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Abstract—Reconfigurable intelligent surfaces, with their large
number of antennas, offer an interesting opportunity for high
spatial-resolution imaging. In this paper, we propose a novel
RIS-aided integrated imaging and communication system that
can reduce the RIS beam training overhead for communication
by leveraging the imaging of the surrounding environment. In
particular, using the RIS as a wireless imaging device, our system
constructs the scene depth map of the environment, including
the mobile user. Then, we develop a user detection algorithm
that subtracts the background and extracts the mobile user
attributes from the depth map. These attributes are then utilized
to design the RIS interaction vector and the beam selection
strategy with low overhead. Simulation results show that the
proposed approach can achieve comparable beamforming gain
to the optimal/exhaustive beam selection solution while requiring
1000 times less beam training overhead.

I. INTRODUCTION

Integrated sensing and communication (ISAC) [1] has been
identified as a key feature of future wireless systems. By incor-
porating these two functions into a single system, ISAC has the
potential to enhance spectrum efficiency and reduce hardware
cost and power consumption. Furthermore, ISAC has the po-
tential to benefit both functionalities through communication-
aided sensing and sensing-aided communication. Meanwhile,
reconfigurable intelligent surfaces (RISs) have emerged as a
promising approach to extend coverage and overcome block-
ages in both communication and sensing systems. The RIS can
steer incident signals toward desired directions by adjusting
the phase shifts of the passive reflecting elements. However,
in RIS-assisted communication, the optimal configuration of
the reflecting elements requires significant beam training over-
head. Therefore, in this paper, we aim to develop an RIS-aided
integrated imaging and communication system, where the RIS-
based imaging of the surrounding environment can be used to
mitigate the communication beam training overhead.

Several studies have explored the use of RISs in ISAC
systems [2], [3]. In [2], the RIS-aided dual-function radar and
communication system is proposed, where the transmit precod-
ing and passive reflection matrices are jointly optimized. In [3],
the authors study the joint design of the active beamforming
of radar and the passive reflection matrices of two RISs in the
communication radar coexistence system. So far, prior work
has mainly focused on the interplay between communication
and target detection, while other wireless sensing functionali-
ties, e.g., imaging, have not been widely investigated.

The authors are with Arizona State University (Email: h.luo, alkha-
teeb@asu.edu). This work is supported by the National Science Foundation
under Grant No. 2229530.

In this paper, we propose an RIS-aided integrated imaging
and communication system, where the imaging-aided com-
munication is achieved. Specifically, the contributions of this
paper are organized as follows:

• We introduce a novel RIS-aided integrated imaging and
communication system. The system leverages the high
spatial dimensions of the RIS to perform wireless imaging
and build a depth map of the surrounding environment.
This depth map is then used to design the RIS interaction
vector for communication with low overhead.

• We propose a user detection algorithm to extract the user
position from an estimated depth map. Using the user
position, we design the RIS interaction vector for com-
munication. Then, we develop a beam selection strategy
by considering a pre-defined RIS interaction codebook.

The simulation results demonstrate the capability of the de-
signed solutions in achieving high beamforming gain and
significantly reducing the RIS beam training overhead. This
highlights the potential of the proposed RIS-aided integrated
imaging and communication system.

Notation: A is a matrix, a is a vector, a is a scalar. A
and A are sets of scalars and vectors. AT , AH , and A∗ are
the transpose, Hermitian (conjugate transpose) and conjugate
of A. [a]n is the nth element of the vector a. diag(a) is a
diagonal matrix with the entries of a on its diagonal. A⊙B
is the Hadamard product of A and B. N (m,R) is a complex
Gaussian random variable with mean m and covariance R.
Re(z), Im(z), and arg(z) are the real part, the imaginary part,
and the phase angle of the complex number z. f(t) ∗ g(t) is
the continuous-time convolution of two signals f(t) and g(t).

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider an RIS-aided integrated
imaging and communication system, which consists of a
mmWave access point (AP), a user, an RIS, and a mmWave
wireless sensing unit. The mmWave access point, functioning
as a transmitter, communicates with the user via the RIS. For
simplicity, both the access point and the user equipment (UE)
are assumed to have a single antenna structure. Also, it is
assumed that there is no direct link between the access point
and the user equipment. The mmWave wireless sensing unit
is placed near the RIS and illuminates the non-line-of-sight
(NLoS) area of the access point through the RIS. Following the
design proposed in [4], the wireless sensing unit comprises a
transmitter and a receiver that are connected to a shared single
antenna through a self-isolation circuitry. The shared single



(a) Imaging Stage (b) Communication Stage

Fig. 1. This figure shows the integrated imaging and communication system. In the imaging/sensing stage, the wireless sensing unit transmits the sensing
signals to the RIS via a feeding antenna. The sensing signals are reflected towards the environment by the RIS, which then reflects the backscattered/reflected
signals back to the wireless sensing unit. The received signals are processed by the wireless sensing unit to construct a depth map of the environment, which
enables the system to design the RIS interaction vector for communication.

antenna serves as a feeding antenna and transmits sensing
signals to the RIS in order to achieve high spatial resolution.

