6) and sends ū(k)

to the plant. Finally, the plant uses {Pu, tu} to decode ū(k)

(i.e., u(k) = ι−1
u (ū(k)) = P−1

u ū(k) − tu) and then applies u(k)

to the actuators. The system evolves over one step.

Theorem 2. Under the affine masking mechanism described in

this subsection, the system outputs, states, and control inputs are

∞-diversity-with-unbounded-diameter private, that is, the attacker

cannot infer the actual outputs y(k), system state x(k) and input u(k)

with any guaranteed accuracy.

Proof. The proof follows similar arguments in Theorem 1. □

Remark 4. In contrast to Section 3, which employs affine maps

to conceal real state and input information in state-feedback

MPC, the privacy preservation scheme for output-feedback MPC

introduces an additional affine map to mask the real system

output. This process also entails reformulating the original high-

gain observer into a compatible form, enabling estimation of

the transformed system state with the transformed output. The

combination of the affine masking strategy and observer reformu-

lation is crucial to ensure that the original output-feedback MPC

is shaped into a different but equivalent one, which guarantees

that the private information is protected with no performance

degradation.

7
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5. Simulation results

In this section, we perform numerical simulations to demon-

strate the efficacy of the developed approach. All computations

are performed in MATLAB 2022a on a laptop with an Intel i7-

10710U CPU with 6 cores, 1.6 GHz clock rate, and 16 GB RAM.

We consider the regulation control problem of a quadrotor aerial

vehicle. The system state and input of the quadrotor aerial ve-

hicle are defined as x =
[

ξ⊤, η⊤, ξ̇⊤, η̇⊤
]⊤

∈ R
12 and u =

[

u1, u2, u3, u4

]⊤
∈ R

4, respectively, where ξ =
[

ξx, ξy, ξz
]⊤

∈ R
3

represents the position of the quadrotor mass center expressed in

the inertial frame, η =
[

φ, θ, ψ
]⊤

∈ R
3 represents the roll, pitch,

and yaw angles, and ui (i = 1, 2, 3, 4) represents the squared

angular velocity of the ith rotor. The continuous-time model of

the quadrotor can be described by (Raffo et al., 2010):

ξ̈ = −e3g +
Re3

m
U1, η̈ = M(η)−1 (τ − C(η, η̇)η̇) , (25)

where e3 =
[

0, 0, 1
]⊤

, g = 9.81 m/s2 is the gravity acceleration,

m = 2 kg is the quadrotor mass, R ∈ SO(3) is the rotation

matrix, M(η) is the state-dependent inertia matrix, and C(η, η̇)

is the Coriolis matrix. Detailed expressions of R, M(η) and C(η, η̇)

can be found in Raffo et al. (2010). In addition, U1 denotes the

total thrust of the rotors, and τ denotes the torques in the roll,

pitch, and yaw angular directions. U1 and τ are formulated with

u, as follows:

U1 = α(u1 + u2 + u3 + u4), τ =

[

lα(−u2 + u4)

lα(−u1 + u3)

β(−u1 + u2 − u3 + u4)

]

,

(26)

where l = 0.25 m is the distance between the rotor and the

center of mass, α = 1 is the lift constant, and β = 0.2 is

the drag constant. We discretize the continuous-time model (25)

with a sampling time of ∆T = 0.1 s by using Euler’s method. The

control objective is to regulate the plant from the initial state x0 =
[

−1, 1, 1.5, 0, 0, 0, 0, 0, 0, 0, 0, 0
]⊤

to the desired state xd = 012

by using the cloud-based MPC schemes. For the MPC formulation,

the weighting matrices and vectors are selected as Q = Qf =
diag

(

300, 300, 300, 300, 300, 300, 0, 0, 0, 0, 0, 0
)

, q = qf = 012,

R = diag
(

0.1, 0.1, 0.1, 0.1
)

and r = 04, and the system state

and input are subjected to the constraints −10 ≤ ξ ≤ 10 and

0 ≤ u ≤ 10, respectively. Moreover, the affine maps {Pu, tu} and

{Px, tx} are chosen as

Pu =

⎡

⎢

⎣

−2 −3 0 0

0.3 −1.6 0 0

0 0 −2 −1

0 0 1.2 −3

⎤

⎥

⎦
, tu =

⎡

⎢

⎣

15

−8

10

−12

⎤

⎥

⎦
,

Px =

⎡

⎢

⎣

Px,ξ 0 0 0

0 Px,η 0 0

0 0 Px,ξ̇ 0

0 0 0 Px,η̇

⎤

⎥

⎦
, tx =

⎡

⎢

⎣

tx,ξ
tx,η
tx,ξ̇
tx,η̇

⎤

⎥

⎦
,

Px,ξ =

⎡

⎣

−3 1.5 0.1

−1 −2 0.2

0.5 −1 −2.5

⎤

⎦ , tx,ξ =

⎡

⎣

2

−3

1

⎤

⎦ , Px,ξ̇ =−2I3, tx,ξ̇ =

⎡

⎣

−1

−8

7

⎤

⎦ ,

Px,η=

⎡

⎣

−2 −1.5 0

−0.8 −2.5 0

0 −1.6 −2

⎤

⎦ , tx,η=

⎡

⎣

−5

4

6

⎤

⎦ , Px,η̇=−1.5I3, tx,η̇=

⎡

⎣

−3

−4

3

⎤

⎦ .

