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Fig. 1. (a) The VEACH AJAR scene is lit by a directional light source behind the door, and so only a small section of the room receives direct illumination. (b) An
illustration of our bounding voxel data structure, which stores irradiance and geometry information for each voxel. (c) An illustration of our voxel path-guiding
algorithm (VXPG), which guides paths to high-contribution voxels. (d-e) Comparison of BSDF sampling vs VXPG sampling for 2-bounce global illumination.

We propose a real-time path guiding method, Voxel Path Guiding (VXPG),
that significantly improves fitting efficiency under limited sampling budget.
Our key idea is to use a spatial irradiance voxel data structure across all
shading points to guide the location of path vertices. For each frame, we first
populate the voxel data structure with irradiance and geometry information.
To sample from the data structure for a shading point, we need to select
a voxel with high contribution to that point. To importance sample the
voxels while taking visibility into consideration, we adapt techniques from
offline many-lights rendering by clustering pairs of shading points and
voxels. Finally, we unbiasedly sample within the selected voxel while taking
the geometry inside into consideration. Our experiments show that VXPG
achieves significantly lower perceptual error compared to other real-time
path guiding and virtual point light methods under equal-time comparison.
Furthermore, our method does not rely on temporal information, but can
be used together with other temporal reuse sampling techniques such as
ReSTIR to further improve sampling efficiency.
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1 INTRODUCTION

Rendering scenes with complex visibility and strong indirect illu-
mination in real-time requires finding good importance sampling
distributions. Path guiding techniques are a popular importance
sampling approach for offline rendering, but directly applying them
is particularly challenging, since real-time computation budgets
only allow for one to two light path samples per pixel per frame for
learning the sampling distribution. Real-time rendering methods
therefore often heavily rely on temporal information, but this can
cause temporal artifacts and slow guiding distribution adaptation
under complex dynamic scenes. Fig. 2 shows an example with chal-
lenging visibility where all the light paths need to go through the
half-closed door to light the scene. Most samples do not help locate
the sparse contribution as seen in Fig. 2(e). In this paper, we propose
a new real-time path guiding method, Voxel Path Guiding (VXPG),
which uses an efficient representation of the incoming radiance dis-
tribution which is simple to learn under limited sampling budgets
and does not rely on temporal reuse.

Our key idea is to reuse a spatial irradiance representation across
all shading points (Fig. 1 and Fig. 2(f)). We propose a bounding voxel
data structure that stores both the irradiance and geometry informa-
tion at each voxel. For each frame, we first populate the voxel data
structure. Next, we sample from the voxel data structure for each
shading point by first selecting a voxel and then shooting a ray from
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Fig. 2. Given a shading point x (a), our goal is to fit a target distribution (d), shown in cylindrical coordinates [Lambert 1770] (c), using a small amount of
samples per pixel. Path guiding algorithms learning spatial-directional distributions often rely on local samples in a spatial partition. However, if the path
contribution is sparse, local samples are not sufficient for reconstructing the target distribution (e), as only green samples have positive contributions. In
contrast, our pipeline (f) uses all samples across the whole image to construct a global spatial distribution, mitigating the issue of insufficient information
caused by using only local samples. However, blindly selecting a voxel (g) could result in connections with invisible surfaces (h). Notably, in the case of the door,
it is only illuminated on the backface. Therefore, we propose a new voxel selection strategy (i) which incorporates visibility to achieve a good distribution (j).

the shading point towards a point in the sampled voxel. Compared
to the traditional 5D spatial-directional distribution, our bounding
voxel data structure significantly improves fitting efficiency since it
reuses samples across all shading points.

Naively sampling from the voxels using only the irradiance infor-
mation is suboptimal since it ignores both visibility and materials
(Fig. 2(g) and (h)). We adapt techniques in offline many-lights sam-
pling [Hasan et al. 2007; Ou and Pellacini 2011] by clustering pairs
of shading points and voxels and building sampling distributions.

Finally, once we select a voxel, we need to sample a point to
connect the path to the surface inside the voxel. This introduces two
challenges: 1) We need to compute the probability density of a ray
landing on a surface in the voxel, which can be intractable for real-
time rendering. 2) The limited resolution of the voxel representation
can cause the rays to miss the actual geometry inside. To tackle the
challenges, we store the bounding volume of the geometry for each
voxel. We then propose an unbiased and efficient sampling strategy
to sample from the solid angle subtended by the bounding volumes.

While our method is primarily designed for first-bounce indirect
illumination, we have observed its utility in addressing multiple-
bounce indirect lighting. The irradiance-based representation im-
poses limitations on guiding caustics, but we can effectively handle
most specular transport through approximate product sampling.

Our equal-time comparisons show that our method significantly
improves the perceptual error (we use ILIP [Andersson et al. 2020])
over other real-time path guiding and virtual point light methods
for challenging scenes with complex visibility. Furthermore, our
method does not rely on temporal reuse, but can be used together
with other temporal reuse methods such as ReSTIR [Ouyang et al.
2021], to further improve sampling efficiency.

In summary, our contributions are:
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e We introduce a bounding voxel data structure that stores the
irradiance and geometry information for reusing information
across all shading points for real-time path guiding.

e For sampling a voxel from a shading point while taking visi-
bility and materials into consideration, we adapt offline many-
light sampling methods to cluster pairs of shading points and
voxels in real-time.

e We propose an efficient and unbiased way to sample a point
inside a bounding voxel while taking the geometry inside the
voxel into account.

2 RELATED WORK

Path guiding. Path guiding methods reuse previously traced light
paths to fit an importance sampling distribution [Vorba et al. 2019].

Previous work often represents incoming radiance using a 5D
spatial-directional distribution. Popular representations include adap-
tive histograms [Jensen 1995; Lafortune and Willems 1995; Miiller
et al. 2017], cosine lobes [Bashford-Rogers et al. 2012], Gaussian
mixture models (GMMs) [Vorba et al. 2014], von-Mises-Fisher (vMF)
distributions [Ruppert et al. 2020], or neural networks [Miiller et al.
2019]. While originally designed for offline rendering, these methods
have been adapted to real-time rendering. The real-time variants
have to use much simpler distributions (e.g., a Gaussian or vMF
lobe per-pixel [Derevyannykh 2022; Dittebrandt et al. 2023], or a
coarse histogram [Dittebrandt et al. 2020; Kim and Kim 2021]), and
often have to rely on temporal reuse [Derevyannykh 2022; Ditte-
brandt et al. 2020, 2023; Pantaleoni 2020] or offline training [Kim
and Kim 2021] to improve sampling efficiency. We instead represent
irradiance in 3D bounding voxels. Our representation significantly
increases sample reuse across pixels, and does not require temporal
reuse or offline training. Furthermore, our spatial representation
is automatically “parallax-free” and does not require rotation of a
directional distribution [Ruppert et al. 2020].



