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Abstract
Drought occurs globally and can have deleterious effects on built and natural systems and societies. With the increasing 
human footprint on our planet, so has increased the anthropogenic influence on drought and water scarcity, leading to 
the development of notions of “anthropogenic drought” and “water bankruptcy”. Understanding the human dimension of 
drought is complex and requires a data-driven nexus approach to better understand the involved processes and address the 
implications of water deficits around the world. Just as it transcends scales and geographical boundaries, drought is neither 
restricted to a single hydrologic state in the water cycle nor are its effects confined to one sector. Drought impacts the water, 
energy, and food sectors, ecosystem services, socioeconomics, public policy, politics, etc. from local to regional and global 
scales. We argue that drought mitigation strategies and policy developments must be addressed with a multidisciplinary 
perspective that benefits from a nexus approach rooted in analytics, informatics, and data (AID). The United Nations Uni-
versity (UNU) Sustainability AID Programme employs such an approach to aid the monitoring, forecasting, and projection 
of drought, both from climatic and anthropogenic perspectives, and its multifaceted impacts across a variety of sectors and 
spatiotemporal scales. After a broad overview of this UNU Programme’s vision, and to support stakeholders and decision-
makers, we present a drought resource database for drought-related information, data, and analysis tools. Our aim is not to 
compile an exhaustive list of all available data and tools. Instead, we prioritize mature datasets and AID tools while actively 
highlighting opportunities to develop new data and tools, fostering nexus research.
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1 � Why drought matters

Drought is a complex global issue with (direct and indirect) 
impacts on interdependent systems/sectors, feedbacks, and 
compounding dynamics, causing globally and/or region-
ally networked risk (Blauhut et al. 2016; Hagenlocher et al. 
2023; Puma et al. 2015; Qi et al. 2022; Zaveri et al. 2021, 
2023). Although the impacts of drought can be long-lasting 
and widespread, it usually has a gradual onset and slowly 
propagates through the hydrologic cycle as the water deficit 
evolves in space and time (Mishra and Singh 2010; Teutsch-
bein et al. 2023b; Walker et al. 2024). It is one of the costliest 
natural hazards (World Meteorological Organization 2021), 

causing over US$8 billion per year in economic losses across 
the United States alone (NCEI 2024). For instance, dur-
ing the 2021 drought, the state of California experienced 
an estimated US$3.9 billion in economic damages (gross 
revenue loss), the loss of more than 14,700 jobs, and over 
150,000 ha of fallowed land (Medellín-Azuara et al. 2022). 
While droughts occur in the global north and the global 
south, they do so with various impacts and differing levels 
of severity associated with those effects (King-Okumu et al. 
2020; Teutschbein et al. 2023a; Zaveri et al. 2023; Newman 
and Noy 2023). Indeed, an overwhelming majority of people 
affected by drought, approximately 85%, live in low- or mid-
dle-income countries (Tsegai et al. 2023). Developing coun-
tries such as India, have already witnessed a decreasing trend 
in agricultural production due to recurring droughts (Nath 
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et al. 2017). Somalia, another developing country, has expe-
rienced widespread food insecurity resulting in loss of life 
and livelihood, and even famine driven by drought (Dahir 
2023; Hillbruner and Moloney 2012; UNHCR 2022). The 
impacts of droughts are not limited to one sector (e.g., drink-
ing water, agriculture, economics, tourism, energy and utili-
ties, import/export of food and goods, manufacturing, etc.) 
(De Brito et al. 2024; Tsegai et al. 2023) nor do they merely 
have local effects (Chen et al. 2013; Smith et al. 2024; Wang 
et al. 2014). This is complicated by warming global tempera-
tures that are projected to lead to more severe and persistent 
droughts across many parts of the world (Chiang et al. 2018, 
2021; Cook et al. 2020; IPCC 2021; Konapala et al. 2020; 
Padrón et al. 2020; Pokhrel et al. 2021; Trancoso et al. 2024; 
Zhou et al. 2023). Furthermore, losses due to drought are 
expected to rise under climate change (Chiang et al. 2021; 
Rossi et al. 2023) as demonstrated in China, for example, 
where the estimated loss is projected to increase tenfold in 
a sustainable development pathway at 1.5 °C of warming in 
comparison to 1986–2015 (Su et al. 2018).

