Constant Depth Circuit Complexity for Generating Quasigroups

NATHANIEL A. COLLINS, Colorado State University, Department of Mathematics, USA
JOSHUA A. GROCHOW, University of Colorado Boulder, Departments of Computer Science and Mathematics, USA
MICHAEL LEVET, College of Charleston, Department of Computer Science, USA

ARMIN WEISS, Universitat Stuttgart, FMI, Germany

We investigate the constant-depth circuit complexity of the IsoOMORPHISM
PROBLEM, MINIMUM GENERATING SET PROBLEM (MGS), and SUB(QUASI)GROUP
MEMBERSHIP PROBLEM (MEMBERSHIP) for groups and quasigroups (=Latin
squares), given as input in terms of their multiplication (Cayley) tables. De-
spite decades of research on these problems, lower bounds for these problems
even against depth-2 AC circuits remain unknown. Perhaps surprisingly,
Chattopadhyay, Toran, and Wagner (FSTTCS 2010; ACM Trans. Comput.
Theory, 2013) showed that QuAasIGRoUP IsomoRrPHISM could be solved by AC
circuits of depth O (loglog n) using O (log? n) nondeterministic bits, a class
we denote J°8° FOLL. We narrow this gap by improving the upper bound
for these problems to quasiAC?, thus decreasing the depth to constant.

In particular, we show that MEMBERSHIP can be solved in NTIME (polylog(n))

and use this to prove the following:

e MGS for quasigroups belongs to Flog? nylogn NTIME (polylog(n))
C quasiAC®. Papadimitriou and Yannakakis (7. Comput. Syst. Sci.,
1996) conjectured that this problem was Flog?n P-complete; our re-
sults refute a version of that conjecture for completeness under
quasiAC? reductions unconditionally, and under polylog-space re-
ductions assuming EXP # PSPACE.

It furthermore implies that this problem is not hard for any class
containing PARITY. The analogous results concerning PARITY were
known for QuasiGroup IsomorpHISM (Chattopadhyay, Toran, &
Wagner, ibid.) and MEMBERSHIP for groups (Fleischer, Theory Comput.
2022), though not for MGS.

MGS for groups belongs to AC!(L). Our AC!(L) bound improves on
the previous, very recent, upper bound of P (Lucchini & Thakkar, J.
Algebra, 2024). Our quasiAC® upper bound is incomparable to P, but
has similar consequences to the above result for quasigroups.

which is contained in quasiAC®. As a consequence of this result and
previously known AC? reductions, this implies the same upper bound
for the IsomorPHISM PROBLEMS for: Steiner triple systems, pseudo-
STS graphs, Latin square graphs, and Steiner (¢, ¢ + 1)-designs. This
improves upon the previous upper bound for these problems, which
was 3198”0 3¢’ "FOLL C quasiFOLL (Chattopadhyay, Toran, &
Wagner, ibid.; Levet, Australas. J. Combin. 2023).

Authors’ addresses: Nathaniel A. Collins, naco3124@colostate.edu, Colorado State Uni-
versity, Department of Mathematics, Fort Collins, Colorado, USA; Joshua A. Grochow,
jgrochow@colorado.edu, University of Colorado Boulder, Departments of Computer
Science and Mathematics, Boulder, Colorado, USA; Michael Levet, levetm@cofc.edu,
College of Charleston, Department of Computer Science, Charleston, SC, USA; Armin
Weif}, armin.weiss@fmi.uni-stuttgart.de, Universitit Stuttgart, FMI, Germany.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2024/8-ART111 $15.00

https://doi.org/XXXXXXX.XXXXXXX

QUASIGROUP [SOMORPHISM € Flog? nACO (DTISP(polylog(n),log(n))),

o As a strong contrast, we show that MGS for arbitrary magmas is
NP-complete.
Our results suggest that understanding the constant-depth circuit com-
plexity may be key to resolving the complexity of problems concerning
(quasi)groups in the multiplication table model.

CCS Concepts: » Theory of computation — Circuit complexity; Alge-
braic complexity theory; « Mathematics of computing — Discrete
mathematics.

Additional Key Words and Phrases: Group Isomorphism, Quasigroup Iso-
morphism, Minimum Generating Set, Membership Testing, Constant-Depth
Circuits, quasiACO, Circuit Complexity

ACM Reference Format:

Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weif3.
2024. Constant Depth Circuit Complexity for Generating Quasigroups. ACM
Trans. Graph. 37, 4, Article 111 (August 2024), 9 pages. https://doi.org/
XXXXXXXXXXXXXX

1 INTRODUCTION

IThe Group IsomorpHIsM (GPI) problem is a central problem in
computational complexity and computer algebra. When the groups
are given as input by their multiplication (a.k.a. Cayley) tables,
the problem reduces to GRaPH IsomorpHISM (GI), and because the
best-known runtimes for the two are quite close (no(l"g n) [29]2

vs. nOlog" n) [3]%), the former stands as a key bottleneck towards
further improvements in the latter.

Despite this, Gpl seems quite a bit easier than GI. For example,
Tarjan’s nl°8™+*O(1) algorithm for groups [29] can now be given
as an exercise to undergraduates: every group is generated by at
most [log, |G|] elements, so the algorithm is to try all possible
(102 n) < plogn generating sets, and for each, check in n°M) time
whether the map of generating sets extends to an isomorphism.
In contrast, the quasipolynomial time algorithm for graphs was a
tour de force that built on decades of cutting-edge research into
algorithms and the structure of permutation groups. Nonetheless, it
remains unknown whether the problem for groups is actually easier
than that for graphs, or even whether both problems are in P!

Using a finer notion of reduction, Chattopadhyay, Toran, and
Wagner [10] proved that there was no AC° reduction from GI to Gpl.
This gave the first (and still only known) unconditional evidence
that there is some formal sense (namely, the AC° sense) in which GpI
really is easier than GIL The key to their result was that the generator-
enumeration technique described above can be implemented by
non-deterministically guessing log? n bits (for the log n generators,

Some proofs are shortened, sketched, or omitted in this conference submission to save
space; all such proofs are given in full detail in the preprint of the full version [12].
2Miller [29] credits Tarjan for nlog+O(1)

3Babai [3] proved quasipolynomial time, and the exponent of the exponent was analyzed
and improved by Helfgott [20]

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111:2 « Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weif§

each of log n bits), and then verifying an isomorphism by a circuit
of depth only O(loglogn), a class we denote Jlog” "FQLL. Note that
Flog’ nEQLL ¢ quasiFOLL, which cannot compute PARITY [10; 32;
37]. As Gl is DET-hard [40]—and hence can compute PARITY—there
can be no AC? reduction from GI to GpL.

Such a low-depth circuit was quite surprising, although that sur-
prise is perhaps tempered by the use of non-determinism. Nonethe-
less, it raises the question:

Is it possible that GRouP IsoMORPHISM is in AC??

The authors would be shocked if the answer were “yes,” and yet
we do not even have results showing that GROUP ISOMORPHISM
cannot be computed by polynomial-size circuits of (!) depth 2. The
upper bound of Jlog” "FQLL rules out most existing lower bound
techniques against AC?, as most such techniques also yield similar
lower bounds against Flog’ nFQLL.

In this paper, we aim to close the gap between AC? and Flog’ nFoLL
in the complexity of GRouP IsomoRrpHISM and related problems. Our
goal is to obtain constant-depth circuits of quasipolynomial size, a
natural benchmark in circuit complexity [6]. Getting such circuits of
polynomial size would resolve the long-standing question of putting
these problems into P; in contrast, our current target is to reduce
their parallel complexity. Our first main result along these lines is:

Theorem A. (Quasr)GROUP IsoMORPHISM is in quasiAC®.