Our representation is related to the spatial representation used in
the Focal Path Guiding work [Rath et al. 2023], in which they store
the spatial density of light paths to automatically find “focal points”
where many light paths meet. Our method differs in three main ways:
1) Focal Path Guiding is designed for offline rendering, while our
method runs in real-time with a more efficient process to inject light
paths to voxels. As a result, our voxels store irradiance instead of
light path density. 2) We additionally take the contribution between
the shading point and the spatial distribution in consideration when
sampling. 3) We propose an efficient and unbiased sampling strategy
for sampling points inside a bounding voxel, without the need to
compute an integral for the probability density.

Virtual point lights and many-lights sampling. Our method can
be broadly seen as a virtual point light (VPL) method [Dachsbacher
et al. 2014; Keller 1997]. These methods first trace a batch of light
paths, then in a second pass connect to the vertices of the light
paths from the shading points. In a sense, VPL methods can be
seen as path guiding with spatial Dirac delta distributions as the
representation. For instance, power-based sampling orients the path
towards regions with high radiance without considering visibility.

Traditionally, the VPLs are created by light tracing [Keller 1997].
It is also possible to create VPLs from path tracing. These VPLs are
often only connected to nearby pixels [Bekaert et al. 2002; Davi-
dovié et al. 2010]. This is because connecting these VPLs to a large
set of shading points requires costly probability density function
estimation [Segovia et al. 2006] and usually leads to bias.

Many-lights sampling is crucial for effectively sampling from a
substantial number of lights, including both direct light sources and
VPLs. A popular way is to build a hierarchical data structure that
encodes information of a cluster of VPLs [Lin and Yuksel 2020; Liu
et al. 2019; Moreau et al. 2019; Pantaleoni 2019; Paquette et al. 1998;
Shirley et al. 1996; Vévoda et al. 2018; Walter et al. 2005; Wang et al.
2021; Yuksel 2020]. Alternatively, some methods cluster the VPLs
by sampling the light transport matrix [Hasan et al. 2007; Ou and
Pellacini 2011; Wu and Chuang 2013], where each element of the
matrix accounts for the contribution of a light to a pixel sample. We
adapt the light transport matrix sampling methods in a real-time
setting to importance sample a bounding voxel from a shading point,
while taking visibility and materials into consideration.

Our method is connected to VPL methods that “enlarge” the VPLs
into an area [HaSan et al. 2009; Li et al. 2022; Simon et al. 2015;
Tokuyoshi 2015]. Typically, the goal of these methods is to handle
glossy reflections with VPLs, while our goal is to handle indirect
illumination with complex visibility in real-time. Our method is
also highly related to Stochastic Substitute Trees [Tatzgern et al.
2020], which is a real-time VPL sampling technique based on a
continuous distribution with a spatial partition. Our method differs
from Stochastic Substitute Trees in a few ways: we take the visibility
between shading points and the spatial distribution into account, and
our intra-voxel sampling is aware of the solid angles subtended by
the bounding voxels. We generate the spatial distribution using path
tracing, instead of light tracing. Lastly, our sampling is unbiased.

ReSTIR. In real-time rendering, it has become popular to reuse
temporal information for sampling. In particular, ReSTIR [Bitterli
et al. 2020] and its global illumination variants ReSTIR-GI [Ouyang
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Table 1. Summary of paper notation.

x A general path vertex on the scene surface M.
x’ The previous path vertex to x.
X0 The first path vertex at the camera.

x1,x;; The second path vertex, i.e. shading points.
x2,xi, The third path vertex, visible from x;.
i, wo The incoming/outgoing direction.

y The next vertex sampled to extend current path at x.
y A sample used for finding vertex y.

v; A bounding voxel.

I The average irradiance of My,.

b; An AABB bounding M,,.
Q The upper hemisphere.
M The scene surface.
Moy, The portion of the scene surface M enclosed by voxel v;.

et al. 2021] and ReSTIR-PT [Lin et al. 2022] employ resampling [Tal-
bot et al. 2005] using samples drawn from spatial-temporal neigh-
bors for each pixel. Our method alone does not rely on any temporal
information. However, our method can also be used as a candidate
sampling distribution for ReSTIR-GI to incorporate temporal reuse,
which we demonstrate in the evaluation.

3 BACKGROUND

We summarize the notation we use in Table 1.

Rendering Equation. The reflected radiance at a point x in the
outgoing direction w, is described by the integral [Kajiya 1986]

L(x,00) = Le(x, 00) + /Q Li(, @) (%, o 07) [cos 6] das, (1)

where L, is the light emission, L; is the incoming radiance, and f;
is the Bidirectional Scattering Distribution Function (BSDF). The
radiance is computed by integrating over all incoming directions wj,
and recursively evaluating L;. This integral can also be rewritten to
instead integrate over all points y on all surfaces M:

L(x > x’) = Le(x — x')+

/M Li(y = x)fr(y > x = x')G(y & 0)V(y © x) dA(y).
@

where x’ is the previous path vertex, G is the geometry term, and V
is the visibility term.

Monte Carlo Integration. Equation 1 can be estimated using Monte
Carlo integration with a single sample by sampling a direction wj,
evaluating the integrand, and dividing by the PDF of the direction:

(Li(x, ) fr (%, @0, w5) |cos b;]
p(wilx, wo) '
Eq. (2) can be estimated in a similar way by sampling and evaluating
y instead. If p > 0 whenever the integrand is positive, then the
estimator is unbiased and E[(L)] = L. When the estimator is unbi-
ased, the error of Monte Carlo integration is given by the variance
of the estimator, which is zero when p is exactly proportional to

(L(x, @0)) = Le(x, wo) + (3
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Fig. 3. (a) A bunny in a box lit by a spotlight. (b) Before VXPG sampling,
we construct a voxel representation of the scene, including irradiance and
geometry information (Section 5.1). (c) During VXPG sampling, for every
shading point x, we first randomly select one voxel from the entire set to
connect with (Section 5.2). (d) After that, we find the next vertex y within
the selected voxel in a fast and unbiased way (Section 5.3).

the integrand. Importance sampling therefore aims to construct a
density p which is approximately proportional to the integrand.

