
Constant Depth Circuit Complexity for Generating Quasigroups

NATHANIEL A. COLLINS, Colorado State University, Department of Mathematics, USA

JOSHUA A. GROCHOW, University of Colorado Boulder, Departments of Computer Science and Mathematics, USA

MICHAEL LEVET, College of Charleston, Department of Computer Science, USA

ARMIN WEISS, Universität Stuttgart, FMI, Germany

We investigate the constant-depth circuit complexity of the Isomorphism
Problem,MinimumGenerating Set Problem (MGS), and Sub(qasi)group
Membership Problem (Membership) for groups and quasigroups (=Latin
squares), given as input in terms of their multiplication (Cayley) tables. De-
spite decades of research on these problems, lower bounds for these problems
even against depth-2 AC circuits remain unknown. Perhaps surprisingly,
Chattopadhyay, Torán, and Wagner (FSTTCS 2010; ACM Trans. Comput.

Theory, 2013) showed thatQuasigroup Isomorphism could be solved by AC
circuits of depth𝑂 (log log𝑛) using𝑂 (log2 𝑛) nondeterministic bits, a class
we denote ∃log2 𝑛

FOLL. We narrow this gap by improving the upper bound
for these problems to quasiAC

0, thus decreasing the depth to constant.
In particular, we show thatMembership can be solved inNTIME(polylog(𝑛))

and use this to prove the following:

• MGS for quasigroups belongs to ∃log2 𝑛∀log𝑛
NTIME(polylog(𝑛))

⊆ quasiAC
0. Papadimitriou and Yannakakis (J. Comput. Syst. Sci.,

1996) conjectured that this problem was ∃log2 𝑛
P-complete; our re-

sults refute a version of that conjecture for completeness under
quasiAC

0 reductions unconditionally, and under polylog-space re-
ductions assuming EXP ≠ PSPACE.
It furthermore implies that this problem is not hard for any class
containing Parity. The analogous results concerning Parity were
known for Quasigroup Isomorphism (Chattopadhyay, Torán, &
Wagner, ibid.) andMembership for groups (Fleischer, Theory Comput.

2022), though not for MGS.
• MGS for groups belongs to AC1 (L) . Our AC1 (L) bound improves on
the previous, very recent, upper bound of P (Lucchini & Thakkar, J.
Algebra, 2024). Our quasiAC0 upper bound is incomparable to P, but
has similar consequences to the above result for quasigroups.

• Quasigroup Isomorphism ∈ ∃log2 𝑛
AC

0 (DTISP(polylog(𝑛), log(𝑛))) ,
which is contained in quasiAC

0. As a consequence of this result and
previously known AC0 reductions, this implies the same upper bound
for the Isomorphism Problems for: Steiner triple systems, pseudo-
STS graphs, Latin square graphs, and Steiner (𝑡, 𝑡 + 1)-designs. This
improves upon the previous upper bound for these problems, which
was ∃log2 𝑛

L ∩ ∃log2 𝑛
FOLL ⊆ quasiFOLL (Chattopadhyay, Torán, &

Wagner, ibid.; Levet, Australas. J. Combin. 2023).

Authors’ addresses: Nathaniel A. Collins, naco3124@colostate.edu, Colorado State Uni-
versity, Department of Mathematics, Fort Collins, Colorado, USA; Joshua A. Grochow,
jgrochow@colorado.edu, University of Colorado Boulder, Departments of Computer
Science and Mathematics, Boulder, Colorado, USA; Michael Levet, levetm@cofc.edu,
College of Charleston, Department of Computer Science, Charleston, SC, USA; Armin
Weiß, armin.weiss@fmi.uni-stuttgart.de, Universität Stuttgart, FMI, Germany.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2024/8-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

• As a strong contrast, we show that MGS for arbitrary magmas is
NP-complete.

Our results suggest that understanding the constant-depth circuit com-
plexity may be key to resolving the complexity of problems concerning
(quasi)groups in the multiplication table model.

CCS Concepts: • Theory of computation→ Circuit complexity; Alge-
braic complexity theory; • Mathematics of computing → Discrete
mathematics.