(We discuss quasigroups in more detail below.) The prior best
depth bounds on the general problem were all super-constant (with
quasipolynomial size): Jlog” ngc2 by Tang [38] yields (by a stan-
dard simulation argument) circuits of depth log? n, while Flog”n| A
Flog" nEQLL [10] has depth log log n. In particular, prior to our work,
QUASIGROUP IsoMORPHISM was not known to be solvable using
quasiAC circuits of depth o(loglog n). The special case of ABELIAN
Grl was previously known to belong to quasiAC® [23].

Remark 1.1. We in fact get a more precise bound of
glog® nylognzlogn ISP (polylog(n), log(n)).

This more precise bound is notable because it is contained in quasiAC®
and 3°¢° "FOLLN 308" L thus improving on [10]. We get similarly
precise bounds with complicated-looking complexity classes for the
other problems we study, but we omit the precise bounds in the
introduction for readability.

Minimum generating set. Another very natural problem in compu-
tational algebra is the MIN GENERATING SET (MGS) problem. Given
a group, this problem asks to find a generating set of the smallest
possible size. Given that many algorithms on groups depend on the
size of a generating set, finding a minimum generating set has the
potential to be a widely applicable subroutine. The MGS problem for
groups was shown to be in P by Lucchini & Thakkar very recently
[28]. We improve their complexity bound:

Theorem B. MGS for groups can be solved in quasiAC® and in
ACL(L) (O(log n)-depth, unbounded fan-in circuits with a logspace
oracle).

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

We note that, although quasiAC® is incomparable to P because of
the quasipolynomial size (whereas AC'(L) C P), the key we are
focusing on here is reducing the depth. For nilpotent groups (widely
believed to be the hardest cases of Gpl), if we only wish to compute
the minimum number of generators, we can further improve this
complexity to a subclass of L N FOLL N quasiAC® (Prop. 7.3).

While our AC! (L) bound above is essentially a careful complexity
analysis of the polynomial-time algorithm of Lucchini & Thakkar
[28], the quasiAC? upper bound is in fact a consequence of our
next, more general result for quasigroups, which involves some new
ingredients.

Enter quasigroups. Quasigroups can be defined in (at least) two
equivalent ways: (1) an algebra whose multiplication table is a Latin
square,* or (2) a group-like algebra that need not have an identity
nor be associative, but in which left and right division are uniquely
defined, that is, for all a, b, there are unique x and y such that ax = b
and ya = b, denoted x = a\b and y = b/a.

In the paper in which they introduced log?(n)-bounded nonde-
terminism, Papadimitriou and Yannakakis showed that for arbitrary
magmas,’ testing whether the magma has log n generators was in

2
fact complete for 3°¢" P, and conjectured:

Conjecture 1.2 (Papadimitriou & Yannakakis [31, p. 169]). MGS

for quasigroups is log® "P-complete.

They explicitly did not conjecture the same for MGS for groups,
writing:
“We conjecture that this result [31"32 "P-completeness] also
holds for the more structured MINIMUM GENERATOR SET
OF A QUASIGROUP problem. In contrast, QUASIGROUP ISO-
MORPHISM was recently shown to be in DSPACE (log?® n)
[43]. Notice that the corresponding problems for groups were
known to be in DSPACE (log? n) [26]”—Papadimitriou & Yan-
nakakis [31, p. 169]
We thus turn our attention to the analogous problems for quasi-
groups: MGS, IsomorPHISM, and the key subroutine, MEMBERSHIP.

Theorem C. MGS for quasigroups is in quasiAC® N\DSPACE (log? n).

To the best of our knowledge, MGS FOR QUASIGROUPS has not
been studied from the complexity-theoretic viewpoint previously.
While a DSPACE (log? n) upper bound for MGS for groups follows
from [1; 38], as far as we know it remained open for quasigroups
prior to our work.

As with prior results on (QUAsI)GROUP IsoMORPHISM [10] and
other isomorphism problems (e.g., [25]), Thm. C shows that PArRITY
does not reduce to MGS FOR QUASIGROUPs, thus ruling out most
known lower bound methods that might be used to prove that MGS
FOR QUASIGROUPS is not in AC’. We observe a similar bound for
MGS ror Groups using Fleischer’s technique [17].

Papadimitriou & Yannakakis did not specify the type of reduction
used in their conjecture, though their Slog” "P-completeness result
for Lo GENERATING SET for magmas works in both logspace and

4A Latin square is an n X n matrix where for each row and each column, the elements
of [n] appear exactly once

A magma is a set M together with a function M X M — M that need not satisfy any
additional axioms.

AC? (under a suitable input encoding). Our two upper bounds rule
out such reductions for MGS FOR QUASIGROUPS:

Corollary C. Conj. 1.2 is false under quasiAC® reductions. It is also
false under polylog-space reductions assuming EXP # PSPACE.

In strong contrast, we show that MGS FOR MAGMAs is NP-complete
(Thm. 7.10).

A key ingredient in our proof of Thm. C is an improvement in the
complexity of another central problem in computational algebra: the
SUB-QUASIGROUP MEMBERSHIP problem (MEMBERsHIP,® for short):

Theorem D. MEMBERSHIP for quasigroups is in NTIME (polylog(n)) €
quasiACY.

MEMBERSHIP for groups is well-known to belong to L, by reducing
to the connectivity problem on the Cayley graph (cf. [8; 33]), but as
L sits in between AC® and AC!, this is not low enough depth for us.

Additional results. We also obtain a number of additional new
results on related problems, some of which we highlight here:

e By known ACP reductions (see, e.g., [25]), our quasiACO anal-
ysis of Chattopadhyay, Toran, and Wagner’s algorithm for
QuasIGROUP IsoMORPHISM yields the same upper bound for
the isomorphism problems for Steiner triple systems, pseudo-
STS graphs, Latin square graphs, and Steiner (¢, ¢+ 1)-designs,
as well as LATIN SQUARE IsoToPY.

o GrlI for groups from a dense set of orders can be solved in a
subclass of quasiAC® N FOLL N L. This improves the parallel
complexity compared to the original result [15].

e ABELIAN GROUP [SOMORPHISM is in

VIOgIOg"MACO(DTISP(polylog(n),log(n))).
The key novelties here are (1) a new observation that al-

lows us to reduce the number of co-nondeterministic bits
from logn (as in [18]) down to loglogn, and (2) using an

ACP(DTISP(polylog(n),log(n))) circuit for order finding, rather

than FOLL as in [10].

e MEMBERSHIP for nilpotent groups is in NTISP(polylog(n), log(n)),

which is contained in FOLL N quasiAC®.

1.1 Methods

Several of our results involve careful analysis of the low-level circuit
complexity of extant algorithms, showing that they in fact lie in
smaller complexity classes than previously known. We crucially
use simultaneous time- and space-restricted computations. This not
only facilitates several proofs and gives better complexity bounds,
but also gives rise to new algorithms such as for MEMBERSHIP for
nilpotent groups, which previously was not known to be in FOLL.

One such instance is in our improved bound for order-finding
and exponentiation in a semigroup (Lem. 3.1). The previous proof
[7] (still state of the art 23 years later) used a then-novel and clever
“double-barrelled” recursive approach to compute these in FOLL. In
contrast, our proof uses standard repeated doubling, noting that
it can be done in DTISP(polylog(n),log(n)) € FOLL N quasiAC?,
recovering their result with standard tools and reducing the depth.

®In the literature, the analogous problem for groups is sometimes called CAYLEY GrRoUP
MEMBERSHIP or CGM, to highlight that it is in the Cayley table model.

Constant Depth Circuit Complexity for Generating Quasigroups « 111:3

We use this improved bound on order-finding to improve the com-
plexity of isomorphism testing of Abelian groups (Thm. 4.1), simple
groups (Cor. 3.3), and groups of almost all orders (Thm. 5.1).

