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Abstract—People commonly utilize visualizations not only to examine a given dataset, but also to draw generalizable conclusions
about the underlying models or phenomena. Prior research has compared human visual inference to that of an optimal Bayesian
agent, with deviations from rational analysis viewed as problematic. However, human reliance on non-normative heuristics may prove
advantageous in certain circumstances. We investigate scenarios where human intuition might surpass idealized statistical rationality.
In two experiments, we examine individuals’ accuracy in characterizing the parameters of known data-generating models from bivariate
visualizations. Our findings indicate that, although participants generally exhibited lower accuracy compared to statistical models,
they frequently outperformed Bayesian agents, particularly when faced with extreme samples. Participants appeared to rely on their
internal models to filter out noisy visualizations, thus improving their resilience against spurious data. However, participants displayed
overconfidence and struggled with uncertainty estimation. They also exhibited higher variance than statistical machines. Our findings
suggest that analyst gut reactions to visualizations may provide an advantage, even when departing from rationality. These results
carry implications for designing visual analytics tools, offering new perspectives on how to integrate statistical models and analyst
intuition for improved inference and decision-making. The data and materials for this paper are available at https://osf.io/qmfv6

Index Terms—Visual inference, statistical rationality, human-machine collaboration.

1 INTRODUCTION

Visualizations play an increasingly important role in data analysis and
decision-making. Crucially, these tools are not just used for extracting
numbers; often, their greater value lies in revealing insights about the
processes that generated the data in the first place. For example, a busi-
ness analyst who observes a visualization showing an increase in luxury
coat sales might seek to understand the underlying factors, such as un-
usually cold winters, an increase in disposable incomes, or whether this
trend was simply a fluke. This deeper understanding can in turn help
analysts perform higher-level tasks, such as attributing causality, vali-
dating hypotheses, or predicting future observations. Making accurate
inferences from visualizations, however, can be challenging, requiring
one to account for potential uncertainties and natural variabilities in
the data. This interpretive process could expose the viewer to pitfalls.
For example, the viewer might overinterpret a visualization displaying
an unusual or extreme sample, causing them to infer spurious features
not found in the data-generating process. Conversely, the viewer may
fail to consider the data sufficiently and instead fall back to their prior
belief — a potential manifestation of confirmation bias. Inferential
errors during visual analysis can lead to invalid conclusions and false
discoveries [70]. While the likelihood of incorrect machine inference
can be quantified analytically or through simulations, our understanding
of human inference-making from visualizations remains limited.

Prior research has approached this question by comparing the visual
inferences people make to those of an optimal Bayesian agent that
observes the same data [40]. This method evaluates whether a viewer’s
interpretation, such as the level of correlation between two variables,
aligns with the conclusions of a Bayesian that accounts for both the
viewer’s preexisting knowledge and the data observed [37]. The level
of divergence between the viewer’s inference and the Bayesian model
determines how optimal the viewer’s interpretation is; visualization
techniques eliciting smaller divergence are deemed more effective.

Although useful as a reference point, the suitability of a fully nor-
mative agent as a universal benchmark target is not always justified
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on an ecological level [14]. Unlike statistical machines, humans do
not possess the necessary cognitive resources to process information
like a perfectly rational agent. Additionally, rational agents do not
exhibit the nuances of human cognition. In certain contexts, deviations
from rationality can indeed be advantageous, leading to a closer ap-
proximation of the underlying reality. For example, a Bayesian agent
might perceive a positive correlation between two unrelated variables,
such as the number of ice cream cones sold and the number of shark
attacks, despite a prior suggesting no connection. In contrast, a human
observer could become increasingly skeptical upon observing the same
dataset, irrationally reinforcing their belief in no correlation. While the
Bayesian approach is normatively superior, the human response could
lead to better inference in such scenarios. Specifically, the non-rational
response of reinforcing a ‘null’ belief in the face of contrary evidence
can instill healthy skepticism, guarding against false positives.

In this work, we move away from the assumption that a rational
agent is always ideal. Instead, we compare the utility of both human
and Bayesian inference in accurately characterizing data-generating
processes under varying uncertainty and sample conditions. Specifi-
cally, we investigate situations where human visual inferences might
outperform those of an ideal Bayesian (and vice versa). Although we
expect a Bayesian agent to be globally optimal, we foresee scenarios
where factors such as sample size and outlyingness could give the
human analyst an edge. This perspective acknowledges that human
heuristics, though seemingly inferior [62], can sometimes give rise to
better inference [26]. By characterizing factors that lead analysts to
exceed machine-inference performance, we pave the way for designing
more intelligent visual analytics systems. Such systems might adap-
tively encourage analysts to leverage their intuition and ‘trust their gut’,
or, at other times, provide computational assistance when users are
more prone to biased inference-making.

We conducted two experiments to study how people make visual
inferences in response to bivariate visualizations on a range of topics.
Participants externalized both their prior beliefs (i.e., before seeing data)
and posteriors (i.e., post-data exposure) using a graphical elicitation
device. We manipulated several factors, including the visualization
type, sample size, and the extremeness of the sample (i.e., the degree to
which it is inconsistent with the ground truth). We find that participants
were more accurate at inferring the true correlation level than both
informed and uninformed Bayesian models when the visualization
showed extreme samples. This advantage was particularly pronounced
with icon arrays, and in situations where there was a higher consensus
around the ground truth. However, participants were less precise in


https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://orcid.org/0000-0002-8860-6183
https://orcid.org/0000-0002-6418-5767
https://orcid.org/0000-0002-8096-658X
https://osf.io/qmfv6

estimating the true uncertainty of the data-generating process, often
displaying unwarranted confidence. In a second experiment that varied
the uncertainty level in the generating models, participants were better
at inferring the true correlation at low uncertainty, although they did
not necessarily improve their performance relative to machines.

Our findings reveal that individuals frequently diverge from nor-
mative inference when interpreting visualizations. Importantly, these
deviations proved advantageous, particularly when examining extreme
datasets and small samples. In such instances, an analyst’s intuition
may yield more accurate conclusions on average than those generated
by idealized statistical machines, even when the latter are endowed with
human priors. Conversely, for larger and more reliable datasets, the
precision offered by statistical inference seems to reduce both bias and
variability, leading to better estimation of the generating model. These
findings highlight the potential for integrating human and machine in-
ference in visualization tools, providing guidance on how to interweave
the two capabilities. Moreover, our results suggest an alternative design
strategy that seeks to harness human heuristics in visual analytics, as
opposed to entirely aligning analyst behaviors with rational frameworks.
We discuss the implications and highlight future research directions.