Additional Key Words and Phrases: Group Isomorphism, Quasigroup Iso-
morphism, Minimum Generating Set, Membership Testing, Constant-Depth
Circuits, quasiAC0, Circuit Complexity

ACM Reference Format:
Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weiß.
2024. Constant Depth Circuit Complexity for Generating Quasigroups. ACM
Trans. Graph. 37, 4, Article 111 (August 2024), 9 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION

1The Group Isomorphism (GpI) problem is a central problem in
computational complexity and computer algebra. When the groups
are given as input by their multiplication (a.k.a. Cayley) tables,
the problem reduces to Graph Isomorphism (GI), and because the
best-known runtimes for the two are quite close (𝑛𝑂 (log𝑛) [29]2

vs. 𝑛𝑂 (log2 𝑛) [3]3), the former stands as a key bottleneck towards
further improvements in the latter.
Despite this, GpI seems quite a bit easier than GI. For example,

Tarjan’s 𝑛log𝑛+𝑂 (1) algorithm for groups [29] can now be given
as an exercise to undergraduates: every group is generated by at
most ⌈log2 |𝐺 |⌉ elements, so the algorithm is to try all possible(𝑛
log𝑛

)
≤ 𝑛log𝑛 generating sets, and for each, check in 𝑛𝑂 (1) time

whether the map of generating sets extends to an isomorphism.
In contrast, the quasipolynomial time algorithm for graphs was a
tour de force that built on decades of cutting-edge research into
algorithms and the structure of permutation groups. Nonetheless, it
remains unknown whether the problem for groups is actually easier
than that for graphs, or even whether both problems are in P!
Using a finer notion of reduction, Chattopadhyay, Torán, and

Wagner [10] proved that there was no AC0 reduction from GI to GpI.
This gave the first (and still only known) unconditional evidence
that there is some formal sense (namely, the AC0 sense) in which GpI
really is easier thanGI. The key to their result was that the generator-
enumeration technique described above can be implemented by
non-deterministically guessing log2 𝑛 bits (for the log𝑛 generators,
1Some proofs are shortened, sketched, or omitted in this conference submission to save
space; all such proofs are given in full detail in the preprint of the full version [12].
2Miller [29] credits Tarjan for 𝑛log𝑛+𝑂 (1) .
3Babai [3] proved quasipolynomial time, and the exponent of the exponent was analyzed
and improved by Helfgott [20]

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111:2 • Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weiß

each of log𝑛 bits), and then verifying an isomorphism by a circuit
of depth only𝑂 (log log𝑛), a class we denote ∃log2 𝑛FOLL. Note that
∃log2 𝑛FOLL ⊆ quasiFOLL, which cannot compute Parity [10; 32;
37]. As GI is DET-hard [40]—and hence can compute Parity—there
can be no AC

0 reduction from GI to GpI.
Such a low-depth circuit was quite surprising, although that sur-

prise is perhaps tempered by the use of non-determinism. Nonethe-
less, it raises the question:

Is it possible that Group Isomorphism is in AC
0?

The authors would be shocked if the answer were “yes,” and yet
we do not even have results showing that Group Isomorphism
cannot be computed by polynomial-size circuits of (!) depth 2. The
upper bound of ∃log2 𝑛FOLL rules out most existing lower bound
techniques against AC0, as most such techniques also yield similar
lower bounds against ∃log2 𝑛FOLL.

In this paper, we aim to close the gap betweenAC0 and∃log2 𝑛FOLL
in the complexity of Group Isomorphism and related problems. Our
goal is to obtain constant-depth circuits of quasipolynomial size, a
natural benchmark in circuit complexity [6]. Getting such circuits of
polynomial size would resolve the long-standing question of putting
these problems into P; in contrast, our current target is to reduce
their parallel complexity. Our first main result along these lines is:

Theorem A. (Quasi)Group Isomorphism is in quasiAC
0
.

(We discuss quasigroups in more detail below.) The prior best
depth bounds on the general problem were all super-constant (with
quasipolynomial size): ∃log2 𝑛SC2 by Tang [38] yields (by a stan-
dard simulation argument) circuits of depth log2 𝑛, while ∃log2 𝑛L ∩
∃log2 𝑛FOLL [10] has depth log log𝑛. In particular, prior to our work,
Quasigroup Isomorphism was not known to be solvable using
quasiAC circuits of depth 𝑜 (log log𝑛). The special case of Abelian
GpI was previously known to belong to quasiAC

0 [23].

Remark 1.1. We in fact get a more precise bound of

∃log
2 𝑛∀log𝑛∃log𝑛DTISP(polylog(𝑛), log(𝑛)) .

Thismore precise bound is notable because it is contained in quasiAC0

and ∃log2 𝑛FOLL∩∃log2 𝑛L, thus improving on [10]. We get similarly
precise bounds with complicated-looking complexity classes for the
other problems we study, but we omit the precise bounds in the
introduction for readability.

Minimum generating set. Another very natural problem in compu-
tational algebra is the Min Generating Set (MGS) problem. Given
a group, this problem asks to find a generating set of the smallest
possible size. Given that many algorithms on groups depend on the
size of a generating set, finding a minimum generating set has the
potential to be a widely applicable subroutine. TheMGS problem for
groups was shown to be in P by Lucchini & Thakkar very recently
[28]. We improve their complexity bound:

Theorem B. MGS for groups can be solved in quasiAC
0
and in

AC
1 (L) (𝑂 (log𝑛)-depth, unbounded fan-in circuits with a logspace

oracle).