For several results we additionally need to develop new tools to
work with quasigroups. Notably, for the quasiAC upper bound on
MGS for quasigroups, we cannot directly adapt the technique of [10],
as the existence alone of cube generating sets seems insufficient
for MEMBERsHIP and MGS. The first key is Thm. D, putting MEM-
BERSHIP for quasigroups into NTIME(polylog(n)). Here, we avoid
their use of cube generating sets and instead utilize straight-line
programs (SLPs) directly. To show short SLPs exist we extend the
Babai-Szemerédi Reachability Lemma [4, Thm. 3.1] from groups
(its original setting) to quasigroups. As division in quasigroups is
nuanced due to lack of associativity, our proof'is a careful adaptation
of the technique of [4, Thm. 3.1], with a few quasigroup twists.

1.2 Prior work

Isomorphism testing. The best known runtime bound for GpI is
n(1/4)log, (m)+0O(1) [35] (see [24, Sec. 2.2]), though this tells us little
about parallel complexity. Lipton, Snyder, & Zalcstein [26] inde-
pendently observed the generator-enumeration procedure and used
it to give a bound of DSPACE (log? n). Miller [29] extended Tar-
jan’s result to quasigroups. There has been subsequent work on
improving the parallel complexity of generator enumeration for
quasigroups, resulting in bounds of Flog*nac! (4377, Flog® ngac!
[42], and log" n| nlog” nEQLL [10]. For groups, generator enumer-
ation is also known to belong to log” ngc2 [38]. There has been
considerable work on polynomial-time isomorphism tests for sev-
eral families of groups, and more recent work on NC isomorphism
tests—see [15; 18; 19] for a survey. We are not aware of work on
isomorphism testing for specific families of quasigroups that are
not groups.

Min Generating Set. As every (quasi)group has a generating set
of size < [logn], MGS admits an nlog(m+0(1) _time solution for
(quasi)groups. Arvind & Toran [1] improved the complexity to
DSPACE(log? n) for groups. They also gave a polynomial-time algo-

rithm in the special case of nilpotent groups. Tang further improved
the general bound for MGS for groups to log® ng2 [38]. We ob-
serve that Wolf’s technique for placing QUASIGROUP ISOMORPHISM
into DSPACE (log? n) also suffices to get MGS for quasigroups into
the same class. Recently, MGS for groups was placed into P [28].
Prior to [28], MGS for groups was considered comparable to Group
IsoMORPHISM in terms of difficulty [13]. Our AC!(L) bound (Thm. C)
further closes the gap between MEMBERSHIP and MGS for groups,
and in particular suggests that MGS is of comparable difficulty to
MEMBERSHIP rather than Gpl. Note that MEMBERSHIP is known to
belong to L [8; 33].

"Wolf actually claims a bound of glog? n NC?2; however, he uses NC! circuits to multiply
two elements of a quasigroup rather than ACC circuits.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

111:4 « Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weif§

2 ADDITIONAL PRELIMINARIES
2.1 Algebra

A magma M is an algebraic structure together with a binary oper-
ation - : M X M — M. We will frequently consider subclasses of
finite magmas, such as groups, quasigroups, and semigroups.

Quasigroups. As quasigroups are non-associative, the parenthe-
sization of a given expression may impact the resulting value. For a
sequence S := (So, S1, - . ., S¢) and parenthesization P from a quasi-
group G, define: Cube(S) = {P(sos;" ~-~sz") teg,...,er € {0,1}}.
We say that S is a cube generating sequence if each element g € G
can be written as g = P(sosf1 . -s?‘), for ey, ..., e € {0,1}. Here,
s? indicates that s; is not being considered in the product. For ev-
ery parenthesization, every quasigroup admits a cube generating
sequence of size O(logn) [10].

Group Theory. For a standard reference, see [34]. A chief series of
G is an ascending chain (Ni)fzo of normal subgroups of G, where
No = 1, N = G, and each Nj41/N; (i = 0,...,k — 1) is minimal
normal in G/N;.

Algorithmic Problems. We will consider the following algorith-
mic problems, where the magmas are given by their multiplication
tables. The QUASIGROUP IsoMORPHISM problem takes as input two
quasigroups Q1, Q2 and asks if there is an isomorphism ¢ : Q1 = Qs.
The MEMBERSHIP problem for groups takes as input a group G, a
set S C G, and an element x € G, and asks if x € (S) (the subgroup
generated by S). We define the MEMBERSHIP problem analogously
when the input is a semigroup or quasigroup, and (S) is considered
as the sub-semigroup or sub-quasigroup, respectively. The MINI-
MUM GENERATING SET (MGS) problem takes as input a magma M
and asks for a generating set S € M where |S| is minimum. The
decision variant of MGS additionally takes an integer k in the input
and ask whether there exists a generating set of size at most k.

2.2 Computational Complexity

We assume familiarity with standard complexity classes such as L,
NL, NP, and EXP. For a standard reference on circuit complexity,
see [41]. We consider Boolean circuits using AND, OR, NOT, and
Majority, where Majority(x1, ..., x,) = 1iff > n/2 of the inputs are
1. All our polynomial-size circuit families are DLOGTIME-uniform,
see [12, §2.2] for details.

A language L belongs to NCF if there is a family of circuits Cy,
with NOT gates, and 2-input AND and OR gates, of depth O(logk n)
and size n1°(1) such that x € L & Cix|(x) = 1. The class SACK is
defined analogously, but the OR gates may have unbounded fan-in,
while the AND gates still must have fan-in 2. For ACK also the AND
gates are permitted to have unbounded fan-in. The complexity class
TCK is defined analogously as ACK, except that our circuits are now
also permitted Majority gates of unbounded fan-in.

AC® CTC®cNClcLcNLcSAC cACt ¢ ...

For a language L the class ACK(L), apart from Boolean gates, also
allows oracle gates for L8 IfK € ACK (L), then K is said to be ACk
Turing reducible to L. For a complexity class C denote ACK(C) to

8 An oracle gate outputs 1 if and only if its input is in L.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

be the set of decision problems that are ACX-Turing reducible to
problems in C.°

Further circuit classes. The complexity class MAC? is the set of
languages decidable by TC? circuits with only a single Majority
gate that must be the output gate. MAC® was introduced (but not
so named) in [2], where it was shown that MAC® C TC?, and later
given the name MAC? in [21].

The complexity class FOLL is the set of languages decidable by
uniform AC circuit families of depth O(loglog n) and polynomial
size. It is known that AC® C FOLL C AC!, and it is open as to
whether FOLL is contained in NL [7].

We will be particularly interested in AC circuits of quasipolyno-
mial size. For a circuit class C C AC, the analogous class permitting
a quasipolynomial number of gates is denoted quasiC. We will focus
specifically on quasiAC?. Note that PARITY ¢ quasiFOLL [32; 37].

Bounded nondeterminism. For a complexity class C, define 3/ (e
(vesp, ¥/ (M) to be the set of languages L such that there exists
an L’ € C such that x € L iff there exists (resp., for all) y of
length at most O(f(|x|)) such that (x,y) € L’. For any i > 0,
Fog'nFOLL U V18" "FOLL C quasiFOLL, and so cannot compute
PARITY [10; 37]. Note that ¥1°82C U 3°82C ¢ ACO(C).

Time and space-restricted Turing machines. For complexity
classes defined by Turing machines with a time bound t(n) € o(n),
we use Turing machine with random access and a separate address
(or index) tape. After writing an address, the machine can go to
a query state reading the symbol from the input at the location
specified by the address tape.

For functions t(n), s(n) € Q(logn), the classes DTISP(t(n), s(n))
and NTISP(¢(n),s(n)) are defined by deterministic (resp. nonde-
terministic) t(n) time and s(n) space bounded Turing machines.
There must be one Turing machine that simultaneously satisfies the
time and space bound. See [41, §2.6] for details. For connections to
quasiAC?, see [6; 16].

Fact 2.1. NTISP(polylog(n),log(n)) € NTIME(polylog(n)) C quasiAC®.