The RIS is assumed to be equipped with N reconfigurable
elements, and each element is modeled as a phase shifter.
Denote the RIS interaction matrix for communication by Ψc =

diag(ψc) ∈ CN×N , where ψc =
[
eȷϕ1 , . . . , eȷϕN

]T
is the

interaction vector with unit modulus entries. The interaction
matrix for sensing Ψs can be defined similarly. In this paper,
our objective is to detect the NLoS user from an estimated
depth map and utilize it to devise the RIS interaction vector for
communication. It is worth noting that the RIS-aided wireless
sensing for depth estimation can be well-performed by an
existing approach in the literature [4]. Besides, we assume
that the user is static during sensing and communication, and
the scenario with the moving user is left to future work. Next,
the communication and sensing models are described.

A. Communication Model

We assume the access point sends a complex symbol xc
with the average power constraint E[|xc|2] = Ec, and the
RIS reflects the incident signal with the interaction vector ψc.
Then, the received signal can be expressed as

yc = hTRΨ
chTxc + wc = (hR ⊙ hT )

Tψcxc + wc, (1)

where hT ∈ CN is the channel between the AP and the RIS,
and hR ∈ CN is the channel between the RIS and the user.
wc ∼ N (0, σ2

w) ∈ C is the received noise. The channel hT
can be defined as

hT =
L∑
ℓ=1

αℓa(θ
az
ℓ , θzeℓ ), (2)

where αℓ is the complex-valued channel gain of path ℓ and a(.)
is the far-field transmit/receive array response vector of the
RIS. θazℓ , θzeℓ denote the azimuth and zenith angles of arrival,
relative to the RIS. The channel hR can be defined similarly
as hT .

B. Sensing Model

For the sensing model, we adopt a wideband FMCW radar
transceiver with a complex-baseband architecture [5], [6]. The
FMCW transmit signal is referred to as a radar frame, which
contains a sequence of Mchirp chirps with a repetition interval
of TPRI. A single linear chirp signal aBP(t) can be written as

aBP(t) =

{
cos

(
2πf0t+ πSt2

)
0 ≤ t ≤ Tactive,

0 otherwise,
(3)

where f0 is the starting chirp frequency, and Tactive is the
duration of the chirp signal. S = BW/Tactive is the slope of
the linear chirp with the bandwidth BW. Then, the transmit
signal of a radar frame xBP

s (t) can be formulated as

xBP
s (t) =

√
Es

Mchirp−1∑
v=0

aBP(t− vTPRI) (4)

= Re
(
xs(t) e

ȷ2πf0t
)
, t ∈ R≥0, (5)

where Es is the transmit power gain and xs(t) ∈ C is the
complex-valued lowpass-equivalent transmit signal.

The received bandpass signal yBP
s (t) = Re(ys(t)e

ȷ2πf0t)
can be defined by the lowpass-equivalent received signal
ys(t) ∈ C, which can be written as

ys(t) = g(t) ∗ xs(t) + ws(t) (6)

=
K∑
k=1

Lk∑
ℓ=1

gk,ℓxs(t− ξk,ℓ(t)) + ws(t), (7)

where g(t) is the complex-valued lowpass-equivalent channel,
and ws(t) ∼ N (0, σ2

w) ∈ C is the received noise at the
wireless sensing unit. K is the number of targets in the en-
vironment, and Lk is the number of channel paths interacting
with kth target. gk,ℓ ∈ C is the complex-valued channel gain of
the ℓth path of the kth target. ξk,ℓ = Rk,ℓ/ς is the propagation
delay, where ς is the speed of light, and Rk,ℓ is the propagation
distance traveled by the ℓth path of the kth target. For further
details of the channel model, please refer to [4].