We note that, although quasiAC
0 is incomparable to P because of

the quasipolynomial size (whereas AC1 (L) ⊆ P), the key we are
focusing on here is reducing the depth. For nilpotent groups (widely
believed to be the hardest cases of GpI), if we only wish to compute
the minimum number of generators, we can further improve this
complexity to a subclass of L ∩ FOLL ∩ quasiAC

0 (Prop. 7.3).
While our AC1 (L) bound above is essentially a careful complexity

analysis of the polynomial-time algorithm of Lucchini & Thakkar
[28], the quasiAC

0 upper bound is in fact a consequence of our
next, more general result for quasigroups, which involves some new
ingredients.

Enter quasigroups. Quasigroups can be defined in (at least) two
equivalent ways: (1) an algebra whose multiplication table is a Latin
square,4 or (2) a group-like algebra that need not have an identity
nor be associative, but in which left and right division are uniquely
defined, that is, for all 𝑎, 𝑏, there are unique 𝑥 and 𝑦 such that 𝑎𝑥 = 𝑏

and 𝑦𝑎 = 𝑏, denoted 𝑥 = 𝑎\𝑏 and 𝑦 = 𝑏/𝑎.
In the paper in which they introduced log2 (𝑛)-bounded nonde-

terminism, Papadimitriou and Yannakakis showed that for arbitrary
magmas,5 testing whether the magma has log𝑛 generators was in
fact complete for ∃log2 𝑛P, and conjectured:

Conjecture 1.2 (Papadimitriou & Yannakakis [31, p. 169]). MGS

for quasigroups is ∃log2 𝑛P-complete.

They explicitly did not conjecture the same for MGS for groups,
writing:

“We conjecture that this result [∃log2 𝑛
P-completeness] also

holds for the more structured MINIMUM GENERATOR SET
OF A QUASIGROUP problem. In contrast, QUASIGROUP ISO-
MORPHISM was recently shown to be in DSPACE(log2 𝑛)
[43]. Notice that the corresponding problems for groups were
known to be in DSPACE(log2 𝑛) [26].”—Papadimitriou & Yan-
nakakis [31, p. 169]

We thus turn our attention to the analogous problems for quasi-
groups: MGS, Isomorphism, and the key subroutine, Membership.

TheoremC. MGS for quasigroups is in quasiAC
0∩DSPACE(log2 𝑛).

To the best of our knowledge, MGS for Quasigroups has not
been studied from the complexity-theoretic viewpoint previously.
While a DSPACE(log2 𝑛) upper bound forMGS for groups follows
from [1; 38], as far as we know it remained open for quasigroups
prior to our work.
As with prior results on (Quasi)group Isomorphism [10] and

other isomorphism problems (e.g., [25]), Thm. C shows that Parity
does not reduce to MGS for Quasigroups, thus ruling out most
known lower bound methods that might be used to prove thatMGS
for Quasigroups is not in AC

0. We observe a similar bound for
MGS for Groups using Fleischer’s technique [17].

Papadimitriou & Yannakakis did not specify the type of reduction
used in their conjecture, though their ∃log2 𝑛P-completeness result
for Log Generating Set for magmas works in both logspace and
4A Latin square is an 𝑛 × 𝑛 matrix where for each row and each column, the elements
of [𝑛] appear exactly once
5A magma is a set𝑀 together with a function𝑀 × 𝑀 → 𝑀 that need not satisfy any
additional axioms.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

Constant Depth Circuit Complexity for Generating Quasigroups • 111:3

AC
0 (under a suitable input encoding). Our two upper bounds rule

out such reductions for MGS forQuasigroups:

Corollary C. Conj. 1.2 is false under quasiAC
0
reductions. It is also

false under polylog-space reductions assuming EXP ≠ PSPACE.

In strong contrast, we show thatMGS forMagmas isNP-complete
(Thm. 7.10).

A key ingredient in our proof of Thm. C is an improvement in the
complexity of another central problem in computational algebra: the
Sub-qasigroup Membership problem (Membership,6 for short):

TheoremD. Membership for quasigroups is inNTIME(polylog(𝑛)) ⊆
quasiAC

0
.

Membership for groups is well-known to belong to L, by reducing
to the connectivity problem on the Cayley graph (cf. [8; 33]), but as
L sits in between AC

0 and AC1, this is not low enough depth for us.

