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Color-Name Aware Optimization to Enhance the
Perception of Transparent Overlapped Charts

Kecheng Lu, Lihang Zhu, Yunhai Wang∗, Qiong Zeng, Weitao Song, and Khairi Reda

Abstract—Transparency is commonly utilized in visualizations
to overlay color-coded histograms or sets, thereby facilitating
the visual comparison of categorical data. However, these charts
often suffer from significant overlap between objects, resulting
in substantial color interactions. Existing color blending models
struggle in these scenarios, frequently leading to ambiguous color
mappings and the introduction of false colors. To address these
challenges, we propose an automated approach for generating
optimal color encodings to enhance the perception of translucent
charts. Our method harnesses color nameability to maximize the
association between composite colors and their respective class
labels. We introduce a color-name aware (CNA) optimization
framework that generates maximally coherent color assignments
and transparency settings while ensuring perceptual discrim-
inability for all segments in the visualization. We demonstrate the
effectiveness of our technique through crowdsourced experiments
with composite histograms, showing how our technique can
significantly outperform both standard and visualization-specific
color blending models. Furthermore, we illustrate how our
approach can be generalized to other visualizations, including
parallel coordinates and Venn diagrams. We provide an open-
source implementation of our technique as a web-based tool.

Index Terms—Color perception, transparency, overlapping
charts, simulated annealing.

I. INTRODUCTION

OVERLAPPING, transparent visualizations are com-
monly used to show various data representations, from

histograms to Venn diagrams to multi-variate parallel coordi-
nates [41]. These charts create strong cues of visual super-
position [18], facilitating effective comparison of distributions
and sets across categorical variables. Typically, each category
is depicted in a distinct color, resulting in multiple color-
coded objects that are then composited using alpha blending
techniques [46]. Despite their conceptual simplicity, crafting
perceptually accurate translucent visualizations is challenging,
requiring careful assignment of colors and opacity levels.
Transparency rendering, in particular, can lead to complex
interactions between colors, resulting in the introduction of
false categories, or to a reduction in the coherence of the
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composite segments to their original class color. Moreover,
resolving composite colors becomes more challenging when
the original class colors are taken from hues that lie further
apart in the color wheel [16], particularly when blending
results do not align with recognizable or expected hues. For
instance, consider the visualizations in Figure 1-b, where the
blended areas suggest the presence of a new, non-existent
feature (a purple ‘histogram’, in this case). Such artifacts can
complicate the interpretation of the visualization.

To address these issues, prior work suggests the addition
of visual cues to help disambiguate the visualization. For
example, Wilke [66] recommends adding a kernel density
estimate to each histogram. However, this approach can result
in visual clutter, with multiple marks and mark-types over-
lapping in a potentially small space. An alternative line of
research has focused on developing enhanced color-blending
models that aim to reduce transparency-induced ambiguities.
For instance, the local color blending model [61] works by
desaturating ‘background’ colors before blending to preserve
depth information (Figure 1-c). Similarly, the hue-preserving
color blending model [8], [29] works by reducing non-
dominant hues (Figure 1-d). Both of these techniques work
by adjusting the blending mechanisms for a predetermined
set of colors, yet they do not offer a means for users to
select or generate an appropriate color palette that is resilient
to blending effects, leading to suboptimal visualization. For
example, a hue-preserving composite with a standard color
palette (e.g., Tableau-10) frequently results in neutral, low-
saturation grays that are difficult to associate with their original
class (see Figure 1-d). Additionally, these techniques rely
on non-standard color blending models, often requiring the
implementation of custom pixel-level compositing pipelines,
which may limit their applicability. Consequently, there is a
need for colorization techniques that are tailored specifically
for transparency considerations, yet compatible with standard
graphical plotting platforms.

Inspired by recent automatic colorization methods [34],
[35], we hypothesize that the perception of overlapping visu-
alizations can be significantly improved by directly optimizing
color assignment, opacity, and rendering order. Moreover, we
hypothesize that such optimization can be achieved while
utilizing a standard alpha blending model, which is widely
supported in graphics and visualization toolkits. We present
a novel color generation and optimization technique tailored
to address the challenge of interpreting semi-transparent his-
tograms and other categorical visualizations with overlapping
elements. Our technique is grounded in the understanding
that associating colors with their respective categories depends
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Fig. 1. Results of applying our approach (right-most) to optimize three overlapping histograms. (a) shows the input component distributions; (b, c, d)
illustrates the results of applying three comparable benchmarks: standard alpha blending, local color blending [61], and hue-preserving color blending [8]
using base colors from the Tableau-10 palette and a uniform opacity of α = 0.5. By comparison, our approach (e), which embodies a color-name aware
optimization, auto-generates optimal color, transparency and rendering order settings, ensuring discriminability for all segments while improving whole-from-
parts perception. Our technique can also optimize other overlapped visualizations, including Venn diagrams (f vs. g).

not only on color appearance but also on semantics, such
as color names [65]. Leveraging this insight, we generate
color assignments for overlapping elements by maximizing
name similarity between parts that make up the distribution,
thus facilitating effective whole-from-parts perception. Our
optimization framework takes into account various data char-
acteristics, including the arrangement of distributions and the
extent of overlap, ensuring coherence within color classes
while maintaining visibility for smaller segments. To account
for the potential complexity of color interactions, we employ
a custom simulated annealing algorithm [1] to explore the
solution space and pinpoint an optimal configuration. The
resulting visualizations enable accurate inference of distribu-
tion shapes while still maintaining discriminability of smaller
distributional features, even when they overlap (Figure 1-e &
g).

We conducted two crowdsourced studies to evaluate our
approach1. In the first study, we compared our method against
custom color blending models intended for enhancing translu-
cent visualizations. We find that our approach yields the best
performance for histogram analysis among the benchmarks.
In a second study, we test whether our optimization is still
effective when histograms are augmented with kernel-density
estimates, finding that our technique can still improve in-
terpretation over the baseline. We further demonstrate the
generalizability of our approach beyond histograms with case
studies, showing its utility for parallel coordinate plots and set
visualizations. To help disseminate this method, we developed
a web-based implementation of our technique as an interactive

1Experimental data and analysis code are provided as supplemen-
tal materials, and can be accessed at https://osf.io/xevk9/?view only=
1b79aeefec774209ad60f1a5b0cceda2

color-design tool. To summarize, our main contributions are:
• A novel Color-Name Aware (CNA) optimization ap-

proach that automatically generates appropriate color
palettes and assigns opacity values and rendering order
for overlapping, semi-transparent histograms.

• Empirical validation of our approach. We show that our
method allows for accurate analysis of distributional fea-
tures, yielding better judgments than existing approaches.

• An extension of our method to other multi-class visual-
izations with overlap, including parallel coordinates and
Venn diagrams.

• Finally, we contribute an implementation of our method
as an open-source tool, available at https://anon-link.
github.io/transparency/.

II. RELATED WORK

We survey previous work on utilizing transparency for
visualization. We then discuss color optimization techniques
broadly and address the perception of histograms and distri-
bution visualizations.

A. Optimizing Semi-transparent Visualizations

Transparency plays an important role in computer graph-
ics [13] and visualization [64] and is often exploited to reduce
occlusion in 3D objects. We limit our discussion to techniques
related to information visualization, and to color blending
models, opacity optimizations, as well as the perception of
2D transparent visualizations.