Path Guiding. Path guiding methods learn to sample high contri-
bution paths by using previously sampled paths to fit the density p
so that it approximates the integrand in Equation 1, to obtain low
variance. The full integrand is 7D however (3D for x, 2D for w;, and
2D for w,), and so previous work typically instead aims to fit a 5D
distribution p(w;|x) which is independent of the outgoing direction.
This is done by discretizing the dimensions using subdivision struc-
tures [Derevyannykh 2022; Miiller 2019; Ruppert et al. 2020; Vorba
et al. 2014], or directly learning in 5D [Dodik et al. 2022; Dong et al.
2023]. However, the low number of samples generated per frame
in real-time rendering is still insufficient to accurately fit this 5D
distribution (Fig. 2(c)). As a result, previous work [Derevyannykh
2022; Dittebrandt et al. 2020] relies on temporal reuse to improve
the guiding distribution, but then the distribution lags in time and
is unable to quickly adapt to dynamic scenes.

4 OVERVIEW

We propose a real-time path guiding algorithm. Our method can
fit the sampling distribution at low sample counts, and does not
rely on temporal information. To achieve this, instead of learning a
local 5D distribution p(wj|x) representing the directional sampling
density for w; at each point x, we propose to learn a global 3D spatial
distribution similar to p(y), shared by all shading points. Inspired
by next event estimation, this 3D distribution guides the location of
the next path vertex y.

Our approach offers two advantages: First, a spatial distribution
naturally eliminates parallax issues during sampling [Ruppert et al.
2020], and second, fewer samples are needed to learn the distribution
due to its reduced dimensionality, and so it can be rebuilt from
scratch at every frame to quickly adapt to dynamic scenes.

However, simply sampling from p(y) for different shading points
can be inefficient, since it ignores the visibility and BSDF terms [Rath
et al. 2023]. In complex scenes, many paths will be occluded, lim-
iting the guiding efficiency (Fig. 2(g)). Instead, we sample from a
conditional distribution p(y|x) for different shading points, which
approximates the desired 5D density, while only storing a 3D spatial
distribution.

To do this efficiently in real-time, we propose a novel two-stage
sampling method, bounding voxel sampling (Section 5, Fig. 2(e)).
We bound the scene in a set of voxels {oo, . ..,v,—1}, each of which
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stores irradiance and geometry information. In the first stage, for
each shading point x, we select one voxel from the entire set by
sampling a conditional probability pys(v;|x). This stage is akin to
many-lights sampling [Bitterli et al. 2020; Ha$an et al. 2007; Moreau
et al. 2022; Ou and Pellacini 2011; Shirley et al. 1996; Yuksel 2019].
In the second stage, we sample the point y within the selected voxel
with p(y|ov;), analogous to area light sampling [Arvo 1995; Gamito
2016; Peters 2021; Urefia et al. 2013].
Bounding voxel sampling therefore samples:

p(ylx) = p(yloi) pys (vilx), ©

with the conditioning in the voxel selection stage providing local
adaptivity and accounting for both visibility and BSDF.

Fig. 3 illustrates an overview of our pipeline. It begins by popu-
lating voxels with irradiance and geometry information (Fig. 3(b),
Section 5.1). Then, for each shading point, we select one voxel ac-
cording to a distribution pys considering power, BSDF, and visibility
(Fig. 3(c), Section 5.2). Finally, we sample the next path vertex y
within the selected voxel (Fig. 3(d), Section 5.3).

5 BOUNDING VOXEL SAMPLING

In Sections 5.1-5.3, we discuss the construction and sampling of
bounding voxels for our VXPG algorithm. We focus on the case of
first-bounce indirect illumination. Section 5.4 then details combin-
ing bounding voxel sampling with BSDF sampling using multiple
importance sampling to make the algorithm robust. Section 5.5 dis-
cusses extending the first-bounce case to direct illumination, as well
as further bounces. We provide more details of our implementation
in the supplementary material.

5.1 Construct Bounding Voxels

Bounding voxels. To construct our spatial distribution, we uni-
formly partition the scene using voxels {vo, . ..,v,-1}. Each voxel
v; encloses a portion of the scene surface M, which we denote
as My, = M N v;. Each voxel v; stores the average irradiance of
Moy, I;, and an axis-aligned bounding box (AABB) b; C v;, which
tightly bounds M,,. We refer to this structure as "bounding voxel’,
emphasizing its dual characteristics: the bounding volume feature
provided by b; and the spatial partitioning nature of the voxels. Both
characteristics are essential for unbiased sampling in Section 5.3.

Light injection. We call the process of assigning irradiance to
voxels "light injection", a concept borrowed from voxel-based global
illumination (VXGI) [Crassin et al. 2011]. In our method, assigning
positive irradiance to completely invisible voxels is undesirable,
since paths can be guided to occluded regions. Therefore, injecting
light information through voxelization [Crassin et al. 2011] or light
tracing [Hasan et al. 2009; Keller 1997] is suboptimal.

Instead, we inject light by tracing paths from the camera and place
a virtual light at the first hit of the indirect bounce!. These points,
which we denote as xy, are guaranteed to contribute to the image,
since they are visible from some shading points. In particular, we
trace a BSDF ray for each shading point and populate the irradiance
of vertex x, into the voxel in which x; is located. We define the

!This is similar to Reverse Instant Radiosity [Segovia et al. 2006], but we do not need
to compute an intractable PDF for unbiased results.
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Fig. 4. Different geometry compaction strategies to compute the bounding
box b;. In this example, a triangle intersects with a voxel, and only the
light gray portion of the triangle has non-zero irradiance. (a) Voxel bounds.
(b) Intersection of the voxel and the bounding box of the triangle. (c) Our
method: The triangle is clipped against the voxel to produce tight bounds.
(d) A non-conservative bound using all second-bounce vertices in the voxel.
(e) Optimal bounding box.

voxel irradiance I; as the average irradiance of all vertices injected
to it: .
li=— ) Elxp). )
! xj,€0;
where n; is the number of vertices injected into voxel v;, and E(+) is
the irradiance of each vertex?. We only evaluate direct lighting for
E(xj,), as we are focusing on one-bounce indirect illumination.

