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Figure 1: Neural Geometry Fields. We present a mesh-based neural representation for discrete surfaces that enjoys the benefits
of both classical meshes (UV-parametrizable) and neural representations (compact). Given a target surface (Reference), we
partition it into a set of quadrangular patches (NGF Patches). We then displace each patch with a coordinate neural network, and
extract a standard triangle mesh from the patches and their displacement (NGF). An important application of our representation
is mesh compression. On the right, we show comparison of discrete surfaces compressed by a classical mesh simplification
algorithm QSlim [Garland and Heckbert 1997], an appearance-driven mesh processing method Nvdiffmodeling [Hasselgren
et al. 2021], a neural implicit surface Instant NGP [Miiller et al. 2022] (using marching cubes with similar triangle count to
ours), and finally our representation (Ours). All methods are run with the same storage constraints as our method, and we
show the Chamfer error next to the method. Despite the high compression rate of 50X, our method is capable of achieving
significantly lower error and preserves visual appearance. The dragon model is courtesy of Thingi10K.

ABSTRACT distance fields or volumes, and little work has explored their appli-
cation to discrete surface geometry, i.e., 3D meshes, limiting the
applicability of neural surface representations.

We present Neural Geometry Fields, a neural representation for
discrete surface geometry represented by triangle meshes. Our idea
is to represent the target surface using a coarse set of quadrangular
patches, and add surface details using coordinate neural networks
by displacing the patches. We then extract a traditional triangu-

lar mesh from a neural geometry field instance by sampling the
displacement. We show that our representation excels in mesh com-
This work is licensed under a Creative Commons Attribution International pression, where it significantly reduces the memory footprint of
4.0 License. meshes without compromising on surface details.

Recent work on using neural fields to represent surfaces has re-
sulted in significant improvements in representational capability
and computational efficiency. However, to our knowledge, most ex-
isting work has focused on implicit representations such as signed
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1 INTRODUCTION

Neural surface representations have recently risen in popularity
due to their advantages in information bandwidth and storage
compactness, and compatibility with gradient-based optimization.
The primary representation mechanism for recent works have been
implicit functions such as signed distance fields [Park et al. 2019],
occupancy grids [Mescheder et al. 2019] or volumes [Wang et al.
2021]. However, to use these representations in downstream tasks
like scene modeling, surface texturing, or photorealistic rendering,
an additional step is typically taken to convert these representations
to meshes. This conversion step requires additional processing
(e.g. marching cubes) and strips away the compact nature of these
neural representations in favor of the more friendly meshes. We
present a neural representation which foregoes this processing and
storage overhead by directly generating meshes rather than implicit
functions. As such, our representation is particularly suitable for
mesh compression.

The primary challenge with representing meshes with neural
graphics primitives is that additional connectivity information must
be constructed for surfaces with different polygon schemes and
topology. It is challenging to implement a gradient descent algo-
rithm for optimizing connectivity data, and correspondingly there
has been little previous work to our knowledge on representing
meshes with neural networks. Fortunately, previous work on geom-
etry images [Gu et al. 2002] unveils a regular image-based scheme
that can be used to represent discrete meshes. We leverage this
finding, and demonstrate that using a lightweight multilayer per-
ceptron (MLP) to displace a coarse mesh can achieve state-of-the-art
compression and representation of mesh geometry.

Specifically, we present a Neural Geometry Fields representation
that consists of a set of quadrangular patches, which captures the
shape of the given surface. Each patch is parametrized easily by
construction, which allows us to attach a trainable feature field on
the patches. We then feed the features to an MLP which outputs
the displacement of the patch. To obtain a traditional mesh from
our representation for both training and actual uses, we sample
vertices from each patch and construct triangles within each patch.
We then use an appearance-based loss [Hasselgren et al. 2021] to
optimize for the patch vertices, the MLP weights, and the features.
Figure 2 illustrates this process. We show that our representation
can preserve details of surfaces even under significant compression
rate, compared to both traditional mesh simplification and neural
implicit surfaces (see Figure 1).

Venkataram Sivaram, Ravi Ramamoorthi, and Tzu-Mao Li

We present the following contributions:

(1) Combining surface partitioning and neural signal represen-
tations to forge a neural geometry fields representation for
discrete surfaces.