Color Blending Models. The most common approach for
simulating partial transparency is the standard alpha blending

https://osf.io/xevk9/?view_only=1b79aeefec774209ad60f1a5b0cceda2
https://osf.io/xevk9/?view_only=1b79aeefec774209ad60f1a5b0cceda2
https://anon-link.github.io/transparency/
https://anon-link.github.io/transparency/
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model using the Porter-Duff operator [46]. However, this
method often produces false colors (e.g., blending red and
blue to produce purple), which can confuse the viewer. To
address this issue, several alternative blending models have
been proposed. Wang et al. [61] found that blending opponent
colors produces neutral (e.g., greys) as opposed to categor-
ically distinct colors. They accordingly propose to alleviate
false color using a local blending approach that reduces the
saturation of the background color. This results in blended
color appearing closer to the front (e.g., see Figure 1-c), thus
improving depth perception. Although useful in 3D settings,
this technique can impede the perception of the background
objects. Furthermore, local blending cannot entirely eliminate
false colors. Chuang et al. [8] developed a hue-preserving
blending model to address the issue of false colors. This
approach works by modifying the hue component of the non-
dominant color such that it is the opponent of the dominant
hue. The results thus preserve the hue of the dominant color.
However, as shown in Figure 1-d, this method often results
in the complete loss of hue (except for the dominant color),
which is a serious limitation for visualizations that rely exten-
sively on color-encoding to communicate categories. Instead
of heuristics-based optimization, Zhang et al. [29] propose a
data-driven color blending model based on a lab study that
specifically attempts to avoid false colors and preserve depth
ordering, and demonstrate the effectiveness of their method
with a use case based on interpreting parallel coordinates.
Unfortunately, the collected data and model have not been
released and thus we cannot reproduce their results. Almost
all these methods aim to generate effective visualization for
better preserving depth order, whereas our goal is to help users
perform distributional analyses like identifying and comparing
the shapes of distributions.

In lieu of compositing colors, Urness et al. [60] pro-
pose an alternative method to convey transparency via color
weaving [60], that interweaves individual colors of multiple
variables to form a high-frequency texture. A user study by
Hagh-Shenas et al. [23] found that color weaving is more
efficient than traditional color blending at conveying the values
of individual data distributions in a multivariate visualization,
but the performance degrades as the number of overlapping
classes increases. Luboschik et al. [37] extended this technique
for representing overlapping regions in scatterplots. Although
promising, the use of color weaving is uncommon in practice
and could lead to poor performance for some comparison
tasks. Furthermore, this technique is highly sensitive to choices
of textural and statistical parameters [3].

Opacity Optimization. Specifying proper opacity values can
be an effective way to reduce the occlusion. A few opacity
optimization techniques have been developed for a variety of
2D/3D objects, including lines [20], [36], surfaces [21], and
volume [63]. To address over-plotting in parallel coordinates,
Johansson et al. [27] and Zhou et al. [69] introduce tools
that assign opacity based on local data density. However,
these tools still require considerable manual effort to optimize
the visualization. Based on a crowdsourced study, Matejka et
al. [40] proposed a user-driven opacity scaling model for scat-

terplots that automatically assigns an appropriate transparency
for each data point. Micallef et al. [43] and Quadri et al. [47]
extended this effort by considering additional visual variables
alongside mark opacity to better support certain data analysis
tasks. All of these optimization techniques do not consider
color blending artifacts caused by composite colors, which is
a central focus of our work.

Transparency Perception. Transparency can serve as an im-
portant ‘channel’ in visualization, with several models having
been developed to measure and quantify the effect of this
cue. For example, Metelli’s episcotister model [42] is one of
the earlier models to quantify the perception of transparency.
The X-junction model [2] utilizes luminance to predict depth
perception. These models can be used to optimize transparency
configurations for volume visualizations [68]. Beck et al. [6]
test the Metelli model through multiple experiments, and
report that the degree of perceived transparency varied linearly
with lightness, not the reflectance. Similarly, Singh et al. [57]
conduct further experiments toward building a perceptually
based theory of transparency that addresses the limitations
of the episcotister model. Readers are referred to a recent
survey [17] for a more detailed review of the translucency
perception. Gama and Gonçalves [15] investigate people’s
ability to resolve the original colors in blended composites.
Their findings indicate that participants perform poorly when
resolving opponent hues that are composited together, or
when identifying source colors from three (as opposed to
two) colors. Notably, blending performed in the CIE LCh
model space resulted in higher accuracy compared to other
color spaces. Our research similarly seeks to create translucent
charts that enhance the ‘provenance’ of composite colors for
categorical visualization, which is important for distribution
analysis, among other types of data.

B. Color Optimization

Once a source palette is chosen (e.g., from Color-
Brewer [24]), an important step in categorical visualization
design entails assigning colors from the palette to different
categories. A few optimization techniques have been proposed
to streamline this process, often with the goal of maximizing
semantic association between colors and the concept they
represent. For example, Lin et al. [33] propose semantically
resonant color assignment for categorical data based on a
semantic affinity score calculated from a set of representative
images for each category. Setlur and Stone [55] refine this
model and introduce a semantic co-occurrence measure that
leverages color-name frequencies. El-Assady et al. [12] devel-
oped a pipeline for mining semantic color associations from
the literature. Schloss et al. developed a framework to facilitate
colormap interpretation by ensuring a level of ‘semantic dis-
criminability’ for the represented categorical variables [54],
[53], [44]. However, some categorical visualizations might
not contain clear semantic associations. Our technique instead
relies on optimizing color name consistency to provide addi-
tional cues for discriminating displays with overlapping and
potentially crowded elements. The impact of color names has
been emphasized in recent studies, with results suggesting an
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important role for nameability in colormap interpretation [50],
[49], [48]. Wang et al. [62] propose a scheme aimed at
maximizing the discriminability of multi-class scatterplots.
This approach considers the spatial relationships between
classes along with color contrast against the background.
Subsequently, Lu et al. [34] introduced Paletailor, a frame-
work that combines palette generation and color assignment
into a unified optimization process, showing its effectiveness
for various types of charts. Most recently, Languenou [30]
extends the technique introduced by Wang et al. [62] to deal
with area-based visualizations like streamgraphs and chord
diagrams. All of these techniques, however, are tailored to
opaque visualizations, making them less suited for application
translucent visualizations.

C. Perception of Data Distributions in Histograms

Histograms are commonly used to visualize univariate dis-
tributions, supporting several distribution analysis tasks [7].
However, understanding such charts is not easy and is influ-
enced by different factors. Lem et al. [32] and Kaplan [28]
show that students have misinterpretations in identifying fre-
quencies of specific data values within histograms even when
they have the requisite knowledge and adequate time. Correll
et al. [10] found that the number of histogram bins heavily
impacts the tasks of detecting missing values and outliers.
Sahann et al. evaluated the influence of the bin number, finding
that accuracy stabilizes around 20 bins and does not improve
by adding additional bins [52].

To simultaneously compare multiple distributions, overlap-
ping histograms are a widely used method [66], even if
they frequently suffer from false colors introduced by color
blending. The most prevalent way to alleviate this prob-
lem is to overlay kernel density curves to accentuate the
underlying. Blumenschein et al. [7] introduced v-plots that
combine mirrored bar charts and violin-style plots, which are
designed to aid the comparison of distributions at different
levels. However, these plots are limited to comparing two
distributions only at a time. By contrast, translucent color-
coded histograms can theoretically support a larger number
of distributions within the same chart. In this paper, we
attempt to enhance the perceptibility of overlapping histograms
(and other types of visualizations employing transparency) by
optimizing color and opacity settings, as well as the rendering
order.