Geometry injection. The second part of the bounding voxel is
the AABB b;. This is important because as shown in Fig. 3(d), the
voxel v; often only provides a loose bound for the surface M,,. In
the intra-voxel sampling step, further explained in Section 5.3, we
need to sample a point within the voxel. Sampling a point on the
more compact b; rather than directly on v; increases the chance of
selecting a point that lies on the surface.

To inject geometry information and create b;, we apply rasterization-

based voxelization [Crassin and Green 2012]. When we detect that
a triangle overlaps with a voxel, we compute an AABB of their
intersection and then combine them using atomic operations.

However, simply intersecting the voxel with the bounding box of
the triangle often does not result in full compactness, as illustrated
in Fig. 4(b). We use the Sutherland-Hodgman algorithm [1974] to
clip the triangle against the voxel and compute its own bounds
accordingly, as demonstrated in Fig. 4(c).

In principle, the ideal AABB b; should bound only the portion
of the geometry with non-zero irradiance, as illustrated in Fig. 4(e).
However, obtaining this AABB exactly is not feasible in practice.
Estimating it by, for example, calculating a bounding volume for
all vertices within the voxel, as depicted in Fig. 4(d) leads to a non-
conservative bound and may lead to temporal instability, especially
when the vertex count is low. We need a conservative bound so that
we do not miss sampling geometry with non-zero radiance.

5.2 Voxel Selection

Once the bounding voxels are constructed, we sample a voxel v;
for each shading point xj using a probability mass function (PMF)
Pys(vi|x1). Ideally, we want the PMF to be proportional to the square
root of the second moment of the contribution estimator [Pantaleoni

2Strictly speaking, E(-) here does not represent irradiance, which should be integrated
over the hemisphere. In our case, we cannot guarantee full coverage of the domain but
still borrow the term for simplicity.
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and Heitz 2017; Rath et al. 2020; Vévoda et al. 2018], where the
contribution is defined as:

/M Lily — x)fi(y — 31— x0)G(y © x)V(y © x1)dA).
©)

However, estimating this contribution for all voxel-shading point
pairs is costly. Instead, we observe that selecting voxels is similar
to selecting light sources in many-light sampling, and it can, in
fact, be viewed as selecting a "virtual voxel light" with emission
I; and bounds b;. Consequently, we can leverage existing work in
many-lights sampling [Bitterli et al. 2020; Hasan et al. 2007; Moreau
et al. 2022; Ou and Pellacini 2011; Shirley et al. 1996; Yuksel 2019]
to construct the voxel selection distribution pys.

A simple method is to select a voxel with probability proportional
to its power [Shirley et al. 1996]:

O(v;) = I; - Avy), (7)

where A(v;) is the surface area of M,,. We approximate A using
the surface area of the largest of the 6 faces of b;.

Since the bounding voxels are shared across all shading points,
sampling them based on power ignores the visibility, geometry, and
BSDF terms in Eq. (6). While our light injection method partially
mitigates this by ensuring that voxels with non-zero irradiance
are visible to some shading points, they can still be occluded to
others. We aim to estimate the contribution without querying visi-
bility between each pair of shading points and voxel, which would
be prohibitively expensive. Inspired by previous work in many
lights sampling [Hasan et al. 2007; Ou and Pellacini 2011; Wu and
Chuang 2013] and probabilistic connections of bidirectional path
tracing [Popov et al. 2015; Su et al. 2022], we assume the contribu-
tion is locally similar, and use clustering to reduce the number of
visibility queries. We group pixels and voxels into clusters, referred
to as superpixels and supervoxels, respectively. Then, we estimate
an average throughput for each superpixel-supervoxel pair, provid-
ing an approximation of the product of visibility, geometry, and
BSDF. This process is depicted in Fig. 5. Below we detail each step.

Superpixel and supervoxel clustering. We base our method on
the SLIC superpixel algorithm [Achanta et al. 2012] for superpixel
clustering, taking into account geometry similarity. Meanwhile, we
adopt a simplified version of the K-means algorithm to group voxels
into supervoxels, based on visibility and irradiance information. The
supplementary material provides the details of the clustering.

Average throughput estimation. After clustering, we estimate the
average throughput for each superpixel-supervoxel pair. In a prepa-
ration stage, we figure out which shading points and x3 vertices
correspond to each superpixel and supervoxel. This stage also adds
surface normal information to each point so that backfacing sur-
faces can be rejected. Then, for each superpixel-supervoxel pair, we
select 32 pairs of shading points and x; vertices within the cluster
pair, and query their binary visibility by tracing a ray (Fig. 5(c)). As
both ends of these rays are expected to be close, they are typically
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superpixel

@ shading points

@ virtual point lights

(c) Average throughput

(b) Cluster bounding voxels into supervoxels.

Fig. 5. The overview of our visibility-aware voxel selection algorithm. (a-b)
To reduce the number of visibility queries, we cluster the shading points
and voxels respectively. Then, for each pair of superpixel and supervoxel,
we cast multiple rays to estimate an average throughput that is the product
of visibility, BSDF, and geometry terms.

coherent and can be efficiently traced. The average throughput is:

31
_ 1 . . . . . .
T=5 Zf,(xé — x5 x)G(xh o V(o xh). ()
i=0

Voxel selection. Next, we select voxels for each shading point as
follows. First, we identify the superpixel SP; of the shading point.
Next, we select a supervoxel SV;j with probability proportional to the
product of average throughput and total power, Tj j- 3, ¢ sV D(og),
which approximately product sample the full contrbution: irradi-
ance, visibility and BSDF terms. Finally, we choose one voxel within
the supervoxel SVj based on power @ as in Eq. (7).