(2) A coarse-to-fine appearance-driven optimization pipeline for
overfitting Neural Geometry Fields to a particular reference
mesh.

(3) A scheme for state-of-the-art mesh compression using our
novel representation.

2 PREVIOUS WORK

Our work builds on classical mesh compression, subdivision tech-
niques, geometry images and neural graphics primitives.

Classical mesh compression. We refer the readers to Maglo et al.
[2015]’s survey for a comprehensive introduction. The most direct
of the mesh compression methods applies single-rate compression
techniques to reduce bit rates for vertex connectivity [Deering 1995;
Gumbhold and Straler 1998; Touma and Gotsman 1998] and vertex
data [Lee and Ko 2000; Taubin and Rossignac 1998]. Such methods
are now incorporated into industry standard, e.g. Draco [Galligan
et al. 2018]. These methods can be applied to our technique to
further compress the patch representation. Neural geometry fields
effectively act as a variable-rate compression on disjoint sections
of the surface.

Other methods analyze the surface intrinsic information, using
the mesh Laplacian [Lescoat et al. 2020] or error metrics [Cohen
et al. 1998; Garland and Heckbert 1997; Hoppe 1996], to reduce the
number of vertices or faces necessary for representing the shape
of a reference mesh. Yet another class of method uses inverse ren-
dering to find simpler meshes that render to the same images as
the target surface [Hasselgren et al. 2021]. We build on both classes
of methods: we apply QSlim [Garland and Heckbert 1997] to ob-
tain a coarse representation of the target mesh that preserves the
topology, and apply inverse rendering to refine our neural repre-
sentation. Fundamentally, however, these methods build a lossy
reconstruction of a target surface due to their sole use of polygo-
nal meshes. By contrast, our representation preserves topological
information using a coarse base mesh, while adding more details
using coordinate neural networks.

Subdivision techniques. Subdivision surfaces splits polygonal
faces into finer elements [Catmull and Clark 1978; Dyn et al. 1990;
Hoppe et al. 1994; Loop 1987; Stam 1998]. In effect, this increases
the vertex resolution of the mesh, and can be paired with displace-
ment mapping to add details. In the context of mesh compression, a
fixed subdivision scheme without displacement mapping [Lee et al.
2000] often leads to overly smooth reconstructions as a result of
interpolating data with lower-order polynomials.

Neural networks have been applied to subdivision surfaces [Chen
et al. 2023; Liu et al. 2020b] to achieve better matching results than
classical subdivision. To extract a triangle mesh from neural subdi-
vision surfaces, these methods rely on an expensive graph neural
network. In contrast, our method sticks to simple interpolation
and matrix multiply operations, and as a result is also efficient to
evaluate interactively.
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Figure 2: Overview. We overfit a neural geometry field representation to a specific target surface. We first pre-process the target
mesh to obtain easily parametrizable patches, which enable the use of coordinate neural networks (Section 3.1). Then, we
instantiate a neural geometry field with the patches and optimize the complete representation by repeatedly sampling triangle
meshes (Section 3.2) and minimizing an inverse rendering loss (Section 3.3). The Einstein model is credited to Thingi10K.

Geometry images. The concept of representing surfaces as im-
ages, storing vertex information at each pixel, was first introduced
with geometry images [Gu et al. 2002]. Geometry image construc-
tion cuts the surfaces so that they can be easily mapped to planar
images, and then uniformly samples the surface to record 3D posi-
tions on the images.

The mesh can then be reconstructed implicitly by constructing
quadrilaterals at each (2 X 2) set of pixels. Additionally, the con-
structed image can itself be compressed using traditional image
compression techniques to reduce its footprint.

Our representation is derived from these works, in the sense
that each patch operates similarly to a geometry image. Novel to
our method is the introduction of a neural network that implicitly
generates the vertices of the patches. This circumvents the problem
of sampling and packing patches into texture atlases.