2 BACKGROUND & RELATED WORK
2.1 Heuristic vs. Rational Decision-Making

Heuristics are commonly associated with the notion of “taking short-
cuts” to simplify a cognitively demanding task. As such, heuristics have
been viewed as an inferior and unreliable form of cognition compared
to rational decision-making [29, 35]. However, recent research chal-
lenges this perspective, showing the potential of heuristics in helping
people come to good decisions [2,25]. In certain situations, intuitive
decision-making with heuristics can lead to superior outcomes com-
pared to rational, analytical reasoning [16, 58], especially in high-risk,
high-uncertainty scenarios [34]. For instance, managers employing
heuristics sometimes make more effective decisions than those relying
on statistical procedures like logistic regression [46]. In particular,
when information is limited, individuals could achieve better judg-
ments by using simple heuristics rather than attempting to process the
available information [27]. In other words, by adaptively disregarding
certain information, one could enhance their decision quality [28].

Non-rational thinking could also prove beneficial in visual analytics,
especially when one is faced with improbable data. For example,
analysts could grow skeptical and deviate from normative practices by
deliberately underweighting the evidence implied by the data. Such
heuristics, which are not always amenable to algorithmic modeling,
can enhance inference from visualizations in specific scenarios. Rather
than seeking to align analyst performance with normative, statistical
inference [37,39], we seek a better understanding of how human and
machine inference-making can complement each other.

2.2 Inference from Visualizations

Statistical inference involves drawing conclusions about a population
based on a (limited) sample of data from that population. Although
inference is often performed with the aid of formal statistical models,
it is possible to make inferences from visualized data [6]. For visual
inferences to be reliable, one must be able to distinguish between real
effects and spurious patterns [70]. Towards that end, methods have been
proposed to safeguard the graphical inference process by controlling
the rate of false discovery [59,60,71]. The lineup protocol is one of the
early influential techniques in this space [68], and is often considered
a visual analog to null-hypothesis significance testing [49]. Lineups,
however, can be difficult to use in practice due to the need to develop
realistic null models that can be compared to real datasets [4].

More recent work aims to allow visual analysts to operationalize
their prior beliefs in the interpretation of visualizations [48]. This ap-
proach provides affordances for analysts to assess the compatibility
of their models with data [10, 11, 36,42, 56]. By encouraging ana-
lysts to explicitly test their models, researchers aim to foster a more
normative, Bayesian-grounded inference from visualizations [37,40].
Generally speaking, Bayesian inference provides a way to tap into
expert knowledge [16], encoding the latter as prior models that can

help normalize against outlying data, or supply additional informa-
tion when data is limited. For example, in climate modeling, prior
information can improve estimates of rainfall in the face of potentially
extreme measurements [12, 13]. Similarly, in wildlife research, where
species might not have the same observable abundance, borrowing
information from related species can improve inference about rare pop-
ulations [47]. Koonchanok et al. propose a parallel mechanism in
visualizations [43]. They demonstrate that eliciting priors can reduce
false discoveries by allowing analysts to remain vigilant against spuri-
ous visualizations. Karduni et al. investigated how individuals update
their beliefs when making sense of bivariate visualizations [37]. They
show that incorporating uncertainty representations enables a more
Bayesian-like belief update. Others have explored how graphical model
elicitation might engender attitude change through increased cognitive
processing of visualizations [33, 50, 57]. Building on prior work in
belief elicitation [10,42,43,48], we employ interactions to externalize
people’s priors and posteriors, and compare human performance to that
of Bayesian agents.

3 RESEARCH QUESTIONS & METHODS

We investigate the accuracy of human inference-making from visu-
alizations, evaluating how well these inferences align with the data-
generating processes under various uncertainty and visualization con-
ditions. Our central hypothesis is that although analysts will deviate
from Bayesian rationality (and thus make suboptimal inferences in
the aggregate), they can still update their beliefs in ways that more
accurately reflect reality. Specifically, non-normative belief updating,
guided by intuition and hunches, could be useful in high uncertainty
or noisy sample conditions. In effect, human inference-making can
complement strictly rational agents. Thus, we pose two questions:

RQ1: How do visual analysts compare to Bayesian agents that see
that same data? How well do humans perform under different visual-
izations? We compare visual inferences of analysts to two Bayesians:
one informed with the prior knowledge of the human analyst, and an-
other with a uniform, flat prior that provides no preexisting knowledge,
forcing a purely data-driven inference.

RQ2: How do sample and ground-truth characteristics influence visual
inferences relative to Bayesian agents? Factors such as the perceived
reliability (or extremeness) of the sample and the degree of ground
consensus behind the generating process may impact how individuals
derive insights about the data-generating mechanism.

To address these questions, we conducted two crowdsourced experi-
ments. We evaluate individuals’ accuracy in inferring true bivariate re-
lationships between attribute pairs after exposure to (potentially noisy)
samples. We collected responses from viewers before and after expo-
sure to visualizations, recording both their prior beliefs and posterior
inferences about the data-generating process. We measure the accuracy
of human-vs-Bayesian inferences under different sample configurations,
ranging from large samples that reflect the true parameters to small and
potentially extreme samples. Additionally, we assess the effectiveness
of multiple visualization types for this purpose.

