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Abstract—This paper considers a cell-free integrated sensing
and communication (ISAC) MIMO system, where distributed
MIMO access points (APs) jointly serve the communication users
and sense the target. For this setup, we derive a sensing SNR
for multi-static sensing where both joint communication and
sensing signals transmitted by different APs are utilized. With
this sensing objective, we develop two baseline approaches that
separately design the sensing and communication beamforming
vectors, namely communication-prioritized sensing beamforming
and sensing-prioritized communication beamforming. Then, we
consider the joint sensing and communication (JSC) beamform-
ing design and derive the optimal structure of these beamforming
vectors based on a max-min fairness formulation. In addition,
considering any pre-determined JSC beam design, we devise a
power allocation approach. The results show that the developed
JSC beamforming is capable of achieving nearly the same com-
munication signal-to-interference-plus-noise ratio (SINR) of the
communication-prioritized sensing beamforming solution with
almost the same sensing SNR of the sensing-prioritized communi-
cation beamforming approach. The proposed JSC beamforming
optimization also provides a noticeable gain over the power
allocation with regularized zero-forcing beamforming, yielding
a promising strategy for cell-free ISAC MIMO systems.

I. INTRODUCTION

The integration of sensing functions into the communication
systems is envisioned to be an integral part of the 6G and
future communication systems [2]-[5]. If the hardware and
wireless resources are efficiently shared, this can enable the
communication infrastructure to have sensing capabilities at
minimal cost and make the sensing frequency bands available
for wireless communication. The sensing capabilities may also
be utilized to aid the communication system and improve its
performance [6]-[9]. These capabilities can enable innovative
applications in security, healthcare, and traffic management.
Achieving efficient joint sensing and communication opera-
tion, however, requires the careful design of the various aspects
of the integrated sensing and communication (ISAC) system,
including the transmission waveform, the post-processing of
the received signals, and the MIMO beamforming. While these
problems have recently attracted increasing research interest,
the prior work has mainly focused on the single ISAC basesta-
tion case. In practice, however, multiple ISAC basestations will
operate in the same geographical region, frequency band, and
time, causing interference on each other for both the sensing
and communication functions. This motivates the coordination
among these distributed nodes to improve both communication
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and sensing performance. This ultimately leads to cell-free
ISAC MIMO systems, where distributed ISAC basestations
jointly serve the same set of communication users and sense
the same targets. With this motivation, this paper investigates
the joint sensing and communication beamforming design of
these cell-free ISAC MIMO systems.

A. Prior Work

Distributed antenna systems and interference management
in the multi-cell MIMO networks have been extensively stud-
ied in the literature [10]-[12]. With the possibility of more
extensive coordination among the basestations, coordinated
multi-point transmissions [13], and, more recently, with the
densification of the networks, cell-free massive MIMO [14]
have attracted significant interest. Cell-free massive MIMO is
a concept where multiple access points (APs) jointly serve
the user equipments (UEs) by transmitting messages to every
user. Note that it is a distributed multi-user MIMO approach,
and there are no limitations of cell boundaries. Due to its
potential, various aspects of cell-free massive MIMO have
been extensively investigated for further improvements [15]—
[20]. For example, precoding techniques for cell-free massive
MIMO are studied in [15], energy minimization in [16],
fronthaul limitations in [17], scalability aspects in [19], and
wireless fronthaul in [20]. Most of these studies, however, did
not include the unification of the sensing and communication
functions in cell-free massive MIMO networks.

The literature for joint sensing and communication (JSC),
also called dual-functional radar-communication (DFRC), has
mainly focused on the single node (basestation) scenarios
[21]-[25]. For example, the design of the JSC waveform is
studied in [21]. Specifically, the author investigated the JSC
waveform design for correlated and uncorrelated waveforms
and the trade-offs between communication and sensing. The
authors in [22] proposed sensing post-processing for JSC
systems. For beamforming, the work in [23] investigated
the JSC beamforming design of a co-located MIMO system
with monostatic radar that serves multiple users. The hybrid
beamforming design for OFDM DFRC system is studied in
[24]. The optimal beamforming solution for JSC with and
without sensing signal’s successive interference cancellation is
provided in [26]. Along a similar direction, [25] formulated an
outage-based beamforming problem and provided the optimal
solution.

More relevantly, JSC with distributed nodes (basestations)
has been investigated in a few papers [27]-[30] for power
allocation and beamforming. In most of them, however, each
user is served by a single AP [27]-[29]; hence, these studies



focused on the interference and not considered a fully cell-
free MIMO setup. For example, [28] proposes a transmit
and receive beamforming optimization for JSC in a single
basestation multi-user scenario, where the signals from a
different cell are used to improve the sensing performance
without communication interference. In [27], a power alloca-
tion problem for JSC is formulated. The problem, however,
assumes a single antenna system, and every UE is served by a
single AP. In [29], the authors proposed a JSC beamforming
optimization for maximizing the detection, however, this work
only relied on each AP serving a single UE.

As the more relevant studies, the optimization of the JSC
power allocation for cell-free massive MIMO has been in-
vestigated in [30]. The authors in this work adopted fixed
beam designs, i.e., regularized zero beamforming for the
communication with the sensing beamforming in the nullspace
of the communication channels without further optimization,
and focused on optimizing the power allocated to these beams.
For the solution, they proposed a convex-concave procedure.
In [31], the authors extended the work in [30], and included
multiple targets, cluttering, and the effect of direct paths
from different APs in sensing. For the beamforming in cell
free ISAC systems, in our prior work [1], we investigated
joint beamforming design, presented the optimal solution, and
compared it with different beamforming strategies. In the
similar direction, [32] formulated a beam pattern matching
problem and presented an optimization solution. In [33],
the authors optimized the beamforming for the detection
probability in synchronous and asynchronous systems. [34]
investigated beam design with security, and [35] provided
more on the cell-free analysis with beam design, AP selection,
and asymptotic analysis. Since cell-free ISAC MIMO systems
rely mainly on beamforming in their dual-function operation,
it is very important to investigate the design of these JSC
beams. With this motivation, we propose and compare various
beamforming and power allocation strategies, including beam-
forming optimization, for the cell-free ISAC MIMO systems,
and present a deeper analysis on the optimization and sensing
streams.

B. Contributions

To investigate the JSC transmit beamforming in cell-free
massive MIMO systems, in this paper, we consider a system
model with many APs and UEs, where the APs jointly
serve the UEs and sense the targets in the environment. APs
transmit communication streams to serve users and sense the
target, one stream for each user, and a generic number of
sensing streams, whose number is to be investigated in the
paper. With this model, we formulate beamforming and power
allocation problems, develop various solutions, and investigate
the number of sensing streams required to achieve the full
potential. Our contributions in this paper can be summarized
as follows:

o For beamforming, we first present two baseline strate-
gies that we call communication-prioritized sensing and
sensing-prioritized communication beamforming. In these
strategies, either the sensing or the communication beam-

forming is prioritized, hence, designed without account-
ing for the other function (e.g., sensing beams are
designed without any consideration of communication,
maximizing the sensing performance). The beamforming
of the other function is designed in a way that does not
affect the performance of the higher-priority function.

o For the sensing-prioritized beamforming, we develop a
communication beamforming optimization approach for
the given sensing beamforming vector. In this approach,
we cast the communication beamforming design problem
as a convex second-order cone program and provide the
optimal solution, which can be obtained using convex
solvers.