Neural graphics primitives. Coordinate neural networks have
been used for representing 2D images, 3D scenes, and surface ge-
ometry [Martel et al. 2021; Mildenhall et al. 2020; Park et al. 2019;
Tancik et al. 2020; Xie et al. 2022]. Previous works have shown
that neural fields can represent high-fidelity signals with little use
of memory. We build on the recent advances in neural fields and
encode surface displacements using a feature field [Miller et al.
2022] followed by a shallow neural network.

Work so far in implicit surface representation has focused primar-
ily on using neural networks to represent signed distance functions
or volumetric occupancy grids [Mescheder et al. 2019; Park et al.
2019; Takikawa et al. 2021; Wang et al. 2021]. To improve computa-
tion and memory efficiency, hierarchical 3D spatial data structures
are often used for storing features [Martel et al. 2021; Miiller et al.
2022; Takikawa et al. 2021]. However, 3D voxels become inefficient
when considering functions on surface manifolds, and primitives
embedded within the surface itself would form a more ideal par-
titioning. In our method, we rely on a quadrilateral mesh to form
the surface partition, as quadrilaterals provide simple and efficient
parametrization domains for interpolation. Our meshes lead to

Table 1: Notation. Table of notation used in describing our
method.

SYMBOL DEFINITION

r Target surface

A Piecewise continuous surface defined by an NGF
) Base surface

¥ Feature field on X

P A partition of ¥ into patches

o A quadrilateral patch in

vorv;; Arbitrary vertex or corner vertex

forfij Arbitrary feature vector or corner feature vector
0 MLP parameters

u Uniform sample in [0, 1]?

more compact and efficient data structures for storing feature fields
for surfaces.

3 NEURAL GEOMETRY FIELDS

As shown in Figure 2, our pipeline uses a neural network to contin-
uously displace a base mesh ¥ into the target surface I'. We achieve
this by first partitioning the surface into patches, and construct a
continuous and trainable feature field ¥ : ¥ — RF, where each
feature consists of F real components (Section 3.1). Next, we extract
a traditional triangle mesh by sampling on the patches to obtain
features, and feeding these features to along with 3D positions to a
neural network to evaluate the displacement (Section 3.2). We opti-
mize the feature fields and patches using a coarse-to-fine inverse
rendering algorithm (Section 3.3). See Table 1 for an overview of
the notation used in the subsequent discussion.

3.1 Surface Partitioning

Patches. To construct a feature field on the base mesh %, we
build a partition # of disjoint quadrilateral patches ¢ whose union
covers Y. We specifically use quadrilaterals as they embed a simple
interpolation domain. Although triangles are also simple in this
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Figure 3: Surface Partitioning. Constructing the partition
of patches. The target surface T’ is first simplified using QS-
LIM to reduce its polygon count. Adjacent triangles are then
paired to form quadrilaterals, which builds the quadrilateral
mesh Q representing .

regard, fewer quadrilaterals are needed in general to cover the
surface.

Formally, each patch o must be diffeomorphic to the unit square
domain, so that it can be represented with four corner vertices,
000, V10, V01, 011, and a sample u € [0, 1]2 using a bilinear interpola-

tion as follows:
o(u) = (1 —uy)((1—ux) - voo + ux - v10)
+uy((1—uy) - 001 +ux - 011)

1

Likewise, with four feature vectors foo, fio, fo1, fi1, we can define a
smooth feature field within o using the same bilinear interpolation
formula:

¥(u) = (1—uy)((1-ux) - foo +ux - fio)
+uy((1-ux) - for +ux - fi1)

These formulations are visualized in Figure 4 (b).

@

Surface partitioning. We represent the base surface X with a non-

degenerate quadrilateral mesh with vertices V = Ug {v00, v10, 901,011}

and faces Q. A shared edge between two quadrilaterals corresponds
to a shared continuous boundary amongst two patches. On the
other hand, we can have a patch that shares no edges with others,
which allows us to represent non-manifold base surfaces ¥. We
likewise assign each vertex in V with its corresponding feature
in F = Ug {f00, f10, fo1, fi1}, and the resulting feature field ¥ will
inherit the same discontinuities as X.