III. METHOD

Given a set of m distributions X = {1, · · · ,m} over a
specific background color cb, our goal is to find a proper
color ci, an opacity value αi and the rendering order oi for
each distribution. Our method can be combined with any
color blending method. However, because we intended for
our method to work with the standard Porter-Duff alpha-
blending model [46], we employ the latter for all illustrations
and evaluations in this paper, without loss of generality.
Specifically, when blending two colors ci and cj with opacity
values αi and αj , respectively, the color compositing operator

generates a blended color c′ and a corresponding opacity α′

using linear interpolation:

α′ = αi + αj(1− αi)

c′ =
αici + αjcj(1− αi)

α′

We illustrate our method with overlapping histograms, as they
represent one of the most common chart types employing
transparencies. We assume that each distribution has at least
one non-overlapping section, and apply the above operator
to render m distributions, yielding n (where n > m) parts
and n−m overlapping regions where the resulting color is a
blend of multiple colors. To convey the membership of each
overlapping region to its respective parent distribution(s) and
to meet the needs of categorical data visualizations [62], [34],
we propose three design requirements:

(i) DR1: a blended color should have a strong association
with at least one (and ideally all) of the classes it is a
member of;

(ii) DR2: a color should not have a strong association with
another color if they do not share membership in at least
one class; and

(iii) DR3: all colors, including colors resulting from the
blending process, should be sufficiently discriminable.
Smaller segments, in particular, should have high contrast
against surrounding colors.

To meet DR1 and DR2, we reinforce the association be-
tween color and category by leveraging color nameability [25],
[49]. Specifically, we ensure that blended segments in the
visualization retain a high name similarity with their original
class color, while minimizing name similarity among segments
belonging to different categories. Simultaneously, we optimize
the discriminability of all color segments to meet DR3.

A. Objective Function

Based on the three design requirements, we formulate a
search for an optimal color palette P = {c1, · · · , cm}, a cor-
responding opacity set A = {α1, · · · , αm}, and a rendering
order O =< o1, · · · , om > which collectively optimize the
perception of the visualization. This optimization admits the
following objective function E(P,A,O):

E(P,A,O) = ω1EWA(P,A,O)

− ω2EBD(P,A,O)

+ ω3ECS(P,A,O)

(1)

Where the weights ωi ∈ [0, 1] dictate the relative importance
of the terms (all set to 1 by default). The three terms represent,
respectively, Within-class Association (WA), Between-class
Disassociation (BD), and Color Separability (CS). To facilitate
the computation of these three terms efficiently, we pre-
construct a n × m membership matrix M, whereas Mi,j

indicates whether the ith region Ri of a histogram is part
of the jth class. Figure 2-c illustrates how this membership
matrix relates to the input distributions with an example. Here,
M1,2 = 0 indicates that the region R1 does not belong to the
second histogram (i.e., class B) where M1,1 = 1 indicates that
R1 is part of the first histogram (class A). The resulting colors
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of the n regions are denoted by C = {c1, · · · , cm, · · · , cn},
where the first m regions, ci (i = 1, · · · ,m), are a mixture
of the primary class colors defined by P and the background
color cb. These colors correspond to non-overlapping regions.
The remaining colors, cj ( n ≥ j > m), are composite
colors that result from blending two or more colors from
the palette P. The opacity for each of the m classes is
determined by A = {a1, · · · , am}, and the rendering order is
determined by the sequence O =< o1, · · · , om >. Note that
our optimization is applied only to P, A, and O. However,
the full set of colors C is updated at each iteration to account
for the blending results with the background and between
overlapping histogram segments. We now describe each of the
three optimization terms in detail.

(b) Rendering Histogram

A
B
C

(c) Membership Matrix

R1

R2

R4 R3

R5

R6

A B C
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0

0
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1

1
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(d) Neighborhood Graph
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(a) Input Distributions

Fig. 2. Preprocessing of the objective function. The input distributions are
shown in (a). Rendering these three histograms (b) results in six regions
{R1, ..., R6}, with some regions representing an intersection of two or more
histograms. The binary membership matrix (c) lists the membership for each
region, with Mi,j indicating whether region i belongs to histogram (i.e., class)
j. For example, the region R4 belongs to the 1st class and 2nd class, which
are classes A and B. The neighborhood graph (d) indicates region adjacency,
with node size corresponding to the size of the region.

Within-Class Association. For each overlapping region, we
define its degree of association with its ‘parent’ classes based
on color name similarity (recall that a region may belong to
more than one class). We then maximize the name similarity
between the blended color and its parent colors (DR1) in
the objective function Equation 1. Accordingly, we can define
within-class association degree as:

EWA(P,A,O) =

∑
i≤m<j≤n Ψ(i)

1
2Wi,jS(ci, cj)∑

i≤m<j≤n Wi,j

+ min
Wi,j>0

S(ci, cj) (2)

The first term captures the average name similarity (S)
between a histogram i’s base class color and the colors of each
of its constituent regions j. The second term finds the minimum
similarity within these pairings. The rationale for including
the latter is to force the optimization to maximize both the
mean and the lowest within-class name similarity, ensuring

no histogram suffers from poor cohesion. Specifically, Wi,j

represents the number of classes to which both region i and
region j belong, which equals the dot product of the rows i and
j of membership matrix M. For example, W1,5 = 0 indicates
that the two regions R1 and R5, corresponding to the row
vectors (1, 0, 0) and (0, 1, 1) in Figure 2, are not members of
a shared class, thus do not contribute to the final within-class
association degree. By contrast, W1,4 = 1, forcing a higher
color similarity for R1 and R4.
S(ci, cj) is the cosine-based name similarity between colors

ci and cj proposed by Heer and Stone [25]:

S(ci, cj) = cos(Tci
,Tcj

) =
TciTcj

||Tci
||||Tcj

||
, (3)

where T is a color-term count matrix collected by an online
study, and Tci is the probability distribution of color names for
a given color ci. A larger value of S(ci, cj) ∈ [0, 1] indicates
the two colors are more likely to share the same name.
We incorporate a class-specific weight Ψ(i) in Equation 2
based on two considerations: i) distributions that comprise
a larger number of overlapping segments should be given a
higher optimization priority; and ii) when the ratio of the
overlapping to non-overlapping segments in one distribution
is large, the corresponding class-weight is similarly increased.
Accordingly, Ψ(i) is defined as:

Ψ(i) =

∑n
j=1 Mj,i

maxi≤m

∑n
j=1 Mj,i

(
1− RSi∑n

j=1 Wi,jRSj

)
, (4)

where
∑n

j=1 Mj,i is the number of regions that make up
the ith class, computed by summing up column i in the
membership matrix. The size of the i-th region, denoted
by RSi, represents the fraction of pixel space occupied by
the region relative to the entire visualization footprint. Ac-
cordingly,

∑n
j=1 Wi,jRSj reflects the aggregate size of the

ith distribution. In essence, the value of Ψ(i) allows us to
heuristically score the ‘difficulty’ of perceiving distribution i,
allowing the optimization to prioritize potentially problematic
features.