5.3 Intra-Voxel Sampling

Bounding volume sampling. Once a voxel v; is selected, we need to
select the position of the path vertex within the voxel. The challenge
is that we cannot simply sample any point y’ € b;, since the path
vertex must lie on the scene surface M.

Stochastic Substitute Trees [Tatzgern et al. 2020] handle this
by treating the sampled y’ as a VPL which introduces bias. The
probability density of this method is also intractable. Focal Path
Guiding [Rath et al. 2023] first maps y’ to a direction w;, where

Wi = ”Z,—:i”, and finds the exact vertex y by ray casting.

However, since there are infinitely many y’ that map to the same
wj, an integration is need to compute the probability density [Rath
et al. 2023; Simon et al. 2017]:

pa(wilx) = /0 Ps(x + tw;)t2de. )

This is prohibitively expensive to compute for real-time applications,
as it requires traversing the entire voxel structure.

Instead, we propose bounding volume sampling, as illustrated in
Fig. 6(c). We first generate the primal sample y’ on the surface of
the AABB b; associated with the voxel. Next, we cast a ray from
x towards y’ in direction w; to obtain the path vertex y. Finally,
we check the position of y, accepting it if y € b; and discarding it
otherwise.
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Fig. 6. (a) In directional sampling, a primary sample y’ is taken from the
upper hemisphere, and a ray is cast to determine the vertex y on the surface.
(b) NEE acquires the primary sample y’ directly from the geometry’s surface,
which corresponds to vertex y itself. The ray is traced to assess visibility.
(c) In our bounding voxel sampling, the primary sample y’ is drawn from a
bounding voxel. We then trace a ray to locate vertex y.

Fig. 7. When the shading point x is outside of the bounding box, there is at
least one (a) and at most three (b) surfaces facing x. During sampling, we
project the forward-facing surfaces Py_ onto spherical rectangles Qg_s.

The probability density of selecting the vertex y can then be

computed in closed form® as:

pylx) = p(yly". x)p(y’ |x, 0i) pys (vilx). (10)

due to two factors. First, due to the rejection step, each vertex y can
only be sampled when we select the voxel v; within which it resides,
since voxels are disjoint. This eliminates the need to marginalize over
v;. Second, we sample the boundary of b; rather than the interior.
Consequently, given x and a specific v;, the mapping v’ — w; is
injective, removing the need to marginalize over y’.

Our formulation trades off the costly PMF integration, as shown
in Eq. (9), with sample rejection. Therefore, having a compact bound-
ing volume is crucial to reduce sample rejection, as discussed in
Section 5.1 on geometry injection.

Spherical voxel sampling. To efficiently generate samples on the
surface of the bounding voxel, we project all forward-facing surfaces
of the AABB b; into spherical rectangles [Arvo 1995; Urena et al.
2013]. We only attempt to select a sample if the vertex x is outside
the AABB b;, and so there are at least one and at most three spherical
rectangles, Qo, Q1, Q2, as illustrated in Fig. 7.

To draw the primary sample y’, we first select one spherical rec-
tangle proportionally to its surface area, p(Q;) = Area(Qi)/¥, ; Area(Q;),
and then apply spherical rectangle sampling [Ureiia et al. 2013] on
Q;. This allows us to sample the boundary of the AABB with a
probability density proportional to the solid angle:

p(y'Ix,0i) = 5 ! (1)

j Area(Qj) ’

3The p(y|y’, x) term in Eq. (10) is essentially a Jacobian of the mapping from y to y’.



5.4 Multiple Importance Sampling with BSDF Sampling

To make our algorithm robust, we combine samples drawn using
VXPG with BSDF importance sampling using Multiple Importance
Sampling (MIS) with the balance heuristic [Veach and Guibas 1995].
This step is crucial since, like in many path guiding methods, light
injection is not guaranteed to find every voxel that contributes to the
image and can results in bias. Combining BSDF sampling ensures
all surfaces have a non-zero probability of being selected.

5.5 Path Guiding for Further Bounces

Our bounding voxel sampling method can also be applied to direct
illumination and multi-bounce indirect illumination. To guide direct
illumination, we inject light source emission instead of irradiance
of x7 in the light injection stage. For further bounces, we can extend
our method by injecting x3, x4, . .. and further vertices to guide the
corresponding bounces. A challenge for second bounce onwards is
that our voxel selection strategy estimates contribution between
superpixels and supervoxels, while path vertices may lie on parts of
the scene outside the image. To obtain information for these vertices,
we need to estimate voxel-voxel contribution. Alternatively, we can
skip the contribution estimation for second bounce onwards.

In our implementation, we include up to second-bounce indirect
illumination. To minimize overhead, we reuse the bounding voxel
structure built for the first bounce, as seen in Fig. 1(c), and use power-
based sampling for voxel selection. Our experiments show that this
simple strategy still helps with sampling the second bounce.

6 EVALUATION

We implemented our algorithm in a custom renderer using the
Vulkan API with hardware-accelerated ray tracing. All results are
rendered at a 1280x720 resolution, on a laptop with an NVIDIA
GeForce RTX 3070 GPU. The reference images are rendered using
standard unidirectional path tracing with a high sample count. All
reported timings are measured by averaging at least 300 frames.

Our test scenes are based off Bitterli’s [2016] rendering resources.
In most rendered images, we visualize indirect illumination only,
omitting direct illumination, to emphasize the improvement of our
algorithm for guiding indirect illumination.

We provide more comparisons in the supplementary material.

6.1 Static Scene Comparisons

Image quality comparisons. We assess image quality using ILIP
(1) [Andersson et al. 2020], by comparing to the following methods:
BSDF importance sampling, real-time stochastic lightcuts (SLC) [Lin
and Yuksel 2020], stochastic substitute trees (SST) [Tatzgern et al.
2020], and screen space path guiding (SSPG) [Derevyannykh 2022].
All scenes are rendered with 2-bounce global illumination, with the
exception of VEAcH Mis, which only includes direct illumination.
Our method always uses one VXPG and one BSDF path, combined
using MIS, resulting in a constant 2 samples-per-pixel. We use 64>
voxel resolutions for all our results.