Drought losses and impacts occur worldwide; yet, they 
are systematically reported in comparatively few countries 
and regions of the globe (UNISDR 2011), leading to an 
underestimation of the implications of drought (Newman 
and Noy 2023). This means that drought does not always 
receive the appropriate level of attention or urgency, which 
can thereby result in less political, economic, and/or media 
visibility, especially when poor communities and vulner-
able rural households are affected by drought (UNISDR 
2011). Also, drought risk is partially influenced by under-
lying socially-constructed factors, contributing to reactive 
as opposed to proactive approaches and policy, as well as 
inequalities (David and Hughes 2024; Savelli et al. 2022; 
Tsegai et al. 2023). Consequently, some regions may not 
be able to adequately implement the disaster risk reduction 
strategies, management, policies, and governance that can 
alleviate drought impacts and associated feedbacks.

In numerous global regions, drought and water stress find 
their roots in human activities, rendering them inherently 
“anthropogenic” (AghaKouchak et al. 2015b; Barnett et al. 
2006; Di Baldassarre et al. 2017; Sivapalan 2015; Wheater 
and Gober 2015). Notably, recent drought events in areas 
like California, Brazil, China, Iran, Spain, and Africa are 
primarily attributed to human-induced factors such as 
excessive surface and groundwater usage, urbanization, 
deforestation or other land use-land cover changes, and the 
impact of human-driven climate change (Ashraf et al. 2019; 
Diffenbaugh et al. 2015; Jiang 2009; Qiu 2010; Silva et al. 
2015; Tripathy et al. 2023; Van Loon et al. 2016, 2022; Van 
Loon and Van Lanen 2013; Williams et al. 2020; Xu et al. 
2015; Yuan et al. 2018). The extensive human alteration 
of the hydrologic cycle and climate system has led many 
communities and regions worldwide into a continual state 

of water scarcity due to the stark disparity between supply 
and demand (Kelley et al. 2015). This imbalance results in 
water shortages persisting even during typically wet years.

Throughout the mid-nineteenth century until now, the 
confluence of population growth and substantial industrial 
and agricultural advancements, has notably increased water 
consumption and vulnerability to droughts across the globe. 
This surge therefore amplified the economic toll of signifi-
cant droughts (Di Baldassarre et al. 2018; Etienne et al. 
2016; Kreibich et al. 2019; Liu et al. 2018; Marengo and 
Espinoza 2016; Winsemius et al. 2018). Furthermore, this 
scenario serves as a catalyst for societal tensions and politi-
cal unrest (Kelley et al. 2015; Savelli et al. 2022). Droughts, 
in turn, significantly contribute to a region’s heightened 
demand for emergency relief and food aid, and conflicts 
have worsened the impact of drought on food insecurity 
(Anderson et al. 2021). In fact, across Africa, roughly half 
of all emergency food assistance occurs in response to natu-
ral disasters, and primarily is drought-driven (African Risk 
Capacity 2016). Not only does drought contribute to food 
insecurity in some regions of the world, but it also results 
in five times as much migration as flood events, often dis-
proportionately affects lower income households, and has 
the potential to exacerbate inequalities (Ceola et al. 2023; 
Hallegatte et al. 2017; Savelli et al. 2023; UNDRR 2021; 
Winsemius et al. 2018; Zaveri et al. 2021). For example, 
drought internally displaced more than 266,000 people in 
Afghanistan during 2018 as agricultural losses and drying 
rivers, streams, and wells left more than 10 million people, 
equivalent to about half of the rural population, to face food 
insecurity in November of that year (FAO 2018; IFRCRCS 
2018). Such conditions necessitated humanitarian efforts 
and emergency response to aid the displaced individuals 
and families, and those facing food insecurity (FAO 2018; 
IFRCRCS 2018). The World Health Organization (2023) 
estimates that by 2030, drought will place up to 700 million 
people at-risk of being displaced. However, current drought 
monitoring systems do not provide information on the poten-
tial impacts (AghaKouchak et al. 2023).