Between-Class Disassociation. While the within-class associ-
ation term (Equation 2) ensures that a single distribution with
its overlapping segments is perceived as a coherent whole, we
further need to maximize color dissimilarity between different
distributions so that they can be perceived as separate entities.
We achieve this by defining a between-class disassociation
term. Specifically, this term assigns colors with larger color-
name distances to all segments that do not belong to the same
distributions:

EBD(P,A,O) =

∑
i<j≤n δ(Wi,j)S(ci, cj)∑

i<j≤n δ(Wi,j)

+ max
Wi,j=0

S(ci, cj),
(5)

Where δ(x) returns 1 if x = 0 and 0 for all other x values.
The first term computes the average color name similarity for
pairs of regions that do not belong to the same class. For
example, δ(W1,3) = 1 since R1 and R3 are not members
of the same class, thus their similarity will be included in
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the average. By contrast, R5 and R6 share two classes,
with W5,6 = 2. Accordingly, δ(W5,6) = δ(2) = 0 thus
preventing these two regions from being penalized for having
similarly sounding names. The second term finds the highest
name similarity among these pairings. Combining the two
terms in the objective function minimizes both the mean and
the highest similarity between disjoint histograms, thereby
yielding distinct colors for regions that do not belong to the
same class(es). In doing so, we ensure that DR2 is met.

Color Separability. DR3 requires that all colors should
be sufficiently discriminable. Smaller regions, in particular,
should have high contrast against their surroundings so that
they can be perceived sufficiently. To incorporate this notion,
we define a color separability term based on a region-based
neighborhood graph (see Figure 2-d for illustration). Since re-
gion size influences the perception of the color difference [59]
(specifically, smaller regions require larger differences), we
operationalize the latter and define our separability term as:

ECS(P,A,O) = min
∀i≤n,∀Rj∈Ω(Ri)

D(ci, cj)
(
1 +RSi

)
, (6)

where Ω(Ri) indicates all neighborhoods of the region Ri,
D(ci, cj) represents the CIEDE2000 color distance [56]
between two colors ci and cj . In Equation 6, the color
distance D(ci, cj) is weighted by the area of the distribution
(1 + RSi), as smaller areas make colors more difficult to
distinguish. The additional constant ensures that the measure
is not highly sensitive to very small RSi values. This mea-
sure is computed for all neighboring pairs, with the overall
performance determined by the worst separability, and thus,
the minimum of all pairwise comparisons is used.

Additionally, we introduce two hard constraints for discrim-
inability: A just-noticeable difference constraint ensuring that
all colors are perceivable:

∀i ≤ n, j ≤ n, i ̸= j,D(ci, cj) > η, (7)

where η is a just noticeable difference (JND) threshold,
which is 3 by default [67]. A second, background contrast
constraint ensures that colors sufficiently stand out:

∀i ≤ n,LD(ci, cb) ≥ σ (8)

where LD(ci, cb) is the absolute luminance difference be-
tween the color ci and background color cb in the CIELAB
space, and σ is a threshold with the default value 5 units
(approximately twice the empirical JND [38]), thus ensuring
that the difference is perceptible to most people.

B. Optimization Strategy

In addition to optimizing the color palette P and the opacity
A, we also optimize the rendering sequence O for the m
distributions. This is crucial as the outcome of alpha blending
depends on the rendering sequence, which impacts the quality
of the visualization. To efficiently solve this optimization, we
developed a customized simulated annealing [1] algorithm (see
Algorithm 1). The algorithm starts at a high ‘temperature’ that
is gradually ‘cooled’. It begins with a random solution for each

Algorithm 1 Customized Simulated Annealing
1: randomly initializing color mapping P0 with m classes,

randomly initializing the set of opacity values A0, ran-
domly initializing the rendering order O0

2: set initial temperature T0, cooling coefficient γ
3: set the best color mapping Pbest = P0, opacity sets

Abest = A0 and rendering order Obest = O0

4: t = 0
5: while Tt > Tend do
6: set the current color mapping P = Pt, current set

of opacity values A = At and current rendering order
O = Ot

7: do
8: p ← random(0, 1)
9: if p < 1

3 then
10: randomly disturbs one color of P
11: else if p < 2

3 then
12: randomly changes one opacity value of A
13: else
14: randomly exchanges two colors’ rendering or-

der of O
15: end if
16: while ∃D(ci, cj) < η or ∃LD(ci, cb) < σ
17: ∆E = E(P,A,O)− E(Pt,At,Ot)
18: if ∆E > 0 then
19: Pt+1 ← P, At+1 ← A, Ot+1 ← O
20: else
21: if random(0, 1) < exp(∆E/Tt) then
22: Pt+1 ← P, At+1 ← A, Ot+1 ← O
23: end if
24: end if
25: Tt+1 = γTt, t← t+ 1
26: end while

(ci, αi, oi) and updates this solution at each iteration in two
major steps: i) generating a new candidate solution from the
current one, and ii) comparing the new candidate to the old
solution and deciding whether to accept it. In line with prior
work on simulated annealing for color selection, we choose
a cooling coefficient of γ = 0.99, the starting temperature is
T = 100, 000 and the ending is 0.001 [34]. We next explain
the above two steps in detail.

Generating a new solution (lines 7-16): At every iteration
of the optimization, we generate a random solution that is one
step removed from the current solution. This is done by ran-
domly choosing from three possible perturbation mechanisms
that are equally probable (lines 9, 11, and 13): i) slightly
perturbing one color in the current palette P with a small
RGB offset (in our implementation, we set this offset to 10
units for each component), ii) adjusting the opacity value A
for one of the classes with a small offset (0.1 by default),
and iii) swapping the rendering order O of two randomly
selected colors. The perturbation results in a new candidate
solution that is then tested against the two hard constraints
in Equation 7 or Equation 8. If the solution fails either of the
two constraints, it is rejected, with a new candidate solution
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Fig. 3. The influence of different weight settings (ω1, ω2, ω3) on the final
colorization results, showing the contribution of each of the three objective-
function terms individually. (a) illustrates the effects of optimizing within-class
association only (1, 0, 0). (b) shows between-class discrimination only (0, 1,
0). (c) illustrates the effect of maximizing color separability (0, 0, 1). (d)
illustrates the final result with all three terms equally weighted (1, 1, 1). The
legend also depicts the optimized rendering order (from top to bottom). The
input distributions are the same as those shown in Figure 2-a.

generated instead. We perform color perturbation in the RGB
space to avoid the challenges associated with manipulations in
the CIELAB space, where even small changes can yield colors
outside the RGB gamut. This requires additional constraints,
such as gamut clipping or mapping, introducing unnecessary
complexities into the algorithm.

Accepting a new solution probabilistically (line 17-24):
We score the new candidate solution (Pt,At,Ot) (line 17),
accepting it if improves the score relative to the current
solution. If, on the other hand, the candidate is objectively
worse, we accept it with a probability of e∆E/Tt , where ∆E
is the difference in score between the new and the current
solution and Tt is the current temperature. Higher temperatures
yield a higher probability of accepting a worse solution, which
reduces the likelihood of encountering local minima earlier in
the optimization.

C. Parameter Analysis

The three weights (ω1, ω2, ω3) in Equation 1 exert signif-
icant influence on the final results, as shown in Figure 3.
When optimizing within-class association only, the overlap-
ping regions within each distribution tend to be similar,
facilitating easy grouping. Yet, establishing global member-
ship across different distributions is still challenging. For
instance, in Figure 3-a, similar colors (three pink shades)
are assigned to different classes. By optimizing for between-
class disassociation only (b), differentiation between classes
becomes straightforward. Still, some distribution segments
are rendered indistinguishable. The latter is helped by color
separability, although this factor alone yields a low-quality
solution (c). Conversely, by integrating all three optimization
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Fig. 4. Different initializations (left) and the corresponding optimization
results (right). The plots of E(P,A,O) versus the number of iterations illustrate
the convergence of the proposed method (middle).

terms (d), we obtain clearer class membership along with
improved separability from both neighboring colors and the
background. We assume that the three factors—within-class
association, between-class disassociation, and color separa-
bility—are equally important. As a result, we assign equal
weights to each factor and use this combination to generate
all the results presented in this paper.