ProoF skeTCH. Take the OR over all 2P°108(") possible com-
putation histories, of the AC? circuit that verifies a computation
history (the latter as in the proof of the Cook-Levin Theorem). O

Lemma 2.2. NTISP(polylog(n),log(n)) € FOLL.

Proor skETCH. Follows the proof of Savitch’s Theorem. The log n
space bound implies the configuration space has only n() vertices,
while the polylog(n) time bound means one need only find a path
of length polylog(n), which can be done by Savitch’s “repeated

doubling” technique in recursion depth O(loglog n).]

By the very definition we have DTISP(polylog(n),log(n)) € L
and NTISP(polylog(n),log(n)) € NL. Thus, we obtain

o AC(DTISP(polylog(n),log(n))) € LNFOLLNquasiAC? and

o ACO(NTISP(polylog(n),log(n))) € NL N FOLL N quasiAC®.

9Be aware that here we follow the notation of [41], which is different from [18; 42]
(where AC*(C) is used to denote composition of functions).

3 ORDER FINDING AND APPLICATIONS

In this section, we improve the parallel complexity of order finding
with an easier and more general proof than [7]. We use this in
several applications in this section, §4, and §5. The key lemma is:

Lemma 3.1. The following problem is in DTISP(polylog(n), log(n)):
On input of a multiplication table of a semi-group S, an element s € S,

and a unary or binary number k € N with k < |S|, compute sk,

Proor. If k is given in unary, we first compute its binary repre-
sentation using a binary search (we can write it on the work tape as
is uses at most [log|S|] bits). We identify the semigroup elements
with the natural numbers 0, .. ., |S| — 1. Now, compute sk using the
standard fast exponentiation algorithm. Multiplying two semigroup
elements can be done in DTIME(log n) as computing the address of
their product only involves multiplying two log n-bit addresses. Fi-
nally, it is well-known that the fast exponentiation algorithm needs
only O(log k) algebra multiplications and O(log k+log n) space. O

Corollary 3.2. On input of a group G, an element g € G, andk € N,

we may decide whetherord(g) = k in V1°8"DTISP(polylog(n), log(n)).
y g polylog g

Application to isomorphism testing. Using Cor. 3.2, we can
improve the upper bound for isomorphism testing of finite simple
groups. Previously, this problem was known to be in L [38] and
FOLL [18].

Corollary 3.3. Let G be a finite simple group and H be arbitrary.
We can decide whether G = H in AC°(DTISP (polylog(n), log(n))).

Cor. 3.2 also lets us improve on the L N FOLL bound [7, Thm. 3.2]
for testing whether a group is nilpotent to:

Corollary 3.4. Deciding whether a group G (given by its multiplica-
tion table) is nilpotent is in AC’(DTISP(polylog(n),log(n))).

Application to membership testing. A group G has the logn
power basis property [7; 17] if for every X C G every g € (X) can be
written as g = gfl - gym wwith m < logn and suitable g; € X and
e; € Z. Lem. 3.1 provides that MEMBERsHIP for semigroups with
the log n power basis property is in NTISP(polylog(n), log(n)). This
observation allows us to improve some FOLL bounds from [7; 17]
to NTISP(polylog(n),log(n)).

Corollary 3.5. MEemBERsHIP is in NTISP(polylog(n), log(n)) for:

(a) commutative semigroups;
(b) nilpotent groups;
(c) solvable groups of class O(1).

The above result for nilpotent groups involves no restriction on
the nilpotency class, improving considerably over [7, Cor. 3.2].

PROOF SKETCH FOR NILPOTENT GROUPs. Given g € G, X C G.
The m-th term of the lower central series [y = (X), [in+1 = [Tm, (X)]
is generated by Cp, = {[[[x1,x2],x3], -, xx] : xi € X,k = m}
(e.g., [11, Lem. 2.6]). Define C’ by choosing a minimal generating
set for Iy /T from among Cy, then a minimal generating set of I'1 /T»
among Cy, and so on. C’ will be a so-called polycyclic generating
set of (X), so every g € (X) can be written g = ¢* --- ¢, with
e; € Z and ¢; € C’. We nondeterministically guess the latter expres-
sion for g. As m < log |G| for any nilpotent group, this gives an
NTISP(polylog(n),log(n)) algorithm. O

Constant Depth Circuit Complexity for Generating Quasigroups « 111:5

4 ABELIAN GROUP ISOMORPHISM

Our next application of our order-finding Lem. 3.1 is:

Theorem 4.1. Let G be an Abelian group, and let H be arbitrary. We
can decide isomorphism between G and H in

yloglogn pmACO (DTISP (polylog(n), log(n))).

Chattopadhyay, Toran, and Wagner [10] established a TC®(FOLL)
upper bound on this problem. Grochow & Levet [18, Thm. 5] gave
a tighter analysis of their algorithm, placing it in the sub-class
V08" MACO(FOLL).10 Chattopadhyay, Torén, & Wagner also estab-
lished an upper bound of L for this problem, which is incomparable
to the result of Grochow & Levet (ibid.). We improve upon both
these bounds by (i) showing that O(log log n) non-deterministic bits
suffice instead of O(log n) bits, and (ii) using our improved bound
on order-finding (Lem. 3.1).

While V196" MAC? (FOLL) is contained in TCO(FOLL), it is open
whether this containment is strict. In contrast, it follows from [9,
Thm. 7] that our new bound is a class that is in fact strictly contained
in LN TC(FOLL) (see [12, Cor. 5.3] for details).

Proor oF THM. 4.1. Following the strategy of [18, Theorem 7.15],
we show that non-isomorphism can be decided in the same class
but with existentially quantified non-deterministic bits.

We may check in AC? whether a group is Abelian. So now assume
that H is Abelian. If G 2 H, then there exists a prime power p€ such
that there are more elements of order p€ in G than in H. We first iden-
tify the order of each element, which is AC® (DTISP(polylog(n), log(n)))-
computable by Cor. 3.2.

Letn=pi" - -p?" be the prime factorization of n. Using O (log log n)
non-deterministic bits, we can guess a pair (p, e) (p represented by
its index in the prime decomposition), where G has more elements
of p¢ than H. We may then, in AC®, compute p¢ from p. We use
Cor. 3.2 to identify the elements of order p¢, and then an MAC®
circuit to compare the number of such elements in G vs. H. See [12,
Thm. 5.1] for full details. O

5 GROUP ISOMORPHISM FOR ALMOST ALL ORDERS

We use our improved order-finding Lem. 3.1 to improve the parallel
complexity of Gpl for almost all orders. Dietrich & Wilson [15]
proved that there is a dense set Y C N such that if n € Y and Gy, Gz
are magmas of order n given by their multiplication tables, we can
(i) decide if G1, G2 are groups, and (ii) if so, decide whether G; = G
in time O(n? log? n), which is quasi-linear time relative to the input
size. We improve the parallel complexity of their result:

Theorem 5.1. Let n € Y, and let G1,Gy be magmas of order n.
We can decide whether the G; are groups and whether G1 = Gy in
AC®(DTISP(polylog(n),log(n))).

Proor. Deciding whether a magma is a group is readily seen to
be in AC?. Dietrich & Wilson showed [15, Thm. 2.5] that if G is a
group of order n € 1, then G = H x B, where:

19Grochow & Levet consider V6 MAC® o FOLL, where o denotes composition (see
[18] for a precise formulation). Note that as AC® o FOLL = FOLL = AC®(FOLL), we
have V'°8” MAC® o FOLL = V!°8” MAC® (FOLL). Thus, Thm. 4.1 improves upon the
previous bound of V6 MAC® (FOLL) obtained by Grochow & Levet.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

111:6 « Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weif§

e Bis a cyclic group of order p; - - - pp, where for each i € [¢],
pi > loglogn and p; is the maximum power of p; dividing n.

e |H| = (log n)polyloglogn, 4 g in particular, if a prime divisor
p of n satisfies p < loglog n, then p divides |H]|.