3.1 Model Elicitation

We employ a graphical elicitation device to externalize participants’
prior and posterior beliefs (illustrated in Figure 1). This interface
enables participants to specify two parameters via two sliders according
to their beliefs: the expected correlation coefficient between the two
variables (1) and the associated uncertainty in the correlation (o).
Specifically, the first slider prompts participants to indicate the “most
likely relationship” along a continuum from ‘negative’ to ‘positive’
correlation. The second slider prompts participants to express their
“confidence level” in the relationship, ranging from ‘highly uncertain’
to ‘moderately’ and ‘highly certain’. These two parameters populate
the following model:
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Fig. 1: A graphical belief elicitation device for expressing beliefs about
bivariate relationships in response to a prompt (top). Participants ex-
ternalized their prior and posterior beliefs in two steps: (1) indicating
the most likely relationship, and (2) specifying their uncertainty in the
relationship. These slider settings update two parameters, u and o, in
a linear model. During this interaction, participants see hypothetical
samples from this model, refreshed at 5Hz, illustrating what the bivariate
data might look like if their beliefs were true.

yi=Po+Pxit+e
B~ A (u,0%)
Bo ~ A (0, Gg)
g~ (0, 03)

Where u is the expected slope of the relationship as specified by the
first slider, and ¢ is the uncertainty in the slope, as specified through
the second slider. The intercept By for the regression line is centered
around 0, with a fixed standard deviation of 6}, = 0.1. €; is an additional
residual term with a fixed standard deviation of ¢, = 0.45.

During user interaction, the elicitation interface visualizes samples
generated from the above model. This allows participants to see hypo-
thetical outcomes, refreshed at 5SHz, showing what the data might look
like if their belief was true. This type of animated display is meant to
help participants intuitively grasp the effects of manipulating the two
sliders and the uncertainty implied by their (prior) model. The hypo-
thetical samples are displayed in a scatterplot (Figure 1), a bar chart,
or an icon array (Figure 3-A and B), depending on the experimental
condition. However, in all conditions, participants utilize the same
two sliders to specify their beliefs. The hypothetical samples are only
animated during the elicitation step and shown in grey color to help
distinguish them from the ground truth data samples (solid black).

ey

3.2 Stimuli and Data-Generating Models
To provide plausible stimuli for the study, we developed a set of 40
prompt questions and corresponding ground truth models. The prompt

Table 1: Example prompt questions and associated ground-truth param-
eters as obtained from crowd workers.

Correlation | Consensus Prompt question Ground truth
. What is the relationship between alcohol M = 0-394
Positive Low N L )
consumption and an individual’s stress level? | O ,=0.166
i i i i =-0.422
Negative High What is the rellatlonsmp between time spent HTruth
on social media and hours of sleep at night? | Or,,=0.146
No High What is the relationship between the length Hpytn = 0.03
relation 9 of people’s first and last name? Orpuin= 0.236

-0.8 -0.4 0 0.4 0.8

Sample extremeness (AR)

Fig. 2: Distribution of extremeness for ‘medium’ sample sizes (N = 15
points). With AR = 0.1, the middle sample is a relatively faithful depiction
of the ground truth (no correlation in this example). The sample on the left
is more extreme with AR =~ —0.3. The right-most scatterplot represents
an even more extreme occurrence with AR ~ 0.6.

questions covered a variety of common knowledge topics (see Table 1
for examples), with bivariate relationships ranging from negative corre-
lations to positive correlations. Additionally, we also included attributes
with no plausible relationship. The corresponding ground truth models
for these prompts followed the same form as Equation 1. To initialize
these models with plausible parameters rooted in common wisdom, we
employed crowd workers recruited through Amazon Mechanical Turk.
Workers (n = 61) were prompted to respond to each of the 40 questions,
using the model elicitation interface in Figure 1 to provide their belief
on the most likely relationship slope and their uncertainty around that
relationship. Responses from the workers were then averaged forming
the two ground truth parameters for each prompt question. Subse-
quently, we selected 24 prompt questions to be used in the experiment.
These questions comprised six ground truth models with a positive
relationship (Uzy,n > 0), six questions with a negative relationship
(Urruen < 0), and 12 with no correlation (Uz,y;, == 0).

Social Consensus: Individuals often rely on social knowledge when
forming their beliefs. Consensus (whether perceived or actual) can
also serve as a tool to reduce uncertainty. Therefore, we expect the
agreement around the ground truth to impact people’s inferences from
visualizations. To quantify the latter, we measure the consistency of the
crowd wisdom: Prompt questions exhibiting smaller variations in the
elicited crowd beliefs are considered to reflect a higher degree of social
consensus. This was determined based on the standard deviation of the
elicited u responses among workers. Within each category (positive,
negative, or no relationship), we designate half the prompt question
with the lowest standard deviation as ‘high’ consensus, with the other
half considered ‘low’ consensus, representing lower agreement between
workers on what the data-generating process should be. Including this
factor in our analysis helps control for prior beliefs. Participants are
expected to have stronger priors when responding to high-consensus
questions. Conversely, priors are likely to be much weaker for low-
consensus questions, leading participants to become more data-driven
in their inference, and potentially more susceptible to extreme samples.

3.3 Sample Configurations

For each stimulus, we display the prompt question and ask the partici-
pant to provide their prior belief about the topic (i and ). We then
expose participants to a random data sample generated from the ground
truth model. Subsequently, we prompt them to reflect and provide
a posterior inference using the same elicitation device as before. To
understand how sample characteristics affect inference accuracy, we
varied two properties: sample size and extremeness.

Sample Size: The number of data points in a sample is an important
factor for an analyst to consider when making inferences. Larger
samples furnish stronger evidence about the underlying data-generating
process. We thus varied the size of samples shown to participants, using
7, 15, and 30 data points to represent ‘small’, ‘medium’, and ‘large’
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sample sizes, respectively (these labels are only to illustrate the results,
and not shown in the experiment). These sizes were selected to provide
varying levels of evidence, while still allowing for extreme samples to
emerge. Specifically, smaller samples are more prone to noise, giving a
potentially misleading picture of the underlying ground truth.