Although individual results may vary between runs of
simulated annealing, our approach consistently converges to
a robust and effective colorization solution. As shown in
Figure 4, even with different initializations, our method re-
liably produces satisfactory results. The convergence curves
exhibit significant oscillations in the early stages, but the
algorithm stabilizes at the end of the run. Notably, when
the initial colors are specified rather than randomized, as
illustrated in the bottom row of Figure 4, the method remains
capable of identifying suitable results. However, we adopt
random initialization by default as typically used in simulated
annealing to encourage greater solution diversity.

IV. QUANTITATIVE EVALUATION

We present a quantitative evaluation of our optimization
technique. Our primary focus is to assess the extent to which
our method enhances the analysis of semi-transparent, overlap-
ping histograms. These multi-class histograms are commonly
used for the analysis of distributions (e.g., comparing the dis-
tribution of a quantitative variable across multiple class stratifi-
cation). We adopt three experimental tasks (see Figure 5) and
employ distributions with varying levels of smoothness and
overlap. We compare our technique against three benchmarks:
standard alpha blending [46], local color blending [61], and
hue-preserving color blending [8]. For these benchmarks,
we employ color palettes selected from either Tableau [58]
or generated through Colorgorical [19], employing uniform
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How many classes do you initially see 
in the histogram?
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(a) Distribution Estimation Task

Please choose the distribution that looks the same 
as the real distribution of the target class:

(c) User Preference Task

Please choose the colorized histogram 
which you prefer aesthetically:

ChooseNo Preference

A B C

Fig. 5. Illustration for the three tasks used in our experiments: (a) distribution
estimation, (b) class discrimination, and (c) user preference. The correct
answer for the distribution estimation task is option B, while the correct
number of classes in the discrimination task is three classes.

opacity and the same rendering order to simulate common
usage conditions. By contrast, our optimization generates a
color palette, opacity values, and rendering order tailored to
the characteristics of the distributions. Additionally, because
histograms are often shown accompanied by kernel density
estimates [66], we test this setup in a second study §IV-B. We
conducted both studies on Prolific, recruiting a total of 160
participants, ranging in age from 18 to 65 years. The minimum
education level among all participants was high school, with
most participants having earned a bachelor’s degree.
Stimuli and Palette Generation. We created a collection
of 18 multi-class stimuli (see Figure 7 in the supplementary
material), each comprising overlapping histograms with two,
three, or four classes, with six stimuli for each class number.
These histograms displayed a diverse range of characteristics,
including varying degrees of distribution smoothness and over-
lap. To construct each stimulus, we sampled from a Gaussian
distribution with a random standard deviation (σ ∈ [3, 5]) and
a random scaling factor (A ∈ [0.8, 1.2]). After generating the
initial Gaussian, we introduced random perturbations to induce
discontinuities in the distribution. The level of perturbation
dictates the difficulty of resolving the histogram; histograms
that are closer to an idealized smooth Gaussian are easier to
perceive, as they provide sufficient visual continuity and sym-
metry (see Figure 6). To quantity smoothness, we employed
the Kullback-Leibler (KL) divergence to gauge the dissimilar-
ity between the perturbed distribution and its ideal Gaussian.

We categorized the smoothness into three levels: smooth,
moderately smooth, and unsmooth. These levels correspond to
KL values of 0, [0.02, 0.04], and [0.07, 0.1], respectively. We
factor each smoothness level with the number of classes (two
repetitions each), giving us a total of 3 classes × 3 smoothness
levels × 2 repetitions = 18 overlapped histograms. Then for
each histogram, we manually designed three response choices:
One of the choices was the actual (i.e., correct) distribution.
The other two options representing confounders correspond to
the base histogram with overlapping segments either added or
removed from the distribution.

To color-code the overlapped histograms in the benchmark
conditions, we utilized two sources: a designer-crafted palette
and an auto-generated palette created using Colorgorical [19].
For the designer-crafted palette, we employed the Tableau-
10 categorical scheme [58], known for its quality and dis-
criminability. From this palette, we randomly selected subsets
of two, three, or four colors to assign to the classes in the
stimuli. For the Colorgorical-generated palette, we utilized the
low-error setting, generating a palette with eight base colors.
Similarly, we randomly sampled colors from this palette,
depending on the number of classes required for the stimulus.
We simplified the generation process of Colorgorical for a
fair comparison with Tableau, but it is worth noting that
Colorgorical is designed to return an optimal palette given the
number of colors queried. It is possible that randomly selecting
a subset of 4 colors from an 8-color palette will result in a
worse palette than querying the tool for a 4-color palette.

A. Study I: Histograms

In this experiment, we evaluate how well people perceive
translucent overlapping histograms without additional visual
cues. We compare our method against the three benchmarks
outlined above. We utilize three tasks adapted from prior work
on distribution analysis [7], [52], [62], [34], [35]:
• Distribution Estimation: Based on literature in histogram

visualization [7], [52], we adopted a task of “describing
and identifying the shape and type of a distribution.” In this
task, participants are asked to report the shape of the distri-
bution for a target class, given three options (including two
confounders and one correct choice, as shown in Figure 5-
a). We record participants’ accuracy (a binary measure of
whether the response is correct) and response time.

• Class Discrimination: This task aims to evaluate partici-
pants’ ability to accurately discern the number of distinct
classes presented in the visualization, thus assessing color
discriminability and the potential presence of false colors.
As shown in Figure 5-b, participants are asked to count
and report the number of distinct categories they perceive
in the visualizations, with options ranging from 1 to 10.
We similarly analyze the response time and relative error
(the difference between the true number and the partici-
pant’s selection). To facilitate comparisons across stimuli,
we normalize the error by the number of classes in the
visualization.

• User Preference: This task measures the aesthetic appeal
of our generated colors. Participants are presented with a
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Fig. 6. The impact of distribution smoothness. (a, d) show smooth histograms
representing ideal Gaussians. (b, e) are moderately smooth histograms pro-
duced by adding perturbation. (c, f) are unsmooth with an even higher level
of perturbation, yielding more challenging stimuli.

pair of visualizations depicting the same histogram data
but using two distinct color schemes: one derived from our
optimization and the other from the benchmark sources. An
example is shown in Figure 5-c. Participants are prompted
to select the visualization they find more appealing.

Conditions. We conduct a comparison of our approach (re-
ferred to as CNA) against three benchmarks: traditional al-
pha blending (Standard), local color blending (Local) and
hue-preserving blending (Hue-preserving). The latter two are
visualization-specific blending approaches: the hue-preserving
model is designed to minimize the appearance of false features
by ensuring that the blended colors maintain a consistent
hue with the original class color [8]. On the other hand,
local blending seeks to reduce false colors by preserving the
perceived order of color layers [61]. This is achieved by
selectively desaturating ‘background’ objects while retaining
similar hue and lightness levels. For the three benchmarks,
we sampled colors from the Tableau-10 scheme or Color-
gorical (see ‘Palette Generation’). To assign opacity values,
we followed the guidelines from Matplotlib [51], adopting a
uniform opacity of 0.5. By contrast, our approach generates
colors, opacity values, and rendering order algorithmically
according to the optimization, with results composited using
standard alpha blending. The four experimental conditions are
illustrated in Figure 1.