The state and input signals of the quadrotor are privacy-

sensitive since the eavesdropper can use them to infer the

quadrotor’s position and velocity information and then track or

Fig. 3. System state evolution of conventional and privacy-preserving state-

feedback MPC. C-MPC refers to conventional MPC and PP-MPC refers to

privacy-preserving MPC.

Fig. 4. System input evolution of conventional and privacy-preserving

state-feedback MPC.

attack the quadrotor. We evaluate the conventional and privacy-

preserving MPC schemes with state feedback. The simulation

results are presented in Figs. 3 and 4. Fig. 3 (4) illustrates the

state (input) trajectory under conventional MPC and the real and

transformed state (input) trajectories under privacy-preserving

MPC. It is clear that the state and input trajectories obtained from

the privacy-preserving MPC are identical to the ones obtained by

the conventional MPC. This aligns with the theoretical findings

concluded in Lemma 1, affirming that the affine transformation

mechanism maintains control performance equivalent to conven-

tional MPC. Meanwhile, as shown in Figs. 3 and 4, under the

privacy-preserving MPC, the state and input information collected

by the cloud diverges significantly from the actual one. This

observation underscores the efficacy of our proposed method in

privacy preservation. According to Definition 1 and Theorem 1,

the proposed method ensures the existence of infinitely many

sets of states/inputs capable of generating the same accessible

information (i.e., x̄(k) and ū(k)) for the adversary. The difference

8
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Fig. 5. Trajectory evolution of the quadrotor, resulting from Method 1 (Darup,

Redder, Quevedo, 2018), Method 2 (Sultangazin & Tabuada, 2021), and the

proposed method.

Table 1

Comparison of accumulative cost and average computation time.

Method 1 Method 2 Proposed

Accumulative cost [×104] 2.9260 1.2116 1.1091

Average computation time [ms] 69.9666 0.0510 0.0499

The average computation time refers to the time required by the plant for

implementing operations under different privacy-preserving methods.

among these sets could be arbitrarily large, which makes the

adversary unable to infer x(k) and u(k).

For comparison, two existing privacy-preserving methods, i.e.,

Method 1 (Darup, Redder, Quevedo, 2018) and Method 2 (Sul-

tangazin & Tabuada, 2021), are tested in this simulation sce-

nario. Method 1 (Darup, Redder, Quevedo, 2018) uses homomor-

phic encryption to conceal sensitive information, while Method

2 (Sultangazin & Tabuada, 2021) employs transformation-based

techniques to prevent privacy leakage. Since both methods are

designed for linear MPC, the nonlinear system (25) is linearized

at the desired position to facilitate implementation. The motion

trajectories of the quadrotor under different control schemes are

illustrated in Fig. 5. It is clear that the proposed method can

effectively regulate the quadrotor to the desired position with

minimal trajectory fluctuations. Moreover, Table 1 presents the

accumulative cost (i.e.,
∑

(x⊤Qx + q⊤x + u⊤Ru + r⊤u)) and the

average computation time required by the plant to implement

the operations for different privacy-preserving methods. The pro-

posed affine masking strategy achieves better closed-loop perfor-

mance compared to Methods 1 and 2. Both the proposed strategy

and Method 2 utilize similar transformation-based techniques

to mask actual information, and they are more computationally

efficient compared to Method 1 which relies on complicated

encryption and decryption procedures.

6. Conclusion

This paper developed an affine masking-based privacy-

preserving cloud-based nonlinear MPC framework. We consid-

ered eavesdroppers and honest-but-curious adversaries who

intend to infer the plant’s system state and input and the ∞-

diversity with unbounded diameter privacy notion was adopted.

A simple yet effective affine transformation mechanism was

designed to enable privacy preservation without affecting the

MPC calculation. Furthermore, the proposed method was suc-

cessfully extended to output-feedback MPC. Simulation results

showed that by using the proposed method, the MPC problem

can be addressed without disclosing private information to the

cloud.

One thing we would like to note is that although the models

are transformed in the cloud MPC implementations, one can show

that the current privacy preservation scheme cannot protect the

poles/zeros of the linearized system. Our future work will en-

hance the privacy scheme to address this issue. We will also

extend this framework for systems with uncertainties (e.g., robust

and stochastic MPCs), explore other metrics for privacy definition,

and analyze its resilience/vulnerability to different attackers and

side-knowledge.
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