The evaluation of our surface involves using ¥ as a base mesh
that is later refined by a neural network MLPy. The resulting surface
necessarily has the same topology as ¥, including its topological
features such as holes and intersections. In the interest of surface
compression, we wish to store a minimal amount of information for
the base quadrilateral mesh. Thus, a method for constructing the
base mesh is ideally topology preserving, even at low quadrilateral
counts |Q|. To do this, we 1. simplify the mesh represented by I'
using QSlim, as it is robust and scalable, and 2. greedily combine ad-
jacent triangles to form near-rectangular quadrilaterals, removing
non-manifold triangles in the process. Figure 3 demonstrates this
process on a sample model. Note that this procedure can handle
non-manifold input surfaces.
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3.2 Mesh Extraction

In this section, we describe how we sample a mesh from a neural
geometry field instance so that we can perform inverse rendering
to optimize our representation.

Equipped with the base mesh and a feature field, we can build a
piecewise continuous surface A by concatenating patches displaced
by a neural network. First, we combine the vertex position and
feature with an encoding enc derived from positional encoding
[Mildenhall et al. 2020]:

enc(o, f) = (sin(zou), cos(2%0), .. .,sin(sz),cos(sz),f) 3)

The number of levels is controlled by a hyperparameter L. Then, at
each patch o and sample u, the displaced surface coordinate on A is

A(u) = o(u) + MLPy o enc(o(u), ¥(u)). (4)

We extract the resulting representation as a discrete mesh by
sampling u on each patch. In practice, this is done as follows:

(1) Tessellate each patch by sampling u in [0, 1] with k samples
along each dimension, for a total of k? samples per patch.
(Figure 4 (a))

(2) Generate the corresponding vertices and features for each
sample according to Equations (1) and (2). (Figure 4 (b))

(3) Compute the displaced vertex by encoding and applying the
neural network as in Equation (4). (Figure 4 (c) and (d))

(4) Generate connectivity information independently for each
patch to obtain the connectivity for the extracted surface.
(Figure 4 (e))

Locally, at each patch o, we perform step (4) by laying out the
vertices in a grid arrangement and applying a triangulation similar
to height fields. The resulting mesh, when combined across multiple
patches, results in a semi-regular mesh.

Fittering. During optimization, we aim to thoroughly sample
each patch so that the neural geometry field obtains a better re-
construction of the target surface. We achieve this by randomly
jittering uniform samples during mesh extraction by u ~ it + D (w),
where

ﬂzﬂ for 0<i,j<k-1 (5)
k-1
are the original uniform samples and D (w) uniformly samples
points in the origin-centered disk with radius . Note that to uphold
the structure of the jittered mesh (i.e. prevent triangle fold overs), it
is necessary that o be less than 0.5/(k — 1). To preserve boundaries,
we additionally enforce w = 0 when i is a boundary sample.

Jittering provides richer gradient signals to the optimization by
virtue of better exploring the surface points of each patch. This is
especially effective in regions of the neural geometry field where the
vertex count is limited (i.e. with low patch counts). In Figure 5, while
both strategies can coarsely recover the features of the reference,
uniform sampling produces a noisier result compared to jittered
sampling. As such, jittering can be thought of as a regularization
mechanism for the reconstructed surface.
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Figure 4: Mesh Extraction. Pipeline flow of a single patch during mesh extraction, where a traditional mesh is derived from
our representation for use in optimization. A patch ¢ is uniformly tessellated, and corresponding vertices and features are
computed. After positional encoding and concatenation, we evaluate the neural network to obtain the vector displacement on
o. Applying this displacement yields the displaced patch vertices on A(0), and finally we create a discretized mesh with a fixed
scheme. Repeating this process over all patches constructs the full surface A.

REFERENCE JITTERED UNIFORM

Figure 5: Sample Jittering. Jittering uniform samples during
mesh extraction helps to regularize the optimization of a neu-
ral geometry field. Above, we demonstrate its impact when
learning surfaces at low patch counts (10 patches), where
omitting jittered results in a rougher surface.

Our completed mesh extraction algorithm is shown in Algo-
rithm 1. In Lines 8-12, we generate the jittered samples for the
chosen patch o and evaluate its corresponding world space location.
Then, through lines 2-5, we discretize the sampled vertex collection
into triangles by splitting the quadrilaterals of each (2 X 2) section
of vertices. We find that making a deliberate choice to split each
quadrilateral along its shortest diagonal brings improves the final
quality of the reconstruction. Finally, in lines 15-19, we repeat the
sampling and discretization steps for each patch, and combine the
resulting geometry from each to construct the full mesh.