Hypotheses. Our method is designed to increase both class
cohesion and color discriminability. Hence, we expect our
optimization to improve user performance in the two tasks:

H1 – In the Distribution Estimation task, we anticipate our
method to improve the perception of distribution features over
the benchmarks. Therefore, we expect participants to perform
better shape estimation with CNA than with Standard, Local,
and Hue-preserving.

H2 – In the Class Discrimination task, we similarly predict
our method will improve participants’ performance in class

μ~95%CI p-value Effect Size

0.12~[0.10, 0.14]CNA

0.17~[0.14, 0.19] 0.004 -0.14~[-0.24, -0.03]Hue−preserving

0.16~[0.13, 0.19] 0.008 0.12~[0.02, 0.23]Local

0.16~[0.13, 0.19] 0.013 0.12~[0.02, 0.23]Standard

CNA

Hue−preserving

Local

Standard

5.30~[5.11, 5.51]

5.57~[5.36, 5.79] 0.13 -0.09~[-0.20, 0.01]

5.40~[5.20, 5.62] 0.76 0.04~[-0.07, 0.14]

5.21~[5.01, 5.43] 0.37 -0.03~[-0.14, 0.07]

Error Rate

μ~95%CI Signif. p-value Effect Size

Response Time

0.100 0.125 0.150 0.175

*

**

**

Signif. 

5.0 5.2 5.4 5.6 5.8

Fig. 7. Results for the Distribution Estimation Task from Study I, including
effect sizes and significance tests for our method against the benchmarks.
Error bars (µ ∼ 95%CI), p-value, and significance level are calculated from
the Mann-Whitney test. Effect size is calculated using Cohen’s d.

discrimination, outperforming a fixed color assignment strat-
egy (Standard, Local, and Hue-preserving).

Furthermore, we anticipate the optimized colorization from our
approach to result in an aesthetically pleasing color scheme:

H3 – Participants will show comparable preference for
CNA and the three benchmarks (Standard, Local, Hue-
preserving).

Experiment Design. The task was varied between subjects,
with different participants recruited for each of the three tasks.
The experimental condition was a within-subject variable, with
each participant experiencing all four colorization methods. To
minimize potential learning effects, we displayed the stimuli
in a random order. We recruited participants from Prolific,
which is shown to generate higher quality responses as com-
pared with other crowdsourcing platforms [11]. We limited
recruitment to residents of the UK and US, while balancing
the proportion of male and female through Prolific recruitment
options.

To ensure the accuracy of the result, we asked partici-
pants to complete a color deficiency test at the beginning of
the experiment and randomly inserted multiple engagement
checks within the stimulus sequence. These checks featured
two completely separated Gaussian distributions in easily
distinguishable colors, making them straightforward to judge.
Participants who did not correctly resolve these checks were
excluded from the analysis.

After the participants passed the color deficiency test, they
were presented with task instructions and completed three
training trials. Following the training phase, they proceeded
to complete the analyzed trials, which consisted of either
72 stimuli (18 histograms × 4 methods) for the distribution
estimation task and class discrimination task, or 54 stimuli
(18 histograms × 3 pairs) for the user preference task. Each
stimulus had a response time limit of 30 seconds, after which
participants would be directed to the next trial.

1) Results for Distribution Estimation: A total of 40 par-
ticipants (18 males, 21 females, and 1 unspecified) were
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included in the analysis for this task. We initially excluded
five participants who failed the attention checks, and replaced
them with new recruits to reach our intended sample size of 40
responses. On average, participants completed the experiment
in 7.20 minutes (σ = 3.37). We set the compensation at $1.5 to
exceed the US minimum hourly wage. Our analysis includes
95% confidence intervals, effect sizes (Cohen’s d) for both
error rate and response time, and p-values derived from Mann-
Whitney tests (based on a positive Shapiro-Wilk test). Given
the non-normality of the error data, we employed the GFD R-
package [14] to compute ANOVA-type interaction statistics.

Figure 7 illustrates the results for this task. We find that our
proposed method (CNA) outperforms the benchmarks, which
feature fixed color and opacity assignment (Standard, Local,
Hue-preserving), both in terms of error rate and response
time. Notably, our method demonstrates a significantly lower
error rate than all three benchmark conditions. We found an
interaction between the colorization methods and the class
number (p = 0.041) for the error rate. However, there was
no significant interaction between the experimental conditions
and smoothness (p = 0.244). Hence, while the number of
classes seems to affect the tested methods somewhat differ-
ently, the smoothness of the distribution appears to have a
consistent effect, with unsmooth distributions uniformly more
challenging across all tested techniques, including ours (see
Figure 10).

We analyzed response times by first removing extreme
outliers to reveal more systematic effects for the visualization
technique. This was done by pruning participant trials that
are ±2 standard deviations away from their mean response
time. There was no significant difference in response time
between our approach and the three benchmarks, suggesting
that our optimization does not significantly change response
time. These results are consistent with H1.

μ~95%CI p-value Effect Size

0.14~[0.12, 0.16]CNA

0.17~[0.15, 0.19] 0.02 -0.11~[-0.21, 0.00]Hue−preserving

0.17~[0.15, 0.19] 0.015 0.11~[0.00, 0.21]Local

0.18~[0.16, 0.20] 0.001 0.14~[0.04, 0.25]Standard

CNA

Hue−preserving
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Standard

3.65~[3.48, 3.84]

3.61~[3.43, 3.82] 0.20 0.01~[-0.09, 0.12]

3.70~[3.50, 3.90] 0.63 0.02~[-0.09, 0.12]

3.67~[3.48, 3.88] 0.48 0.01~[-0.09, 0.12]

Error Rate

μ~95%CI Signif. p-value Effect Size
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Fig. 8. Results for the Class Discrimination Task from Study I.

2) Results for Class Discrimination: We similarly recruited
40 participants (20 males, 20 females) for this task. Three
participants were initially excluded for failing attention checks,
with additional participants recruited in replacement. Each
participant completed a total of 72 stimuli, with an average
completion time of 5.26 minutes (σ = 3.62) for the entire ex-

periment. We compensated participants with a $1.2 payment to
exceed the US hourly minimum wage. The results are depicted
in Figure 8. The error rate with our optimization method was
consistently lower than that of the fixed assignment strategy.
Specifically, our optimization achieved a significantly reduced
error rate compared to the benchmarks (Standard, Local, Hue-
preserving). These results are consistent with H2. We found no
significant interaction effect between the experimental condi-
tion and the number of histogram classes (p = 0.267), or with
the distribution smoothness (p = 0.575). This suggests that
all tested techniques are similarly affected by the complexity
of the visualization. In terms of response time, we found no
significant difference between the four methods, even CNA
led to a faster response, on average.

3) Results for User Preference: We enrolled 40 participants
(20 males, and 20 females, with no participants excluded).
Participants received a compensation of $0.75. For each
comparison, we assigned a score of 1 if the participant
preferred our approach and -1 for preferring one of the other
benchmarks. Zero was assigned for a neutral choice when
the participant indicated no clear preference. The results are
depicted in Figure 9, with a positive score indicating a prefer-
ence for our technique. Our method (CNA) appears preferable
to Hue-preserving (p = 0.06). Other comparisons did not
reach statistical significance. We estimated the difference in
preference between our technique relative to Standard (0.02,
95% CI: [−0.05, 0.08]) and Local blending (−0.01, 95% CI:
[−0.09, 0.05]). In both cases, confidence intervals are centered
approximately around zero, suggesting that CNA is comparable
to the benchmarks, if not more preferable. These results are
consistent with H3.