Drought classifications conventionally encompass mete-
orological (often describing a deficit in precipitation), agri-
cultural (deficit in soil moisture), hydrological (deficit in 
runoff, streamflow, groundwater level, and total water stor-
age), and socioeconomic (deficit in water supply relative 
to the human water demand leading to societal impacts) 
droughts (Dai 2011; Mehran et al. 2015; Mishra and Singh 
2010; Tijdeman et al. 2022; Van Loon et al. 2016; Wilhite 
and Glantz 1985). More recently, snow drought (deficit in 
snow water equivalent or the amount of water stored in the 
snowpack) (Huning and AghaKouchak 2020), ecological 
drought (considering specific ecological impacts) (Crausbay 
et al. 2017), human-induced and/or human-modified hydro-
logic drought (Van Loon et al. 2016), and more broadly, 
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anthropogenic drought or water stress caused or intensified 
by human activities (AghaKouchak et al. 2021), have been 
gaining more attention—see Fig. 1 for a noncomprehensive 
timeline showcasing significant drought datasets (high-
lighted in purple), indicators (marked in red), advancements 
in models (depicted in blue), and technological innovations 
(highlighted in green). However, most of these classifica-
tions, indicators, and datasets predominantly treat drought 
as a climatic force, focusing on quantifying deficits in water-
related aspects caused by natural variability. This approach 
overlooks the human dimension of drought and fails to 
integrate compounding factors like anthropogenic climate 
change and local water and land management practices and 
policies within an inherently linked human-nature system 
(AghaKouchak et al. 2021; Dale 1997; Hagenlocher et al. 
2023; Van Loon et al. 2016; Wens et al. 2019).

Recent notions of anthropogenic drought (AghaK-
ouchak et al. 2021) define drought as a multidimensional, 
multi-scale phenomenon resulting from interactive pro-
cesses between humans and nature (Pande and Sivapalan 
2017; Rachunok and Fletcher 2023; Sivapalan et al. 2012). 
This understanding underscores the potential for anthro-
pogenic droughts to trigger water bankruptcy in human-
water systems (Madani et al. 2016), a trend anticipated to 
grow more prevalent amid current development paths and 
climate change trends. Addressing these complexities and 

fulfilling the United Nations (UN) Sustainable Develop-
ment Goals (SDGs) (United Nations 2015, 2019) neces-
sitate a nexus approach that amalgamates diverse perspec-
tives, leveraging new data and tools to advance drought 
monitoring while linking these insights to potential soci-
etal impacts (Hagenlocher et  al. 2023). Since drought 
affects a broad range of environmental and societal fac-
tors, monitoring, better understanding, and preparing for 
drought (directly or indirectly) contribute to achieving a 
number of UN SDGs (UNDRR 2021) such as SDG 2 “zero 
hunger”, SDG 6 “clean water and sanitation”, SDG 11 
“sustainable cities and communities”, SDG 13 “climate 
action”, and SDG 15 “life on land”. In fact, building and 
strengthening sustained cross-sectoral partnerships within 
a data-driven nexus framework for improved drought resil-
ience, as described herein, is well-aligned with SDG 17 
“partnerships for goals”. Overall, a holistic, data-driven 
nexus approach to drought is needed for developing and 
implementing informed disaster risk reduction strategies 
(Ward et al. 2020; Di Baldassarre et al. 2019) at local, 
regional, national, and transboundary scales, that will 
help achieve the UN SDGs in a variety of ways (e.g., sup-
porting food security, ensuring water availability, reduc-
ing drought risks, improving response to the devastating 
effects of drought hazards, and combating desertification 
and water scarcity).

Fig. 1   A noncomprehensive timeline showcasing significant drought 
datasets (highlighted in purple), indicators (marked in red), advance-
ments in models (depicted in blue), and technological innovations 
(highlighted in green). GPM: global precipitation measurement; 
AVHRR: advanced very high resolution radiometer; SWOT: surface 
water and ocean topography; SMAP: soil moisture active passive; 
GRACE-FO: gravity recovery and climate experiment follow-on;  
SPI: standardized precipitation index; SPEI: standardized precipi-
tation-evapotranspiration index; NDVI: normalized difference veg-

etation index; PDSI: palmer drought severity index; VegDRI: vegeta-
tion drought response index; VCI: vegetation condition index; SRI: 
standardized runoff index; ESI: evaporative stress index; MSDI: 
multivariate standardized drought index; JDI: joint drought index; 
MIDI: microwave integrated drought index; QuickDRI: quick drought 
response index; SSI: standardized soil moisture index; USDM: the 
United States drought monitor; CMIP: Coupled Model Intercompari-
son Project (modified after AghaKouchak et al. 2023). (Color figure 
online)
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2 � The need for a nexus approach