Sample Extremeness: A core question that we address is how resilient
people can be to extreme (or spurious) data, as compared with idealized
statistical machines. Sample extremeness reflects the degree to which
it is inconsistent with the data-generating process (e.g., a sample sug-
gesting a positive correlation when the underlying model prescribes no
relationship). Under a random sampling regime, spurious samples are
expected to arise. We take advantage of this phenomenon and quantify
the extremeness of the emerging samples in the experiment. We use
Pearson’s coefficient (R) to measure correlation strength for a sample
and, by extension, the degree to which it can be considered extreme with
respect to its underlying model. Specifically, we compute a difference
(AR) between the sample’s and the expected correlation:

AR = RSample - RExpected 2)

RExpectea 18 the mean R-value, determined from 10,000 simulated
draws from the ground truth. A sample that is a faithful representation
of its model will have AR ~ 0. As AR deviates (negatively or positively),
the sample will be considered more extreme. Under the law of large
numbers, we would expect the distribution of AR to be centered around
zero, with the majority of samples exhibiting low extremeness (see
Figure 2). However, extreme samples would be expected to emerge.
Additionally, we anticipate that sample size will influence the likelihood
of extremeness: larger samples are expected to have a narrower AR
distribution, while smaller samples may yield a wider extremeness
distribution. Ground-truth models with higher uncertainty (o) will
also produce more spurious data. By quantifying the extremeness of
emerging samples, we can observe how participants react to spurious
data. We can then assess the extent to which participants (and Bayesian
agents) can resist misleading samples.

4 EXPERIMENT |

This experiment aims to compare the inference of participants to ideal
Bayesian agents. We specifically test the extent to which participants
can infer the ground truth parameters as a function of visualization
type, sample size and extremeness, and the degree of social consensus.
Participants saw prompt questions described in §3.2 and were asked to
predict the parameters of a bivariate ground truth model, namely, the
expected slope 1 and uncertainty ¢. For each stimulus, participants
were asked to provide their prior beliefs through the graphical elicitation
interface described earlier. After that, they saw a sample from the model
and were asked to reflect and provide their updated (i.e., posterior)
inference about the true relationship.

4.1 Experiment Design

We adopted a mixed design, investigating three independent factors:
Visualization (3 types) x Sample size (3 levels) x Social consensus
(2 levels). Visualization was varied between subjects, whereas sample
size and social consensus were varied within-subject.

Visualization: We evaluated scatterplots, bar charts, and icon arrays
for representing samples. Scatterplots were chosen for their percep-
tual effectiveness in illustrating correlations [30]. Bar charts on the
other hand aggregate the X axis into ordered groups (e.g., ‘low’ and
‘high income’), averaging the second attribute (e.g., BMI) within these
groups (see Figure 3-A). Icon arrays similarly aggregate the X axis
into discrete ‘low’ and ‘high’ bins but show individual data points with
color-coded Y values (Figure 3-B). While scatterplots offer a full view
of the sample, both bar charts and icon arrays provide simplified, ag-
gregate representations. Icon arrays were particularly noted for aiding
conditional probability assessment of the sort needed for Bayesian rea-
soning [51]. They have also been used extensively in communicating
uncertainty (e.g., medical risks [22,23]) to non-experts, making them a
suitable visualization to test in this experiment. That said, the collapse

of continuous variables into discrete ordinals in both icon arrays and
bar charts may ultimately prove detrimental.

Sample and Ground Truth Characteristics: Participants completed
eight trials with each of the three sample sizes (small, medium, and
large). Of these eight trials, four were presented with high-consensus
prompts and four were low-consensus. Sample extremeness was in-
cluded as an explanatory variable but was left to vary as a consequence
of the random sampling process. Hence, while not explicitly controlled,
extremeness covaried following a predictable distribution (Figure 2).

4.2 Hypotheses
We developed four hypotheses:

H1 - Compared to the two Bayesian agents, participants will be less
accurate overall in recovering the true slope of the data-generating
process. The global suboptimality of human analysts can be attributed
to the difficulty in performing a fully normative inference from data on
a visual basis. That said, we hypothesize that the informed Bayesian
will outperform the uninformed (i.e., flat prior) agent, as the former
benefits from participants’ knowledge.

H2 - Although participants will make less-optimal inferences in the ag-
gregate, we expect them to handle extreme samples better than Bayesian
agents. Specifically, we hypothesize that participants will employ non-
statistically normative heuristics to ‘adjust’ for improbable data, leading
to more accurate inference. We expect this tendency to be more evi-
dent when there is greater consensus around the ground truth and with
smaller sample sizes.

H3 - Participants will perform best with scatterplots, thanks to their ef-
fectiveness in displaying bivariate correlations. Icon arrays should also
yield good results, though to a lesser degree. Both visualizations allow
for individual data point observation. In contrast, participants will strug-
gle with bar charts due to the absence of uncertainty representations,
making this visualization somewhat less optimal for inference.

H4 — We anticipate reduced accuracy in participants’ judgment of the
model’s uncertainty. Specifically, we expect human analysts to perform
less effectively than both the informed and uninformed Bayesian agents
when characterizing uncertainty.

4.3 Participants

‘We recruited participants from Prolific who are US residents and are
at least 18 years old. Prospective participants were initially screened
through basic questions on bivariate relationships to ensure sufficient
background. We ultimately enrolled 222 participants in the experiment
(112 males, 104 females, 6 others) with a mean age of 35.4 years.
Education levels for participants were as follows: 56 high school, 24
associate, 89 bachelor’s, 39 master’s, 13 doctorate, and 1 unspecified.
Participants were randomly assigned to one of the three visualization
types (74 in each group). They were compensated with $5 for an hourly
wage of $16.7. The study was approved by Indiana University’s IRB.

4.4 Procedure

Participants first completed a tutorial explaining the goals of the experi-
ment and introducing the graphical elicitation device. The instructions
emphasized that the samples shown could be noisy, particularly for
small samples. Participants then completed one practice trial, after
which they completed the main study which consisted of 24 trials,
corresponding to the prompt questions developed in §3.2, presented
in random order. In addition to the analyzed trails, we included four
engagement checks. The checks instructed participants to set the sliders
to specific values (e.g., extreme positive correlation).

In each trial, participants were first presented with a context (e.g.,
“supposed we have data on US cities”), and were then prompted to
predict a linear relationship between two variables (e.g., “what is the
relationship between the unemployment rate and the affordability of
housing?”) Participants were asked to visually provide their prior
belief through the elicitation device (§3.1). Next, the participants were
presented with a sample drawn from the corresponding ground-truth
model. The sample was shown side-by-side with participants’ prior.
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Fig. 3: Top: Flow diagram illustrating the procedure for Exp. 1. The blue-shaded section represents a single trial. In each trial, participants: 1)
externalize their prior belief about a prompt question by adjusting two sliders, 2) observe a sample from the ground truth presented alongside their
belief, 3) indicate how reliable they believe the sample is, and 4) specify their updated (posterior) belief by re-adjusting the sliders. Depending on the
visualization condition, participants are either shown scatterplots, bar charts (A), or icon arrays (B).

