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Figure 1: Neural Geometry Fields. We present a mesh-based neural representation for discrete surfaces that enjoys the bene�ts

of both classical meshes (UV-parametrizable) and neural representations (compact). Given a target surface (Reference), we

partition it into a set of quadrangular patches (NGF Patches). We then displace each patch with a coordinate neural network, and

extract a standard triangle mesh from the patches and their displacement (NGF). An important application of our representation

is mesh compression. On the right, we show comparison of discrete surfaces compressed by a classical mesh simpli�cation

algorithm QSlim [Garland and Heckbert 1997], an appearance-driven mesh processing method Nvdi�modeling [Hasselgren

et al. 2021], a neural implicit surface Instant NGP [Müller et al. 2022] (using marching cubes with similar triangle count to

ours), and �nally our representation (Ours). All methods are run with the same storage constraints as our method, and we

show the Chamfer error next to the method. Despite the high compression rate of 50×, our method is capable of achieving

signi�cantly lower error and preserves visual appearance. The dragon model is courtesy of Thingi10K.

ABSTRACT

Recent work on using neural �elds to represent surfaces has re-

sulted in signi�cant improvements in representational capability

and computational e�ciency. However, to our knowledge, most ex-

isting work has focused on implicit representations such as signed
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distance �elds or volumes, and little work has explored their appli-

cation to discrete surface geometry, i.e., 3D meshes, limiting the

applicability of neural surface representations.

We present Neural Geometry Fields, a neural representation for

discrete surface geometry represented by triangle meshes. Our idea

is to represent the target surface using a coarse set of quadrangular

patches, and add surface details using coordinate neural networks

by displacing the patches. We then extract a traditional triangu-

lar mesh from a neural geometry �eld instance by sampling the

displacement. We show that our representation excels in mesh com-

pression, where it signi�cantly reduces the memory footprint of

meshes without compromising on surface details.
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1 INTRODUCTION

Neural surface representations have recently risen in popularity

due to their advantages in information bandwidth and storage

compactness, and compatibility with gradient-based optimization.

The primary representation mechanism for recent works have been

implicit functions such as signed distance �elds [Park et al. 2019],

occupancy grids [Mescheder et al. 2019] or volumes [Wang et al.

2021]. However, to use these representations in downstream tasks

like scene modeling, surface texturing, or photorealistic rendering,

an additional step is typically taken to convert these representations

to meshes. This conversion step requires additional processing

(e.g. marching cubes) and strips away the compact nature of these

neural representations in favor of the more friendly meshes. We

present a neural representation which foregoes this processing and

storage overhead by directly generating meshes rather than implicit

functions. As such, our representation is particularly suitable for

mesh compression.

The primary challenge with representing meshes with neural

graphics primitives is that additional connectivity information must

be constructed for surfaces with di�erent polygon schemes and

topology. It is challenging to implement a gradient descent algo-

rithm for optimizing connectivity data, and correspondingly there

has been little previous work to our knowledge on representing

meshes with neural networks. Fortunately, previous work on geom-

etry images [Gu et al. 2002] unveils a regular image-based scheme

that can be used to represent discrete meshes. We leverage this

�nding, and demonstrate that using a lightweight multilayer per-

ceptron (MLP) to displace a coarse mesh can achieve state-of-the-art

compression and representation of mesh geometry.

Speci�cally, we present a Neural Geometry Fields representation

that consists of a set of quadrangular patches, which captures the

shape of the given surface. Each patch is parametrized easily by

construction, which allows us to attach a trainable feature �eld on

the patches. We then feed the features to an MLP which outputs

the displacement of the patch. To obtain a traditional mesh from

our representation for both training and actual uses, we sample

vertices from each patch and construct triangles within each patch.

We then use an appearance-based loss [Hasselgren et al. 2021] to

optimize for the patch vertices, the MLP weights, and the features.

Figure 2 illustrates this process. We show that our representation

can preserve details of surfaces even under signi�cant compression

rate, compared to both traditional mesh simpli�cation and neural

implicit surfaces (see Figure 1).

We present the following contributions:

(1) Combining surface partitioning and neural signal represen-

tations to forge a neural geometry �elds representation for

discrete surfaces.

(2) A coarse-to-�ne appearance-driven optimization pipeline for

over�tting Neural Geometry Fields to a particular reference

mesh.

(3) A scheme for state-of-the-art mesh compression using our

novel representation.

2 PREVIOUS WORK

Our work builds on classical mesh compression, subdivision tech-

niques, geometry images and neural graphics primitives.