A nexus approach to analyzing and monitoring drought 
can move us beyond a siloed mentality to more compre-
hensively address the UN SDGs. The complex and inter-
disciplinary nature of drought places it at the intersec-
tion of several fields including meteorology, climatology, 
hydrology, agronomy, and ecology as well as economics, 
sociology, public policy, and political science. Both the 
drought hazard and its impacts should therefore be treated 
as multidisciplinary, multisectoral issues (Rossi et  al. 
2023). The cause of a drought may originate in one sec-
tor, but its effects can be observed in various other sectors 
(Wilhite and Pulwarty 2014). This is important to keep in 
mind since droughts are commonly discussed categori-
cally or as a deficit in a particular hydrologic state or set 
of states (Heim 2002) as mentioned above. Furthermore, 
the inclusion of human’s role in drought is also critically 
important, yet it is often not accounted for in many drought 
studies and applications (Van Loon et al. 2016). To gain a 
holistic picture of drought as these moisture deficits propa-
gate in space and time and to address drought impacts, a 
nexus approach (Brouwer et al. 2024) should be imple-
mented. Cross-sectoral impacts will likely be amplified 
by climate change, so that the nexus approach becomes 
even more pertinent for comprehending cause-and-effect 
relationships and implementing associated adaptation and 
mitigation strategies.

Efforts dedicated to enhancing drought monitoring 
systems have predominantly concentrated on develop-
ing novel top-down drought indicators, encompassing 
climatic, hydrologic, and/or biophysical aspects, or on 
amalgamating indicators, data, and models. Indeed, over 
a decade ago, Zargar et al. (2011) reported that there were 
more than 100 drought indices. Yet, they continue to be 
developed to characterize this complex phenomenon and 
can often result in fragmentation of the overall hazard as 
well as its effects. Nevertheless, the limitations inherent 
in conventional drought indicators, especially in captur-
ing interconnected hazards along with their systemic risks 
and repercussions, strongly advocate for the establishment 
of a coherent global framework for multifaceted drought 
monitoring and impact evaluation to facilitate preemp-
tive actions (Pulwarty et al. 2020). Specifically, there is 
a pressing necessity to bridge drought information with 
its potential consequences—establishing a connection 
between monitoring tools and the collection and assess-
ment of impacts (e.g., Bachmair et al. 2015; Blauhut et al. 
2016). This concept is known as impact-based drought 
monitoring (AghaKouchak et al. 2023).

Present drought indicators (Fig. 1) and existing moni-
toring systems (e.g., the United States Drought Monitor) 

primarily focus on recognizing drought occurrences and 
appraising their characteristics, such as frequency, dura-
tion, spatial extent, and severity. Nonetheless, to make 
informed and actionable decisions, decision-makers need 
reliable and timely information about drought locations 
and intensities, as well as the projected repercussions asso-
ciated with them (Sutanto et al. 2019, 2020). These reper-
cussions encompass a broad spectrum of factors, includ-
ing alterations in crop yields, soil health, food security 
and trade, water quality, forest conditions, greenhouse 
gas emissions, ecosystem health and biodiversity, energy 
generation, and unemployment arising from agricultural 
sector impacts.

To transcend the confines of drought monitoring and 
effectively gauge the potential effects of drought, better 
integrated existing models and/or additional new ones often 
become imperative. For example, there are numerous exist-
ing statistical and physically-grounded crop models tailored 
to predict crop yields subject to a diverse set of climatic 
scenarios or to analyze the dependency between crops and 
snowmelt, alongside their attendant risks (Anderson et al. 
2016; Kuwayama et al. 2019; Madadgar et al. 2017; Peters-
Lidard et al. 2021). However, such crop models still must 
be integrated into current drought monitoring systems to 
provide more holistic impact and early warning information.