« Next, we investigate the joint communication and sensing
beamforming design. For this, we formulate a JSC beam-
forming problem that aims to maximize the sensing SNR
while satisfying the communication SINR constraints. We
then re-formulate this problem as a non-convex semi-
definite problem (SDP) and apply semi-definite relaxation
(SDR) to find the optimal beamforming structure for a
large set of classes.

o As a point of interest, we analyze the number of sensing
streams required for achieving the maximum sensing
performance given the communication and power con-
straints. Specifically, we derive the dual problem of the
SDR, and evaluate the rank constraints on the sensing
beams. Our analysis revealed that the number of sensing
streams is hard-limited by the number of APs, and this
limit can be further refined on the specific assumptions
on the channels.

o Finally, for comparison, we develop a power allocation
problem for the given beamforming vectors. Specifically,
with pre-determined beamforming coefficients, we con-
vert our JSC beamforming problem to a power allocation
problem. This problem is also an SDP, and we develop a
solution using SDR.

We have extensively evaluated the proposed approaches
and showed that the JSC beamforming design provides bet-
ter sensing performance than the sensing-prioritized solution
while achieving the communication rates provided by the
communication-prioritized solution. This is thanks to the co-
design of the communication and sensing functions. Further,
the JSC beamforming design overperforms the JSC power allo-
cation for the regularized zero-forcing beams with a significant
sensing SNR gain while providing the same communication
rates. This shows the advantage of the joint beamforming
optimization, making it desirable for future cell-free ISAC
MIMO systems.

Organization: In Section II, we present our system model
with the communication and sensing objectives. In Section III
and IV, we respectively present the communication- and
sensing-prioritized beamforming approaches. Then, we de-
velop the joint sensing and communication beamforming op-
timization in Section V, and the power allocation formulation
and solution in Section VI. Finally, in Section VII, we provide
the numerical results evaluating the developed solutions and
present our conclusions of the paper in Section VIII.

Notation: We use the following notation throughout this
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Fig. 1. The system model with the joint sensing and communication
transmissions is illustrated. The APs serve multiple users while aiming to
sense the target.

paper: A is a matrix, a is a vector, a is a scalar, A is
a set. AT, A" A* A-! Al are transpose, Hermitian
(conjugate transpose), conjugate, inverse, and pseudo-inverse
of A, respectively. ||a|| is the lo-norm of a and ||A||; is the
Frobenius norms of A. I. CA/(p, X) is a complex Gaussian
random vector with mean g and covariance 3. E[-] and ®
denote expectation and Kronecker product, respectively. ST is
the set of Hermitian positive semidefinite matrices.

II. SYSTEM MODEL

We consider a cell-free massive MIMO ISAC system with
M access points (APs) and U communication users, as
illustrated in Fig. 1. In the downlink, and without loss of
generality, we assume that a subset M, (out of the M APs)
are transmitting communication and sensing waveforms to
jointly serve the U users, where |M;| = M,. Simultaneously,
a subset M, (out of the M APs) is receiving the possible
reflections/scattering of the transmitted waveforms on the
various targets/objects in the environment, with |[M,.| = M,..
It is important to note here that the subsets M; and M,. may
generally have no, partial, or full overlap, which means that
none, some, or all the APs could be part of M; and M,
and are simultaneously transmitting and receiving signals. It
is important to note that the receiving APs have access to
both communication and sensing waveforms, and use both
to sense the target. The transmitting and receiving APs are
equipped with N; and N, antennas. Further, for simplicity, all
the APs are assumed to have digital beamforming capabilities,
i.e., each antenna element has a dedicated radio frequency (RF)
chain. The UEs are equipped with single antennas. The APs
are connected to a central unit that allows joint design and
processing, and they are assumed to be fully synchronized for
both sensing and communication purposes. We further assume
perfect CSI is available at at the APs.

A. Signal Model

In this subsection, we define the joint sensing and commu-
nication signal model for the downlink transmissions. The APs
jointly transmit U communication streams, {2, [¢]}ncu, and @
sensing streams, {z4[{]}4c0, Where Q = {U+1,..., U+ Q}

and with ¢ denoting the ¢’s symbol in these communica-
tion/sensing streams ! For ease of exposition, we also define
the overall set of streams as S = U U Q = {1,...,S} with
S = U+ Q. If x,,[f] € CN¢*! denotes the transmit signal
from the transmitting AP m due to the ¢-th symbol, we can
then write

Xl = D Fru@ull] + Y Emgzgll] = e[l (1)

uel qeQ seS
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where z5[¢] € C is the ¢-th symbol of the s-th stream, f,,; €
CNex1 s the beamforming vector for this stream applied by
AP m. The symbols are assumed to be of unit average energy,
E[|z;|?] = 1. The beamforming vectors are subject to the total
power constraint, P,,, given as

E[me[é]||2] = Z ”fm8H2 < P 2)
sES

Further, by stacking the beamforming vectors of stream s of
all the APs, we define the beamforming vector f
f,=[tL ... f£f,]" eCMNe 3)
For each stream s, we denote the sequence of L transmit
symbols as x, = [z,[1], ... ,xS[L]]T. Given this notation, we
make the following assumption, which is commonly adopted
in the literature [23]: The messages of the radar and communi-
cation signals are statistically independent, i.e., E[x x/] =1
and E[x;x2] = 0 for 5,5’ € S with s # s'. Note that the
radar signal generation with these properties can be achieved
through pseudo-random coding [36]-[39] and stochastic radar
waveforms [40]. In addition to satisfying the described sta-
tistical properties, such waveforms provide further advantages
such as improved range/Doppler-resolution, better detection
probability and separability, thanks to the desirable cross-
correlation and auto-correlation properties, lower co-channel
interference (with communication messages and each other).

B. Communication Model

We denote the communication channel between UE u and
AP m as h,,, € CV+*! Further, by stacking the channels
between user u and all the APs, we construct h,, € CMeNex1,
Next, considering a block fading channel model, where the
channel remains constant over the transmission of the L
symbols, we can write the received signal at UE u as

v = > bl xnll + n,
meM;

Z hﬁ{ufvrbuxu[g]+ Z Z hfzufmu'xu’[g]

meM; uw eU\{u} meEM;

Desired Signal (DS) Multi-user Interference (MUT)

+ Z Z hﬁufquq[é] + ny (],

qgeEQ mEM;

Noise

Sensing Interference (SI)

4)

I'Similar to [23], [26], [30], the communication streams primarily aim to
serve users and one stream is allocated for each user. Meanwhile, the sensing
streams only aim to sense the target.



where n,,[f] ~ CN(0,02) is the receiver noise of UE u. Then,
the communication SINR of UE u can be obtained as

E[|DS|*] .
E[[MUI|?] + E[|SI|*] 4 E[[Noise|]

SINR® = ®)

This SINR can be expressed in terms of the individual beam-
forming variables, {f,,s}, as given in (6). Additionally, we
write this expression in terms of the stacked vector variables
of each UE u as in (3), as

[t |”
2 2 .
e fuy D Ew "+ 20 o 1T Eg|" + 07,

SINRY® = (7)

C. Sensing Model

For the sensing, as we assume the receiving APs have the
knowledge of both communication and sensing signals, they
are both utilized for sensing. As the sensing channel model,
we consider a single-point reflector, as commonly adopted in
the literature [30], [41]. Specifically, the transmit signal is
scattered from the single-point reflector and received by the
receiving APs in M,.. With a single path model, the channel
between the transmitting AP m, and the receiving AP m,
through the reflector is defined as

G, = amtmra(emr)aH (Om, ) ()

where aun,m, ~ CN(0,(2,,, ) is the combined sensing
channel gain, which includes the effects due to the path-loss
and radar cross section (RCS) of the target. In this model,
we assume that the instantaneous value of ayy,y,, 1s not
available, but its statistics are known. This can be achieved
by targeting a specific position (leading to known angles and
distance/ToA/path-loss) with known zero-mean RCS distribu-
tion, similar to [29], [31]. a(#) is the array response vector.
The angles of departure/arrival of the transmitting AP m; and
receiving AP m,. from the point reflector are respectively de-
noted by 6,,, and 6,, . We consider the Swerling-I model for
the sensing channel [42], which assumes that the fluctuations
of RCS are slow, and the sensing channel does not change
during the transmission of the L sensing and communication
symbols in x;.