Classical mesh compression. We refer the readers to Maglo et al.

[2015]’s survey for a comprehensive introduction. The most direct

of the mesh compression methods applies single-rate compression

techniques to reduce bit rates for vertex connectivity [Deering 1995;

Gumhold and Straßer 1998; Touma and Gotsman 1998] and vertex

data [Lee and Ko 2000; Taubin and Rossignac 1998]. Such methods

are now incorporated into industry standard, e.g. Draco [Galligan

et al. 2018]. These methods can be applied to our technique to

further compress the patch representation. Neural geometry �elds

e�ectively act as a variable-rate compression on disjoint sections

of the surface.

Other methods analyze the surface intrinsic information, using

the mesh Laplacian [Lescoat et al. 2020] or error metrics [Cohen

et al. 1998; Garland and Heckbert 1997; Hoppe 1996], to reduce the

number of vertices or faces necessary for representing the shape

of a reference mesh. Yet another class of method uses inverse ren-

dering to �nd simpler meshes that render to the same images as

the target surface [Hasselgren et al. 2021]. We build on both classes

of methods: we apply QSlim [Garland and Heckbert 1997] to ob-

tain a coarse representation of the target mesh that preserves the

topology, and apply inverse rendering to re�ne our neural repre-

sentation. Fundamentally, however, these methods build a lossy

reconstruction of a target surface due to their sole use of polygo-

nal meshes. By contrast, our representation preserves topological

information using a coarse base mesh, while adding more details

using coordinate neural networks.

Subdivision techniques. Subdivision surfaces splits polygonal

faces into �ner elements [Catmull and Clark 1978; Dyn et al. 1990;

Hoppe et al. 1994; Loop 1987; Stam 1998]. In e�ect, this increases

the vertex resolution of the mesh, and can be paired with displace-

ment mapping to add details. In the context of mesh compression, a

�xed subdivision scheme without displacement mapping [Lee et al.

2000] often leads to overly smooth reconstructions as a result of

interpolating data with lower-order polynomials.

Neural networks have been applied to subdivision surfaces [Chen

et al. 2023; Liu et al. 2020b] to achieve better matching results than

classical subdivision. To extract a triangle mesh from neural subdi-

vision surfaces, these methods rely on an expensive graph neural

network. In contrast, our method sticks to simple interpolation

and matrix multiply operations, and as a result is also e�cient to

evaluate interactively.
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Figure 2: Overview. We over�t a neural geometry �eld representation to a speci�c target surface. We �rst pre-process the target

mesh to obtain easily parametrizable patches, which enable the use of coordinate neural networks (Section 3.1). Then, we

instantiate a neural geometry �eld with the patches and optimize the complete representation by repeatedly sampling triangle

meshes (Section 3.2) and minimizing an inverse rendering loss (Section 3.3). The Einstein model is credited to Thingi10K.

Geometry images. The concept of representing surfaces as im-

ages, storing vertex information at each pixel, was �rst introduced

with geometry images [Gu et al. 2002]. Geometry image construc-

tion cuts the surfaces so that they can be easily mapped to planar

images, and then uniformly samples the surface to record 3D posi-

tions on the images.

The mesh can then be reconstructed implicitly by constructing

quadrilaterals at each (2 × 2) set of pixels. Additionally, the con-

structed image can itself be compressed using traditional image

compression techniques to reduce its footprint.

Our representation is derived from these works, in the sense

that each patch operates similarly to a geometry image. Novel to

our method is the introduction of a neural network that implicitly

generates the vertices of the patches. This circumvents the problem

of sampling and packing patches into texture atlases.

Neural graphics primitives. Coordinate neural networks have

been used for representing 2D images, 3D scenes, and surface ge-

ometry [Martel et al. 2021; Mildenhall et al. 2020; Park et al. 2019;

Tancik et al. 2020; Xie et al. 2022]. Previous works have shown

that neural �elds can represent high-�delity signals with little use

of memory. We build on the recent advances in neural �elds and

encode surface displacements using a feature �eld [Müller et al.

2022] followed by a shallow neural network.

Work so far in implicit surface representation has focused primar-

ily on using neural networks to represent signed distance functions

or volumetric occupancy grids [Mescheder et al. 2019; Park et al.

2019; Takikawa et al. 2021; Wang et al. 2021]. To improve computa-

tion and memory e�ciency, hierarchical 3D spatial data structures

are often used for storing features [Martel et al. 2021; Müller et al.