Additional results. We also obtain a number of additional new
results on related problems, some of which we highlight here:

• By known AC
0 reductions (see, e.g., [25]), our quasiAC0 anal-

ysis of Chattopadhyay, Torán, and Wagner’s algorithm for
Quasigroup Isomorphism yields the same upper bound for
the isomorphism problems for Steiner triple systems, pseudo-
STS graphs, Latin square graphs, and Steiner (𝑡, 𝑡 +1)-designs,
as well as Latin Sqare Isotopy.

• GpI for groups from a dense set of orders can be solved in a
subclass of quasiAC0 ∩ FOLL ∩ L. This improves the parallel
complexity compared to the original result [15].

• Abelian Group Isomorphism is in
∀log log𝑛MAC

0 (DTISP(polylog(𝑛), log(𝑛))).
The key novelties here are (1) a new observation that al-
lows us to reduce the number of co-nondeterministic bits
from log𝑛 (as in [18]) down to log log𝑛, and (2) using an
AC

0 (DTISP(polylog(𝑛), log(𝑛))) circuit for order finding, rather
than FOLL as in [10].

• Membership for nilpotent groups is inNTISP(polylog(𝑛), log(𝑛)),
which is contained in FOLL ∩ quasiAC

0.

1.1 Methods

Several of our results involve careful analysis of the low-level circuit
complexity of extant algorithms, showing that they in fact lie in
smaller complexity classes than previously known. We crucially
use simultaneous time- and space-restricted computations. This not
only facilitates several proofs and gives better complexity bounds,
but also gives rise to new algorithms such as forMembership for
nilpotent groups, which previously was not known to be in FOLL.
One such instance is in our improved bound for order-finding

and exponentiation in a semigroup (Lem. 3.1). The previous proof
[7] (still state of the art 23 years later) used a then-novel and clever
“double-barrelled” recursive approach to compute these in FOLL. In
contrast, our proof uses standard repeated doubling, noting that
it can be done in DTISP(polylog(𝑛), log(𝑛)) ⊆ FOLL ∩ quasiAC

0,
recovering their result with standard tools and reducing the depth.
6In the literature, the analogous problem for groups is sometimes called Cayley Group
Membership or CGM, to highlight that it is in the Cayley table model.

We use this improved bound on order-finding to improve the com-
plexity of isomorphism testing of Abelian groups (Thm. 4.1), simple
groups (Cor. 3.3), and groups of almost all orders (Thm. 5.1).
For several results we additionally need to develop new tools to

work with quasigroups. Notably, for the quasiAC0 upper bound on
MGS for quasigroups, we cannot directly adapt the technique of [10],
as the existence alone of cube generating sets seems insufficient
forMembership andMGS. The first key is Thm. D, puttingMem-
bership for quasigroups into NTIME(polylog(𝑛)). Here, we avoid
their use of cube generating sets and instead utilize straight-line
programs (SLPs) directly. To show short SLPs exist we extend the
Babai–Szemerédi Reachability Lemma [4, Thm. 3.1] from groups
(its original setting) to quasigroups. As division in quasigroups is
nuanced due to lack of associativity, our proof is a careful adaptation
of the technique of [4, Thm. 3.1], with a few quasigroup twists.

1.2 Prior work

Isomorphism testing. The best known runtime bound for GpI is
𝑛
(1/4) log𝑝 (𝑛)+𝑂 (1) [35] (see [24, Sec. 2.2]), though this tells us little

about parallel complexity. Lipton, Snyder, & Zalcstein [26] inde-
pendently observed the generator-enumeration procedure and used
it to give a bound of DSPACE(log2 𝑛). Miller [29] extended Tar-
jan’s result to quasigroups. There has been subsequent work on
improving the parallel complexity of generator enumeration for
quasigroups, resulting in bounds of ∃log2 𝑛AC1 [43]7, ∃log2 𝑛SAC1

[42], and ∃log2 𝑛L∩∃log2 𝑛FOLL [10]. For groups, generator enumer-
ation is also known to belong to ∃log2 𝑛SC2 [38]. There has been
considerable work on polynomial-time isomorphism tests for sev-
eral families of groups, and more recent work on NC isomorphism
tests—see [15; 18; 19] for a survey. We are not aware of work on
isomorphism testing for specific families of quasigroups that are
not groups.

Min Generating Set. As every (quasi)group has a generating set
of size ≤ ⌈log𝑛⌉, MGS admits an 𝑛log(𝑛)+𝑂 (1) -time solution for
(quasi)groups. Arvind & Torán [1] improved the complexity to
DSPACE(log2 𝑛) for groups. They also gave a polynomial-time algo-
rithm in the special case of nilpotent groups. Tang further improved
the general bound for MGS for groups to ∃log2 𝑛SC2 [38]. We ob-
serve that Wolf’s technique for placingQuasigroup Isomorphism
into DSPACE(log2 𝑛) also suffices to get MGS for quasigroups into
the same class. Recently, MGS for groups was placed into P [28].
Prior to [28],MGS for groups was considered comparable to Group
Isomorphism in terms of difficulty [13]. Our AC1 (L) bound (Thm. C)
further closes the gap betweenMembership andMGS for groups,
and in particular suggests thatMGS is of comparable difficulty to
Membership rather than GpI. Note thatMembership is known to
belong to L [8; 33].