In addition to the channel due to the reflections from the
target, direct channels between the transmitting and receiving
APs also contribute to the received signal. This effect can be
classified in two folds: (i) If the AP is both receiving and
transmitting (i.e., full-duplex), the self-interference effects are
observed. (ii) The direct channels between the transmitting
AP and receiving AP at different locations. For these, we
define the channel between the transmitting AP m; € M,
and receiving AP m, € M, as Hy,, . € CN»*Nt Note that
if it corresponds to the self-interference channel if m; = m,..
With these definitions, the signal received at AP m,. at instance
£ can be written as

5’5?3,, [¢] = Z (G, + Hiym, ) X, [£] + By, [(] )
miEM;y

where n,, [(] € CM is the receiver noise at AP m, and
has the distribution CA (O,GEMI). Here, we assume that the

channels between transmitting and receiving APs, H,,,,,, , are
known at the corresponding receiving APs (or their estimation
is available). This can potentially be achieved through an
additional estimation step, where the APs transmit their pilots,
and the receiving APs estimate the channels. This step can
possibly be incorporated into the channel estimation phase
of cell-free massive MIMO systems, where the pilots from
the APs are jointly transmitted for UEs to estimate their
channels. With this assumption, and with the knowledge of
the transmitted signals, it is now possible to apply interference
cancellation (clutter cleaning) at each receiving AP.

We note that although from the mathematical perspective,
it is possible to almost fully cancel the interference with
the provided linear model, in actual systems, the interference
is usually stronger than the desired radar signals. Therefore,
the receiver front-end including the amplifiers and analog-to-
digital converters may become saturated and introduce non-
linear distortion effects. These effects could possibly be more
pronoun in self-interference (full-duplex case) compared to
separate transmitter/receiver links. In this paper, however, our
model is generic, thus, we do not particularly distinguish
between these cases and deepen the analysisz. We, however,
assume that the residual interference can be modeled as zero
mean additive white Gaussian noise, similar to [43]-[45] in
the full-duplex literature. After the interference cancellation,
we can write the received radar signal as

YSAL),‘ [@] = Z Gy, Xy [@] + N0y, [E]
meEM;
= Z amtmra(emr)aH (Om,) X, [€] + 1, [ 4],
myEMy

(10)

where n,,, [(] ~ CN(0,¢2 1) is the joint noise including the
receiver noise and residual. Next, to write the received radar
signal due to the L symbols in a compact form, we introduce

(an
(12)

Fo = [fr, ...
X:[Xl,..‘

7fmS] S CNtXS»
,XS]T € (CSXL.
Then, we can write the transmit signal from each AP my, in
(1), due to the L symbols as

X, = Fp, X € CNexL, (13)

With that, we can re-write the sensing signal in (10) at each
receiving AP m,., due to the L symbols, in a compact form
as

Yg:z)r = Z amtmra(emr)aH(emt)Fmt X+ Ny,
e Gy, (14)
£Gon,

with G,,,, denoting the beam-space sensing channel of the
receiving AP m, and the receive noise matrix N,
[, (1], o, [L]].

2There are several works in the literature with the focus on these scenarios.
For example, the target detection performance with inter-link interference was
investigated in [31].
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To define a general sensing objective that is correlated
with the performance of various sensing tasks (e.g., detection,
range/Doppler/angle estimation and tracking), we adopt the
joint SNR of the received signals as the sensing objective.
This objective aims to maximize ratio of the signal power
reflected from the target to the noise, and essentially aims
to have more power through the target, making it easier to
distinguish from the noise. Although it is difficult to generalize
its relationship to various sensing tasks with different pre- and
post-processing, it is expected to exhibit monotonic behavior.
For example, for the detection, it was shown in [29], [33]
that the sensing SNR is monotonically increasing with the
detection probability. Here, we note that the use of the joint
SNR requires joint processing of the radar signal at the M,
sensing receivers. The sensing SNR can be given as

E [EmreMr émviuﬂ
B[S, ent, N, 7]

— ZmTGMT EthMt %tmr ‘aH(me)FthQ

a Zmr eM,. <72nr

SNR® =

)

15)

where the derivation is provided in Appendix A. Recall that

,Z,Hmy_ denotes the variance of the combined sensing channel
gain and g,%% is the variance of the radar receiver noise.
The sensing SNR is scaled with the contribution of all the
communication and sensing streams.

Our objective is then to design the cell-free communication
beamforming {f,},;, and the sensing beamforming {f;} o
to optimize the communication SINR and the sensing SNR
defined in (7) and (15). It is important to note here that, in
this paper, we focus on the beamforming design assuming
that the communication channel and the sensing target angles
are known to the transmit APs. Extending this work to
include imperfect channels/angle knowledge is an interesting
direction. In the next three sections, we present the proposed
beamforming strategies for communication-prioritized sens-
ing, sensing-prioritized communication, and joint sensing and
communication.

ITII. COMMUNICATION-PRIORITIZED SENSING
BEAMFORMING DESIGN

In this section, we investigate the scenario where commu-
nication has a higher priority. In this case, the communication
beams are already designed apriori (which may be via com-
monly adopted methods, e.g., zero-forcing), and the sensing is
designed to not affect the communication performance. Then,
the objective in this section is to design the sensing beams
to optimize the sensing performance while not affecting the
communication performance (i.e., not causing any interference
to the U communication users). Note that in this section and
the next section, Section IV, we adopt () = 1 since we have a

2 2 ’
! + ZqGQ ‘ZmGMt h%ufmq + 0-’121,

(6)

single sensing target 3. We also assume that the total power is
divided with a fixed ratio p, leading to Py, = pP,, for the com-
munication power and P, = P,, — P., for the sensing power.
This motivates further exploration of the joint optimization of
beamforming and power allocation, as presented in Section VI.
Next, we present two sensing beamforming design solutions
for the cases (i) when the communication users are not present
and when (ii) they are present.

Conjugate Sensing Beamforming: When the communica-
tion users are not present (i.e., U = 0), for example, during
downtimes, the system can completely focus on the sensing
function. In this case, and given the single target sensing
model, the conjugate sensing beamforming solution becomes
optimal, as it directly maximizes the sensing SNR. With this
solution, the sensing beamforming vectors can be written as

frg = (16)
where p,,, = P;, is the power allocated for the sensing beam.

Communication-Prioritized Optimal Sensing Solution:
When the communication users exist (i.e., U > 1), and
since the communication has a higher priority, a straight-
forward optimal sensing beamforming approach is to project
the optimal sensing beams (constructed through conjugate
beamforming) to the nullspace (NS) of the communication
channels. This way, the interference contribution of the sensing
beam to the communication channels is eliminated while the
sensing SNR is maximized within the communication null
space. Let H,, = [h,,1,...,h,p] € CV*V denote the full
channel matrix from the transmit AP m to all the UEs, then
the NS sensing beamforming can be constructed as

(I ~H,, (HIH,,)' Hg) a(f,)

£5 = \/Drmg (17)

(I ~H,, (HiH,,)" Hg) a(f,n)

’ ?
where we again set the allocated power p,,, = Pj as we
consider a single sensing beam.