At the radar receiver, the received bandpass signal yBP
s (t)

is first passed through a quadrature mixer, and mixed with
two versions of the transmit bandpass signal xBP

s (t), one
with a −90◦ phase shift. Then, low-pass filters and analog-
to-digital converters (ADCs) are applied to the outputs of
the mixer to generate the in-phase signal I[u, v] and the
quadrature-phase signal Q[u, v], for the ADC sample u ∈
U ,U = {0, 1, . . . , (Msample − 1)}, and for the chirp v ∈
V,V = {0, 1, . . . , (Mchirp − 1)}. Msample is the number of
ADC samples per chirp. Let FS denote the ADC sampling
frequency. The in-phase and quadrature-phase signals are
sampled at time t = uTS + vTPRI, TS = 1/FS . Finally, the
received baseband digital signal z[u, v] = I[u, v] + ȷQ[u, v]
can be formulated as

z[u, v] =
K∑
k=1

Lk∑
ℓ=1

√
ρk,ℓ e

−ȷϑk,ℓ e+ȷΞk,ℓ + ws[u, v]e
ȷχ[u], (8)

Where χ[u] = 2πf0tfast + πSt2fast and tfast = uTS. The
channel path received power and phase are ρk,ℓ = Es|gk,ℓ|2
and ϑk,ℓ = arg (gk,ℓ), respectively. The phase term,Ξk,ℓ =
2π

(
f0ξk,ℓ + Stfastξk,ℓ − S

2 ξ
2
k,ℓ

)
, contains the range informa-

tion of the target.

III. PROBLEM DEFINITION

In this paper, we aim to position the user in the NLoS
area and design the RIS interaction vector for communication
based on the depth map estimated by the RIS-aided wireless
sensing unit. For the sensing purpose, we adopt the design
of the RIS sensing codebook in [4], denoted by Fs =
{ψsm : m ∈ Ms,Ms = {0, . . . ,Ms − 1}}. The codebook
builds a rectangular sensing grid of reflected directions O =
{(θazm , θzem)Ms−1

m=0 } with Mh and Mv beams in the horizontal
and vertical dimensions, i.e., Ms = MvMh. Then, the wireless
sensing unit can construct a depth map of resolution Mh pixels
wide and Mv pixels high. During the sensing process, the
wireless sensing unit sweeps over the codebook, where each
RIS beam participates in the transmission and reception of a
single chirp. For the mth RIS interaction vector, the received
baseband digital signal can be expressed as

z[u,m] =

K∑
k=1

Lk∑
ℓ=1

√
ρk,ℓ[m]e−ȷϑk,ℓ[m]e+ȷΞk,ℓ

︸ ︷︷ ︸
Received signal

+ws[u,m]eȷχ[u]︸ ︷︷ ︸
Noise

. (9)

By stacking the received Msample ADC samples of each chirp,
the received sensing signal matrix Z ∈ CMsample×Ms can be
constructed as

Z = [z[0], z[1], . . . , z[Ms − 1]] , (10)

z[m] = [z[0,m], . . . , z[Msample − 1,m]]
T
. (11)

To obtain the depth map, we adopt the approach in [4] to
process the received signals of the beams and estimate the

depth value of each pixel. The estimated depth map Dmap ∈
RMv×Mh can be formulated as

Dmap = pd(Z;Fs), (12)

where pd(.) denote the depth map estimation function.
Next, our objective is to develop a user detection function

pu(.) that is able to estimate the azimuth and zenith angles
towards the user, relative to the RIS, given by

(θ̃azUE, θ̃
ze
UE) = pu(Dmap). (13)

With the acquired angle information of the user, we then
propose to design an RIS interaction vector to maximize the
received SNR at the UE. Given the communication model
described in Section II, the received SNR can be written as

SNR =
Ec
σ2
w

|(hR ⊙ hT )
Tψc|2. (14)

Thus, the optimal RIS interaction vector for communication
can be obtained by solving the following optimization problem

max
ψc

|(hR ⊙ hT )
Tψc|

s.t. |[ψc]n| = 1, ∀n ∈ {1, . . . , N} .
(15)

If we assume that the RIS has a pre-determined communi-
cation codebook Fc, |Fc| = Mc, e.g., a beamsteering/DFT
codebook, the objective of the optimization problem becomes
finding the optimal beam index in the codebook, which can
be formulated as follows:

m⋆ = argmax
ψc

m∈Fc

|(hR ⊙ hT )
Tψcm| (16)

where the solution can be obtained by an exhaustive search,
i.e., beam sweeping, over all the beams in the communication
codebook. However, the large codebook would result in a
significant beam training overhead. Therefore, we propose to
leverage the sensing to reduce the number of trials, which will
be presented in the next section.

IV. PROPOSED SOLUTIONS

In this section, we first introduce the proposed approach to
positioning the user in the depth map. Next, we describe the
RIS interaction vector design for communication. The overall
procedure of the proposed solutions are shown in Fig. 2.