Fix groups G1, G of order n. We may, in
AC?(DTISP(polylog(n),log(n))), do the following: (i) decompose
G; = H; X B, as prescribed by [15, Thm. 2.5], (ii) select a generator
b; for B;, and (iii) select an isomorphism for H; = H; by specify-
ing cube generating sequences (or decide if Hy 2 Hj). Step (iii)
utilizes the proof of [12, Thm. 4.1] in the full version. As |H;| =
|Hy| < (logn)Polyloglogn there are only poly(n) such generating
sequences to consider.

Suppose Hy = Hp, By = By, and gcd(|B;j/, |[Hj|) = 1for j = 1,2.
We have by the Schur-Zassenhaus Theorem that G; = H; Xg,
Bj (j = 1,2). By Taunt’s Lemma [39], it remains to test whether
the actions 0; and 0 are equivalent. This step is computable in
ACC(DTISP(polylog(n),log(n))); see [12, Thm. 6.1] for details. O

6 QUASIGROUP ISOMORPHISM

The main results in the remainder of the paper do not rely on our
order-finding Lem. 3.1, but rather on other techniques. The following
proof is inspired by [14] where a similar problem is shown to be in
the third level of the polynomial hierarchy using the same approach.

Theorem 6.1. QuasiGrRoUP IsoMORPHISM belongs to
glog® nylog n3log n 1S (polylog(n), log(n)).

Note that we have 310g° ny/lognglogn DTISP(polylog(n),log(n))
glog’ "AC(DTISP(polylog(n),log(n))) € quasiAC® N Flog"n
Fog* nEQLL.

Proor skeTcH. Careful analysis of the algorithm of [10, Thm. 3.4].
The key idea is to guess cube generating sequences for both input
groups (in the log* n part) and then in the remaining computation
verify whether these are in fact cube generating sequences that,
indeed, induce an isomorphism. O

We obtain several corollaries, that all essentially follow by known
ACO-reductions; [25] is a convenient reference for definitions of the
problems below and the reductions.

Corollary 6.2. The following isomorphism problems are in
log’ mACO (DTISP (polylog(n), log(n))) :

(1) Isomorphism of Steiner triple systems
(2) Isomorphism of pseudo-STS graphs

(3) Isomorphism of Steiner (t,t + 1)-designs
(4) Isomorphism of Latin square graphs

(5) Latin Square Isotopy.

Latin square graphs are one of the four families!! of strongly
regular graphs under Neumaier’s classification [30]. Levet [25] es-

tablished an upper bound of g’ nACO for isomorphism testing of
conference graphs, which is a stronger upper bound than we obtain

the other families being line graphs of Steiner 2-designs, conference graphs, and
graphs whose eigenvalues satisfy the claw bound

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

for Latin square graphs. In contrast, the best known algorithmic run-
time for identifying conference graphs is n2log(m+0(1) [5] \whereas
Latin square graphs admit an nl°8(™+0(1)_time solution [29].

7 MINIMUM GENERATING SET

In this section, we consider the MiNIMuM GENERATING SET (MGS)
problem for groups, quasigroups, and arbitrary magmas.

7.1 MGS for Groups in AC!(L)
Theorem 7.1. MGS for groups belongs to AC(L).

We begin with the following lemma from the full version [12].

Lemma 7.2. Let G be a group. We can compute a chief series for G
in AC1(L).

Proor oF THM. 7.1. By Lem. 7.2, we can compute a chief series
Ni<Ny<---<Nj = G in AC!(L). We proceed inductively down the N;.
As G/Ny_ is a finite simple group, and hence at most 2-generated,
we can find a generating set in L [38].

Fix i < k. Given a minimum generating sequence gi,...,gq € G
for G/N; we construct a minimum generating sequence for G/Nj_1
as follows. If N = Nj/Nj_1 is Abelian (case 1):

e Case 1a: We have G/N;—1 = (91, ", i, 9jM Gj+1," - * »9d)
for some j € [d] and some n € N (possibly n = 1). There are
at most d - [N| generating sets to consider in this case and we
can test each of them in L with MEMBERSHIP [8; 33].

e Case 1b: If Case 1a does not hold, then by [27, Thm. 4] we
have that G/Nj_1 = (g1, - - , g4, x) for any non-identity ele-
ment x € N.

Otherwise, N is non-Abelian (case 2), and we have by [28, Cor. 13]
the following holds. Let ng(N) denote the the number of factors in
a chief series with order |[N|. Let u = max{d, 2} and ¢t = min{u, [% +
log|N| nG(N)1}. Then there exist ny,...,n; € Nj_1 (possibly ny =
-+ =ny = 1) such that G/Nj—1 = (g1n1, " -+ , g, Grs1, "+, 9d)-

By [28, Cor. 13], there are at most |N|r%+1°gWI 16 (N)1 generating
sets of this form. As logy nc(N) € O(1), we may write down
these generating sets in parallel with a single AC? circuit and test
whether each generates G/Nj_1 in L using MEMBERSHIP.

Since a chief series has O(log n) terms, this algorithm requires
O(log n) iterations and each iteration is computable in L, resulting
in an algorithm for MGS in AC!(L). O

Improving upon the AC!(L) bound on MGS for groups appears
daunting. We thus inquire as to families of groups where MGS is
solvable in complexity classes contained within AC!(L). To this end,
we examine the class of nilpotent groups. Arvind & Toran previously
established a polynomial-time algorithm for nilpotent groups [1,
Thm. 7]. We improve their bound as follows. Here, d(G) denotes
the minimum size of a generating set for G.

Proposition 7.3. For a nilpotent group G, we can compute d(G) in
L N AC(NTISP(polylog(n), log(n))).

ProOF sKETCH. Use order-finding (Cor. 3.2) to compute the Sylow
p-subgroups in AC®(DTISP(polylog(n),log(n))); we have d(G) =
maxsylowp d(P). For each Sylow subgroup P, compute the Frattini

subgroup PP [P, P] based on the Burnside Basis Theorem (see [34,
Thm. 5.3.2]) and Cor. 3.2. Then d(P) = |P/PP[P, P]|. A key fact we
use along the way is that every element of [P, P] is the product of
at most log |P| commutators [36, 1.§4 Ex. 5]. O

Remark 7.4. While Prop. 7.3 allows us to compute d(G) for a
nilpotent group G, the algorithm is non-constructive. It is not clear
how to find such a generating set in L. We can, however, provide such
a generating set in AC! (NTISP(polylog(n), log(n))). This bound is
incomparable to AC!(L). See the full version [12, Rmk. 7.4] for
details.

7.2 MGS for Quasigroups

In this section, we consider the MINIMUM GENERATING SET problem
for quasigroups. Our goal is to establish the following.

Theorem 7.5. For MGS for quasigroups,

(a) The decision version belongs to glog” nylogn NTIME(polylog(n));

(b) The search version belongs to Flog”ngact ¢ DSPACE(log? n);!?
and
(c) The search version belongs to quasiAC®.

In the paper in which they introduced (polylog-)limited nonde-
terminism, Papadimitriou and Yannakakis conjectured that MGS for
quasigroups was log® "P-complete [31, after Thm. 7]. While they
did not specify the type of reductions used, it may be natural to
consider polynomial-time many-one reductions. Thm. 7.5 refutes
two versions of their conjecture under other kinds of reductions,
that are incomparable to polynomial-time many-one reductions:
quasiAC® reductions unconditionally and polylog-space reductions
conditionally. We note that their other 31°8" "P-completeness result
in the same section produces a reduction that in fact can be done in
logspace and (with a suitable, but natural, encoding of the gates in
a circuit) also in AC®, so our result rules out any such reduction for
MGS.

Corollary 7.6. MGS for quasigroups and QUASIGROUP ISOMORPHISM
are not 3¢’ P-complete...