7Wolf actually claims a bound of ∃log2 𝑛
NC

2 ; however, he usesNC1 circuits to multiply
two elements of a quasigroup rather than AC

0 circuits.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

111:4 • Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weiß

2 ADDITIONAL PRELIMINARIES

2.1 Algebra

A magma 𝑀 is an algebraic structure together with a binary oper-
ation · : 𝑀 × 𝑀 → 𝑀 . We will frequently consider subclasses of
finite magmas, such as groups, quasigroups, and semigroups.

Quasigroups. As quasigroups are non-associative, the parenthe-
sization of a given expression may impact the resulting value. For a
sequence 𝑆 := (𝑠0, 𝑠1, . . . , 𝑠𝑘) and parenthesization 𝑃 from a quasi-
group 𝐺 , define: Cube(𝑆) = {𝑃 (𝑠0𝑠𝑒11 · · · 𝑠𝑒𝑘

𝑘
) : 𝑒1, . . . , 𝑒𝑘 ∈ {0, 1}}.

We say that 𝑆 is a cube generating sequence if each element 𝑔 ∈ 𝐺
can be written as 𝑔 = 𝑃 (𝑠0𝑠𝑒11 · · · 𝑠𝑒𝑘

𝑘
), for 𝑒1, . . . , 𝑒𝑘 ∈ {0, 1}. Here,

𝑠0
𝑖
indicates that 𝑠𝑖 is not being considered in the product. For ev-

ery parenthesization, every quasigroup admits a cube generating
sequence of size 𝑂 (log𝑛) [10].
Group Theory. For a standard reference, see [34]. A chief series of
𝐺 is an ascending chain (𝑁𝑖)𝑘𝑖=0 of normal subgroups of 𝐺 , where
𝑁0 = 1, 𝑁𝑘 = 𝐺 , and each 𝑁𝑖+1/𝑁𝑖 (𝑖 = 0, . . . , 𝑘 − 1) is minimal
normal in 𝐺/𝑁𝑖 .

Algorithmic Problems.We will consider the following algorith-
mic problems, where the magmas are given by their multiplication
tables. TheQuasigroup Isomorphism problem takes as input two
quasigroups𝑄1, 𝑄2 and asks if there is an isomorphism 𝜑 : 𝑄1 � 𝑄2.
The Membership problem for groups takes as input a group 𝐺 , a
set 𝑆 ⊆ 𝐺 , and an element 𝑥 ∈ 𝐺 , and asks if 𝑥 ∈ ⟨𝑆⟩ (the subgroup
generated by 𝑆). We define theMembership problem analogously
when the input is a semigroup or quasigroup, and ⟨𝑆⟩ is considered
as the sub-semigroup or sub-quasigroup, respectively. The Mini-
mum Generating Set (MGS) problem takes as input a magma𝑀
and asks for a generating set 𝑆 ⊆ 𝑀 where |𝑆 | is minimum. The
decision variant of MGS additionally takes an integer 𝑘 in the input
and ask whether there exists a generating set of size at most 𝑘 .

2.2 Computational Complexity

We assume familiarity with standard complexity classes such as L,
NL, NP, and EXP. For a standard reference on circuit complexity,
see [41]. We consider Boolean circuits using AND, OR, NOT, and
Majority, whereMajority(𝑥1, . . . , 𝑥𝑛) = 1 iff ≥ 𝑛/2 of the inputs are
1. All our polynomial-size circuit families are DLOGTIME-uniform,
see [12, §2.2] for details.
A language 𝐿 belongs to NC

𝑘 if there is a family of circuits 𝐶𝑛
with NOT gates, and 2-input AND and OR gates, of depth𝑂 (log𝑘 𝑛)
and size 𝑛𝑂 (1) , such that 𝑥 ∈ 𝐿 ⇔ 𝐶 |𝑥 | (𝑥) = 1. The class SAC𝑘 is
defined analogously, but the OR gates may have unbounded fan-in,
while the AND gates still must have fan-in 2. For AC𝑘 also the AND
gates are permitted to have unbounded fan-in. The complexity class
TC

𝑘 is defined analogously as AC𝑘 , except that our circuits are now
also permitted Majority gates of unbounded fan-in.