IV. SENSING-PRIORITIZED COMMUNICATION
BEAMFORMING DESIGN

In this section, we consider the scenario where the sensing
has a higher priority. In this case, the sensing beams are al-
ready designed a priori (which may be via commonly adopted
methods, e.g., conjugate beamforming), and the communi-
cation does not degrade the sensing performance. Then, the
objective is to design the communication beams to optimize
the communication performance. It is important to note here
that an interesting difference between the communication and
sensing optimization problems is that while the sensing signals

30ur purpose in this section is to provide the baselines with communica-
tion/sensing priority. To that end, we leave further complicated designs beyond
a single sensing beam for future work.



could cause interference that degrades the communication
performance, the communication signals could generally be
leveraged to further enhance the sensing performance. Next,
we present two communication beamforming design solutions
for the cases when (i) the sensing target is not present and
when (ii) it is present.

Regularized Zero-forcing Beamforming: When the sens-
ing target is not present, i.e., ) = 0, a near-optimal commu-
nication beamforming design is the regularized zero-forcing
(RZF) [46]. This solution allows a trade-off between the multi-
user interference and noise terms of the SINR through a regu-
larization parameter A, which is added to the ZF beamforming:

-1
FRZF — </\I+ Z hu,h{j,> h.,,

u'eU

(18)

which then can be normalized to satisfy the power constraints,
e, fRAF = /Do (ERZF /|ERZE) - We here again adopt
Pmu = P /U with an equal power between the beams. For the
RZF, it is preferable to have a higher regularization parameter
in the scenarios with higher noise, and smaller in scenarios
with more interference. For further details, we refer to [46].
Sensing-Prioritized Optimal Communication Solution:
For the case when the sensing beam is designed a priori, we
derive a max-min fair rate optimal communication beamform-
ing solution. First, this max-min problem can be written as

(P1.1): max min SINR(®) (19a)
st Y fmull® < PG, Vme M,
ueU
(19b)

where the objective is quasiconvex [47] and shows a similar
structure to the optimal beamforming formulation for the cell-
free massive MIMO networks with only the communication
objective [18]. For a given minimum SINR constraint ~, (P1.1)
can be written as the feasibility problem

find  {f} (20a)
st. SINRY >~ Vuel, (20b)

> lfmall* < P5. ¥me M, (200)
ueld

(P1.2):

Here, we note that the SINR constraint (20b) is in
a fractional form. This, however, can be converted to a
second-order cone constraint. For this purpose, we can

. . 1 H 2
re-write the constraint as (1 + ;) |Zme/vl,, hmufmu| >

Zu’GM ’ZmGMt hﬁufmu' ’ + quQ ’ZmeMt hgufWI|2 +
03. Now, taking the square root of both sides, we can convert
the given form to a second-order cone constraint. The square
root, however, leaves an absolute on the left-hand side, which
is a non-linear function. This can be simplified as the real
part of the variable [46], since any angular rotation (e /%)
to the expression inside the absolute does not change the
value, i.e.. |3, caq, D2 fmu] = | e, B Emue ™| =
Re {Zme M, hgufmu}. This approach can be seen as select-
ing the optimal solution with a specific angular rotation from

the set of infinite rotations ) € [0,2n). Finally, we can write
the constraint (20b) as a second-order cone as follows

H
ZmEMt hmufWﬂ

1 H :
(1 + ) Re{ > hﬁufmu} > .
v meM; Zme/\/l,, hmufmS

Ouy

2y

When (20b) is replaced with (21), it results in a second-order
cone problem and can be solved by the convex solvers [48].
Using the bisection algorithm, the maximum SINR value, v*,
can be obtained by solving the convex feasibility problem
(20) for different values of « within a predetermined range
[¥min, Ymax]- This computes the optimal solution to (19).

V. JOINT SENSING AND COMMUNICATION:
BEAMFORMING OPTIMIZATION

A more desirable approach for cell-free joint sensing and
communication MIMO systems is to jointly optimize the
beamforming vectors for the sensing and communication func-
tions. Specifically, our objective is to maximize the sensing
SNR together with the communication SINR of the UEs.
Towards this objective, we reformulate (20) as a sensing
SNR maximization problem by (i) adding the sensing SNR
maximization as an objective to the feasibility problem, and
(ii) generalizing the minimum communication SINR limit, -,
individually for each UE with ~,,. Then, the JSC beamforming
optimization problem can be written as

(P2.1): max SNR® (22a)
st SINR® >, Vuel, (22b)

> sl < Py ¥me My, (220)
seES

where the objective, i.e., the maximization of the convex SNR
expression, SNR(S), is non-convex and the problem is a non-
convex quadratically constrained quadratic program (QCQP).
Hence, a similar approach to the beamforming optimization in
the previous section can not be adopted. The problem in (22),
however, can be cast as a semidefinite program, which allows
applying a semidefinite relaxation for the non-convex objective
[49]. With the relaxation, the problem becomes convex, and
the optimal solution can be obtained with the convex solvers.
Afterward, the solution to the relaxed problem can be projected
back into the space of the original problem, with a method
specifically designed for this purpose. In the following, we
present the details of our approach.

To reformulate (22) as an SDP, we first re-define the beam-
forming optimization variables as matrices: F = f,fZ, Vs €
S. Writing (22) in terms of F, instead of fy eliminates the
quadratic terms in the sensing SNR and communication SINR
expressions. This SDP formulation, however, by construction
introduces two new constraints: (i) The convex Hermitian
positive semi-definiteness constraint F, € ST, where ST is
the set of Hermitian positive semidefinite matrices, and (ii) the
non-convex rank-1 constraint rank(F) = 1. Further, we need
to write the problem (P2.1) in terms of these newly introduced



variables, {Fs}. For this purpose, we define the AP selection
matrix, D,,, € RMNtXMN: \where each element of this matrix
is given by

1 if (m—1)Ny + 1 <i <mN; with i = j,
Dinlij =

0 otherwise.

(23)
where the only non-zero elements of the D,, is the identity
matrix placed at the m-th cross diagonal N; x N, block
matrix. To write the sensing SNR in a compact form, we
define A =53, EmtDmt7KDCnt’ where A = aa’’ with
a=l[a0)",...,a(0x,) )", and G, = D00 can S
Now, we can write the objective of (22) (sensing SNR) in
terms of A as

TI‘(AESGSFS)
> Sh.

m.EM,.

SNR® = (24)

where the derivation is provided in Appendix B.

For the constraints of the problem in (22), we define
Q. = h,hf and re-write the SINR in (7) in terms of the
new variables as

Tr (Q.F.)
SINR(®) = uu .
w eU\{u} qeQ

(25)

With this, we can write the constraint in (22b) and the power
constraint in (22¢) as

(1471 Tr (QuF,) — Tr (Qu ZF) >o% (26)

seS

> Tr(D,,F.) < Py, Vme M, (27)

seS

Here, we notice that for the objective and constraints, we can
simplify the sensing variables by defining Fg = > qeo Fo»
since the sensing variables F, only appear in the defined
summation form. For the optimality of the problem, however,
this variable needs to have at most rank (), so that we can
construct () beamforming vectors*. Then, by collecting the
expressions together, we can write the SDP form of our
problem (P2-QCQP) as

(P2.1-SDP): ey Tr (AseZst> (28a)
st. (26) and (27), (28b)
F,eST Vuel, FgeSt
(28c¢)
rank(F,) =1 Yuel, (28d)
rank(Fo) < Q, (28e)

which can be relaxed by removing the rank constraints, i.e.,
(28d)-(28e). This relaxed problem (P2.1-SDR), defined as
(28a)-(28c¢), can be solved via CVX and convex SDP solvers
[48], [50]. Then, if the matrices obtained by this solution,

41f the rank of this variable is less than @, some of the beamforming vectors
are not needed, and can be selected as zero.

denoted by {F}, are rank-1, and F’Q is at most rank-Q,
then they are optimal for (28). The optimal user beamforming
vectors, f,,, in this case, can be obtained as the eigenvector of
F,. Similarly, {f;} can be constructed as the () eigenvectors
of F’Q For the case the user matrices are not rank-1, we
make the following proposition.