(a) ...under quasiAC® Turing reductions;
(b) ...under polylog-space Turing reductions unless EXP = PSPACE.

PROOF. (a) As PARITY is in P but not in quasiAC?, problems in
quasiAC? can’t be Slog® "P-complete under quasiAC® reductions.

(b) Both MGS for quasigroups and QUASIGROUP ISOMORPHISM
are in DSPACE (log? n) by Thm. 7.5 (b), resp. [10]. The closure of
DSPACE(log? n) under poly-log space reductions is contained in
polyL = Ukso DSPACE(logk n). If either of these two quasigroup
problems were complete for o8’ np ynder polylog-space Turing
reductions, we would get Fog’ np ¢ polyL. Under the latter as-
sumption, by a standard padding argument, we can show that
EXP = PSPACE. See [12, Cor. 7.6] for full details. O

Now we return to establishing the main result of this section,
Thm. 7.5. To establish Thm. 7.5 (a) and (c), we will crucially leverage

12WWolf [43] showed the containment Flog? nsac! ¢ DSPACE (log? n).

Constant Depth Circuit Complexity for Generating Quasigroups « 111:7

the MEMBERSHIP problem for quasigroups. To this end, we will first
establish the following.

Theorem 7.7. MEMBERSHIP for quasigroups belongs to
NTIME(polylog(n)).

Thm. 7.7 immediately yields the following corollary.

Corollary 7.8. For quasigroups, MEMBERSHIP and MGS are not hard
under AC-reductions for any complexity class containing PARITY.

The proofs of Thms. 7.7 and 7.5 rely crucially on the following
adaption of the Babai-Szemerédi Reachability Lemma [4, Thm. 3.1]
to quasigroups. We first generalize the notion of a straight-line
program for groups [4] to SLPs for quasigroups. Let X be a set
of generators for a quasigroup G. We call a sequence of elements
g1,.--,9¢ € G a straight-line program (SLP for short) if each g;
(i € [¢]) either belongs to X, or is of the form or gjgx, g;j\gk, or
gj/gx for some j, k < i (recall from §1 that a\b resp. b/a denotes
the unique x such that ax = b resp. xa = b). An SLP is said to
compute or generate a set S (or an element g) if S € {g1,...,9¢}
(resp. g € {91,---,9¢}).

Lemma 7.9 (Reachability Lemma for quasigroups). Let G be a finite
quasigroup and let X be a set of generators for G. For each g € G,
there exists a straight-line program over X generating g which has
length O(log? |G]).

We follow the same strategy as in the proof of [4, Thm. 3.1], but
there are some subtle, yet crucial, modifications due to the fact that
quasigroups are non-associative and need not posses an identity
element.

Proor. For any sequence of elements z1, . .., 2, let P(z123 - - - z1)
denote the left-to-right parenthesization, e.g., P(z1z223) = (z122)z3.
For some initial segment zo, z1, . . ., z; define the cube

K(i) = {P(z02]" -- e €{0,1}},

where e; = 0 denotes omitting z; from the product (since there need
not be an identity element).

Define L(i) = K(i)\K (i) = {g\h : g, h € K(i)}. We will construct
a sequence 2o, Zz1,...,2 such that t < [log,(n)] and L(t) = G.
Moreover, we derive a bound on the straight-line cost c(i) for
{z0,21,...,2zi} (1 £ i < t), which is defined as the length of the
shortest SLP generating {zo, z1, . . ., Zi }

We take z(as an arbitrary element from X. Hence, K(0) = {2z},
and so ¢(0) = 1. Next, let us construct K(i+1) from K (i). If L(i) # G,
we set z;+1 to be an element z’ ¢ L(i) that minimizes c(i + 1) — c(i).
We first claim that [K(i+1)| = 2 |K(i)|. Note that K(i+1) = K(i) U
K(i)zi4+1 by definition. As right-multiplication by a fixed element is a
bijection in a quasi-group, it suffices to show that K(i) N K(i)zi41 =
0. So, suppose that there exists some a € K(i) N K(i)zi+1. Then
a = gzjy1 for some g € K(i). Hence, z;41 = g\a, contradicting
zi+1 € L(i), since both a and g are in K (i).

It now follows that |K(i)| = 2! and, hence, ¢ < [log,(IG|)] and
L(t) = G. Moreover, for every g € G we obtain an SLP of length at
most ¢(t)+2t+1: write g = a\b for a, b € K(t) and start with the SLP
computing {zo, z1, . . .,z }. We obtain an SLP for a = zoz%' - - - zf’ by

1
adding a new element for each zozf1 e zfi withe;=1(1<i<t,

€i .
-zi’) ieq,..

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

111:8 « Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weif§

thus, at most ¢ new elements). Likewise, we get an SLP for b. Adding
a last element g = a\b, we obtain an SLP computing g.

It remains to bound the straight-line cost ¢(i) of {zq, 21, . .., zi }.
Here, we claim that that c(i + 1) — ¢(i) < 4i + 3. It follows from this
claim that c(i) € O(i?). We will now turn to proving our claim:

If G # L(i), then either X ¢ L(i) or L(i) is not a sub-quasigroup.
Hence, we have one of the following cases:
Case 1: Suppose that there is some g € X — L(i). In this case, there
is an SLP of length one for g and we obtain c¢(i + 1) — ¢(i) < 1.
Case 2: Suppose there exist g, h € L(i) with one of gh, g/h, or g\h ¢
L(i). For simplicity, suppose gh ¢ L(i). The argument is identical
for g/h and g\h. As above, given an SLP to compute {z, z1, .. ., zi },
we may construct SLPs for g and h each of additional length 2i + 1.
This yields an SLP for gh of total length at most ¢(i) + 4i + 3, and
shows that ¢(i + 1) — ¢(i) < 4i + 3. The result now follows. O

For proving Thm. 7.7 we follow essentially the ideas of [17]
(though we avoid introducing the notion of Cayley circuits). Fleis-
cher obtained a quasiAC® bound for MEmMBERsHTP for group by then
showing that the Cayley circuits for this problem can be simulated
by a quasiAC? circuit. We will instead directly analyze the straight-
line programs using an NTIME(polylog(n)) algorithm.

Proor or THM. 7.7. To decide whether g € (X), guess the se-
quence of operations for an SLP of length ¢, for £ € O(log? |G|),
which exists iff g € (X) by Lem. 7.9. Computing the values in the
SLP and verifying that g, = g can be done in time poly(¢,logn) <
polylog(n). O

The proof of Thm. 7.5 (a) and (c) below is by describing a reduction
from MGS to MEMBERsHIP. Thm. 7.5 (b) uses a result of Wagner.

Proor oF THM. 7.5. (a) Let G denote the input quasigroup (of or-
der n). First, observe that every quasigroup has a generating set of
size < [logn] [29]. Therefore, we start by guessing a subset X € G
of size at most < [logn] (resp. the size bound given in the input).
For the decision version, we use O(log? n) existentially quantified
non-deterministic bits (310g2 ™) to guess a generating sequence. To
find a minimum-sized generating sequence, we enumerate all possi-
ble generating sequences in quasiAC®. In the next step, we verify
whether X actually generates G. This is done by checking for all
g € G (universally verifying O(log n) bits, V!°6™) whether g € (X),
which can be done in NTIME(polylog(n)) € quasiAC® by Thm. 7.7.

(c) Proceed as in (a), using the same technique to check that all
Y € G with |Y] < |X| do not generate G.