3.3 Optimization

Inverse rendering. Our optimization pipeline is a rasterization-
based inverse rendering process that fine-tunes the appearance
of our representation’s surface to that of the target surface. We
find that an appearance-based method for optimization is more
stable than using distance-based methods such as Chamfer distance
or signed distance field queries. To stabilize the training process,
we apply a coarse-to-fine approach using inverse rendering. At a
particular tessellation resolution, k, the mesh M will have a fixed
connectivity defined by the triangulation of M. Its vertex positions,
on the other hand, are differentiable with respect to the patch
corners V and features ¥, as well as the neural network parameters

Algorithm 1: Triangle mesh extraction on A

Input: Tessellation resolution k
Input: Neural geometry field A
1 Function Discretize(V, k):

2 T« []
3 Varia < V.reshape(k, k, 3)

4 for Sections [[Va, Vi1, [Ve, Val] in Vg do
// Triangulate the quadrilateral
T.add(SplitQuad(Va, Vp, Ve, Vg))

6 return T

7 Function Tesselate(o, k):
8 V1]

9 for it € UniformSamples(k) do
// Jittering the uniform samples (Equation 5)

10 u « it + IsInteriorSample(u) - D(w)
// Evaluate the neural geometry field (Equation 4)
1 V.add(A(u))
12 T « Discretize(V, k)
13 return V,T

14 Function ExtractMesh(Z, k):
15 Ve—|[LT<[]

16 foro € P do

17 Vo, Ty < Tesselate(o, k)
18 V.add(Vy)

19 T.add(Ty)

20 | return Mesh(V,T)

0. This means that inverse rendering can indeed produce useful
gradients for optimizing our representation.

Objective function. In contrast with conventional inverse render-
ing problems, our pipeline has access to various attributes of the
reference surface. Of these, we use only the surface normal vectors.

With the sampled mesh, differentiable normal vectors can be
evaluated from vertex cross products, as is typical. During rasteri-
zation, these normal are interpolated to generate the normal vector
frame buffers NV (-) for both the reference and sampled surface. Us-
ing these buffers, an image-space loss can be defined. Additionally,
to promote an even vertex distribution along the surface, we include
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a Laplacian term. The unified objective function we use is

1 1
L=———~IINT)-NEIh+ LV, (6)

INCI 14
where || - ||1 is the L; metric and L is the (uniform) mesh Laplacian

of M. Note that for the smoothing term, we apply the Laplacian on
the uniformly sampled vertices.

Camera arrangement. As the reference surface can have arbitrary
topology, it is crucial to have a set of views thoroughly cover its
surface area. To distribute the cameras, we cluster the triangles of
the reference by geodesic distance. We then construct a camera
for each cluster, looking towards the centroid of the cluster. This
approach is both efficient and scalable with respect to the number of
cameras to instantiate. Additionally, to capture occluded geometry,
we rasterize multiple depth layers using depth peeling.

General configuration. As a preprocessing step to our optimiza-
tion pipeline, we normalize the coordinates of the reference mesh.
We run the pipeline for tessellation resolutions k € {4, 8,12, 16},
typically using 200 cameras. During rendering, we use NVDIFFRAST
to rasterize 10 views in a batch using 3 depth layers each. Our neural
network consists of two hidden layers, each with 64 neurons, with
L = 8 levels for positional encoding, and a feature vector size of
F = 20. Lastly, we use a fixed learning rate of 10~3 with an ADAM
optimizer [Kingma and Ba 2015].

4 RESULTS

We test our method on meshes with various surface and topological
features. In Table 2, we display models with varying storage size,
genus, and surface details. Models like DRAGON exhibit hard to
reach surfaces that are hidden from ordinary inspection; EINSTEIN
and SKULL both contain immense surface details; METATRON and
other high genus meshes are tricky for appearance-based methods
to reconstruct due to frequent occlusions in camera views.