They were prompted to provide their impression of sample reliability
via a slider. Lastly, participants were prompted to update their beliefs
by re-adjusting. Participants, however, were instructed that it is up to
them to decide “how much (or little) to adjust [their] initial beliefs.”
Figure 3 illustrates this sequence. The visualized samples along with the
belief elicitation device varied depending on the visualization condition
(scatterplots, bar charts, or icon arrays). However, participants entered
their responses using an identical set of sliders, with the difference
being in how the samples, priors, and posteriors were visualized.

4.5 Response and Accuracy Metrics

Participants supplied five continuous responses in every trial: the most-
likely slope (Ugryman) and uncertainty (O,man) in the relationship, both
before (i.e., prior belief) and after sample exposure (i.e., posterior infer-
ence). Additionally, they provided their perception of sample reliability
(reported in the supplemental materials). For every trial, we generated
two comparable statistical inferences. The first (Upayes and Opayes)
was derived through Bayesian inference using the participant-provided
prior and the likelihood function implied by the sample observed by the
participant. This corresponds to an idealized statistical agent equipped
with identical prior knowledge as the participant. The second response,
also a Bayesian, utilized a flat prior in conjunction with the same like-
lihood function, representing an uninformed agent that exclusively
learns the two parameters (g, and O, ) from the sample. We quan-
tify inference accuracy for each of the three agents by measuring the
divergence of the inferred parameters from the ground truth:

HMeuman|Bayes|Flat — HTruth

AU = 5 x 100
OH Bayes|Flat — OTruth )
AG — uman| a)68|6at ru %100

We normalize relative to the most likely parameter range of u €
[~1,1],0 € ]0,0.6] and report 100x values for readability.

4.6 Analysis and Modeling

Participants completed the experiment in 18 minutes on average (sd
= 8.7). They provided 5,328 responses in total. We used the brms
package [7] to fit the responses to a Bayesian regression model. The
model predicts At or Ao (i.e., the divergence from true slope or uncer-
tainty). We modeled both the mean and spread (sd) of the divergence.
We followed a Bayesian analysis workflow in creating the model [24],
evaluating with posterior predictive checks and incorporating additional
parameters to improve the posterior fit. Details on the model construc-
tion process can be found in the supplementary material. The model
for Au is given by (with a nearly identical formula to predict Ac):

Al ~ Normal(mean, sd?)
mean = AR X agent X vis X consensus X size
+ AR x agent x questionType

+ (14 AR x agent | participant) + (1 | question)

log(sd) = agent X vis X consensus X size

+ (1 + size x agent | participant) + (1 | question)

AR is the sample extremeness (Equation 2). Agent indicates whether
the inference came from a human (the participant), an informed
Bayesian, or an uninformed flat-prior agent. Size is a categorical
variable representing the sample size (small, medium, or large). Vis
represents the visualization type (scatterplot, bar chart, or icon array).
Consensus is the agreement around the ground truth. The first inter-
action term allows us to model our primary effects of interest. After
conducting posterior predictive checks, we introduced an effect for
questionType; this categorical variable signifies whether the ground
truth prescribes a positive correlation, negative correlation, or no rela-
tionship — the latter played a role in modulating participants’ responses.
Lastly, we included random slopes and intercepts to model individual
differences among participants and effects of topic variation (question).
We used flat priors for all parameters, except for the spread which fol-
lowed a half-student’s T distribution (d f = 3, bias = 0, scale = 2.5).
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4.7 Results

4.7.1 How accurate are participants in inferring the true slope
compared to Bayesian agents?

Figure 4 illustrates the mean accuracy of three agents overall and across
all manipulated factors. Zero divergence is ideal. Overall, the flat-prior
agent exhibits the smallest distance to the real slope (est. divergence:
0.34, 95% credible intervals: [0.08,0.61]). This was followed by the
informed Bayesian agent (—1.02, 95% CI: [—1.38, —.65]), and lastly,
participants who provided the least accurate inferences (—1.36, CI:
[—1.81,—.87]). Humans and informed Bayesians overlapped substan-
tially in their accuracy, although they both consistently underestimated
the true relationship. By contrast, an uninformed Bayesian appears
to provide near-optimal inference on the aggregate. We analyze how
accuracy varies across visualization types and social consensus levels.

Visualization: Participants appear to perform best when viewing icon
arrays. On average, their divergence from the true slope was only —.49
with a 95% credible interval that overlaps zero ([—1.27,0.3]), indicat-
ing a good chance of inferring the true relationship. Notably, human
performance with icon arrays slightly surpassed though remained com-
parable to that of an informed Bayesian (—1.18, CI: [-1.73,—0.65]).
In contrast, participants tended to make less accurate inferences with
scatterplots (—1.52, CI: [—2.15,—0.9]) and bar charts (—2.06, CI:
[—2.66,—1.4]), with both visualizations leading to an underestima-
tion of the true relationship.

Consensus: All agents performed equally well when the consensus
around the ground truth was high, with divergence remarkably cen-
tered around zero. By comparison, low-consensus topics elicited
less accurate inferences from participants (divergence: —2.75, CI:
[—3.46,—2.07]). This reduction in accuracy was also observed to a
lesser degree in the informed Bayesian (—2.08, CI: [-2.6, —1.54]). As
would be expected, a flat-prior agent is virtually unaffected by whether
there is ground consensus (0.18, CI: [—0.17,0.54] for high consensus
vs. 0.49, CI: [0.13,0.84] for low).

Sample Size: The data-driven agent consistently demonstrated good
inference across medium and large sample sizes, with credible intervals
that intersected zero. As expected, its performance was reduced in small
sample sizes, resulting in a non-zero deviation (0.82, CI: [0.46,1.19]).
This degree of deviation in smaller datasets was somewhat comparable
to that of an informed Bayesian (—1.19, CI: [—1.77,—0.6]), and to
human performance (—1.55, CI: [-2.26,—0.86]).