(b) Existentially guess a generating set using O(log? n) bits, then
use [42, Thm. 10.2.1] to compute (X) in SAC!. Then we check, in
AC?, whether each element of the quasigroup belongs to (X). O

We may similarly reduce QUuAsIGROUP ISOMORPHISM to MEMBER-
sHIP for quasigroups. This formalizes the intuition that MEMBERSHIP
is an essential subroutine for isomorphism testing and MGS. In par-
ticular, in the setting of quasiACo, we have that isomorphism testing
and MGS reduce to MEMBERsHIP. This latter consequence might
seem surprising, as in the setting of groups, MEMBERSHIP belongs to
L, while MGS belongs to AC!(L) (Thm. 7.1), yet it is a longstanding
open problem whether GRoup ISOMORPHISM is even in P.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

7.3 MGS for Magmas

Theorem 7.10. The decision variant of MINIMUM GENERATING SET
for magmas is NP-complete.

This NP-completeness result helps explain the use of Integer
Linear Programming in practical heuristic algorithms for the search
version of this problem, e.g., [22].

For the closely related problem Lo GENERATORsS—given the mul-
tiplication table of a magma of order n, decide whether it has a
generating set of size < [log, n]—LoG GENERATORS OF MAGMAS is

glog’ "P-complete under polynomial-time reductions [31, Thm. 7].

Proor skeTcH. The problem is in NP by guessing a suitable
generating set. To show NP-hardness we reduce from 3SAT. Let
F= /\;.”:1 C; with variables X1, ..., Xp be an instance of 3SAT. Our
magma M consists of the following elements: an element C; for j €
[m], elements X;, X; for i € [n], elements Tipfori<j<k<m,
and a zero element 0. We define the multiplication as follows:

CjX = Tj,; if the literal X appears in C;
TimXi = Xi, TimXi = Xi,
Tk Tiesre = Tje-
all other products are defined as 0.

Any generating set for M must include all the Cj, since without
them, there is no way to generate them from other elements. Simi-
larly, any generating set must include, for each i € [n], at least one
of X; or X, since they also can’t be generated from other elements.

We show that F is satisfiable if and only if M can be generated by
n+m elements. When F is satisfiable, let ¢ be a satisfying assignment,
then M is generated by {C; : j € [m]} U{X; : ¢(x;) = 1} U{X; :
¢(x;) = 0}. Conversely, any generating set of size n + m must
consist of all Cj and exactly one of each {Xj, X;}. As the only way
to generate Tj ; is for one of the literals to satisfy Cj, the choice of
X;, X in the generating set must be a satisfying assignment. O

8 OPEN QUESTIONS

The biggest open question about constant-depth complexity on al-
gebras given by multiplication tables is, in our opinion, still whether
or not Group IsomorpHIsM is in AC? in the Cayley table model.
Our results make salient some more specific, and perhaps more
approachable, open questions that we now highlight.

Question 8.1. Does MGS for groups belong to L?
Question 8.2. Does MEMBERsHIP for quasigroups belong to L?

The analogous result is known for groups, by reducing to the
connectivity problem on Cayley graphs. The best known bound for
quasigroups is SAC! [42]. Improvements in this direction would
yield improvements in MGS for quasigroups. A constructive mem-
bership test would also yield improvements for isomorphism testing
of O(1)-generated quasigroups. Note that isomorphism testing of
O(1)-generated groups is known to belong to L [38].

REFERENCES

[1] Vikraman Arvind and Jacobo Toran. The complexity of quasigroup isomorphism
and the minimum generating set problem. In Tetsuo Asano, editor, Algorithms and
Computation, 17th International Symposium, ISAAC 2006, Kolkata, India, December

[2

—

3

=

4

flas’

[5

[

l6

=

7

—

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

18-20, 2006, Proceedings, volume 4288 of Lecture Notes in Computer Science, pages
233-242. Springer, 2006. doi:10.1007/11940128_25.

James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expressive
power of voting polynomials. In Proceedings of the Twenty-Third Annual ACM
Symposium on Theory of Computing, STOC *91, page 402-409, New York, NY, USA,
1991. Association for Computing Machinery. doi:10.1145/103418.103461.
Laszl6 Babai. Graph isomorphism in quasipolynomial time [extended abstract].
In STOC’16—Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, pages 684-697. ACM, New York, 2016. Preprint of full version at
arXiv:1512.03547v2 [cs.DS]. doi:10.1145/2897518.2897542.

Laszl6 Babai and Endre Szemerédi. On the complexity of matrix group problems I.
In 25th Annual Symposium on Foundations of Computer Science, West Palm Beach,
Florida, USA, 24-26 October 1984, pages 229-240. IEEE Computer Society, 1984.
doi:10.1109/SFCS.1984.715919.

Lasz16 Babai. On the complexity of canonical labeling of strongly regular graphs.
SIAM Journal on Computing, 9(1):212-216, 1980. doi:10.1137/0209018.

D.A.M. Barrington. Quasipolynomial size circuit classes. In [1992] Proceedings of
the Seventh Annual Structure in Complexity Theory Conference, pages 86-93, 1992.
doi:10.1109/SCT.1992.215383.

David A. Mix Barrington, Peter Kadau, Klaus-Jorn Lange, and Pierre McKenzie.
On the complexity of some problems on groups input as multiplication tables. 7.
Comput. Syst. Sci., 63(2):186-200, 2001. doi:10.1006/jcss.2001.1764.

David A. Mix Barrington and Pierre McKenzie. Oracle branching programs
and Logspace versus P. Inf. Comput., 95(1):96-115, 1991. doi:10.1016/0890-
5401(91)90017-V.

David A. Mix Barrington and Howard Straubing. Complex polynomials and
circuit lower bounds for modular counting. Comput. Complex., 4:325-338, 1994.
doi:10.1007/BF01263421.

Arkadev Chattopadhyay, Jacobo Toran, and Fabian Wagner. Graph isomorphism
is not AC®-reducible to group isomorphism. ACM Trans. Comput. Theory, 5(4):Art.
13, 13, 2013. Preliminary version appeared in FSTTCS *10; ECCC Tech. Report
TR10-117. doi:10.1145/2540088.

Anthony E. Clement, Stephen Majewicz, and Marcos Zyman. The theory of
nilpotent groups. Birkhauser/Springer, Cham, 2017.

Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weif}. On the
constant-depth circuit complexity of generating quasigroups. arXiv:2402.00133
[cs.CC], 2024.

Bireswar Das and Dhara Thakkar. Algorithms for the minimum generating set
problem, 2023. arXiv:2305.08405.

Heiko Dietrich, Murray Elder, Adam Piggott, Youming Qiao, and Armin Weif3.
The isomorphism problem for plain groups is in Zg. In Petra Berenbrink and
Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects
of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual
Conference), volume 219 of LIPIcs, pages 26:1-26:14. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.26.

Heiko Dietrich and James B. Wilson. Group isomorphism is nearly-linear time for
most orders. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 457-467, 2022. doi:10.1109/F0CS52979.2021.00053.
Flavio Ferrarotti, Senén Gonzalez, Klaus-Dieter Schewe, and José Maria Turull-
Torres. Proper hierarchies in polylogarithmic time and absence of complete
problems. In Andreas Herzig and Juha Kontinen, editors, Foundations of Informa-
tion and Knowledge Systems, pages 90-105, Cham, 2020. Springer International
Publishing.

Lukas Fleischer. The Cayley semigroup membership problem. Theory of Comput-
ing, 18(8):1-18, 2022. doi:10.4086/toc.2022.v018a008.

Joshua A. Grochow and Michael Levet. On the Parallel Complexity of Group
Isomorphism via Weisfeiler-Leman. In Henning Fernau and Klaus Jansen, editors,
Fundamentals of Computation Theory - 24th International Symposium, FCT 2023,
Trier, Germany, September 18-21, 2023, Proceedings, volume 14292 of Lecture Notes
in Computer Science, pages 234-247. Springer, 2023. Preprint of full version at
arXiv:2112.11487 [cs.DS]. doi:10.1007/978-3-031-43587-4_17.