In our results, we evaluate how well resulting meshes compare
with the target mesh, both visually and geometrically. We use the
render image loss, where the surface is shaded with an environment
map, and the Chamfer loss, using the vertices sampled from our
representation. For these comparisons, we forego jittering when
extracting final meshes.

Additional results, notably rasterization, uv-parameterization
and comparison to other neural methods, are shown in the sup-
plementary material. We urge the reader to take a look into these
results to further understand the capabilities of our representation.

4.1 Compression

We evaluate our method for mesh compression against previous
works. In particular, we compare against QSlim [Garland and Heck-
bert 1997] and nvdiffmodeling [Hasselgren et al. 2021], which rely
on surface extrinsic and visual metrics, respectively. In particular,
we use the symmetric Chamfer distance to compare geometric qual-
ity, and use mutli-view rendering for visual quality. For rendering,
we use a random arrangement of camera views which are distinct
from the training views, and shade using spherical-harmonics-based
environment mapping [Ramamoorthi and Hanrahan 2001].

Both methods have shown strong results in compression. The
storage for our representation consist of the base quadrilateral
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mesh and features (V, ¥, Q), as well as the MLP, 6. All primitive
elements are stored with 32 bits. The target surface and the outputs
for each baseline are all meshes, so we calculate their storage costs
using only the vertex data and connectivity information.

Our representations are optimized at increasing patch counts
while fixing the tessellation resolution to k = 16. The representa-
tions require different amounts of storage, and to provide a fair
comparison, we generate the baseline results at similar sizes. Fig-
ure 8 demonstrates the result of our method on the XYZ, EINSTEIN,
and GANESHA models, showing sections of the surface in insets for
each method as well as plotting error metrics for each representa-
tion with respect to the compression ratio.

For these models, neural geometry fields consistently outper-
forms the baselines across all size variations of our methods. In the
xyz model, for example, our method is better able to recover the
scales on the dragon whereas QSlim and nvdiffmodeling struggle
due to limited vertex count.

In Table 2, we show further results of our method with others.
Our method scales well with the number of patches we partition
the reference into. Even at its highest quality, at 2.5K patches, our
representation remains under a megabyte in storage.

Additionally, in Figure 6, we compare our method to Draco
[Galligan et al. 2018], a state-of-the-art mesh compression method
[Doumanoglou et al. 2019] which performs compression of both
vertex data and connectivity. At high amounts of quantization, our
method still outperforms this baseline in terms of visual metrics.
We observe that the advantage of our method over Draco correlates
with the size of the reference mesh. In such cases, neural geometry
fields can adaptively allocate primitives for particular regions of
the surface, while quantization methods sacrifice vertex precision
for the preservation of topology.

BubpDHA
: REFeReENCE  NGF (7K patches) DRaco (8 bits) DRrAco (10 bits)

~ S8
f Render 1.75.107*  2.13.107®  5.66-107*
N AT Normal 5.90-107%  7.04-1072 1.87.107*
| Size / Ratio 156 KB / 120 393 KB /50 601 KB /30
A
PR ¢ C € C