SSPG maintains one Gaussian lobe per pixel and uses a ran-
dom mixture of the Gaussian lobe and BSDF lobe for first-bounce
path guiding. In our implementation, we adopt the balance heuris-
tic [Veach 1998] instead of their learned random mixture and directly
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fit the Gaussian lobe to the one-bounce incident radiance. This set-
ting always provides superior quality across all tested configurations.
Meanwhile, since SSPG heavily relies on temporal reuse to learn
the lobe, all results are captured after the guiding distributions have
been fully learned.

Fig. 8 and Table 2 presents an equal-time comparison. In scenes
with complex visibility, our approach outperforms SLC and SST
since we incorporate visibility in our sampling process. However,
the VEAcH Mis scene has low visibility complexity, and so VPL-based
methods can outperform our approach in some regions. On the other
hand, VPL-based methods are poor at handling highly specular
surfaces, while our approach addresses this through approximate
product sampling and combining with BSDF sampling.

Guiding distribution comparison. In Fig. 9, we provide a visual-
ization of the learned directional distributions, which approximate
the direct or one-bounce radiance. We compare our method (VXPG)
with two established techniques for real-time path guiding: the
Compressed Directional Quadtree (CDQ) [Dittebrandt et al. 2020]
and the one-lobe Gaussian mixture model (GMM) [Derevyannykh
2022].

When comparing with CDQ, we use the implementation with 64
bit counts, as recommended in Section 7.3 of the paper [Dittebrandt
et al. 2020]. For the sake of simplicity and fairness, in every frame,
we exclusively draw 256 samples from the shading point to update
the CDQ structure, rather than using all samples within a leaf of
an adaptive octree as described by the authors. This modification
improves the quality of the learned CDQ compared with the original
implementation, as it effectively eliminates parallax issues, so that
it is easier to compare with our approach and screen space path
guiding [Derevyannykh 2022] as both are inherently parallax-free.

The VEACH MIs scene consists of three emitting spherical lights
of increasing size. The smallest light is a challenge for both CDQ and
a one-lobe GMM to capture and represent. In the FIREPLACE scene,
there are over eight distinct high-contribution regions, but both
CDQ and GMM are unable to represent complex distributions. It
shows that our method is able to represent challenging distributions.
It excels in identifying and representing small as well as multiple
high-contribution regions while preserving sharp boundaries.

Combination and comparison with ReSTIR. Directly comparing
our method with ReSTIR is challenging, since ReSTIR heavily relies
on reusing samples across frames to refine the sampling distribution.
However, as a path guiding technique, our approach can be used for
generating the candidate samples for ReSTIR.

In Fig. 10, we compare VXPG with ReSTIR GI [Ouyang et al. 2021]
and a combination of both methods. We combine VXPG and BSDF
sampling using MIS to generate candidate samples for ReSTIR. No-
tably, in the VEACH AJAR scene, where BSDF sampling may generate
poor candidate samples, our approach can outperform ReSTIR when
the number of temporal samples is insufficient. Furthermore, using
VXPG as a candidate distribution of ReSTIR GI improves the result.

Adaptation speed comparison. In Fig. 9, we illustrate that VXPG

can rapidly adapt to sudden illumination changes in a single frame,
whereas CDQ and GMM exhibit only minor adjustments.
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Fig. 8. Approximate equal time comparisons of our method (VXPG) with previous works. LIP values are inset in each image. We compare with BSDF
sampling, real-time Stochastic Lightcuts (SLC) [Lin and Yuksel 2020], stochastic substitute trees (SST) [Tatzgern et al. 2020], and screen-space path guiding
(SSPG) [Derevyannykh 2022]. All images are captured under static lighting conditions, with a fixed scene and camera pose. For BSDF and SSPG, we sometimes
include an additional path that only evaluates the first-bounce indirect lighting to align with the time budget, shown as an extra 0.5 sample per pixel.
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Table 2. Approximate equal time comparison of our method with previous works across a broader set of test scenes. We report mean ALIP and average render
time. For all scenes, we evaluated 2-bounce indirect illumination, except for the VEAcH, Mis scene, where we assess direct illumination without next event
estimation. The best-performing entries are highlighted in bold letters. Note that we precompute the geometry injection step once at scene initialization for

VXPG, and so omit it from the per-frame render times.

[Lin and Yuksel 2020] [Tatzgern et al. 2020] [Derevyannykh 2022] Ours

BSDF SLC SST SSPG VXPG
VEACH AJAR 0.912 10.22 ms 0.904 13.69 ms 0.801 11.32 ms 0.785 09.24 ms 0.573 12.81 ms
FIREPLACE 0.895 12.58 ms 0.840 12.84 ms 0.856 13.32 ms 0.800 11.73 ms 0.599 12.12 ms
STAIRCASE 0.963 14.02 ms 0.910 13.78 ms 0.869 11.28 ms 0.850 11.04 ms 0.768 13.72 ms
TeaproT 0.704 11.08 ms 0.665 11.74 ms 0.781 12.09 ms 0.588 10.98 ms 0.489 10.85 ms
KrrcHEN 0.867 14.63 ms 0.736 12.18 ms 0.841 10.04 ms 0.796 12.68 ms 0.618 13.02 ms
BebprOOM 0.919 18.38 ms 0.645 14.18 ms 0.823 17.12 ms 0.806 17.95 ms 0.450 15.48 ms
BREAKFAST 0.831 17.93 ms 0.701 18.02 ms 0.678 14.54 ms 0.683 17.42 ms 0.496 18.39 ms
VEACH Mi1s 0.847 03.82 ms 0.594 04.52 ms 0.573 09.74 ms 0.766 05.42 ms 0.589 04.18 ms

We also directly compare adaptation speed for temporal informa-
tion, as shown in Fig. 11, where we compare our method to SSPG and
ReSTIR GL. Both SSPG and ReSTIR GI improve sampling through
the temporal accumulation of information.

The effectiveness of SSPG is limited since the guiding distribution
is restricted to a single lobe Gaussian. It also converges the slowest,
as BSDF sampling alone does not generate enough high contribution
samples to effectively train the model. In contrast, our approach is
able to learn a better guiding distribution at each frame, but does
not further refine using previous frames. On the other hand, ReSTIR
GI takes more than 20 frames to achieve stable quality. When using
VXPG as the candidate distribution, ReSTIR GI converges faster.