Hue−preserving v.s. CNA

Local v.s. CNA

Standard v.s. CNA

μ~95%CI p-value Effect Size

0.07~[-0.01, 0.13] 0.06 0.07~[-0.01, 0.14]

-0.01~[-0.09, 0.05] 0.69 -0.01~[-0.09, 0.06]

0.02~[-0.05, 0.08] 0.56 0.02~[-0.05, 0.10]

Signif. 

.

−0.05 0.00 0.05 0.10
Preference

Fig. 9. Results for the User Preference Task from Study I. A preference score
greater than 0 indicates that participants prefer our method over the respective
benchmark.

4) Relationship between Smoothness and Error: To further
understand the role of distribution smoothness, we analyzed
the relationship between the smoothness metric defined in §IV
and the observed empirical error for the distribution estimation
task (results for the class discrimination are similar). As
expected, we found a significant positive correlation, with
unsmooth distribution being significantly more difficult to
interpret by participants (F (1, 70) = 49.34; p < 0.001), likely
due to increased visual complexity. This correlation with error
is slightly decreased with our optimization as compared to
local and standard blending (see Figure 10), although the
interaction is not significant.

B. Study II: Histograms + Kernel Density Curves
Results from Study I suggest that our optimization can

enhance the perception of semi-transparent histograms, ef-
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Fig. 10. Effect of smoothness on error in the distribution estimation task.
Higher x-values indicate less smooth distributions. The R-value represents
Pearson’s correlation coefficient between the smoothness value and the
average error rate. Each point represents one of the 18 histograms with certain
condition (i.e., 18*4=72 points in total).
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Fig. 11. Four example stimuli from Study II showing histograms with and
without a kernel density estimate curve. (a) The input distributions with four
classes. The top row (b, c) represents standard alpha blending with a palette
generated via Colorgorical. The bottom row (d, e) shows the results of our
optimization.

fectively compensating for the complex interaction between
translucent colors. However, in practice, many visualization
designers opt to augment these histograms with different visual
representations, such as a curve representing kernel density
estimate [66], or a hatching pattern [22]. This additional visual
cue can mitigate the challenges associated with translucent
marks. We thus conducted a second study about the density
curve, a most commonly used technique, to assess whether our
optimization can still provide an advantage in this scenario.

Conditions, Stimuli, and Experiment Design. Our primary
focus in this study was the distribution estimation task, which
serves as a proxy for distribution analysis. Building on the
findings from Study I, we tested standard alpha blending
against our method, adding two new additional variations:
standard alpha blending with density curve (abbreviated as
Standard with Curve) and our method plus density curve
(CNA with Curve). These four conditions are illustrated in
Figure 11. The experiment followed a within-subjects design,
with all participants experiencing the four conditions above.
Each participant completed a total of 72 trials, representing a
factorization of 4 conditions × 18 histograms. The order of
presentation for the conditions was randomized.

Hypotheses. We expected the addition of a kernel density
curve to improve participant performance in all four condi-
tions. However, we anticipate the benefit to be maximum when
combined with our optimization. Thus, we pose the following
hypotheses:

H4 – We anticipate that the addition of a density curve
will significantly improve user performance, no matter the
condition. As a result, we expect Standard with Curve to
exhibit better performance than CNA (i.e., a plain condition
with no density cues).

H5 – Our optimization with combined density curve will
outperform all other conditions.

Participants & Procedure. For this study, we recruited 40
participants (20 males, and 20 females) from the Prolific.
To exceed the US minimum wage, we compensated each
participant with $1.5. All participants passed the color vision
deficiency test. The experimental procedure closely mirrored
that of the previous study.

Results. The average completion time for participants was
6.94 minutes (σ = 2.56). The experiment results are shown in
Figure 12. Our optimization, both with and without the inclu-
sion of density curves (CNA and CNA with Curve), afforded
higher average accuracy compared to using a fixed color
assignment strategy (Standard and Standard with Curve).
This result suggests that even with the inclusion of enhancing
visual cues, a conventional plot featuring overlapping his-
tograms will not surpass the effectiveness of our technique.
These results, however, are inconsistent with H4. That said,
combining our method with a density curve (CNA with Curve)
appears to further reduce the error rate relative to the baseline
technique (CNA), yielding significantly lower error rates than
both Standard and Standard with Curve (p < 0.01). These
results support H5. This suggests that our method offers
an additional advantage beyond what can be attained with
histogram-enhancing kernel density estimates. There was no
significant interaction between the representation method and
the number of classes (p = 0.251), or with distribution
smoothness (p = 0.593), suggesting consistent effects for the
latter two factors.

As for response time, we found that our optimization
without a density curve (CNA) led to a significantly faster
response than Standard with Curve (p < 0.001) and CNA
with Curve (p < 0.001). This suggests that adding a kernel
density estimate increases the complexity of the visualization,
potentially requiring more time for the viewer to parse it.
We further looked for evidence of a correlation between
error rates and response time to understand tradeoffs in speed
vs. accuracy. we found that there is generally no significant
correlation between the two (see Figure 13). While Standard
with Curve exhibits some negative correlation between error
and response time as predicted (R = −0.259), this correlation
is not statistically significant. A potential explanation for
this result is that participants were instructed to respond as
accurately as possible, leading them to allocate more time to
each stimulus, thereby reducing variability in response times.
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Fig. 12. Results for the Distribution Estimation Task in Study II. The top
shows accuracy results whereas the bottom chart depicts response time. P-
values and effects reflect comparisons with CNA and CNA with Curve,
respectively.
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Fig. 13. Effect of response time on error in Study II. The R-value represents
Pearson’s correlation coefficient between the response time and the error
rate for the Distribution Estimation Task. Points represent mean participant
performance in one of the four conditions.

C. Discussion

Our findings suggest that the proposed method offers signif-
icant benefits for interpreting complex, translucent histogram
plots, even when compared to blending methods that are
designed for transparency conditions. In the first study, we
specifically compared our method to three other benchmarks
representing a standard alpha blending approach and two more
specialized methods for preserving hues and local color prop-
erties. Findings from the two analytical tasks show that our
optimization led participants to outperform the alternatives,
providing support for H1 and H2. Notably, the hue-preserving
color blending model (Hue-preserving) exhibited the poorest
performance in both tasks. This subpar performance is likely
attributable to the generation of neutral gray colors in the
overlapping areas, which could potentially lead to a breakdown
in color nameability. By contrast, our optimization reinforces
color-name associations between the overlapping segments and
their original class color.

Our approach similarly outperformed a local blending
model, intended to enhance depth perception by reducing the
saturation of ‘deeper’ objects. However, this approach may
impede the perception of wholes from parts in overlapping
distributions. In contrast, enhancing color name similarity
across all parts of a histogram appears to be a more appropriate
strategy. Our technique leverages color nameability while also
guaranteeing perceptual discriminability against both the back-

ground and other overlapping distributional features within the
visualizations. Such optimization does not seem to diminish
the aesthetic appeal of the visualization (consistent with H3).
Indeed, participants expressed a comparable preference for our
technique compared to the benchmark.