Joshua A. Grochow and Youming Qiao. Algorithms for group isomorphism
via group extensions and cohomology. SIAM J. Comput., 46(4):1153-1216, 2017.
Preliminary version in IEEE Conference on Computational Complexity (CCC)
2014 (DOI:10.1109/CCC.2014.19). Also available as arXiv:1309.1776 [cs.DS] and
ECCC Technical Report TR13-123. doi:10.1137/15M1009767.

Harald Andrés Helfgott, Jitendra Bajpai, and Daniele Dona. Graph isomorphisms
in quasi-polynomial time, 2017. doi:10.48550/ARXIV.1710.04574.

Jeffrey C. Jackson, Adam R. Klivans, and Rocco A. Servedio. Learnability beyond
ACC. In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of
Computing, STOC 02, page 776-784, New York, NY, USA, 2002. Association for
Computing Machinery. doi:10.1145/509907.510018.

Mikolés Janota, Anténio Morgado, and Petr Vojtechovsky. Computing generating
sets of minimal size in finite algebras. J. Symb. Comput., 119:50-63, 2023. doi:
10.1016/3.JSC.2023.02.002.

[23

[24

[25

™
20,

(30]

[31

[32

[40]

[41

[42]

[43

Constant Depth Circuit Complexity for Generating Quasigroups « 111:9

Emil Jerabek. Answer to “is abelian group isomorphism in AC??”. Theoretical
Computer Science Stack Exchange, 06 2020. https://cstheory.stackexchange.com/
q/40118 (version: 2020-06-17).

Francois Le Gall and David J. Rosenbaum. On the group and color isomorphism
problems. arXiv:1609.08253 [cs.CC], 2016.

Michael Levet. On the complexity of identifying strongly regular graphs. Aus-
tralasian Journal of Combinatorics, 87:41-67, 2023. URL: https://ajc.maths.uq.edu.
au/pdf/87/ajc_v87_p041.pdf.

R.J. Lipton, L. Snyder, and Y. Zalcstein. The complexity of word and isomorphism
problems for finite groups. Yale University Dept. of Computer Science Research
Report # 91, 1977. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf.
Andrea Lucchini and Federico Menegazzo. Computing a set of generators of min-
imal cardinality in a solvable group. Journal of Symbolic Computation, 17(5):409—
420, 1994. doi:10.1006/jsco.1994.1027.

Andrea Lucchini and Dhara Thakkar. The minimum generating set problem.
Journal of Algebra, 640:117-128, 2024. doi:10.1016/j.jalgebra.2023.11.012.
Gary L. Miller. On the n'°¢" isomorphism technique (a preliminary report). In
Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC
’78, pages 51-58, New York, NY, USA, 1978. Association for Computing Machinery.
doi:10.1145/800133.804331.

A. Neumaier. Strongly regular graphs with smallest eigenvalue —m. Archiv der
Mathematik, 33:392-400, 1979. doi:10.1007/BF@1222774.

Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism
and the complexity of the V-C dimension. J. Comput. Syst. Sci., 53(2):161-170,
1996. doi:10.1006/JCSS.1996.0058.

Alexander A Razborov. An Equivalence between Second Order Bounded Domain
Bounded Arithmetic and First Order Bounded Arithmetic. In Arithmetic, proof
theory, and computational complexity. Oxford University Press, 05 1993. doi:
10.1093/050/9780198536901.003.0012.

Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), sep 2008.
doi:10.1145/1391289.1391291.

D. Robinson. A Course in the Theory of Groups. Springer, 1982.

David J. Rosenbaum. Bidirectional collision detection and faster deterministic
isomorphism testing. arXiv:1304.3935 [cs.DS], 2013.

Jean-Pierre Serre. Galois Cohomology. Springer Berlin, Heidelberg, 1 edition, 1997.
doi:10.1007/978-3-642-59141-9.

Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York, New York, USA, pages 77-82.
ACM, 1987. doi:10.1145/28395.28404.

Bangsheng Tang. Towards Understanding Satisfiability, Group Isomorphism
and Their Connections. PhD thesis, Tsinghua University, 2013. URL: http:
//papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf.

D. R. Taunt. Remarks on the isomorphism problem in theories of construction of
finite groups. Mathematical Proceedings of the Cambridge Philosophical Society,
51(1):16-24, 1955. doi:10.1017/5030500410002987X.

Jacobo Toran. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093—
1108, 2004. doi:10.1137/S009753970241096X.

Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 1999. doi:10.1007/
978-3-662-03927-4.

F. Wagner. On the complexity of isomorphism testing for restricted classes of graphs.
PhD thesis, Universitat Ulm, 2010. URL: https://oparu.uni-ulm.de/xmlui/bitstream/
handle/123456789/3923/vts_7264_10267.pdf.

Marty J. Wolf. Nondeterministic circuits, space complexity and quasigroups. The-
oretical Computer Science, 125(2):295-313, 1994. doi:10.1016/0304-3975(92)
00014-1.

Received 6 February 2024; revised 12 March 2009; accepted 5 June 2009

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

https://doi.org/10.1007/11940128_25
https://doi.org/10.1145/103418.103461
https://arxiv.org/abs/1512.03547v2
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1109/SFCS.1984.715919
https://doi.org/10.1137/0209018
https://doi.org/10.1109/SCT.1992.215383
https://doi.org/10.1006/jcss.2001.1764
https://doi.org/10.1016/0890-5401(91)90017-V
https://doi.org/10.1016/0890-5401(91)90017-V
https://doi.org/10.1007/BF01263421
https://doi.org/10.1145/2540088
https://arxiv.org/abs/2402.00133
https://arxiv.org/abs/2402.00133
http://arxiv.org/abs/2305.08405
https://doi.org/10.4230/LIPIcs.STACS.2022.26
https://doi.org/10.1109/FOCS52979.2021.00053
https://doi.org/10.4086/toc.2022.v018a008
https://arxiv.org/abs/2112.11487
https://doi.org/10.1007/978-3-031-43587-4_17
https://doi.org/10.1137/15M1009767
https://doi.org/10.48550/ARXIV.1710.04574
https://doi.org/10.1145/509907.510018
https://doi.org/10.1016/J.JSC.2023.02.002
https://doi.org/10.1016/J.JSC.2023.02.002
https://cstheory.stackexchange.com/q/40118
https://cstheory.stackexchange.com/q/40118
https://arxiv.org/abs/1609.08253
https://ajc.maths.uq.edu.au/pdf/87/ajc_v87_p041.pdf
https://ajc.maths.uq.edu.au/pdf/87/ajc_v87_p041.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf
https://doi.org/10.1006/jsco.1994.1027
https://doi.org/10.1016/j.jalgebra.2023.11.012
https://doi.org/10.1145/800133.804331
https://doi.org/10.1007/BF01222774
https://doi.org/10.1006/JCSS.1996.0058
https://doi.org/10.1093/oso/9780198536901.003.0012
https://doi.org/10.1093/oso/9780198536901.003.0012
https://doi.org/10.1145/1391289.1391291
https://arxiv.org/abs/1304.3935
https://doi.org/10.1007/978-3-642-59141-9
https://doi.org/10.1145/28395.28404
http://papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf
http://papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf
https://doi.org/10.1017/S030500410002987X
https://doi.org/10.1137/S009753970241096X
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1007/978-3-662-03927-4
https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/3923/vts_7264_10267.pdf
https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/3923/vts_7264_10267.pdf
https://doi.org/10.1016/0304-3975(92)00014-I
https://doi.org/10.1016/0304-3975(92)00014-I

	Abstract
	1 Introduction
	1.1 Methods
	1.2 Prior work

	2 Additional Preliminaries
	2.1 Algebra
	2.2 Computational Complexity

	3 Order Finding and Applications
	4 Abelian Group Isomorphism
	5 Group Isomorphism for Almost All Orders
	6 Quasigroup Isomorphism
	7 Minimum Generating Set
	7.1 MGS for Groups in AC 1(L)
	7.2 MGS for Quasigroups
	7.3 MGS for Magmas

	8 Open questions
	References