Spread: Figure 5 illustrates the estimated spread in Apt. Increased
spread corresponds to higher variability in responses. Overall, the flat
prior agent displays the least spread (est. SD: 4.21, CI [3.81,4.65]),
indicating a consistent response. By contrast, the informed Bayesian
(9.83, CI: [8.78,11.1]) exhibits higher variability. Participants, at the
upper end, demonstrate the greatest spread (13.9, CI: [12.5,15.5]), in-
dicating higher variance in their ability to infer the true slope. Figure
5-right further dissects this by visualization type. Among participants,
icon arrays led to the widest spread (16.7, CI: [14.8,19]), consistently
surpassing the other two visualizations (12.3, CI: [10.8, 14] for scatter-
plot and 12.5, CI: [11,14.3] for bar charts).

4.7.2 How resilient are humans and Bayesian agents to spuri-
ous samples?

Figure 6-top illustrates the impact of sample extremeness on the di-
vergence from the ground truth for the three agent types. A weaker
correlation (i.e., smaller slope) indicates lower sensitivity and, hence,
better resilience to spurious samples. Participants appear to be less
influenced by extreme samples than both informed and uninformed
(flat prior) Bayesian agents. Specifically, a unit increase in sample
extremeness leads to a 14.3 (CI: [12.2,16.47]) increase in participant
divergence from the true relationship. By contrast, a Bayesian is influ-
enced more strongly (18.80, CI: [17.25,20.27]), giving rise to higher
error with spurious samples. As would be expected, an agent with a flat
prior learning purely from the data is influenced the most (31.41, CI:
[30.68,32.1]), leading to a strong association between sample quality
and inference accuracy.

Visualization, Consensus, and Sample Size: Icon arrays afford the
highest resiliency (est. slope: 12.98, CI: [9.78,16.55]), followed
by scatterplots (13.79, CI: [10.94,16.64]) and bar charts (16.10, CI:
[13.41,18.88]). These slopes, however, overlap indicating largely simi-
lar effects for the different visualizations. When there is more consensus
around the ground truth, resiliency is consistently better (10.62, CI:
[8.19,13.04] vs. 17.95, CI: [15.26,20.79]). Lastly, sample size also
played a role, with participants least influenced by small samples (9.43,
CIL: [7.24,11.84]), followed by medium (13.33, CI: [10.59,16.02]) and
large (20.18, CI: [16.59,23.74]).

Comparing Human vs. Machine Resilience: Figure 7 illustrates the
relative robustness of humans against statistical inference. Specifically,
we estimate the log-divergence ratio for Bayesian agents over partic-
ipants: [0g(|AUgayes|Fiar /AMHuman|). An estimate above 0 suggests
superior inferential performance for humans compared to statistical
machines, while a value below zero indicates the opposite. When
AR = 0 (a sample fully consistent with the ground truth), uninformed
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Bayesians perform 3.82 times better than humans (CI: [2.57,5.81]).
Similarly, informed Bayesian inference is expected to be 2.13 times
closer to the real data-generating process than the average participant
(CI: [1.59,2.97)).

However, as data becomes more extreme, the model predicts an
inversion of this relationship. For instance, at AR = 0.2 (where 40.7%
of the data has |AR| > 0.2), humans exhibit similar performance to an
informed Bayesian (1.12x advantage, CIL: [0.81,1.52]) while showing
a substantial advantage over a flat-prior agent (2.97 x, CI: [2.31,3.9]).
This advantage widens when AR = 0.4 (with 14% of samples having
|AR| > 0.4). Here, an average human will reliably outperform both in-
formed and uninformed Bayesians by factors of 1.73 (CI: [1.33,2.16])
and 4.04 (CI: [3.24,5.06]), respectively.

4.7.3 How good are the agents at characterizing uncertainty?

Figure 8-left displays the mean accuracy of three agents in characteriz-
ing O7yyy, (the uncertainty in the ground truth model). The flat prior
agent demonstrates a more conservative and accurate inference of true
uncertainty (—9.15, CI: [—11.3,—7.12]). In contrast, both humans and
informed Bayesian agents seemed overconfident in their uncertainty
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Fig. 7: Mean estimated advantage for participants over statistical ma-
chines (for inferring the true u) subject to sample extremeness. Intervals
are 95% Cls, with values above zero indicating a human advantage. The
histogram (top) shows the empirically observed AR distribution.
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estimation (33.1, CI: [30.7,35.5] for humans vs. 24.7, CI: [22.4,26.8]
for a Bayesian). The mean accuracy for each visualization type (Figure
8-right) aligns with the aggregate estimate.

4.8 Discussion

Overall, participants were worse at inferring the true slope than at least
one of the two Bayesian agents. These results are partially consistent
with H1. Surprisingly, however, the flat prior achieved the highest accu-
racy. This suggests that subject-provided priors were less reliable than
the likelihood function implied by the sample. Despite being globally
less optimal, participants exhibited better resiliency to spurious sam-
ples, especially in high-consensus topics and with smaller sample sizes.
Interestingly, a cluster of zero-divergence human responses (Figure 6,
particularly at high consensus) suggests that many participants ‘correct’
for extreme samples, leading to better inference. The model estimates
that a typical participant will begin to outperform an informed Bayesian
when |AR| > 0.2 (40.7% of the data). The flat-prior agent, though best
performing in the aggregate, was by comparison highly susceptible to
spurious samples. These results support H2.

Surprisingly, participants demonstrated higher inference accuracy
with icon arrays than scatterplots, despite the latter’s perceptual su-
periority for bivariate data. This unexpected result (inconsistent with
H3) may be attributed to the advantages of icon arrays in conditional
probabilistic reasoning [54]. Such cognitive benefits might outweigh
the perceptual advantages of scatterplots. However, it is noteworthy
that the spread in performance was most pronounced in icon arrays,
indicating a wider variability in response quality, even when this visu-
alization tended to lead to more accurate inference on average. Lastly,
and consistent with H4, participants were less accurate in characterizing
model uncertainty compared to both Bayesian agents.

5 EXPERIMENT Il

Exp. 1 shows that consensus, a proxy for the level of social agree-
ment, strongly impacts participants’ inferences. This factor could hy-
pothetically influence when human analysts might resort to corrective,
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non-statistically normative heuristics, by drawing upon their socially
rooted knowledge. In this experiment, we explore if this social infor-
mation can compensate for uncertainty in the data-generating process.
Specifically, in the presence of heightened statistical uncertainty, we
investigate whether participants can leverage their domain intuition to
attain a relatively better inference as compared to statistical agents.