AC
0 ⊊ TC

0 ⊆ NC
1 ⊆ L ⊆ NL ⊆ SAC

1 ⊆ AC
1 ⊆

For a language 𝐿 the class AC𝑘 (𝐿), apart from Boolean gates, also
allows oracle gates for 𝐿.8 If 𝐾 ∈ AC

𝑘 (𝐿), then 𝐾 is said to be AC𝑘

Turing reducible to 𝐿. For a complexity class C denote AC𝑘 (C) to
8An oracle gate outputs 1 if and only if its input is in 𝐿.

be the set of decision problems that are AC𝑘 -Turing reducible to
problems in C.9

Further circuit classes. The complexity classMAC
0 is the set of

languages decidable by TC
0 circuits with only a single Majority

gate that must be the output gate.MAC
0 was introduced (but not

so named) in [2], where it was shown that MAC
0 ⊊ TC

0, and later
given the name MAC

0 in [21].
The complexity class FOLL is the set of languages decidable by

uniform AC circuit families of depth 𝑂 (log log𝑛) and polynomial
size. It is known that AC0 ⊊ FOLL ⊊ AC

1, and it is open as to
whether FOLL is contained in NL [7].

We will be particularly interested in AC circuits of quasipolyno-
mial size. For a circuit class C ⊆ AC, the analogous class permitting
a quasipolynomial number of gates is denoted quasiC. We will focus
specifically on quasiAC

0. Note that Parity ∉ quasiFOLL [32; 37].

Boundednondeterminism. For a complexity classC, define∃𝑓 (𝑛)C
(resp, ∀𝑓 (𝑛)C) to be the set of languages 𝐿 such that there exists
an 𝐿′ ∈ C such that 𝑥 ∈ 𝐿 iff there exists (resp., for all) 𝑦 of
length at most 𝑂 (𝑓 (|𝑥 |)) such that (𝑥,𝑦) ∈ 𝐿′. For any 𝑖 ≥ 0,
∃log𝑖 𝑛FOLL ∪ ∀log𝑖 𝑛FOLL ⊆ quasiFOLL, and so cannot compute
Parity [10; 37]. Note that ∀log𝑛C ∪ ∃log𝑛C ⊆ AC

0 (C).

Time and space-restricted Turing machines. For complexity
classes defined by Turing machines with a time bound 𝑡 (𝑛) ∈ 𝑜 (𝑛),
we use Turing machine with random access and a separate address
(or index) tape. After writing an address, the machine can go to
a query state reading the symbol from the input at the location
specified by the address tape.

For functions 𝑡 (𝑛), 𝑠 (𝑛) ∈ Ω(log𝑛), the classes DTISP(𝑡 (𝑛), 𝑠 (𝑛))
and NTISP(𝑡 (𝑛), 𝑠 (𝑛)) are defined by deterministic (resp. nonde-
terministic) 𝑡 (𝑛) time and 𝑠 (𝑛) space bounded Turing machines.
There must be one Turing machine that simultaneously satisfies the
time and space bound. See [41, §2.6] for details. For connections to
quasiAC

0, see [6; 16].

Fact 2.1. NTISP(polylog(𝑛), log(𝑛)) ⊆ NTIME(polylog(𝑛)) ⊆ quasiAC
0
.

Proof sketch. Take the OR over all 2polylog(𝑛) possible com-
putation histories, of the AC

0 circuit that verifies a computation
history (the latter as in the proof of the Cook–Levin Theorem). □

Lemma 2.2. NTISP(polylog(𝑛), log(𝑛)) ⊆ FOLL.

Proof sketch. Follows the proof of Savitch’s Theorem. The log𝑛
space bound implies the configuration space has only 𝑛𝑂 (1) vertices,
while the polylog(𝑛) time bound means one need only find a path
of length polylog(𝑛), which can be done by Savitch’s “repeated
doubling” technique in recursion depth 𝑂 (log log𝑛). □

By the very definition we have DTISP(polylog(𝑛), log(𝑛)) ⊆ L

and NTISP(polylog(𝑛), log(𝑛)) ⊆ NL. Thus, we obtain
• AC

0 (DTISP(polylog(𝑛), log(𝑛))) ⊆ L∩FOLL∩quasiAC0 and
• AC

0 (NTISP(polylog(𝑛), log(𝑛))) ⊆ NL ∩ FOLL ∩ quasiAC
0.

9Be aware that here we follow the notation of [41], which is different from [18; 42]
(where AC𝑘 (C) is used to denote composition of functions).

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

Constant Depth Circuit Complexity for Generating Quasigroups • 111:5

3 ORDER FINDING AND APPLICATIONS

In this section, we improve the parallel complexity of order finding
with an easier and more general proof than [7]. We use this in
several applications in this section, §4, and §5. The key lemma is:
Lemma 3.1. The following problem is inDTISP(polylog(𝑛), log(𝑛)):
On input of a multiplication table of a semi-group 𝑆 , an element 𝑠 ∈ 𝑆 ,
and a unary or binary number 𝑘 ∈ N with 𝑘 ≤ |𝑆 |, compute 𝑠𝑘 .