Proposition 1. There exists a solution to the problem (28),
denoted by {F'!} and ¥}, that satisfies rank(F.)) =1, Vu €

U and
b=Fo+> F,—-> F.

ueU ueld

(29)

where F'y and {F',} are the solutions of the SDP problem in
(P2.1-SDR). The communication beamforming vectors of this
solution can be given as

£/ = (h['F,h,)"*F,h,. (30)

Further, if rank(F5) < Q, the optimal sensing beamforming
vectors of this solution can be constructed by

7
fq =V )\q—U Uy-vu,

with \; and u; being the i-th largest eigenvalue of F’é and
the corresponding eigenvector.

The proof extends the solution in [23, Theorem 1], which
we provide in Appendix C. For rank(F{) < @, the so-
lution obtained is from Proposition 1 optimal. In the case
rank(F3) > Q, however, (31) will not lead to the optimal
solution. We will examine the performance of this approxima-
tion in Fig. 6. Next, we investigate the value of () required to
satisfy the optimality.

€1y

A. How Many Sensing Streams Do We Need?

In the formulations of (P2.1-SDP) and (P2.1-SDR) in Sec-
tion V, the number of sensing streams is kept generic with
the variable . In reality, however, it would be preferable to
have as few as possible sensing streams. To that end, it is
interesting to investigate how many sensing beams are needed
to achieve optimal sensing performance. For this objective,
we can further investigate (P2.1-SDR) to find the constraints
on the optimal sensing solution. Specifically, we attempt to
solve the problem (P2.1-SDR). Since this problem is convex,
it satisfies the strong duality [47], [51]. Then, we can derive

the dual problem as
> b = Y

B, <0 Yuell, Bg=0

(D2.1-SDR):  min
{Au}a{’/m}

s.t.

(32)

where {\, > 0}, {v,, > 0} are the Lagrangian coefficients
corresponding to the SINR and power constraints, respectively,

and
Z A Qur — Z Vm D,

B.=A+ /\u'Yfz:lQu -

uw €U\ {u} m
(33)
Bo=A-3 AQu—) vuDu. (34)
u' €U m



The derivation of the dual function is provided in Appendix
D. Further, we make the following remark on the definition of
the new variables in the dual problem.

Remark 1. From the definition of the new variables, B,, and
Byo, we also have the relation

B, =Bgo +Au(1+ 71:1)Qu~

Let us assume that there exists a feasible set of primal-dual
optimal variables, i.e., {F:}, F5, {\:}, {n},}, and the cor-
responding variables By, and {B}. With the Karush-Kuhn-
Tucker (KKT) conditions [47], we obtain the complementary
slackness for the semidefinite constraints

(35)

B;F;, =0 and BLFj = (36)
which shows that F'5 is in the nullspace of BG. We can further
refine this condition with the following proposition.
Proposition 2. The sensing beamforming matrix is in the
nullspace of A = v D,,. In addition, it is in the nullspace
of Qu for any user with X}, > 0.

Proof: We have

M1+, DTr (QUFY) = Tr (B — BH)FY)
=T (BFp)

< max Tr (B;Fg) =0,
Foro0

(37

where the first equality is due to definition (Remark 1), the
second equality by the complementary slackness condition
given in (36), and the latter inequality due to the multiplication
of the negative and positive semidefinite matrices.

This proposition shows that a sensing matrix will be in the
nullspace of stacked UE channels, h,, for every UE w that
satisfies the SINR constraint at the equality. On the other hand,
when the equality of the SINR constraint is not satisfied, we
have A} = 0 due to the complementary slackness condition
of the SINR constraint. This leads to By = BY as shown
in Remark 1. Combined with the complementary slackness
conditions in (36), it results in F7 and F being in the same
space defined as the nullspace of the channels of the UEs with
A > 0 and the sensing direction via A — > v} D,,. There
is, however, no enforcement towards the direction of the user
itself because A (147, ')Q, = 0. Then, this case is likely to
appear only if there is sufficient SINR with the transmission
towards the sensing direction from all the APs (e.g., the UE
and target are at the same location). Hence, it is trivial and
not of significant interest. With this observation, we focus on
the case with A7 > 0 for every UE.

In Proposition 2, we also have the nullspace of A —
> vr, Dy, to define the sensing matrix. We note that > v, D,
is a diagonal matrix with the diagonal of each block having
the same value v},.

Remark 2. The sensing SNR matrix, A, is a block diagonal
matrix of rank-1 blocks, i.e.,

A = diag(Ga(01)a (61), - .-, Cr,a(0ar,)a™ (01r,)).-

This fact can be seen by the definition of A =
> m,emt, GmiDm, ADy,,, where the multiplication of a ma-
trix from both sides with the selection matrix, D,,,, re-
sults in the block diagonal of the selected entries. Further,

(38)

with a slight abuse of notation, each block of the diagonal
A, = (mal0,,)a(0,,) = D, AD,,, is a weighted
outer product of an array response vector. Therefore, we have
rank(A,,,) = 1,Vm,; € M, and rank(A) = M,.

With Remark 2, we can further refine our space as A —
SviDy = > (A, — vhl,), where each component,
A,, — v} 1L, is a diagonal block. For v}, > 0, each of
these components can have a single nullspace vector f,,; =
a(f,,) if v, = (n. Note that this only constructs a part
of the sensing matrix, not the full domain f,. If v, # (.
the component is full rank, and the nullspace is empty. In
other words, the existence of sensing beams is independently
determined at each AP based on v}, and only available if
vk, = Cn. For any other v%, > 0, there is no sensing
stream. Then, the sensing beams can be written in the form of
£, = [mqa(61), ..., nmqa(0nr)] for some n,,, € C, and this
vector is in the nullspace of h,, for every UE with A} > 0. To
that end, further investigating the performance of the nullspace
sensing beam with the suboptimal beamforming solutions is
interesting. As an alternative to beamforming optimization, in
the next section, we develop a power allocation approach for
the pre-determined beamforming vectors. Before moving on,
we further conclude the limitations on the sensing streams.
Proposition 3. For v}, > 0 Ym € M, the maximum number
of sensing streams is limited by

rank(F5) < M. (39)

The proof follows Remark 2, where the minimum rank of
A->" vrD,, = (M, —1)N,, and its nullspace can have at
most M; dimensions. Further, we can refine the limit in the
case of random Rayleigh channels as follows.

Proposition 4. For v}, > 0 Vm € M, and hy,,, ~ CN(0,1),
the maximum number of sensing streams is limited by

rank(Fy) < max{M, — U, 0}. (40)

with probability 1.

The proof follows the fact that the probability of any h,
drawn from random Gaussian distribution can be spanned by
the space constructed by A — " vr D, with probability
0. Hence, each UE reduces the available dimensions for the
sensing stream with probability 1.

As shown in Proposition 3, the number of sensing streams
upper bounded by the number of APs. More interestingly, in
the case of Rayleigh channels, the number of sensing streams
is limited to M; — U, i.e., the difference between the number
of transmitting APs and UEs. From this result, if the number
of transmitting APs is smaller than the number of UEs, no
sensing streams is required. However, in the cell-free massive
MIMO regime where the number of APs is much larger than
the number of UEs, almost a single stream for each AP may
be required.