Even regional droughts in significant food-producing 
nations can yield far-reaching worldwide impacts. As an 
example, snow droughts and shifting snowmelt patterns 
(timing and amount) can leave snowmelt-dependent agri-
cultural regions experiencing a shortfall relative to the his-
torically-used water sources for irrigation (Qin et al. 2020; 
Huning and AghaKouchak 2018, 2020). Namely, in the 
Hindu Kush Himalaya region, early snowmelt is projected 
under climate change, suggesting adverse consequences in 
downstream meltwater-dependent agricultural areas (Lutz 
et al. 2022; Nepal et al. 2021). In other words, many of the 
major agricultural basins around the world may need to meet 
the irrigation demand by turning to alternative sources of 
water, especially during drought periods and as temperatures 
continue to warm around the world (Lutz et al. 2022; Qin 
et al. 2020). This can have significant global implications as 
international trade reshapes the exposure of food supplies to 
changing snowmelt patterns, such that countries not receiv-
ing snow are actually exposed to the changing snowpack 
through the import of agricultural products (Qin et al. 2022). 
As another example at the intersection of society, human 
activities, and the natural system, anthropogenic drought 
accounts for the two-way interactions between humans and 
drought through the complex interplay of anthropogenic 
drivers (e.g., human-driven climate change, land use-land 
cover changes like agricultural development, and rising 
water consumption as populations expand and urbaniza-
tion occurs) and natural drivers and hydrological processes 
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(e.g., meteorological, agricultural, and hydrological drought) 
(AghaKouchak et al. 2021; Wens et al. 2019). The need for 
a nexus approach is further exemplified as drought can lead 
to conflict and transboundary issues over water. Drought can 
exacerbate existing civil unrest within a region as well (Di 
Baldassarre et al. 2018; Hoch et al. 2021; von Uexkull et al. 
2016). Also, rapid succession of extreme events, such as 
drought followed by flood, strains our current systems and 
challenges management strategies that focus on a single haz-
ard (Brunner et al. 2021; Matanó et al. 2022). Furthermore, 
drought risk management can affect other hazards such as 
flood and vice versa (Ward et al. 2020). These examples 
are only a few of those that highlight the need for a nexus 
approach, but also warrant impact-based drought monitoring 
and analysis (AghaKouchak et al. 2023).

3 � The aid of analytics, informatics, and data 
(AID)

Both in-situ measurements and remote sensing observations 
(e.g., from satellites) help us monitor a variety of relevant 
variables (e.g., precipitation, snow water equivalent, soil 
moisture, streamflow, groundwater, reservoir water levels, 
vegetation health) for identifying and tracking drought, with 
some data sources having better temporal and spatial cover-
age and less uncertainty than others. When these data sets 
are combined with state-of-the art models, techniques, and 
resources (e.g., coupled land–atmosphere models, super-
computing, machine learning, data assimilation), signifi-
cant advancements in drought monitoring have been made 
(Fig. 1) (e.g., AghaKouchak et al. 2015a, 2023; Balti et al. 
2020; Hao et al. 2017, 2018; Alahacoon and Edirisinghe 
2022). They also provide the foundation for further inno-
vation and opportunities in drought research, forecasting, 
and applications. Despite the numerous observational and 
computational advances in drought monitoring of recent 
decades, many regions still do not have the access to reli-
able, timely data and analytics, informatics, and data (AID) 
tools for decision-making (United Nations 2023).

Out of the top 10 disasters resulting in the most fatali-
ties from 1970 to 2019, an estimated 650,000 deaths 
resulted from droughts, which exceeds other disasters such 
as storms, floods, and extreme temperature (World Mete-
orological Organization 2021). In Africa, 95% of lives lost 
during this period from natural disasters were driven by 
drought, yet drought was not the most prevalent disaster 
to affect the region (World Meteorological Organization 
2021). Therefore, it is critical to provide timely information 
about drought and early warning rooted in AID as well as 
reduce gaps in data and ensure access to AID tools, training, 
and infrastructure for people everywhere. Gaps in data and 
observational networks (e.g., weather observations across 

least developed nations and island developing states) stymie 
accurate and reliable early warning systems (World Mete-
orological Organization 2021; United Nations 2023). Hence, 
more reliable drought decision support data and tools are 
needed around the world.

With climate change-induced disasters on the rise, AID 
tools are fundamental parts of preparing for, monitoring, 
and addressing drought. For example, AID helps identify 
and characterize the onset, evolution, and termination of 
drought. AID also assists in monitoring drought’s complex, 
manifold impacts and will garner the development of impact 
databases and impact monitoring (Wilhite et al. 2007). Over-
all, AID enables a quantitative understanding of drought and 
its effects. AID supports improved early warning systems, 
disaster risk reduction tools, and disaster management that 
all help save lives across the globe (United Nations 2023). 
Without effective communication, policy, and action, the 
potential power of AID would be undermined (Enenkel et al. 
2015; Walker et al. 2022). Therefore, AID should guide dis-
cussion and action for innovations in drought monitoring, 
adaptation, and resilience.