/

y
t [

2

Figure 6: Mesh Compression (Pt. 3). We compare neural ge-
ometry fields to Draco [Galligan et al. 2018] which relies on
data quantization. In this particular example, with the Bup-
DHA mesh, our method is notably more compact than this
state-of-art compression method, even when using heavy
amounts of quantization. Furthermore, our representation
maintains visual similarity with the reference, whereas nu-
merous visual artifacts can be seen from the results of Draco.
For our method, we use 1K patches with the default config-
uration; for Draco, we encode the connectivity and vertex
positions only, quantized with 8 and 10 bits per vertex. This
mesh is taken from the Stanford 3D Scanning Repository.
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Table 2: Mesh Compression (Pt. 1). Comparison of our method with the baselines at varying patch counts. We evaluate each
method using a multi-view rendering loss (left columns, scaled by 10%) and the Chamfer distance (right columns, scaled by
10%). Our method outperforms the baselines consistently throughout models with varying features, including high triangle
count and genus. Furthermore, the quality of our method scales as we increase its allocation of patches for reconstruction. In
the following table, LoD refers to the number of primitives (patches or triangles) and overall size of the representation, Tr1s
refers to the number of triangles in the reference mesh, and NvDIFF is shorthand for nvdiffmodeling. The models DrRaGON,
EINSTEIN, and METRATRON are from Thinkg10K; BupbpHA, ARMADILLO, XYZ and Lucy are courtesy of the Stanford 3D Scanning
Repository; GANEsHA credited to peel3d.
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Lop Dracon GANESHA BuppHA EINSTEIN ARMADILLO METATRON Xyz Lucy
S1ZE 15.46 MB 41.03 MB 18.66 MB 14.73 MB 1.72 MB 2.38 MB 4.29 MB 1.72 MB
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10K / 160 KB 17.53 1593 | 14.83 37.03 | 12.38 6.85 19.77 3230 | 13.14 27.60 | 10.27 15.73 9.78 13.38 | 17.70 29.46
19K /320KB | 1493 8.21 9.68  20.72 | 6.15 2.66 | 1596 16.13 | 9.39 1495 | 7.19 8.48 7.56 6.76 | 13.83  16.30
4K / 65 KB 21.27 57.02 | 17.31 29.93 | 2531 52.22 | 23.81 83.85 | 18.95 82.51 | 14.65 44.20 | 1252 40.65 | 22.28 100.76
NVDIFF 5K/ 80 KB 19.83 4558 | 15.26 2897 | 2531 53.16 | 23.94 7141 | 16.86 76.56 | 13.85 36.54 | 11.39 33.49 | 21.56  89.16
10K/ 160 KB | 17.32 24.58 | 10.58 26.87 | 12.09 7.18 | 18.25 38.87 | 10.14 39.02 | 10.31 18.81 | 9.70 1830 | 17.04 4547
19K /320KB | 14.13 11.46 | 845 19.65 | 5.74 3.04 | 1532 2046 | 7.77 20.71 | 890 10.03 | 8.32 9.96 | 13.21  21.37

4.2 Evaluations

Tessellation. During mesh extraction, we permit arbitrary tessel-
lation rates. In Figure 9, we compare the quality of these meshes
with respect to their tessellation resolutions. While the geometric
quantities show steady improvements with increasing tessellation,
the visual metrics plateau around k = 16. We thus cap our pipeline
to this resolution to minimize additional computational and mem-
ory overhead during optimization.

Features. Our method is flexible with respect to the number of
feature vector dimensions F. The primary trade-off lies between
quality and storage overhead. As shown in Figure 10, more fea-
tures lead to improved reconstruction. However, as the storage cost
grows linearly with the feature size, this improvement eventually
diminishes. We find that a feature size of F = 20 strikes a good
balance between quality and storage size; with 1000 patches, the
total storage cost typically remains below 200 kilobytes.

4.3 Patch-Based Representations

Without the neural component, our representation can be stored as
a collection of square geometry images in a single, tightly packed
atlas. Two interesting points of comparison arise; (1) how does our
representation compare to a packed geometry image atlas; (2) how
does it compare against a neural representation of the atlas?

To perform the first of these benchmarks, we run multichart
geometry images, where charts are packed into squares of a fixed
resolution (32 X 32). For the second benchmark, we compare against

a neural-hybrid implicit network which operates on Fourier en-
coded uv coordinates (with L = 16) and a feature field. Feature
vectors are embedded on the corners of each square geometry im-
age in the atlas and are interpolated within each patch similar to
our method.

In Figure 7, we display the size and quality of these two bench-
marks along with our method. Our method outperforms both of
these benchmarks in terms of both size and quality. Whereas the
ordinary atlas representation becomes comparable to our method
with more charts, we observe that its neural counterpart struggles
overall. We believe this is largely due to the numerous discontinu-
ities along chart boundaries on the atlas. The difference in chart and
patch boundary characteristics for a neural multichart geometry
image and a neural geometry field is to note. In the former, these
boundaries are typically discontinuous, whereas in our representa-
tion these boundaries are necessarily continuous.

4.4 Runtime

Our optimization pipeline is implemented using PyTorch and relies
on nvdiffrast [Laine et al. 2020] for differentiable rasterization. In
Table 3, we analyze the runtime of this process by comparing the
GPU execution times reported by PyTorch; all evaluations are done
using an NVIDIA GeForce RTX 2080 Ti graphics card.