2022; Takikawa et al. 2021]. However, 3D voxels become ine�cient

when considering functions on surface manifolds, and primitives

embedded within the surface itself would form a more ideal par-

titioning. In our method, we rely on a quadrilateral mesh to form

the surface partition, as quadrilaterals provide simple and e�cient

parametrization domains for interpolation. Our meshes lead to

Table 1: Notation. Table of notation used in describing our

method.

Symbol Definition

� Target surface

Λ Piecewise continuous surface de�ned by an NGF

Σ Base surface

« Feature �eld on Σ

P A partition of Σ into patches

Ă A quadrilateral patch in P

Ĭ or Ĭ8 9 Arbitrary vertex or corner vertex

Ĝ or Ĝ8 9 Arbitrary feature vector or corner feature vector

Ă MLP parameters

ī Uniform sample in [0, 1]2

more compact and e�cient data structures for storing feature �elds

for surfaces.

3 NEURAL GEOMETRY FIELDS

As shown in Figure 2, our pipeline uses a neural network to contin-

uously displace a base mesh Σ into the target surface �. We achieve

this by �rst partitioning the surface into patches, and construct a

continuous and trainable feature �eld « : Σ → R� , where each

feature consists of Ă real components (Section 3.1). Next, we extract

a traditional triangle mesh by sampling on the patches to obtain

features, and feeding these features to along with 3D positions to a

neural network to evaluate the displacement (Section 3.2). We opti-

mize the feature �elds and patches using a coarse-to-�ne inverse

rendering algorithm (Section 3.3). See Table 1 for an overview of

the notation used in the subsequent discussion.

3.1 Surface Partitioning

Patches. To construct a feature �eld on the base mesh Σ, we

build a partition P of disjoint quadrilateral patches Ă whose union

covers Σ. We speci�cally use quadrilaterals as they embed a simple

interpolation domain. Although triangles are also simple in this
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TaRget Simplified Patches
QSlim Pairing

Figure 3: Surface Partitioning. Constructing the partition P

of patches. The target surface � is �rst simpli�ed using QS-

lim to reduce its polygon count. Adjacent triangles are then

paired to form quadrilaterals, which builds the quadrilateral

mesh Q representing P.

regard, fewer quadrilaterals are needed in general to cover the

surface.

Formally, each patch Ă must be di�eomorphic to the unit square

domain, so that it can be represented with four corner vertices,

Ĭ00, Ĭ10, Ĭ01, Ĭ11, and a sample ī ∈ [0, 1]2 using a bilinear interpola-

tion as follows:

Ă (ī) = (1 − īD ) ((1 − īG ) · Ĭ00 + īG · Ĭ10)

+ ī~ ((1 − īG ) · Ĭ01 + īG · Ĭ11)
(1)

Likewise, with four feature vectors Ĝ00,Ĝ10,Ĝ01,Ĝ11, we can de�ne a

smooth feature �eld within Ă using the same bilinear interpolation

formula:

«(ī) = (1 − īD ) ((1 − īG ) · Ĝ00 + īG · Ĝ10)

+ ī~ ((1 − īG ) · Ĝ01 + īG · Ĝ11)
(2)

These formulations are visualized in Figure 4 (b).

Surface partitioning. We represent the base surface Σ with a non-

degenerate quadrilateral meshwith verticesV = ∪f {Ĭ00, Ĭ10, Ĭ01, Ĭ11}

and faces Q. A shared edge between two quadrilaterals corresponds

to a shared continuous boundary amongst two patches. On the

other hand, we can have a patch that shares no edges with others,

which allows us to represent non-manifold base surfaces Σ. We

likewise assign each vertex in V with its corresponding feature

in F = ∪f {Ĝ00,Ĝ10,Ĝ01,Ĝ11}, and the resulting feature �eld « will

inherit the same discontinuities as Σ.

The evaluation of our surface involves using Σ as a base mesh

that is later re�ned by a neural networkMLP\ . The resulting surface

necessarily has the same topology as Σ, including its topological

features such as holes and intersections. In the interest of surface

compression, we wish to store a minimal amount of information for

the base quadrilateral mesh. Thus, a method for constructing the

base mesh is ideally topology preserving, even at low quadrilateral

counts |Q|. To do this, we 1. simplify the mesh represented by �

using QSlim, as it is robust and scalable, and 2. greedily combine ad-

jacent triangles to form near-rectangular quadrilaterals, removing

non-manifold triangles in the process. Figure 3 demonstrates this

process on a sample model. Note that this procedure can handle

non-manifold input surfaces.