4 � Sustainability Nexus AID Programme: 
Drought

The Drought Module is part of the United Nations Univer-
sity (UNU) Sustainability Nexus Analytics, Informatics, 
and Data (AID) Programme (https://​www.​susta​inabi​litya​id.​
net), which has the primary objective of bridging the gap 
between science and policy. The Sustainability Nexus AID 
Programme utilizes a problem-driven coupled or nexus 
approach to analyze human, natural, and built systems and 
address global challenges such as the UN SDGs within a 
data-driven and data-informed framework. To support deci-
sion-making and work toward more actionable science, an 
international network of both scientists and professionals 
who work at the interface of science, policy, and society 
is collaborating to address a variety of societally-relevant 
topics with AID, and in particular, as members of the UNU 
Sustainability Nexus AID Programme Drought Module 
team. Drought is only one of the current 15 AID modules 
(https://​www.​susta​inabi​litya​id.​net/​modul​es), including 
Air Pollution, Biological Invasions, Flood, Food Security, 
Greenhouse Gas Emissions, Groundwater, Infrastructure 
Resilience, Landslides and Land Subsidence, Land Use-
Land Cover Change, Sea Level Rise, Soil Health, Storms, 
Wetlands, and Wildfire.

The vision for the Drought Module within the UNU Sus-
tainability Nexus AID Programme is to synergize efforts 
with other modules to advance drought monitoring, par-
ticularly at the intersection of various fields. Our primary 
focus is on establishing robust connections between drought 

https://www.sustainabilityaid.net
https://www.sustainabilityaid.net
https://www.sustainabilityaid.net/modules
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occurrences and their tangible impacts. Emphasizing col-
laboration and interdisciplinary approaches, the Drought 
Module aims to work in tandem with other modules within 
the programme. By engaging with fields such as ground-
water, soil health, flood management, food security, land 
use-land cover change, land subsidence, air pollution, and 
other critical domains, the drought team seeks to create a 
cohesive approach that bridges scientific understanding with 
policy and societal needs. Through this collaborative effort, 
we aspire to enhance the comprehensiveness and effective-
ness of drought monitoring, aligning it with the overarching 
goal of the UNU Sustainability Nexus AID Programme—to 
address global challenges through a data-driven and prob-
lem-focused approach.

The Drought Module team of the UNU Sustainabil-
ity Nexus AID Programme has compiled various drought 
and drought-related datasets and tools that are available 
through: https://​www.​susta​inabi​litya​id.​net/​droug​ht. These 
include some of the most common ways to assess drought 
using various standardized indices, such as the standardized 
precipitation index (SPI), standardized soil moisture index 
(SSI), standardized groundwater level index (SGI), standard-
ized runoff index (SRI), standardized relative humidity index 
(SRHI), standardized snow water equivalent index (SWEI), 
etc. We will continue to expand the scope of the content 
to encompass emerging, updated, or innovative and mature 
data so as to facilitate a more direct avenue for translating 
science into action. As such, one goal of the AID Drought 
Module is to serve as an important step toward unifying 
the drought community and intersecting fields by providing 
resources for researchers, stakeholders, and decision-makers 
in a “one stop shop” for drought-related information, which 
may be usable for a variety of stakeholder applications. This 
compilation of drought information and data should be par-
ticularly useful for individuals who are unfamiliar with the 
multitude of drought-related data and tools currently avail-
able, but also more experienced individuals should find con-
venience in the compilation of resources that this module 
provides to all users. In addition, the AID Drought Module 
can support the efforts of different UN and intergovernmen-
tal agencies by providing drought information that can ulti-
mately assist decision-makers to better understand and act 
on risk associated with drought and related disasters around 
the world as communities work to become more resilient to 
climate change.