Proof. If 𝑘 is given in unary, we first compute its binary repre-
sentation using a binary search (we can write it on the work tape as
is uses at most ⌈log |𝑆 |⌉ bits). We identify the semigroup elements
with the natural numbers 0, . . . , |𝑆 | − 1. Now, compute 𝑠𝑘 using the
standard fast exponentiation algorithm. Multiplying two semigroup
elements can be done in DTIME(log𝑛) as computing the address of
their product only involves multiplying two log𝑛-bit addresses. Fi-
nally, it is well-known that the fast exponentiation algorithm needs
only𝑂 (log𝑘) algebra multiplications and𝑂 (log𝑘+log𝑛) space. □

Corollary 3.2. On input of a group𝐺 , an element 𝑔 ∈ 𝐺 , and 𝑘 ∈ N,
wemay decide whether ord(𝑔) = 𝑘 in∀log𝑛DTISP(polylog(𝑛), log(𝑛)).
Application to isomorphism testing. Using Cor. 3.2, we can
improve the upper bound for isomorphism testing of finite simple
groups. Previously, this problem was known to be in L [38] and
FOLL [18].
Corollary 3.3. Let 𝐺 be a finite simple group and 𝐻 be arbitrary.

We can decide whether 𝐺 � 𝐻 in AC
0 (DTISP(polylog(𝑛), log(𝑛))).

Cor. 3.2 also lets us improve on the L∩ FOLL bound [7, Thm. 3.2]
for testing whether a group is nilpotent to:
Corollary 3.4. Deciding whether a group 𝐺 (given by its multiplica-

tion table) is nilpotent is in AC
0 (DTISP(polylog(𝑛), log(𝑛))).

Application to membership testing. A group 𝐺 has the log𝑛
power basis property [7; 17] if for every 𝑋 ⊆ 𝐺 every 𝑔 ∈ ⟨𝑋 ⟩ can be
written as 𝑔 = 𝑔

𝑒1
1 · · ·𝑔𝑒𝑚𝑚 with𝑚 ≤ log𝑛 and suitable 𝑔𝑖 ∈ 𝑋 and

𝑒𝑖 ∈ Z. Lem. 3.1 provides that Membership for semigroups with
the log𝑛 power basis property is inNTISP(polylog(𝑛), log(𝑛)). This
observation allows us to improve some FOLL bounds from [7; 17]
to NTISP(polylog(𝑛), log(𝑛)).
Corollary 3.5. Membership is in NTISP(polylog(𝑛), log(𝑛)) for:

(a) commutative semigroups;

(b) nilpotent groups;

(c) solvable groups of class 𝑂 (1).
The above result for nilpotent groups involves no restriction on

the nilpotency class, improving considerably over [7, Cor. 3.2].

Proof sketch for nilpotent groups. Given 𝑔 ∈ 𝐺,𝑋 ⊆ 𝐺 .
The𝑚-th term of the lower central series Γ0 = ⟨𝑋 ⟩, Γ𝑚+1 = [Γ𝑚, ⟨𝑋 ⟩]
is generated by 𝐶𝑚 = {[[[𝑥1, 𝑥2], 𝑥3], · · · , 𝑥𝑘] : 𝑥𝑖 ∈ 𝑋, 𝑘 ≥ 𝑚}
(e. g., [11, Lem. 2.6]). Define 𝐶′ by choosing a minimal generating
set for Γ0/Γ1 from among𝐶0, then a minimal generating set of Γ1/Γ2
among 𝐶1, and so on. 𝐶′ will be a so-called polycyclic generating
set of ⟨𝑋 ⟩, so every 𝑔 ∈ ⟨𝑋 ⟩ can be written 𝑔 = 𝑐

𝑒1
1 · · · 𝑐𝑒𝑚𝑚 with

𝑒𝑖 ∈ Z and 𝑐𝑖 ∈ 𝐶′. We nondeterministically guess the latter expres-
sion for 𝑔. As 𝑚 ≤ log |𝐺 | for any nilpotent group, this gives an
NTISP(polylog(𝑛), log(𝑛)) algorithm. □

4 ABELIAN GROUP ISOMORPHISM

Our next application of our order-finding Lem. 3.1 is:

Theorem 4.1. Let𝐺 be an Abelian group, and let 𝐻 be arbitrary. We

can decide isomorphism between 𝐺 and 𝐻 in

∀log log𝑛MAC
0 (DTISP(polylog(𝑛), log(𝑛))) .