3.2 Mesh Extraction

In this section, we describe how we sample a mesh from a neural

geometry �eld instance so that we can perform inverse rendering

to optimize our representation.

Equipped with the base mesh and a feature �eld, we can build a

piecewise continuous surface Λ by concatenating patches displaced

by a neural network. First, we combine the vertex position and

feature with an encoding enc derived from positional encoding

[Mildenhall et al. 2020]:

enc(Ĭ,Ĝ ) =
(

sin(20Ĭ), cos(20Ĭ), . . . , sin(2!Ĭ), cos(2!Ĭ),Ĝ
)

(3)

The number of levels is controlled by a hyperparameter Ĉ. Then, at

each patch Ă and sample ī, the displaced surface coordinate on Λ is

Λ(ī) = Ă (ī) +MLP\ ◦ enc(Ă (ī),«(ī)) . (4)

We extract the resulting representation as a discrete mesh by

sampling ī on each patch. In practice, this is done as follows:

(1) Tessellate each patch by sampling ī in [0, 1]2 with ġ samples

along each dimension, for a total of ġ2 samples per patch.

(Figure 4 (a))

(2) Generate the corresponding vertices and features for each

sample according to Equations (1) and (2). (Figure 4 (b))

(3) Compute the displaced vertex by encoding and applying the

neural network as in Equation (4). (Figure 4 (c) and (d))

(4) Generate connectivity information independently for each

patch to obtain the connectivity for the extracted surface.

(Figure 4 (e))

Locally, at each patch Ă , we perform step (4) by laying out the

vertices in a grid arrangement and applying a triangulation similar

to height �elds. The resulting mesh, when combined across multiple

patches, results in a semi-regular mesh.

Jittering. During optimization, we aim to thoroughly sample

each patch so that the neural geometry �eld obtains a better re-

construction of the target surface. We achieve this by randomly

jittering uniform samples during mesh extraction by ī ∼ ī̂ +D(Ĉ),

where

ī̂ =

ïğ, Ġð

ġ − 1
for 0 f ğ, Ġ f ġ − 1 (5)

are the original uniform samples and D(Ĉ) uniformly samples

points in the origin-centered disk with radiusĈ . Note that to uphold

the structure of the jittered mesh (i.e. prevent triangle fold overs), it

is necessary that Ĉ be less than 0.5/(ġ − 1). To preserve boundaries,

we additionally enforce Ĉ = 0 when ī̂ is a boundary sample.

Jittering provides richer gradient signals to the optimization by

virtue of better exploring the surface points of each patch. This is

especially e�ective in regions of the neural geometry �eld where the

vertex count is limited (i.e. with low patch counts). In Figure 5, while

both strategies can coarsely recover the features of the reference,

uniform sampling produces a noisier result compared to jittered

sampling. As such, jittering can be thought of as a regularization

mechanism for the reconstructed surface.
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Patch σ Tessellating (a) Displaced vertices (d) Discretization (e)
MLP evaluation (c)

u σ(u) Ψ(u)

enc(v,f)

v00,f00 v10,f10

v11,f11v01,f01

Interpolation and encoding (b)

Figure 4: Mesh Extraction. Pipeline �ow of a single patch during mesh extraction, where a traditional mesh is derived from

our representation for use in optimization. A patch Ă is uniformly tessellated, and corresponding vertices and features are

computed. After positional encoding and concatenation, we evaluate the neural network to obtain the vector displacement on

Ă . Applying this displacement yields the displaced patch vertices on Λ(Ă), and �nally we create a discretized mesh with a �xed

scheme. Repeating this process over all patches constructs the full surface Λ.

RefeRence JitteRed UnifoRm

Figure 5: Sample Jittering. Jittering uniform samples during

mesh extraction helps to regularize the optimization of a neu-

ral geometry �eld. Above, we demonstrate its impact when

learning surfaces at low patch counts (10 patches), where

omitting jittered results in a rougher surface.

Our completed mesh extraction algorithm is shown in Algo-

rithm 1. In Lines 8-12, we generate the jittered samples for the

chosen patch Ă and evaluate its corresponding world space location.

Then, through lines 2-5, we discretize the sampled vertex collection

into triangles by splitting the quadrilaterals of each (2 × 2) section

of vertices. We �nd that making a deliberate choice to split each

quadrilateral along its shortest diagonal brings improves the �nal

quality of the reconstruction. Finally, in lines 15-19, we repeat the

sampling and discretization steps for each patch, and combine the

resulting geometry from each to construct the full mesh.