Denoising. Fig. 12 shows that our approach also improves ren-
dering results with A-SVGF denoising [Schied et al. 2018]. It can
further mitigate temporal artifacts in A-SVGF due to disocclusion
or rapid lighting changes (see supplementary video).

6.2 Dynamic Scene Comparisons

Dynamic objects and lighting. We evaluate our method on three
dynamic scenes. Fig. 13 illustrates how our approach can adapt to
dynamic environments and improve the quality of ReSTIR GI and
A-SVGF. Additional results are presented in the supplemental video.

6.3 Performance

Pipeline time breakdown. Table 3 displays the average execution
times of each stage of the pipeline. In particular, in light tree building
stage we build a binary tree for power-based voxel selection, and
in path tracing stage we execute all sampling and path tracing.
Besides the geometry injection stage, the preparation stages of
VXPG typically introduce an overhead of less than 1ms in the test
scenes. This overhead is outweighed by the improved sampling
efficiency as shown in the equal-time comparison.

The cost of geometry injection is heavily dependent on scene
complexity. In practice, we precompute geometry information for
static objects. During runtime, we perform geometry injection solely
for dynamic objects and then merge the results.

Dynamic geometry injection. As geometry injection requires per-
frame voxelization of dynamic objects, the overhead can be con-
cerning. Fortunately, we observe that sub-voxel details are usually
filtered during injection, therefore creating level of details (LoDs)
for high-poly models often do not lead to any quality loss under low
voxel resolution, while significantly reducing the injection overhead.
Table 4 shows how various combinations of LoDs and voxel resolu-
tions influence the overhead, where LoDs are generated by quadric
mesh simplification [Garland and Heckbert 1997]. Higher-resolution
grids may actually accelerate geometry injection by reducing the
number of conflicts for atomic operations. However, the increase in
resolution implies a larger number of voxels to be processed, conse-
quently increasing the overhead of the entire pipeline. Furthermore,
we implemented a spatial hashing [Binder et al. 2021] version for
geometry injection, which usually involves an overhead less than
0.15ms caused by resolving linear probing, but can be helpful when
memory is the bottleneck.

6.4 Ablation Studies

Various voxel resolutions for large scenes. Fig. 14 illustrates the
significance of voxel resolution in the quality of VXPG. In mod-
erately large scenes like ZERO-DAY, a grid size of 64% voxels may
struggle to accurately capture the characteristics of irradiance and
geometry. Consequently, noticeable quality improvement can be
observed with increased voxel resolution.

Multi-bounce path guiding. Fig. 15 presents an equal-sample com-
parison of second-bounce-only indirect illumination between BSDF
and VXPG sampling. When the scene is dominated by indirect illu-
mination and visibility is less crucial, VXPG can also improve multi-
bounce sampling quality simply by using power-based [Shirley et al.
1996] voxel selection. In contrast, screen-space techniques [Derevyan-
nykh 2022; Ouyang et al. 2021] cannot guide for further bounces.

Voxel selection strategies. Fig. 16 shows how various voxel selec-
tion strategies affect image quality. We compare our visibility-aware
algorithm with power-based sampling [Shirley et al. 1996] and sto-
chastic lightcuts [Lin and Yuksel 2020]. Our algorithm consistently
outperforms others, particularly when visibility is a crucial factor
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VEACH, Mi1s

FIREPLACE

Scenes

Frame N

Frame N+1

GMM Ours

Fig. 9. We analyze the directional distribution that fits the one-bounce radiance, represented in cylindrical coordinates [Lambert 1770]. Our comparative study
involves our method (VXPG) and the reference radiance (GT), as well as Compressed Directional Quadtree (CDQ) [Dittebrandt et al. 2020] and a one-lobe
Gaussian mixture model (GMM) [Derevyannykh 2022] (which is learned under a hemispherical mapping [Shirley and Chiu 1997]). The scene and lighting
remain static until frame N, where N is sufficiently large to ensure stable convergence across all methods. However, on frame N+1, a sudden movement of the
light source results in a change in radiance, and it is evident that CDQ and SSPG exhibit slow adaptation.

Table 3. Breakdown of the VXPG pipeline execution time for 2-bounce global illumination. (*: run only once for static scenes geometries.)

Visibility Light Geometry Superpixel Supervoxel Light Tree Evaluating Path
Buffer Injection Injection” Clustering Clustering Building Average Visibility Tracing
FIREPLACE 0.39 ms 0.09 ms 0.57 ms 0.13 ms 0.16 ms 0.13 ms 0.21 ms 10.77 ms
VEACH AJAR 0.40 ms 0.09 ms 2.15ms 0.13 ms 0.16 ms 0.12 ms 0.17 ms 7.01 ms
STAIRCASE 0.76 ms 0.09 ms 2.78 ms 0.13 ms 0.17 ms 0.13 ms 0.29 ms 12.03 ms
BREAKFAST 0.68 ms 0.09 ms 2.38 ms 0.14 ms 0.18 ms 0.14 ms 0.40 ms 15.15 ms
KiTcHEN 0.52 ms 0.09 ms 11.52 ms 0.13 ms 0.16 ms 0.14 ms 0.24 ms 9.37 ms
BEDROOM 0.68 ms 0.11 ms 5.02 ms 0.13 ms 0.17 ms 0.14 ms 0.31 ms 13.33 ms
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Fig. 10. Image quality comparisons for our approach (VXPG), ReSTIR Gl
[Ouyang et al. 2021] (ReSTIR), and their combination (ReSTIR + VXPG).
We also show the effect of the ReSTIR variants after both small and large
amounts of temporal reuse. The top row represents images captured after
5 frames of temporal reuse, while the bottom row corresponds to images
captured after more than 500 frames with M-cap = 20.
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Fig. 11. To assess adaptation speed, we studied first-bounce indirect illumi-
nation in the VEACH, AJAR scene over 10 frames. SSPG utilizes 10 neighbor
samples to accelerate convergence, as detailed in [Derevyannykh 2022].
ReSTIR reuses 1 spatial sample and the temporal sample at every frame,
with M-cap = 20.

0.064 ALIP

(a) BSDF + A-SVGF

(b) VXPG + A-SVGF

Fig. 12. (a) Noisy inputs can cause shadow and highlight detail loss and
color distortion, even with A-SVGF denoising [Schied et al. 2018]. (b) Our
approach improves the denoised image quality.