5.1 Hypotheses

We expect participants to handle increased uncertainty better than
Bayesian agents, particularly when they can compensate with social
information:

HS - The gap between participants and statistical agents will decrease
under higher uncertainty. Participants, benefiting from an increased
ratio of intuitive, social to statistical information, are expected to reduce
the overall performance advantage for Bayesian agents seen in Exp. 1.

H6 - Participants will strategically employ corrective heuristics at
higher rates when faced with both high consensus and high uncertainty,
making them even more resilient to spurious samples. This behavior
will manifest as an interaction between consensus and uncertainty.

5.2 Participants, Experimental Design, and Procedures

We recruited 148 participants from Prolific (95 males 50 females 3
others), with a mean age of 37.4 for a $5 compensation ($16.6/hour
on average). Self-reported education levels were: 42 high school, 21
associate, 60 bachelor’s, 17 master’s, 5 doctorate, and 3 unspecified.
The experiment design and procedures were similar to Exp. 1. However,
this experiment only employs scatterplots. Participants completed 24
trials. Half the trials were sampled from a model with decreased
uncertainty (%GTm,h) and the other half were sampled from a higher-
uncertainty model (207,,,). Uncertainty was manipulated as a within-
subject factor. We slightly reduced o, from 0.45 to 0.3 (see Equation 1)
to allow for more uncertainty control via O7,j,.

5.3 Results

Participants completed the experiment in 18.1 minutes on average (sd
=10.4). We analyzed the results by fitting a Bayesian regression model
similar to Exp. 1 (§4.6), removing the visualization effect and replacing
it with uncertainty as a factor (two levels: low and high). We first
investigate how increasing (or decreasing) uncertainty affects inference
accuracy (Au) for the three agents. We then analyze the interaction
between social consensus and uncertainty.

5.3.1 How does uncertainty in the data-generating process

impact inference?

Figure 9-left shows the mean accuracy of slope inference for the three
agents by uncertainty. Informed Bayesian agents and participants do
slightly better when uncertainty is low. However, as depicted in Fig-
ure 9-right, the gap (represented by the log-ratio) between participants
and the two statistical machines remains relatively consistent regardless
of the uncertainty level in the data-generating process. Specifically,
on average, the flat-prior agent is 11.7 times (CI: [5.21,121.51] better
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Fig. 10: Participants’ sensitivity to sample extremeness, showing the
interplay between social consensus and uncertainty. Lines show model
estimates of Au/AR (+ 95% Cls). Points correspond to empirical re-
sponses. A weaker correlation implies more resilience to spurious data.

than humans when the uncertainty is low, and 13.33 times (CI: [5.64,
225.88] better at high uncertainty. The informed Bayesian also exhibits
better performance over humans, though at a lesser degree (2.04 x ad-
vantage, CI: [1.29,3.53] at low uncertainty vs. 1.89x, CI: [1.26,3.06]
at high uncertainty. Overall, the observed human-machine gap appears
unaffected by changes in uncertainty.

5.3.2 Can social information compensate for uncertainty?

Figure 10 illustrates how sample extremeness affects participants’ in-
ference across different levels of uncertainty and social consensus. In
general, heightened uncertainty increases susceptibility to spurious
samples, but this sensitivity seems to be moderated by social consensus.
For instance, when uncertainty is high and the consensus is low, the
AL /AR rate reaches its peak at 23.8 (CIL: [19.96,27.67]). However,
higher consensus reduces this rate to 15.48 (CI: [11.76,18.82]). Like-
wise, lower uncertainty decreases the divergence-extremeness rate from
23.8 to 18.07 (CI: [12.80,23.33]). The rate is at its minimum when
uncertainty is low, but consensus is high (9.95, CI: [6.17,13.80]).

We investigated the interplay between uncertainty and social consen-
sus using the WAIC criterion [63]. A reduced model, which excludes
an interaction effect, explained over 99% of the weights compared to
the full model, indicating the absence of an interaction. Accordingly,
the observed results can be attributed to a linear combination of so-
cial consensus and low uncertainty, both of which appear to enhance
participants’ ability to disregard spurious data.

5.4 Discussion

The results do not support the notion that participants use social infor-
mation to compensate for statistical uncertainty. Instead, the results
suggest a simpler explanation: participants benefit, separately, from in-
creased social consensus and reduced uncertainty in the data-generating
model. Consequently, we find no evidence to support an interaction
as put forth by H6. Likewise, there is no indication that participants
can narrow the advantage for statistical machines at higher uncertainty
levels. On average, human inference performance remains less accurate
than that of Bayesians, and this performance gap persists consistently
across the two uncertainty levels (contrary to H5). Therefore, while so-
cial information may offer inferential benefits, it seems unlikely to aid
visualization observers in reducing inherent statistical uncertainties.

6 GENERAL DiscussioN

6.1 Human versus Statistical Inference

Our findings suggest that human analysts and Bayesian machines excel
in different scenarios. While Bayesian agents generally provide more
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optimal inference, humans showed less deviation from the ground truth
with spurious data. For instance, at the 60th percentile of extreme
data, humans matched informed Bayesians and outperformed flat prior
agents by a factor of 3. This advantage increased at the 86th percentile,
with factors of 1.7 and 4, respectively. Participants appear to rely on
their internal models to disregard extreme samples, reducing bias. Even
when the Bayesian agent is provided with a human prior model, the
human inference remains less affected by extreme data.

These findings support our central hypothesis that analysts’ intu-
itive and non-rational heuristics, such as ignoring or underweighting
seemingly implausible data samples, can be advantageous. While over-
looking improbable evidence can generally be problematic [8,41], this
tendency may prove useful in exploratory data analysis, by making
analysts more skeptical of patterns they encounter in visualizations, ef-
fectively reducing the rate of false discoveries from visualizations. For
instance, when viewing a visualization suggesting a positive increase
in sales that the analyst believes to be counterintuitive, the analyst may
be justified in underweighting this evidence and concluding that there
was no substantial increase in this case. Although such a conclusion
may be non-statistically rational given the data at hand, it could prevent
the analyst from committing a false discovery.