3.3 Optimization

Inverse rendering. Our optimization pipeline is a rasterization-

based inverse rendering process that �ne-tunes the appearance

of our representation’s surface to that of the target surface. We

�nd that an appearance-based method for optimization is more

stable than using distance-based methods such as Chamfer distance

or signed distance �eld queries. To stabilize the training process,

we apply a coarse-to-�ne approach using inverse rendering. At a

particular tessellation resolution, ġ, the meshĉ will have a �xed

connectivity de�ned by the triangulation ofĉ . Its vertex positions,

on the other hand, are di�erentiable with respect to the patch

cornersV and features F , as well as the neural network parameters

Algorithm 1: Triangle mesh extraction on Λ

Input: Tessellation resolution :

Input: Neural geometry �eld Λ

1 Function Discretize(V, k):

2 ) ← []

3 +grid ← + .reshape (:, :, 3)

4 for Sections [ [+ė,+Ę ], [+ę ,+Ě ] ] in+grid do
// Triangulate the quadrilateral

5 ) .add (SplitQuad (+ė,+Ę ,+ę ,+Ě ) )

6 return)

7 Function Tesselate(f , k):

8 + ← []

9 for ī̂ ∈ UniformSamples(: ) do
// Jittering the uniform samples (Equation 5)

10 ī ← ī̂ + IsInteriorSample (ī ) · D (l )

// Evaluate the neural geometry �eld (Equation 4)

11 + .add (Λ(ī ) )

12 ) ← Discretize (+ ,: )

13 return+ ,)

14 Function ExtractMesh(Σ, k):

15 + ← [], ) ← []

16 for f ∈ P do

17 +Ă , )Ă ← Tesselate (f,: )

18 + .add (+Ă )

19 ) .add ()Ă )

20 return Mesh(+ ,) )

Ă . This means that inverse rendering can indeed produce useful

gradients for optimizing our representation.

Objective function. In contrast with conventional inverse render-

ing problems, our pipeline has access to various attributes of the

reference surface. Of these, we use only the surface normal vectors.

With the sampled mesh, di�erentiable normal vectors can be

evaluated from vertex cross products, as is typical. During rasteri-

zation, these normal are interpolated to generate the normal vector

frame bu�ers N(·) for both the reference and sampled surface. Us-

ing these bu�ers, an image-space loss can be de�ned. Additionally,

to promote an even vertex distribution along the surface, we include
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a Laplacian term. The uni�ed objective function we use is

L =

1

|N (·) |
∥N (�) − N (Σ)∥1 +

1

|Ē |
∥ĈĒ ∥1, (6)

where ∥ · ∥1 is the Ĉ1 metric and Ĉ is the (uniform) mesh Laplacian

ofĉ . Note that for the smoothing term, we apply the Laplacian on

the uniformly sampled vertices.

Camera arrangement. As the reference surface can have arbitrary

topology, it is crucial to have a set of views thoroughly cover its

surface area. To distribute the cameras, we cluster the triangles of

the reference by geodesic distance. We then construct a camera

for each cluster, looking towards the centroid of the cluster. This

approach is both e�cient and scalable with respect to the number of

cameras to instantiate. Additionally, to capture occluded geometry,

we rasterize multiple depth layers using depth peeling.

General con�guration. As a preprocessing step to our optimiza-

tion pipeline, we normalize the coordinates of the reference mesh.

We run the pipeline for tessellation resolutions ġ ∈ {4, 8, 12, 16},

typically using 200 cameras. During rendering, we use nvdiffrast

to rasterize 10 views in a batch using 3 depth layers each. Our neural

network consists of two hidden layers, each with 64 neurons, with

Ĉ = 8 levels for positional encoding, and a feature vector size of

Ă = 20. Lastly, we use a �xed learning rate of 10−3 with an ADAM

optimizer [Kingma and Ba 2015].

4 RESULTS

We test our method on meshes with various surface and topological

features. In Table 2, we display models with varying storage size,

genus, and surface details. Models like Dragon exhibit hard to

reach surfaces that are hidden from ordinary inspection; Einstein

and Skull both contain immense surface details;Metatron and

other high genus meshes are tricky for appearance-based methods

to reconstruct due to frequent occlusions in camera views.

In our results, we evaluate how well resulting meshes compare

with the target mesh, both visually and geometrically. We use the

render image loss, where the surface is shaded with an environment

map, and the Chamfer loss, using the vertices sampled from our

representation. For these comparisons, we forego jittering when

extracting �nal meshes.