At the most expensive configuration, 2500 patches at a tessella-
tion resolution of k = 16, mesh extraction still remains interactive.
The compression time, measured by the time taken to optimize our
representation, typically lies in the minutes for most scenes. We
find that this is a reasonable time to spend in comparison to the
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Figure 7: Multichart Geometry Images. On the left, we com-
pare our method to using a multichart geometry image con-
sisting of square geometry images, and a neural implicit
representing the same atlas. Our method is better than both
these approaches in terms of both size and quality. On the
right, we display the x component of a multichart atlas; the
discontinuities along patch boundaries makes regression on
it more difficult.

Table 3: Runtime. The table shows the time it takes to per-
form mesh extraction and optimization for our represen-
tation. Even at the most intensive configuration, the mesh
extraction process remain interactive. The training time for
our representation is comparable to previous neural meth-
ods.

Patches k=4(ms) k=8 (ms) k=16(ms) Training (min)
100 0.10 0.23 0.76 4

250 0.21 0.51 1.98 6
1000 0.51 1.97 8.14 8
2500 1.19 4.79 21.22 12

quality that can be retrieved afterward. In the supplementary, we
also present a real-time rendering pipeline for rasterizing neural
geometry fields that incurs little additional memory overhead.

5 CONCLUSION

In this paper, we propose a novel compact neural representation for
discrete surface geometry. Our method effectively combines previ-
ous work in signal representations with neural implicit functions
and mesh processing to produce state-of-the-art results. We present
a concrete and robust pipeline for constructing an overfit instance
of our representation to arbitrary surfaces, and demonstrate that it
outperforms previous baselines for compressing meshes.

Limitations. The hybrid structure of neural geometry fields en-
ables it to effectively fill in the details embedded within each patch.
However, when these patches are extremely scarce with respect
to the surface topology, our inverse rendering pipeline may fail to
appropriately reconstruct the basic form of the target mesh.

Future work. The representation we present here consists of a
bare minimum of extrinsic mesh data, V, and Q. It is possible to
additionally including normal vectors for each vertex, so that each

Venkataram Sivaram, Ravi Ramamoorthi, and Tzu-Mao Li

patch o becomes a Bezier patch that better captures the curvature
on the target surface.

Additionally, while we present a low-cost rasterization algorithm
in the supplementary, we speculate that a similar pipeline can be
developed for raytracing. In particular, works for tessellation-free
[Thonat et al. 2021] and non-linear [Ogaki 2023] ray tracing have
enabled memory efficient ray tracers for detailed surfaces, a similar
method can potentially be applied for neural geometry fields.
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Figure 8: Mesh Compression (Pt. 2). Compressing high detail surface geometry with various methods. We visually compare the
results produced by our method at increasing patch counts against the meshes produced by QSrim [Garland and Heckbert
1997], and NVDIFFMODELING [Hasselgren et al. 2021] at equal storage. Our recovers fine surface details even at compression
rates of over x100. Visual metrics are based on the L; loss. Above models are xyz ©Stanford 3D Scanning Repository, EINSTEIN
©Thingil0k, and GANEsHA ©peel3d.
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Figure 9: Tessellation Ablations. Neural geometry fields enable arbitrary level of detail with respect to the chosen tessellation
resolution. Above, we show how the quality of the uniformly sampled extracted mesh scales with the resolution for the
ARMADILLO mesh. On the right, we also plot the visual and geometric metrics of reconstructed neural geometry fields for
resolutions 2 < k < 16. We note that our choice to limit the maximal resolution to k = 16 is influenced by the fact that these
metrics tend to plateau around this resolution. The mesh is credited to the Stanford 3D Scanning Repository.
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Figure 10: Feature Ablations. The quality of surface reconstruction of our method improves as more data is allotted for the
feature vectors. Above, we show the visual effect of increasing feature vector size for the Bust model, for F € {5, 10, 20, 50}. The
plots on the right inform that, along with other models that we benchmarked, the visual metrics of our representation do
indeed improve with higher feature sizes. The Chamfer distance remains similar, since the vertex resolution is constant, hence
we omit it here. This model is courtesy of Thingi10K.
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