VI. JOINT SENSING AND COMMUNICATION: POWER
ALLOCATION WITH FIXED BEAMS

In this section, we investigate the power allocation along
our framework to compare with the developed beamform-
ing solutions. We emphasize that power allocation provides



several advantages over beamforming optimization: (i) The
power allocation problem needs to be solved over multiple
coherence blocks as it is mainly affected by the large-scale
coefficients. In contrast, changes in the channel due to small-
scale fading effects require optimization of the beamforming
vectors, leading to frequent updates. (ii) Power allocation
only requires a single coefficient (beamforming gain) for each
channel, and does not require the complex coefficients for each
antenna. This reduces the amount of information exchanged at
the fronthaul for the optimization, allowing a lower signaling
overhead. Similarly, with smaller number of optimization
variables, the computational complexity is reduced. These
advantages, however, come with the potential performance
loss from beamforming, which may make the beamforming
optimization more preferable depending on the other system
parameters.

Before moving on to the formulation, we note that the for-
mulated beamforming optimization problem jointly optimizes
the power along with the beams since the power constraints
of the beams are set to satisfy the power constraints at
each AP. Another interesting case with the cell-free massive
MIMO, however, is to allocate the power for pre-determined
suboptimal beams. For this purpose, in this section, we develop
a power allocation formulation for given beams. Differently
from the approach developed for power optimization in [30],
which adopts an iterative convex-concave programming ap-
proach and does not guarantee optimality, we maintain the
SDP framework of our paper and develop a power allocation
approach with the SDR relaxation. Although this approach
cannot provide an optimality guarantee with the relaxation, it
can provide an upper bound with the relaxation.

Mathematically, let us denote the pre-determined unit-power
beamforming vectors and power coefficients by {fmq} and
{Pmq}. With this notation, the beamforming vectors in the pre-
vious formulation in (28) can be written as f,,,, = \/Imfmq.
In this model, the fixed beamforming vectors can be selected
by the approaches given in Section III and Section IV. With
this definition, we can rewrite our JSC objective in terms
of the power variables of the beams, p,,,. Before moving
on, we also define the effective channel of UE w and AP
m due to the stream v’ as ppuw = hil £, and the
sensing channel gain due to the stream s of AP m as
Oms = |aH(0m)fmS|2Zm,eMT 2 . With this, we can

mm.,.

define the power allocation problem as

(P3.1a): max > > PrsOms (41a)
{pms} meM; seS
2
sto v YD VPmuPmun
meMy
2
2 Z Z VPmsPmus +0'Z
seS\{u} ImeM;
(41b)
> Pms < Py, Vm e M, (41c)

sES
This problem, however, is difficult to solve since (i) includes
the square root of the power terms, i.e., {\/Pms}, and (ii)

contains the summation inside the absolute terms. For (i), we
can write the problem in terms of the square root power terms,
{\/Pms}- For (ii), we define the per-stream vector form of
the power coefficients by stacking the power coefficients of
every AP for a given stream, similar to the one applied in
(7), given as ps = [\/P1s,---,\/Prs| - We note that this
variable is defined in terms of the square-root of the power
variables. To complement this variable in our new formulation,
we also define the vectors pus = [P1uss - - - » PMus), and @s =
[01s, - - -, 0Mms]. In addition, we define the AP selection matrix
for the power allocation formulation, D,, € RMXM  where
each element of this matrix is given as [D,,|;; = 1ifi=j =
m, and 0 otherwise. This variable allows rewriting the power
constraint in terms of the stacked variable. Then, we can re-
write the problem in terms of the newly defined variables as

(P3.1b):
max (P ©ps)’os (42a)
{ps} ses
_ 2 2
st vt Pepw| > D PIpu] +ol, Vuel,
seS\{u}
(42b)
~ 2
S |Pups| < Py ¥mem, (42¢)
seS

where the problem is a non-convex QCQP due to the max-
imization of the sensing SNR, which is a quadratic func-
tion of the variable p. Similar to the Section V, we can
transform it into an SDP and apply SDR. For this purpose,
we define the new optimization variables for the SDP, i.e.,
P, = pSpST, which, by definition, introduces three constraints
on the problem (i) The convex symmetric positive semi-
definiteness constraint P, € S*, where St is the set of
symmetric positive semidefinite matrices, (ii) the non-convex
rank-1 constraint rank(P,) = 1, (iii) The matrix P is
non-negative since it is outer product of power values. To
complement this variable in our formulation, we also define
Tus = puspll, and T, = diag(g,). Then, (42) can be written
as an SDP in terms of these variables, given by

(P3.1-SDP):
max Tr (P,T (43a)
ny LR
st 7, Tr(Puluw) > Y Tr (P + 0y,
s€S\{u}
(43b)
S Tr (Psf)m) <P, VYmeM, (43c)
seS
P, cST, P, >0 (43d)
rank(P,) =1 (43e)

The given problem is non-convex due to the rank-1 constraint.
To obtain a convex problem, we apply SDR by removing this
constraint. Then, the relaxed formulation for the power allo-
cation, denoted as (P3.1-SDR), can be given by the equations
(43a)-(43d). The solution to (P3.1-SDR) can be obtained by
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Fig. 2. The simulation placement is illustrated. For different realizations, the
AP positions are fixed. In (a), the UEs and target are randomly placed over
the y-axis, while in (b), the UEs and target are randomly placed over the
square area of 100mx 100m.

the convex solvers. This, however, only results in the matrices
{P?}, which is not necessarily rank-1, and the reconstruction
of the individual power variables, {p}}, is required.

To reconstruct the solution, one can apply a heuristic
approach inspired by the solution in Section V or develop
different approaches with the randomization techniques [49].
For our purposes of evaluating the beamforming against the
power optimization, we utilize a rank-1 heuristic approach,
where we take the most significant eigenvector (multiplied by
the square root of its eigenvalue) as the solution. All elements
of this eigenvector is necessarily positive thanks to Perron-
Frobenius theorem [52]°, and the eigenvalue is positive due to
semi-definiteness of this matrix. With this rank-1 approach,
the available power at the APs may not be fully utilized.
For that, by taking advantage of the NS sensing solution®,
we allocate remaining power from communication to sensing
without introducing any additional interference. In addition
to this solution, we also utilize the solution obtained by the
(P3.1-SDR), which provides an upper bound on the power
optimization. With the solution completed, we next evaluate
our results.

VII. RESULTS

In this section, we evaluate the performance of the proposed
beamforming solutions for cell-free ISAC MIMO systems. For
this setup, we compare the following solutions:

(1) NS Sensing - RZF Comm which designs the sensing
beam as conjugate beamforming projected on the null
space of the communication channels as in (17) and
implements the communications beams according to the
RZF design in (18).

(i) NS Sensing - OPT Comm which has the same sensing

beam design as in (i) but designs the communication

beam based on the max-min optimization in (20).

CB Sensing - OPT Comm which first designs the

sensing beam as the conjugate beamforming in (16) and

then designs the communication beams to solve the max-

min optimization in (20).

(iv) JSC Beam Optimization which implements the commu-
nication and sensing beams based on the SDR problem
(P2.1-SDR) and Proposition 1, which jointly optimizes
the beamforming vectors based on the communication
and sensing functions.

(v) JSC Power Optimization which implements the com-
munication and sensing beam powers based on the SDR
problem in (P3.1-SDR) that jointly optimizes the power
coefficients for the given beams along with a rank-1
heuristic approach by taking the most significant eigen-
vectors as the solution. The pre-determined beamforming
vectors are taken as in the (i) NS Sensing - RZF Comm
approach.