Additional results, notably rasterization, īĬ-parameterization

and comparison to other neural methods, are shown in the sup-

plementary material. We urge the reader to take a look into these

results to further understand the capabilities of our representation.

4.1 Compression

We evaluate our method for mesh compression against previous

works. In particular, we compare against QSlim [Garland and Heck-

bert 1997] and nvdi�modeling [Hasselgren et al. 2021], which rely

on surface extrinsic and visual metrics, respectively. In particular,

we use the symmetric Chamfer distance to compare geometric qual-

ity, and use mutli-view rendering for visual quality. For rendering,

we use a random arrangement of camera views which are distinct

from the training views, and shade using spherical-harmonics-based

environment mapping [Ramamoorthi and Hanrahan 2001].

Both methods have shown strong results in compression. The

storage for our representation consist of the base quadrilateral

mesh and features (V, F ,Q), as well as theMLP, Ă . All primitive

elements are stored with 32 bits. The target surface and the outputs

for each baseline are all meshes, so we calculate their storage costs

using only the vertex data and connectivity information.

Our representations are optimized at increasing patch counts

while �xing the tessellation resolution to ġ = 16. The representa-

tions require di�erent amounts of storage, and to provide a fair

comparison, we generate the baseline results at similar sizes. Fig-

ure 8 demonstrates the result of our method on the XYZ, Einstein,

and Ganesha models, showing sections of the surface in insets for

each method as well as plotting error metrics for each representa-

tion with respect to the compression ratio.

For these models, neural geometry �elds consistently outper-

forms the baselines across all size variations of our methods. In the

xyz model, for example, our method is better able to recover the

scales on the dragon whereas QSlim and nvdi�modeling struggle

due to limited vertex count.

In Table 2, we show further results of our method with others.

Our method scales well with the number of patches we partition

the reference into. Even at its highest quality, at 2.5K patches, our

representation remains under a megabyte in storage.

Additionally, in Figure 6, we compare our method to Draco

[Galligan et al. 2018], a state-of-the-art mesh compression method

[Doumanoglou et al. 2019] which performs compression of both

vertex data and connectivity. At high amounts of quantization, our

method still outperforms this baseline in terms of visual metrics.

We observe that the advantage of our method over Draco correlates

with the size of the reference mesh. In such cases, neural geometry

�elds can adaptively allocate primitives for particular regions of

the surface, while quantization methods sacri�ce vertex precision

for the preservation of topology.

Buddha
RefeRence NGF (1K patches) DRaco (8 bits) DRaco (10 bits)

Render 1.75 · 10
−4

2.13 · 10
−3

5.66 · 10
−4

Normal 5.90 · 10
−3

7.04 · 10
−2

1.87 · 10
−2

Size / Ratio 156 KB / 120 393 KB / 50 601 KB / 30

Figure 6: Mesh Compression (Pt. 3). We compare neural ge-

ometry �elds to Draco [Galligan et al. 2018] which relies on

data quantization. In this particular example, with the Bud-

dha mesh, our method is notably more compact than this

state-of-art compression method, even when using heavy

amounts of quantization. Furthermore, our representation

maintains visual similarity with the reference, whereas nu-

merous visual artifacts can be seen from the results of Draco.

For our method, we use 1K patches with the default con�g-

uration; for Draco, we encode the connectivity and vertex

positions only, quantized with 8 and 10 bits per vertex. This

mesh is taken from the Stanford 3D Scanning Repository.
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Table 2: Mesh Compression (Pt. 1). Comparison of our method with the baselines at varying patch counts. We evaluate each

method using a multi-view rendering loss (left columns, scaled by 10
2) and the Chamfer distance (right columns, scaled by

10
5). Our method outperforms the baselines consistently throughout models with varying features, including high triangle

count and genus. Furthermore, the quality of our method scales as we increase its allocation of patches for reconstruction. In

the following table, Lod refers to the number of primitives (patches or triangles) and overall size of the representation, Tris

refers to the number of triangles in the reference mesh, and Nvdiff is shorthand for nvdi�modeling. The models Dragon,

Einstein, andMetratron are from Thinkg10K; Buddha, Armadillo, Xyz and Lucy are courtesy of the Stanford 3D Scanning

Repository; Ganesha credited to peel3d.