5 � A set of evolving drought AID tools

Similar to the overarching AID Programme, the Drought 
AID module aims to facilitate information and data exchange 
among researchers, policymakers, water managers and vari-
ous stakeholders at all levels, etc., which thereby supports 

resource management within the complex and varied cou-
pled human-environmental systems that drought (directly or 
indirectly) influences across the globe (Fig. 2). As increas-
ing amounts of drought-relevant observations and data are 
collected, it is not sufficient to simply collect and store the 
data; rather, data must be made accessible so that it can be 
extracted, truly harnessed through analysis, and ultimately, 
used in practical applications. Therefore, the drought AID 
tools serve as a compilation of existing drought-related data 
and information that aims to facilitate a better understanding 
of drought. Although this compilation will be updated based 
on community feedback, it is not meant to be a comprehen-
sive collection of all drought models and tools. Instead of 
providing a lengthy description of each of the AID drought 
resources, we refer the reader to https://​www.​susta​inabi​litya​
id.​net/​droug​ht.

6 � The way forward

Identifying, monitoring, and characterizing droughts remain 
challenging tasks given the complexity of the phenomena. 
Additional challenges arise when analyzing drought in the 
form of potential mismatches between the spatiotemporal 
resolution of available data and how that aligns with stake-
holder and application needs (e.g., operational/management-
relevant scales) (Rossi et al. 2023). Although a variety of 
methods exist for merging different data streams together, 
this inherently is a non-trivial task and often done on a case-
by-case basis. Furthermore, the integration of both human 
and natural factors along with socioeconomic and environ-
mental impacts remains an important consideration for mod-
eling and assessing drought so that these factors and their 
interactions, as well as cascading impacts, are incorporated 
into well-informed decisions. These are critical factors for 
addressing drought in both the global north and the global 
south. 

To better understand and prepare for the impacts of 
drought, we must also assess hazard, exposure, and vulner-
ability as integral components of the drought risk and they 
are also key elements of working toward more drought-resil-
ient communities. In fact, studies in these areas are needed 
for the development of disaster risk reduction strategies 
and policies that are critical for addressing the UN SDGs 
and the UN Sendai Framework for Disaster Risk Reduction 
(UNDRR 2015). While drought data, tools, and research 
are important, it is also vital to build capacity so that people 
around the world are equipped with the knowledge, skills, 
and infrastructure to effectively interpret and use various 
data, models, and tools in their decision-making and applica-
tions. We therefore encourage experts in the community to 
interact with the UNU Drought AID team and help engage 
stakeholders by developing drought AID tools and capacity 

https://www.sustainabilityaid.net/drought
https://www.sustainabilityaid.net/drought
https://www.sustainabilityaid.net/drought
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building materials that will support actionable science and 
informed decisions related to drought and its manifold 
impacts around the world.

Despite the devastating and pressing effects of droughts 
and their cascading impacts, droughts often do not receive 
proportionate attention with environmental hazards having 
direct and rapid visible ramifications (e.g., floods, hurri-
canes, earthquakes) (Funk and Shukla 2020; Teutschbein 
et al. 2023a). Also, there is a rising need for more effective 
drought management practices in a warming climate (Wil-
hite et al. 2014). So, while there have been recent advance-
ments related to topics such as snow drought, flash drought, 
compound events (e.g., hot droughts), and anthropogenic 
droughts, opportunities to better understand such phe-
nomena and incorporate them into management practices 
are warranted. In addition, the drought community would 
benefit from global databases to track drought information 
related to the hazard and its impacts, which aligns with the 
Sustainability Nexus AID Programme’s mission.

To translate drought research, data, and analysis into 
actionable science, there should be a paradigm shift to per-
form impact-based drought monitoring as well. With this 
in mind, we can glean additional insight from bottom-up, 
top-down, and hybrid approaches (e.g., Mehran et al. 2015) 
targeted for actionable and informed decision-making. 
Also, detailed, exploratory, and physically-based analysis 

that involves existing and/or emerging techniques, such as 
machine learning, artificial intelligence, and data mining, 
that are relatively new to drought monitoring should be 
investigated to gain an improved understanding of this com-
plex phenomenon, and better predict, monitor, and mitigate 
drought and its impacts.

Additional insight into droughts as they propagate and 
their impacts cascade in space and time will also be impor-
tant as communities prepare for future droughts (Rossi et al. 
2023). One way to work toward this is by developing and 
implementing unified monitoring and assessment approaches 
for droughts. Universally-accepted methods and frameworks 
would facilitate a better understanding of drought conditions 
for people around the world. It would also aid in the inter-
pretation of drought-related characteristics across the globe 
so that one region may garner insight from lessons learned 
in another area and knowledge transfer is facilitated.
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