Prior work by Zgraggen et al. suggests that visual analysts frequently
make Type I errors, such as concluding that there is an effect, like a
positive bivariate correlation or a non-zero difference between two
groups, when in reality there are none [70]. In contrast, our findings
suggest that, on average, individuals may be more adept at discerning
true effects from noise by using their internal models and heuristics to
resist spurious patterns. This ability, however, appears contingent on
having good intuition about the underlying phenomena. Moreover, our
results indicate that formalizing this intuitive process, for example, by
enforcing or encouraging universally rational (e.g., Bayesian) inference,
could be counterproductive. Visual analytics systems should retain a
role for analyst intuition, even when their conclusions may seem biased.

Despite the advantage at interpreting extreme data samples, human
inference seems to exhibit higher variability. Individual analyst re-
sponses may thus be further from the truth, even though collectively,
humans may be less prone to overinterpreting extreme samples. This
variability may be attributed to noise from two sources: the perception
of visualizations, and the setting of priors and posteriors through graph-
ical elicitation devices. These channels allow for visual-perceptual,
cognitive, and manual errors to seep in, thereby affecting response qual-
ity. Computational statistical agents, on the other hand, are unaffected
by these noise sources, and may thus provide a less varied response.
Similarly, in terms of inferring uncertainty, participants consistently
exhibited overconfidence. The Bayesian agent’s response, while also
expressing higher certainty about the data-generating process than war-
ranted, was closer to the ground truth. Conversely, the uninformed
agent provided a more conservative assessment that was almost always
closer to the true uncertainty in the generating model.

6.2 People-Machine Collaboration for Inferential Analysis

Our findings suggest the potential for collaboration between humans
and statistical (or Al-based) agents for inference-making, enabling each
to complement the other’s limitations [61,66]. This collaboration could
take the form of delegation [5, 32,44, 52], where each agent (human or
statistical) takes responsibility for certain inferential tasks depending
on the sample size and the quality of the human intuition. For exam-
ple, systems can delegate the responsibility of making inferences from
large datasets to a rational statistical agent. Conversely, humans could
manually handle interpretive scenarios involving smaller and less ideal
datasets, where analyst intuition are likely to provide an edge. One
challenge to enabling this sort of collaborative inference-making is to
predict the potential extremeness of the data at hand so that effective
delegation can take place [21,55]. A second challenge is the need to
reduce variability in individual human responses without compromis-
ing their advantages. We suspect that improving knowledge elicitation
in visualizations (e.g., by redesigning and validating graphical model
representation techniques [37]) could help reduce response variability
by reducing noise in externalizing human priors and posteriors. The

idea of using Al for certain aspects of the data analysis pipeline, such
as automating the creation of machine learning models [18, 65], has
indeed been suggested. However, data professionals continue to ex-
press reservations about this model [67]. By contrast, a collaborative
workflow that genuinely involves analysts could garner more positive
reception over ‘Auto Data Science’ approaches [1,38].

6.3 The Utility of a Biased Mind

In visual analytics, the concept of mixed-initiative collaboration be-
tween humans on one hand and algorithms and statistical models on
the other is well established [15, 19]. Recent efforts in this space
aim to algorithmically identify deviations from statistical rational-
ity [37,40], and introduce interventions to mitigate biases in human
decision-making [3,9, 17,64]. This view often holds that any deviation
from idealized, analytic normativeness is problematic and should be
reduced to a minimum. Our findings, however, suggest that analyst
deviations in graphical inference could indeed be useful. Thus, rather
than solely focusing on ‘debiasing’” human reasoning (e.g., by seeking
to align human responses with rational models [69]), our work suggests
the need for a more balanced perspective that acknowledges the utility
of both rational and intuitive thinking [16,26,31, 58], even if the latter
is subject to biases. Instead of attempting to eliminate these biases in
visual analytics, a more fruitful approach involves considering how
to productively leverage analyst intuition. However, it is important
to acknowledge that not all biases are useful, and some may lead to
systematic errors and bad judgments, especially in response to perverse
incentives (e.g., the pressure to infer a positive (non-null) conclusion
from data for publication purposes [20,45,53]). With this understand-
ing, systems can learn to trust human judgment and, conversely, to
intervene with computational support when necessary, for example, by
furnishing a (more) rational solution for human consideration.

7 LIMITATIONS AND FUTURE WORK

There are limitations to consider when interpreting our results. First,
our experiments utilized varying sample sizes, ranging from ‘small’ to
‘large’. Yet, even the largest size (N = 30) presents a relatively small
amount of data. Larger datasets, in particular, could lead to a greater
advantage for statistical machines over humans than we observed in
our study. Future studies should therefore include a wider range of
sample sizes, including more realistically large datasets. Second, the
ground-truth models we used were primarily based on common-sense
semantics. These models do not necessarily reflect more contentious
or expertise-dependent topics. Additionally, our study tested a limited
range of visualizations (scatterplots, bar charts, and icon arrays), hence
the results may not generalize to other representations. The involvement
of crowdsourced participants, likely non-experts, is another limitation.
Lastly, the workflow in our experiments was highly controlled. In
reality, analysts are more likely to engage in fluid, open-ended visual
exploration. Unlike participants, analysts also have the autonomy
to choose which visualizations to view based on their priors. Future
studies should therefore attempt to replicate our findings with practicing
data scientists under more realistic tool usage conditions.

8 CONCLUSION

We investigated human inference-making from (at times noisy) visu-
alizations, contrasting the accuracy of human judgments with those
of Bayesian agents. Our central hypothesis was that, while humans
exhibit non-rational tendencies, they may possess advantages in certain
scenarios. The experiment findings support this notion: Although par-
ticipants were generally less optimal than Bayesian benchmarks, they
surpassed machines in specific instances and were better at discerning
(and disregarding) spurious datasets. However, our results also indicate
that humans exhibit higher variability and consistently exhibit overcon-
fidence. Our findings suggest future design avenues where intuitive
thinking on the part of analysts and statistical models can complement
each other. Furthermore, our work challenges the assumption that nor-
mative rationality is always ideal and shows that analyst gut reactions
could provide an advantage in certain visual analytic contexts.
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