Lod Dragon Ganesha Buddha Einstein Armadillo Metatron Xyz Lucy

Size 15.46 MB 41.03 MB 18.66 MB 14.73 MB 1.72 MB 2.38 MB 4.29 MB 1.72 MB

Tris 900.5 K 2.4 M 1.1 M 858.0 K 100.0 K 138.4 K 249.9 K 100.0 K

Ours

100 / 65 KB 23.18 47.26 8.72 1.42 5.65 1.94 13.03 9.16 5.01 6.48 - - 8.37 7.60 5.97 8.83

250 / 80 KB 16.07 11.46 6.39 0.82 2.76 15.60 10.78 4.00 3.44 2.85 8.20 9.22 6.84 2.77 4.00 3.62

1.0K / 160 KB 9.54 1.42 0.30 3.52 1.48 1.10 6.49 1.34 2.38 1.66 4.62 3.18 4.17 0.94 2.51 1.97

2.5K / 320 KB 6.76 0.74 1.66 0.26 0.74 0.25 4.78 0.77 1.93 1.43 3.74 2.59 3.36 0.65 1.86 1.55

QSlim

4K / 65 KB 23.42 39.92 21.75 44.77 23.75 46.80 24.57 76.61 19.10 63.47 15.25 35.92 12.95 32.37 22.58 63.99

5K / 80 KB 21.26 32.25 20.25 42.22 23.75 46.80 23.02 62.39 17.11 52.56 14.22 29.68 12.16 26.01 21.73 53.50

10K / 160 KB 17.53 15.93 14.83 37.03 12.38 6.85 19.77 32.30 13.14 27.60 10.27 15.73 9.78 13.38 17.70 29.46

19K / 320 KB 14.93 8.21 9.68 20.72 6.15 2.66 15.96 16.13 9.39 14.95 7.19 8.48 7.56 6.76 13.83 16.30

Nvdiff

4K / 65 KB 21.27 57.02 17.31 29.93 25.31 52.22 23.81 83.85 18.95 82.51 14.65 44.20 12.52 40.65 22.28 100.76

5K / 80 KB 19.83 45.58 15.26 28.97 25.31 53.16 23.94 71.41 16.86 76.56 13.85 36.54 11.39 33.49 21.56 89.16

10K / 160 KB 17.32 24.58 10.58 26.87 12.09 7.18 18.25 38.87 10.14 39.02 10.31 18.81 9.70 18.30 17.04 45.47

19K / 320 KB 14.13 11.46 8.45 19.65 5.74 3.04 15.32 20.46 7.77 20.71 8.90 10.03 8.32 9.96 13.21 21.37

4.2 Evaluations

Tessellation. During mesh extraction, we permit arbitrary tessel-

lation rates. In Figure 9, we compare the quality of these meshes

with respect to their tessellation resolutions. While the geometric

quantities show steady improvements with increasing tessellation,

the visual metrics plateau around ġ = 16. We thus cap our pipeline

to this resolution to minimize additional computational and mem-

ory overhead during optimization.

Features. Our method is �exible with respect to the number of

feature vector dimensions Ă . The primary trade-o� lies between

quality and storage overhead. As shown in Figure 10, more fea-

tures lead to improved reconstruction. However, as the storage cost

grows linearly with the feature size, this improvement eventually

diminishes. We �nd that a feature size of Ă = 20 strikes a good

balance between quality and storage size; with 1000 patches, the

total storage cost typically remains below 200 kilobytes.

4.3 Patch-Based Representations

Without the neural component, our representation can be stored as

a collection of square geometry images in a single, tightly packed

atlas. Two interesting points of comparison arise; (1) how does our

representation compare to a packed geometry image atlas; (2) how

does it compare against a neural representation of the atlas?

To perform the �rst of these benchmarks, we run multichart

geometry images, where charts are packed into squares of a �xed

resolution (32 × 32). For the second benchmark, we compare against

a neural-hybrid implicit network which operates on Fourier en-

coded īĬ coordinates (with Ĉ = 16) and a feature �eld. Feature

vectors are embedded on the corners of each square geometry im-

age in the atlas and are interpolated within each patch similar to

our method.

In Figure 7, we display the size and quality of these two bench-

marks along with our method. Our method outperforms both of

these benchmarks in terms of both size and quality. Whereas the

ordinary atlas representation becomes comparable to our method

with more charts, we observe that its neural counterpart struggles

overall. We believe this is largely due to the numerous discontinu-

ities along chart boundaries on the atlas. The di�erence in chart and

patch boundary characteristics for a neural multichart geometry

image and a neural geometry �eld is to note. In the former, these

boundaries are typically discontinuous, whereas in our representa-

tion these boundaries are necessarily continuous.