(vi) JSC Beam SDR UB which applies the matrix solution
for the communication and sensing beams based on the
SDR problem in (P2.1-SDR). There is no rank constraint
on the beams; hence, it is an upper bound.

(vii) JSC Power SDR UB which applies the matrix solution
for the communication and sensing beam powers based
on the SDR problem (P3.1-SDR). There is no rank
constraint on the power variables; hence, it is an upper
bound.

(iii)

A. LoS Channels

In particular, we consider a scenario where M; = M,
with two APs placed at (25,0) and (75,0) in the Cartesian
coordinates, as shown in Fig. 2(a). Each AP is equipped with a
uniform linear array (ULA) along the x axis of N, = N, = 16
isotropic antennas. At y = 50m, we randomly place one
sensing target and the U = 5 communications users along
the x-axis. Specifically, the = coordinates of these locations
are drawn from a uniform distribution in [0, 100]. For the
communication channels, we adopt a LOS channel model
and take 02 = 1. For the sensing channels, we adopt the
parameters g,znr =1 and (,m, = 0.1. The transmit power of

u

5The Perron-Frobenius theorem states that a non-negative square matrix
has an eigenvalue of its spectral radius, and the corresponding eigenvector is
non-negative.

SRecall that the NS sensing does not introduce any interference to com-
munication, since the sensing beam is in the nullspace of the communication
channels, i.e., hﬂwamq =0.
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Fig. 3. Performance of the solutions for different power allocation ratios for
the communications and sensing. The proposed JSC optimization provides a
significant gain for sensing while satisfying the best communication SINR.

the APs is P,, = 0dBW and the number of sensing streams
@ = 1. In the following, we average the results over 1000
realizations.

1) Providing NS Sensing - OPT Comm SINR for All UEs:
With the defined setup, we first focus on an equal rate case, i.e.,
v, 1s the same for every UE. For the selection of this value,
we adopt the minimum UE SINR obtained from solution (ii).
Further, we do not include the power optimization solution as
it is not able to satisfy the SINR constraints for most cases
with v > 0.2.

Sensing and Communication Power Allocation: We first
investigate the sensing and communication performance for
different power allocation ratios. Specifically, in Fig. 3, we
show the sensing SNR and minimum communication SINR
of UEs achieved by the different beamforming solutions for
different values of p € (0,1). It is important to note here
that for the beamforming solutions (i)-(iii), the communication
and sensing beams are separately designed, and we directly
allocate the communication and sensing powers based on the
ratio p. The JSC beam optimization solution (iv) implements
the beamforming design in Proposition 1, which optimizes
both the structure of the beams and the power allocation.
Therefore, and for the sake of comparing with the other
approaches, we plot the JSC optimization curve in Fig. 3
by setting the communication SINR threshold to be equal
to the achieved SINR by solution (ii). This still respects the
total power constraint, which is taken care of by (27). As
seen in the figure, the first two solutions, (i) and (ii), achieve
better communication SINR and less sensing SNR compared
to the solution (iii). This is expected as the solution (iii)
aims to maximize the sensing performance, irrespective of
the communication, and hence, it causes some interference
to the communication users. Interestingly, while achieving the
best communication performance of the separate solutions, the
Jjoint solution provides very similar sensing performance to the
MF sensing. This highlights the gain of the developed JSC
beamforming design.

Target distance to closest UE: To further investigate how
the different beamforming approaches impact the trade-off
between the sensing and communication performance, we
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Fig. 4. Performance of the solutions versus the distance between the target and
closest AP. The proposed JSC optimization provides almost a constant sensing
SNR for different distances, with a significant gain over the NS solutions.

evaluate this performance versus the distance between the
sensing target and closest communication UE in Fig. 4. Note
that, intuitively, as the sensing target gets closer to the com-
munication users, the overlap between the communication and
sensing channels’ subspaces increases, which can benefit or
penalize the communication and sensing performance depend-
ing on the beamforming design. In Fig. 4, we set the power
ratio as 0.5 for the communication and sensing operation. This
figure shows that for the smaller distances/separation between
the sensing target and communication users, the conjugate
beamforming sensing solution (solution (iii)) optimizes the
sensing performance but causes non-negligible interference to
the communication, which significantly degrades its perfor-
mance. On the other side, solutions (i) and (ii), which prioritize
the communication and keep the sensing beamforming in
the nullspace of the communication channels, optimize the
communication SINR and degrade the sensing SNR. For the
SINR constraint of the JSC optimization, we again adopt the
SINR obtained by solution (ii), which achieves the best com-
munication performance. Hence, the achieved communication
SINR of this solution and JSC beam optimization are the same.
The sensing SNR, however, enjoys the advantage of the joint
beam optimization. Specifically, it provides almost a constant
sensing performance for different target-closest UE distances:
Achieving a close sensing performance to solution (i) when
the separation between the sensing target and communication
users is small and exceeds the performance of all the other
three solutions when this separation is large, which highlights
the potential of the joint beamforming design.

2) Providing NS Sensing - RZF Comm SINR for each
UE: Now, to further investigate the performance of the joint
optimization, we select each +, individually as their SINR
obtained from solution (i). Differently from the previous
approach (minimum RZF rate), we test the imbalanced rates
and the gain concerning solution (i) while satisfying the same
SINR values. In Fig. 5, we provide the closest distance figure
with these SINR constraints. In the figure, the beamforming
(with @ = 0) and power solutions with corresponding upper
bounds, (iv) with (vi) and (v) with (vii), achieve the same
results, hence only (iv) and (v) are illustrated. Compared to
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Fig. 5. Performance of the mean SINR versus the distance between the target
and closest AP. The optimizations are carried out to satisfy individual rates
achieved by RZF. A similar pattern to the previous case is observed.

the previous figure, the mean SINR of solution (i) shows less
degradation with larger distances, thanks to being able to ex-
ploit the imbalance for the mean rates. On the other hand, the
beamforming optimization (iv) achieves the same SINR and
provides a significant sensing SNR gain over all other solutions
without any sensing beams, as indicated by Proposition 4. This
shows a similar advantage to the previous case. For very small
target-closest UE distances, (iv) the beamforming optimization
is worse for sensing than (iii) CB Sensing - OPT Comm,
which cannot achieve similar communication SINRs due to the
high interference. At the communication part, (v) the power
optimization solution achieves higher average communication
SINR with very close distances since allocating the power
onto the UE with the closest distance provides more gain for
sensing than the NS sensing beam. In the general case, how-
ever, (iv) the beamforming optimization provides significant
sensing gain over all the solutions, showing a similar pattern
to the previous case.

B. Rayleigh Channels

As we have only investigated a simplified setup so far to
examine the effects, we now provide a more realistic setup.
In this setup, the AP and UEs are placed over a square area
of 100mx100m. We utilize the f. = 28GHz band and place
My = M, = {5,10} APs, each equipped with a ULA of
N; = 8 isotropic antennas. To show the need for additional
sensing streams, based on our observations in Section V, we
take the minimum number of UEs as 2. The setup is illustrated
in Fig. 2(b). For the path-loss, we adopt the 3GPP UMi path
loss [53] given as

PL = 22.4 4 35.3log, o (distance) + 21.3log,o(f.) + X (44)

where X is the shadow fading effect determined by a Gaussian
random variable zero mean and standard deviation 7.82dB.
Further, we assume Rayleigh fading for the AP-UE channels.
The receiver noise at the UEs is taken as —135dBm. To
evaluate the performance in this setup, we set the minimum
communication SINR threshold as 10dB for all UEs.