(c) Reference
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4 0.894

0.908 0.903

BSDF VXPG ReSTIR ReSTIR A-SVGF A-SVGF
BSDF VXPG BSDF VXPG

Reference

Fig. 13. Our approach can effectively adapt in dynamic scenes, enhancing
the quality of ReSTIR Gl and A-SVGF. BRAINSTEM @Keith Hunter, ZErRo DAY
©beeple [Winkelmann 2019], Disco @Md Mahmudur Rahman Bappy

Table 4. The mean ALIP and average time of geometry injection for the
STAIRCASE BRAINSTEM scene are assessed across various combinations of
voxel resolution and mesh level of detail. We also show the time for the rest of
the pipeline to show the impact of increasing voxel resolution. Additionally,
we show the mesh at different LoDs and the number of the triangles.

Resolution 64> Resolution 128%  Resolution 2563

LoD-0 0.872 1.042 ms 0.849 0.628 ms 0.811 0.454 ms
LoD-1 0.872 0.313 ms  0.854 0.256 ms 0.804 0.190 ms
LoD-2 0.8750.112ms  0.838 0.087 ms 0.803 0.107 ms
LoD-3 0.870 0.078 ms 0.843 0.065 ms 0.822 0.082 ms
Restofthe | 45 g8 ms 16.87 ms 20.23 ms
pipeline
LoD level
# of triangles 123,332 36,998 12,328 6,164

we ,

(a) Reference

0.963 0.922 0.830 0.763

0.941 0.823

(c) VXPG 643 / 1283 / 256%

(b) BSDF

Fig. 14. Direct illumination and 1st bounce indirect lighting without NEE
by VXPG with various voxel resolutions. Error shown in ALIP.
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VEACH, AJAR
FIREPLACE

Reference
ALIP

Fig. 15. An equal sample comparison of the second-bounce-only indirect
illumination. VXPG uses power-based sampling [Shirley et al. 1996] for
voxel selection, as the visibility information is in screen-space and thus not
available during the second bounce.

0.870

BSDF Power SLC Ours

Reference
Fig. 16. The first bounce indirect illumination sampled by BSDF sampling
and VXPG with various voxel selection strategies.

+ Intersect

Reference Voxel
Fig. 17. Direct illumination without NEE and guided by VXPG, with various
geometry compaction strategies. Error shown in ALIP.

+ Clipping

(e.g. the VEACH AJAR scene). Note that VXPG with naive voxel
selection strategies is still able to outperform BSDF sampling.

Geometry compaction strategies. Geometry compaction has a sub-
stantial impact on the rejection rate during sampling. Fig. 17 shows
the different compaction strategies discussed in Fig. 4. Using a more
compact AABB can yield significantly better results.
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Fig. 18. The bias of naive balance heuristic MIS estimator in BREAKFAST and
TEAPOT scenes, as measured by ALIP.

7 DISCUSSION, LIMITATIONS AND FUTURE WORK

Unbiasedness. As mentioned in Section 5.4, BSDF samples serve
dual purposes: light injection and MIS. While reusing a single BSDF
path for both purposes is attractive, it should be approached with
caution. In particular, if, for each frame, we spawn a BSDF path
and successively use it for light injection and MIS, the outcome will
be biased. Other adaptive sampling methods [Kirk and Arvo 1991]
share the concern as well.

There are two ways to address the problem: 1) Using x of BSDF
paths from the previous frame for light injection, resulting in a one-
frame lag for path guiding. All previous path guiding approaches
use this strategy, given their primary focus on static scenes. 2)
Spawn two BSDF rays for light injection and MIS, respectively. This
introduces extra overhead but can be beneficial in highly dynamic
scenarios.

In practice, we can also simply ignore the bias. Experiments sug-
gest that the bias is closely related to the light injection process. As
illustrated in Fig. 18, when light injection successfully captures most
of the voxels that contribute to the image, such as in the BREAKFAST
scene, no bias is observed. Conversely, the TEAPOT scene presents
an extreme case. The specific viewport configuration complicates
the identification of all contributing voxels in the upper section,
with only a few pixels in the upper-left corner of the image being
affected. In scenarios like this, the missed voxels will bring bias to
corresponding pixels. However, our light injection strategy tends to
identify voxels that contribute to a greater number of pixels, which
results in any bias being relatively small and localized.

Temporal Stability. In most cases, our approach is temporally sta-
ble. That being said, different voxel clustering can lead to different
amounts of variance across frames, especially in scenes with com-
plex visibility. An option is to improve the clustering by refining
the local clusters for each superpixel [Ou and Pellacini 2011].

Caustics Transport. In our approach, we only estimate irradiance
values for bounding voxels, and assume each voxel is a diffuse
emitter during sampling. While our approximate product sampling
during voxel selection can handle simple specular paths, this as-
sumption limits our ability to guide caustics. To be more specific,



as we neglect the potential specular effect at x; vertices, guiding
general indirect light reflected from a glossy surface towards a pri-
mary vertex would be challenging. At the same time, VXPG can
potentially be used to guide photon tracing [Jensen 1995].

Scalability to large-scale scenes. While we have showcased promis-
ing results on moderately large scenes like ZERO-DAy, which in-
cludes 5.2 million triangles. There are two main concerns regarding
further scalability: 1) In terms of performance, we have noted that
the cost of geometry injection generally scales linearly with the
number of triangles, see Table 4. To mitigate this, we have adopted
LoD as a solution. 2) Regarding quality, large scenes may lead to less
precise bounds of geometries, as illustrated in Fig. 14. To remedy
this, a higher resolution voxel is essential. We have implemented
spatial hashing for sparse storage, but a hierarchical structure such
as a clipmap [Tanner et al. 1998] or sparse voxel octrees [Laine and
Karras 2011] might be useful for very large-scale scenes.

8 CONCLUSION

We presented a path guiding algorithm that can learn and adapt com-
plex distributions in real time. At the heart of our method, bounding
voxel sampling demonstrates the feasibility of using a pure spatial
distribution for path guiding, which is visibility-aware and can eas-
ily adapt to dynamic scenes. It removes the need for integration
that arises when using spatial distributions from previous work, by
sampling on voxel boundaries and employing rejection sampling.
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