4.4 Runtime

Our optimization pipeline is implemented using PyTorch and relies

on nvdi�rast [Laine et al. 2020] for di�erentiable rasterization. In

Table 3, we analyze the runtime of this process by comparing the

GPU execution times reported by PyTorch; all evaluations are done

using an NVIDIA GeForce RTX 2080 Ti graphics card.

At the most expensive con�guration, 2500 patches at a tessella-

tion resolution of ġ = 16, mesh extraction still remains interactive.

The compression time, measured by the time taken to optimize our

representation, typically lies in the minutes for most scenes. We

�nd that this is a reasonable time to spend in comparison to the
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Figure 7: Multichart Geometry Images. On the left, we com-

pare our method to using a multichart geometry image con-

sisting of square geometry images, and a neural implicit

representing the same atlas. Our method is better than both

these approaches in terms of both size and quality. On the

right, we display the Į component of a multichart atlas; the

discontinuities along patch boundaries makes regression on

it more di�cult.

Table 3: Runtime. The table shows the time it takes to per-

form mesh extraction and optimization for our represen-

tation. Even at the most intensive con�guration, the mesh

extraction process remain interactive. The training time for

our representation is comparable to previous neural meth-

ods.

Patches ġ = 4 (ms) ġ = 8 (ms) ġ = 16 (ms) Training (min)

100 0.10 0.23 0.76 4

250 0.21 0.51 1.98 6

1000 0.51 1.97 8.14 8

2500 1.19 4.79 21.22 12

quality that can be retrieved afterward. In the supplementary, we

also present a real-time rendering pipeline for rasterizing neural

geometry �elds that incurs little additional memory overhead.

5 CONCLUSION

In this paper, we propose a novel compact neural representation for

discrete surface geometry. Our method e�ectively combines previ-

ous work in signal representations with neural implicit functions

and mesh processing to produce state-of-the-art results. We present

a concrete and robust pipeline for constructing an over�t instance

of our representation to arbitrary surfaces, and demonstrate that it

outperforms previous baselines for compressing meshes.

Limitations. The hybrid structure of neural geometry �elds en-

ables it to e�ectively �ll in the details embedded within each patch.

However, when these patches are extremely scarce with respect

to the surface topology, our inverse rendering pipeline may fail to

appropriately reconstruct the basic form of the target mesh.

Future work. The representation we present here consists of a

bare minimum of extrinsic mesh data,V , and Q. It is possible to

additionally including normal vectors for each vertex, so that each

patch Ă becomes a Bezier patch that better captures the curvature

on the target surface.

Additionally, while we present a low-cost rasterization algorithm

in the supplementary, we speculate that a similar pipeline can be

developed for raytracing. In particular, works for tessellation-free

[Thonat et al. 2021] and non-linear [Ogaki 2023] ray tracing have

enabled memory e�cient ray tracers for detailed surfaces, a similar

method can potentially be applied for neural geometry �elds.
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Figure 8: Mesh Compression (Pt. 2). Compressing high detail surface geometry with various methods. We visually compare the

results produced by our method at increasing patch counts against the meshes produced by QSlim [Garland and Heckbert

1997], and nvdiffmodeling [Hasselgren et al. 2021] at equal storage. Our recovers �ne surface details even at compression

rates of over ×100. Visual metrics are based on the Ĉ1 loss. Above models are xyz ©Stanford 3D Scanning Repository, Einstein

©Thingi10k, and Ganesha ©peel3d.
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Figure 9: Tessellation Ablations. Neural geometry �elds enable arbitrary level of detail with respect to the chosen tessellation

resolution. Above, we show how the quality of the uniformly sampled extracted mesh scales with the resolution for the

Armadillo mesh. On the right, we also plot the visual and geometric metrics of reconstructed neural geometry �elds for

resolutions 2 ≤ ġ ≤ 16. We note that our choice to limit the maximal resolution to ġ = 16 is in�uenced by the fact that these

metrics tend to plateau around this resolution. The mesh is credited to the Stanford 3D Scanning Repository.
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Figure 10: Feature Ablations. The quality of surface reconstruction of our method improves as more data is allotted for the

feature vectors. Above, we show the visual e�ect of increasing feature vector size for the Bust model, for Ă ∈ {5, 10, 20, 50}. The

plots on the right inform that, along with other models that we benchmarked, the visual metrics of our representation do

indeed improve with higher feature sizes. The Chamfer distance remains similar, since the vertex resolution is constant, hence

we omit it here. This model is courtesy of Thingi10K.
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