A. User Detection with Background Subtraction

The main concept of user detection is to extract useful
user information from the depth map, e.g., the user’s pixels,
which can further be leveraged for communication purposes.
To achieve this goal, we design the following key steps.

Background Subtraction: For user detection, the objective
is to identify which pixels in the depth map belong to the
user. This can be done by subtracting the background, which
effectively removes most of the unwanted regions in the
depth map. Such background depth map can be, for instance,
estimated during the offline stage where there is no user in



Fig. 2. This figure presents the operation flow of the proposed image-aided communication solution. To begin, the estimated depth map undergoes background
subtraction, followed by the elimination of undesired reflections and sensing noise. The pixel coordinates and the corresponding angles of the user can then
be obtained from the processed depth map. Finally, the beam selection strategy is performed based on the estimated angles of the user.

the scene. Let Db
map denote the background depth map. The

background-subtracted depth map Dbs
map can be obtained by

Dbs
map = Db

map −Dmap. (17)

Note that, we subtract the estimated depth map Dmap from
the background Db

map to make the user’s pixels have positive
values in the background-subtracted depth map Dbs

map.
Removal of Undesired Reflections: Ideally, each beam in

the RIS sensing codebook should detect the range/depth of the
single-backscattering path of its pointing direction. However,
some undesired reflections provide larger channel path gain
than the single-backscattering paths, resulting in higher esti-
mated depth values. As a result, there are some regions with
negative values in the background-subtracted depth map Dbs

map

as shown in Fig. 2. To remove these undesired reflections, we
can set the negative values in Dbs

map to zero. This has no impact
on the detected user’s pixels from the previous step.

Elimination of Detection Noise: Due to the time-varying
noise in the sensing process, the background-subtracted depth
map suffers from the detection noise, which can be better
observed after converting to a binary map. To resolve this, we
first identify the pixel coordinates with positive values in the
background-subtracted depth map. Next, since the noise pixels
are sparse, we leverage a density-based clustering algorithm,
DBSCAN [7], to separate the user from the pixels. In the
single-user scenario, we choose the cluster with the highest
number of elements as the detected user. To determine the
azimuth and zenith angles towards the user, we calculate the

rounded mean of the user’s pixel coordinates, denoted by
(xu, yu), representing the detected user. Given that each pixel
is estimated by a beam of a pre-defined reflected direction,
we can obtain the angles towards the user using the corre-
sponding pixel coordinate, i.e., θ̃azUE = θazmu

, θ̃zeUE = θzemu
,

mu = xu +Mhyu, where (θazmu
, θzemu

) ∈ O.

B. RIS Interaction Vector Design for Communication

To design the RIS interaction vector for communication,
we can first decompose it into the AP-side and the UE-side
beams [8] as shown by

ψc = ψcAP ⊙ψcUE, (18)

where ψcAP and ψcUE denote the AP-side and UE-side RIS
interaction vectors. Accordingly, the optimization problem
in (15) can be rewritten as

max
ψc

AP,ψ
c
UE

|(hT ⊙ψcAP)
T (hR ⊙ψcUE)|

s.t. |[ψcAP]n| = 1,

|[ψcUE]n| = 1, ∀n ∈ {1, . . . , N} .

(19)

In mmWave communications, the line-of-sight (LoS) path
provides the dominant channel gain. Assuming the locations
of the RIS and the AP are known in advance, we can design
the AP-side beam to match the LoS propagation path. Thus,
the AP-side RIS interaction vector can be expressed as

ψcAP = a∗(θazAP, θ
ze
AP), (20)
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Fig. 3. This figure depicts the adopted indoor scenario. We place the user in
the NLoS area (red rectangle) to ensure that there is no direct link between
the AP and the UE.

where a(.) is the far-field RIS array response vector, and θazAP,
θzeAP denote the azimuth and zenith angles towards the AP,
relative to the RIS. Similarly, the UE-side RIS interaction
vector ψcUE can be designed to focus on the LoS path between
the RIS and the UE. With the estimated angles towards the
user θ̃azUE, θ̃

ze
UE, the RIS interaction vector can be written as

ψ̃c = (a(θazAP, θ
ze
AP)⊙ a(θ̃azUE, θ̃

ze
UE))

∗. (21)

However, this approach requires accurate angle estimation,
which may not be feasible in all circumstances due to the
sensing noise. Therefore, we then propose an RIS beam
selection scheme based on a pre-defined codebook, where a
set of candidate beams can be found.

Considering the codebook constraint, we can determine the
beam index by calculating the similarities between the RIS
interaction vector ψ̃c and the beams in the codebook. Then,
the selected beam index m̄ is represented as

m̃ = argmax
ψc

m∈Fc

|(ψ̃c)Hψcm| (22)

Note that, we can find a set of candidate beams by sorting the
codebook based on the calculated similarities in (22).