In Fig. 6, we show the achieved sensing SNR and com-
munication SINR values with different numbers of UEs. As
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Fig. 6. Performance of the SDR-based optimization solutions with varying
number of sensing streams and number of UEs and M = (a) 5, (b) 10 APs.

expected from Proposition 4, we need Q < M — U streams to
achieve the beamforming upper bound. To that end, the sensing
SNR provided by any beamforming optimization (iv) curve
with Q = M — U achieves the same value, while satisfying
the communication constraints. This boundary seems tighter
for small number of APs (M; = 5) in Fig. 6(a), while it is
relaxed slightly with more APs (M; = 10) in Fig. 6(b). The
power optimization perform better for the small number of
UE:s for sensing, but the performance degrades as the number
of UEs increases. This is primarily due to the increased power
allocated to communication in order to satisfy the UE SINR
requirements, which does not contribute sufficiently to sensing.
In addition, in Fig. 6(b), we note that the provided heuristic
rank-1 power optimization solution slightly violates the SINR
constraints for large number of UEs, and better heuristic meth-
ods for the rank-1 constructions may be required. However,
we leave this for future work, as the focus of this paper is
to investigate JSC beamforming, and also compare it with the
potential of power allocation, which is well demonstrated by
the SDR solution (power optimization upper bound). As shown



in the figure, adding sensing streams can provide significant
advantages for the cell-free massive MIMO systems, and this
can allow further gain over the suboptimal beams with power
allocation.

VIII. CONCLUSION

In this paper, we investigated downlink beamforming for
joint sensing and communication in cell-free massive MIMO
systems. Specifically, we designed communication-prioritized
sensing beamforming and sensing-prioritized communication
beamforming solutions as the baseline. Further, we have devel-
oped an optimal solution for the JSC beamforming. The results
showed the advantage of the joint optimization, where the
developed JSC beamforming is capable of achieving nearly the
SINR of the communication-prioritized sensing beamforming
solutions with almost the same sensing SNR of the sensing-
prioritized communication beamforming approaches.

APPENDIX
A. Derivation of the Sensing SNR

The expectation of the nominator can be simplified as

] S e xH] )
mr-EM,
- L riERee )] e
mpeEM,
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eEM,.
_LI
- L Z Z <Tr]E[ mtm,‘af[ntmr}
myEM, miEeM, (48)
S TrIE[Gmtm,,GZ;m,})
myeM\{m:}

where (46) and (47) are obtained by applying the expan-
sion of the Frobenius norm, interchanging expectation and
trace, and permutating the inner terms of the trace opera-
tion several times. To obtain (48), we apply the definition
GmT = th Gmt,m given in (14), and re-organize the
multiplication terms. Further, for (48), due to the expectation
over the random variables {ay,,.,,. } and independence of

them, we have E émtmréfﬂtm = 0, which makes the
latter line of (48) zero. For the former, we have
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(50
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For the denominator, we can write

L
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Finally, combining (48), (52), and (53) in (15), we obtain the
result.

B. Derivation of the Sensing SNR in SDP form

To simplify the sensing SNR expression given in (15) in the
SDP form, we can write the nominator as
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where we obtain (56) by the definitions of a, D,,,, and
f,, (57) by |X|? = Tr(XXH), (58) by cyclic permuta-
tion property of the trace operation and the definitions of
F, and A, (59) by rearranging the summations and defin-
ing Cn, = DM, fm m,» and (60) by defining A =
theMt CmtDmtAD

C. Proof of Proposition 1

This extends the proof in [23]. For this purpose, we first note
that in the problem formulation in (P2.1-SDR), the sensing
variable, F' o, are utilized together as a summation of all of
the streams, both in the objective and constraints. Hence, if we
define F = > s€S F., we can eliminate the sensing term F g,
and apply the optimization in terms of the user streams F,,
and F. To that end, we re-formulate the problem (P2.1-SDR)
as

max_ Ir (AF) (61a)
{F.}.F

(147, ") Tr (QuF.) — Tr (Q.F) > 02, Yuel

(61b)

Tr (D,,F) = P, Vm e M, (61c)

F, ST, Vuel, (61d)

FfZFueSﬂ Fest. (61e)

ueU



Let us denote the variables obtained by the solution of this
problem by {F!} and F’. Using this solution, we aim to
construct an alternative optimal solution of rank-1. For this
purpose, we construct the following rank-1 set of solutions
F'=F, F/ =¢/(tf)", ' =b’F, h,) ?Fh,.
(62)
whose optimality needs to be proved. For this, we need to
check if (i) the value of the objective is the same and (ii)
the constraints are satisfied. First, the objective only contains
the summation variable and provides the optimal value by
definition. For (61b), we define v, = (hZF’ h, )~ 2, and write
Tr (Q.F)) = Tr(h,2hfF, h,hiF7) = Tr(Q.F)),
where we used the cyclic permutation property of the trace
and F/7 = f/f' = F/. With the addition of F” = F’,
(61b) is satisfied. Similarly, the constraints (61c) and (61e)
are already satisfied by F” = F’. Further, (61d) and the
solution being rank-1 are also satisfied by the definition of
F! in (62) For (61e), we have vH(F! — F!\v = vHiF!v
(hH F,h,)" ! |vIF, hu From the Cauchy Schwarz in-
equallty, we also have (VI'F/v)(hF,h,) > |[v/F,h, ‘
Combining these two equations, we obtaln v (F’ Fliv >
0, which leads to v F!’v > 0 since it is the summation of two
semidefinite matrices, ¥/, — F// and F! . Finally, (61e) can be
shown via F”—Zueu F! = F/_Zueu F, 4> cu(F,—F7)
which again leads to the summation of semidefinite matrices.
Finally, for constructing the sensing matrices of the solution,
we want to find () rank-1 matrices whose summation is
> 40 F;’ . For this purpose, we can uti/lize the eigendecompo-
sition, i.e., > o Fy = UAUH = 23:1 /\q/uq/uh,r, and take
the largest ) elgenvectors as the beams via f” VA ug.
Here, it is important to note that it is only p0551ble if the rank
of the summation, Q' = rank(}, .o Fy), is smaller than or
equal to the number of the sensing streams, Q.

D. Derivation of D2.1-SDR

For the dual of (P2.1-SDR), we first write the Lagrangian
function as follows.

LHEFu}Fo {Zu}, Zo, {Au} {vm})
—ZTr (AF,) + Tr (AFQ) +Z>\ (1+~,Y) Tr (Q,F.)

_ZZ)\U/Tr QuF.) —ZAu/Tr (QuFo)
D R B LN

+ ) P+ Tr(Z,Fy) + Tr (ZoFg)

- Z VTt (D, Fo)

(63)

where {A\,} >0, {v;n} >0, {Z,} = 0, and Zg = O are the
Lagrangian variables corresponding to the SINR constraints,
AP power constraints, and the semidefiniteness constraints
for the user matrices and the sensing matrix. Collecting all

the multiplications with F,, and Fo, we can rewrite the
Lagrangian function in a compact form as

‘C({Fu}7 Fo, {Zu}v Zo, {)‘u}ﬂ {Vm})
= VmPm— > Mo

+ ) Tr((By + Zu)F.) + Tr (Bo + Zo)Fo) .

(64)

Then, we note that supremum of Lagrangian for F,, and F|
is only bounded if B,, + Z,, = 0. Thus, replacing the variable
Z, > 0 with B, < 0, and similarly, for the sensing matrix,
we can derive the dual problem via

min sup L({f.}, £, {M\u}, {vm}) =

{fu} £y
Yo VmPm — >, o2 if B,<0and B, X0, Vueld
00 otherwise.
(65)
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