In the second study, we evaluated the perception of his-
tograms augmented with curves representing kernel density es-
timates. Here, our optimization outperformed a straightforward
approach of using fixed color and opacity assignments, even
when the effects were not always significant. This finding ex-
tends the results of the first study, indicating that our technique
can effectively substitute kernel density curves to enhance
perception. Thus, our approach could be preferable when
designers want to maintain the simplicity of the visualiza-
tion without introducing additional cues (H4 not confirmed).
Moreover, for an even greater performance improvement,
combining a density estimate with our optimization results in
the highest accuracy (H5 confirmed). To illustrate this effect,
consider the pink distribution in Figure 11-a. This visualization
remains challenging to interpret even with the addition of a
density curve (b). However, when colors and transparency are
optimized using our method, the same histogram becomes
easier to discern. Adding a density outline (d) yields to the
best empirically observed performance.

D. Study Limitations

There are some limitations to our experiments that should
be contextualized. First, the diversity of our histogram datasets
may be limited. Although we attempted to vary stimuli
characteristics, such as the number of classes, the degree
of overlap, and the smoothness of the distributions, other
factors could also influence perception. These include the
distribution family (e.g., Gaussian vs. exponential). Future
work could study the impact of these factors. Moreover, there
are additional techniques for improving the readability of the
translucent histograms, including stepped histograms [9] and
hatching pattern [22]. While our study employs commonly
used techniques, future work could compare or combine our
optimization with other representations. Lastly, our evaluation
was limited to a shape estimation task for a single distribution.
Future work should investigate the potential of our method in
more complex, comparative tasks, such as comparing shapes
or features across multiple distributions [7].

V. EXTENSIONS

Since our optimization is computed in the screen space, it
can be readily applied to other chart types, such as illustrative
parallel coordinates and Venn diagrams. This is done by first
rendering each layer in a separate canvas to obtain the corre-
sponding pixel layout. We then optimize color assignment and
opacity with our algorithm, considering the overlap between
the layers, their neighborhood graph, and the size of each color
segment. To demonstrate the effectiveness of our technique
in these scenarios, we present case studies with real-world
datasets.
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(a) Improper Opacity Weightings 
with Standard Alpha Blending

(b) Manually Designed Opacity Weightings 
with Local Color Blending

(c) CNA

ꭤ=0.70A ꭤ=0.55B ꭤ=0.40C ꭤ=0.40A ꭤ=0.55B ꭤ=0.70C ꭤ=0.97A ꭤ=0.65C ꭤ=0.38B

Fig. 14. Visualizing the Scan Bio dataset with illustrative parallel coordinates. results generated by using (a) default opacity weightings and standard alpha
blending, (b) local color blending, and (c) our optimization.

A. Illustrative Parallel Coordinates

We visualize six dimensions of the ScanBio dataset2 with
illustrative parallel coordinates [41]. There are three layers
to this chart colorized as green, red, and blue ribbons (see
Figure 14). We show this visualization with default colors
and transparency as appearing in the original work [41].
We compare with local color blending and our optimization.
Viewed with default opacity settings using standard alpha
blending the result introduces new false colors, including what
might be interpreted as a purple class. Using the suggested
opacity weightings derived with local color blending (b), the
‘depth’ of the chart is perceived more clearly, but the over-
lapping segments seem difficult to discriminate individually.
Our auto-generated color and transparency levels (c) yield a
qualitatively improved visualization, enhancing the ribbon’s
visual continuity while still allowing the identification of
overlapping segments.

(c) Optimized opacity with 
Standard Alpha Blending

(b) Defualt opacity with
Hue-preserving Color Blending

(a) Defualt opacity with
Local Color Blending

(d) Default opacity with 
Standard Alpha Blending

Input palette with default rendering order

Optimized palette with optimized rendering order

A

B

C

D

D

C

A

B

Fig. 15. An elliptical Venn diagram shown with (a) ColorBrewer palette
and uniform opacity (0.5) using local blending, and (b) hue-preserving
blending. Both visualizations lead to suboptimal compositing. By contrast,
our optimization (c) produces a more perceptible set visualization which
guarantees minimum color separability for all parts. (d) Shows the same colors
as (c) but with uniform, non-optimized opacities.

2Obtained from http://davis.wpi.edu/∼xmdv.

B. Venn Diagrams

Venn diagrams are extensively utilized for visualizing
sets [26], providing an intuitive representation to identify set
intersections, unions, and differences. Incorporating color en-
hances the perception of set boundaries, but color interactions
could also compromise the diagram’s effectiveness [39]. To
illustrate the applicability of our method in this domain, we
generated a Venn diagram with four intersecting elliptical
sets using Venny [45]. We colorized the ellipses using a 4-
class palette generated from ColorBrewer (uniform opacity of
α = 0.5), and then applied local blending model and hue-
preserving model. Results are shown in Figure 15. Observe
how the intersection between the blue and red sets is challeng-
ing to associate with the red component. Similarly, employing
a hue-preserving color blending model generates an abundance
of grey tones. With our approach (c), the resulting color and
transparency appear to qualitatively improve the visualization.
For instance, the overlapping parts of the green set are more
readily identifiable as green. This visualization can overall be
read with minimal ambiguity.

VI. CONCLUSION AND FUTURE WORK

We proposed a color-name aware optimization approach
that automatically generates color assignment and determines
proper transparency settings for overlapping histograms. Com-
pared to existing blending models, our approach allows for a
more accurate estimation of distributions and color classes.
We achieved these results by optimizing for both within-class
name association and between-class disassociation, and by
also considering region-based color contrast. These factors
are scored using an objective function and optimized using a
custom simulated annealing algorithm. Our method allows for
rapidly generating new color palettes and transparency assign-
ments to reduce misinterpretation errors. We demonstrated the
effectiveness of our method in two experiments. We also show
extensions to other multi-class visualizations with overlaps,
such as illustrative parallel coordinates and Venn diagrams. To
help disseminate this method, we implemented our technique
in a web-based tool that integrates our optimization.

Although effective, the quality of our optimization may be
influenced by the color naming model used. In this study,
we utilized the Heer and Stone name model [25], which at
times showed inconsistent accuracy. For example, the name
distance between bright hues (e.g. light blue and light green)

http://davis.wpi.edu/~xmdv
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displayed higher variation than expected. Future research
could explore alternative color naming models. Another lim-
itation lies in the variability of the algorithm’s results across
different runs of simulated annealing, which stems from its
inherent stochastic nature. To address this issue in future
work, alternative optimization algorithms, such as genetic
algorithms or particle swarm optimization, could be explored
to yield deterministic solutions. Another limiting factor is the
need to account for the effect of the algorithm on emotional
valence. Studies suggest that individual colors are often as-
sociated with specific emotional responses [4], [5], whereas
blended colors can alter, amplify, or even give rise to entirely
different emotional associations. To address this challenge,
future work should incorporate the evaluation of emotional
responses to color blending, ensuring that visualization designs
are both semantically resonant and emotionally appropriate.
Additionally, we aim to expand our optimization framework
to generate color palettes friendly to color vision deficiency
(CVD). Our method can be further extended to 3D scenarios,
such as applications involving Gaussian Mixture Models [31],
by incorporating relevant visual cues and spatial properties.
Finally, we would like to more thoroughly investigate how
data characteristics (e.g., distribution family and shape) might
impact task accuracy.
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[20] T. Günther, C. Rössl, and H. Theisel. Opacity optimization for 3d line
fields. ACM Transactions on Graphics (TOG), 32(4):1–8, 2013. doi: 10
.1145/2461912.2461930

[21] T. Günther, M. Schulze, J. M. Esturo, C. Rössl, and H. Theisel. Opacity
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