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
solutions for the integrated imaging and communication sys-
tem. We first describe the adopted simulation framework and
then present the performance of the RIS beam selection in an
indoor scenario.

A. Simulation Framework

In this paper, we propose to leverage depth estimation
to detect the user and design an RIS interaction vector for
communication. It is essential to use realistic channels in the
simulation since the sensing and communication performance
highly relies on the environment geometry, scatterers’ materi-
als, etc. To that end, we follow the simulation framework in [4]
to generate the channels by accurate ray-tracing. Specifically,

we first utilize Blender [9], a high-fidelity 3D graphics design
engine, to build a floor plan with a sufficient number of facets.
Then, we export the designed floor plan to an accurate 3D ray-
tracing simulator, Wireless Insite [10].

For the RIS, we adopt a 40 × 40 uniform planar array
structure at the mmWave 60 GHz operating band. The radar
cross section gain of the RIS elements is assumed to be an
isotropic gain with half-wavelength RIS element spacing. For
the RIS-aided depth estimation, we generate the sensing chan-
nel paths and construct the received baseband digital signals
(9). We consider an RIS sensing codebook with oversampling
factors of four in both vertical and horizontal dimensions,
i.e. resolution of 160 × 160 pixels. The configurations of the
FMCW radar follow the settings in [4]. For the RIS-aided
communication, we generate the channel between the AP and
the RIS, hT , and the channel between the RIS and the UE,
hR. Then, the composite channel hT ⊙hR can be calculated.

B. Results for An Indoor Scenario

In Fig. 3, we present the top view of the adopted scenario
and mark the locations of the AP and the RIS. We consider an
L-shape indoor space, where a 1.8m tall person is standing in
the NLoS area. The materials of the objects/surfaces, including
the concrete walls, floorboard, and ceiling board, are set to
the ITU default parameter values at 60 GHz. We generate the
samples by placing the person model at 32 distinct locations in
the NLOS region, with equal spacing. For each user location,
we estimate the depth map and apply the user detection
solution as described in Section IV-A. Further, to consider
practical scenarios, for each user location, we place the UE’s
receive antenna at either the jacket pocket or the front/back
pants pocket on the person model, resulting in a total of
96 generated samples. We adopt a classical beamsteering
codebook to evaluate the performance of the proposed RIS
beam selection approach. For comparison, we generate a
beamsteering codebook with oversampling factors of four in
both elevation and azimuth dimensions.

Fig. 4 shows the top-k normalized beamforming gain of the
RIS beam selection. The selection of top-k beams is deter-
mined based on the similarities defined in (22). Specifically,
we sort the codebook beams based on the similarity values in
a descending order to find the top-k beams. The normalized
beamforming gain is calculated as the ratio of beamforming
gain to the equal-gain beamforming gain. Note that, the
equal-gain beamforming is assumed to have perfect channel
knowledge. As the value of k increases, better beamforming
gain can be achieved with the proposed RIS beam selection
approach. In particular, with the oversampled codebook, the
proposed solutions have comparable performance to the
optimal beam of the codebook, while requiring less than
0.1% of the beam training overhead of the exhaustive
search, which demands 25600 iterations. Compared to the
codebook without oversampling, the oversampled codebook
yields a 3 dB gain for the top-25 selected beams, which implies
that better received SNR can be attained. This is because
the RIS with a large number of elements enables narrow
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Fig. 4. This figure presents the beamforming gain provided by the selected
top-k beams, compared to the equal-gain beamforming (upperbound) and
the exhaustive search. The oversampled codebook is generated with the
oversampling factors (OSFs) of four in azimuth and elevation dimensions.

reflected beams, and the non-oversampled codebook can not
provide high beamforming gain in all directions. In short, the
simulation results demonstrate the potential of using depth
estimation to assist the RIS interaction vector design in the
integrated imaging and communication system.

VI. CONCLUSION

In this paper, we investigate an RIS-aided integrated imag-
ing and communication system that leverages scene depth
estimation to achieve low RIS beam training overhead for
communication. Specifically, we propose a user detection al-

gorithm to position the user in an estimated depth map, which
can be used in the RIS interaction vector design. Then, we
design an RIS beam selection scheme based on a pre-defined
codebook for communication. Simulation results reveal that
the proposed solutions can overcome the large search space
of the RIS interaction codebook with high beamforming gain
and low overhead. This demonstrates the potential of imaging-
aided communication in the proposed ISAC system.
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