Chattopadhyay, Torán, andWagner [10] established a TC0 (FOLL)
upper bound on this problem. Grochow & Levet [18, Thm. 5] gave
a tighter analysis of their algorithm, placing it in the sub-class
∀log𝑛MAC

0 (FOLL).10 Chattopadhyay, Torán, & Wagner also estab-
lished an upper bound of L for this problem, which is incomparable
to the result of Grochow & Levet (ibid.). We improve upon both
these bounds by (i) showing that𝑂 (log log𝑛) non-deterministic bits
suffice instead of 𝑂 (log𝑛) bits, and (ii) using our improved bound
on order-finding (Lem. 3.1).

While ∀log𝑛MAC
0 (FOLL) is contained in TC

0 (FOLL), it is open
whether this containment is strict. In contrast, it follows from [9,
Thm. 7] that our new bound is a class that is in fact strictly contained
in L ∩ TC

0 (FOLL) (see [12, Cor. 5.3] for details).

Proof of Thm. 4.1. Following the strategy of [18, Theorem 7.15],
we show that non-isomorphism can be decided in the same class
but with existentially quantified non-deterministic bits.
We may check in AC0 whether a group is Abelian. So now assume

that𝐻 is Abelian. If𝐺 ≇ 𝐻 , then there exists a prime power 𝑝𝑒 such
that there aremore elements of order 𝑝𝑒 in𝐺 than in𝐻 . We first iden-
tify the order of each element, which isAC0 (DTISP(polylog(𝑛), log(𝑛)))-
computable by Cor. 3.2.

Let𝑛 = 𝑝
𝑒1
1 · · · 𝑝𝑒ℓ

ℓ
be the prime factorization of𝑛. Using𝑂 (log log𝑛)

non-deterministic bits, we can guess a pair (𝑝, 𝑒) (𝑝 represented by
its index in the prime decomposition), where 𝐺 has more elements
of 𝑝𝑒 than 𝐻 . We may then, in AC

0, compute 𝑝𝑒 from 𝑝 . We use
Cor. 3.2 to identify the elements of order 𝑝𝑒 , and then an MAC

0

circuit to compare the number of such elements in 𝐺 vs. 𝐻 . See [12,
Thm. 5.1] for full details. □

5 GROUP ISOMORPHISM FOR ALMOST ALL ORDERS

We use our improved order-finding Lem. 3.1 to improve the parallel
complexity of GpI for almost all orders. Dietrich & Wilson [15]
proved that there is a dense set Υ ⊆ N such that if 𝑛 ∈ Υ and 𝐺1,𝐺2
are magmas of order 𝑛 given by their multiplication tables, we can
(i) decide if𝐺1,𝐺2 are groups, and (ii) if so, decide whether𝐺1 � 𝐺2
in time𝑂 (𝑛2 log2 𝑛), which is quasi-linear time relative to the input
size. We improve the parallel complexity of their result:

Theorem 5.1. Let 𝑛 ∈ Υ, and let 𝐺1,𝐺2 be magmas of order 𝑛.

We can decide whether the 𝐺𝑖 are groups and whether 𝐺1 � 𝐺2 in
AC

0 (DTISP(polylog(𝑛), log(𝑛))).

Proof. Deciding whether a magma is a group is readily seen to
be in AC

0. Dietrich & Wilson showed [15, Thm. 2.5] that if 𝐺 is a
group of order 𝑛 ∈ Υ, then 𝐺 = 𝐻 ⋉ 𝐵, where:
10Grochow & Levet consider ∀log𝑛

MAC
0 ◦ FOLL, where ◦ denotes composition (see

[18] for a precise formulation). Note that as AC0 ◦ FOLL = FOLL = AC
0 (FOLL) , we

have ∀log𝑛
MAC

0 ◦ FOLL = ∀log𝑛
MAC

0 (FOLL) . Thus, Thm. 4.1 improves upon the
previous bound of ∀log𝑛

MAC
0 (FOLL) obtained by Grochow & Levet.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

111:6 • Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weiß

• 𝐵 is a cyclic group of order 𝑝1 · · · 𝑝ℓ , where for each 𝑖 ∈ [ℓ],
𝑝𝑖 > log log𝑛 and 𝑝𝑖 is the maximum power of 𝑝𝑖 dividing 𝑛.

• |𝐻 | = (log𝑛)poly log log𝑛 ; and in particular, if a prime divisor
𝑝 of 𝑛 satisfies 𝑝 ≤ log log𝑛, then 𝑝 divides |𝐻 |.

Fix groups 𝐺1,𝐺2 of order 𝑛. We may, in
AC

0 (DTISP(polylog(𝑛), log(𝑛))), do the following: (i) decompose
𝐺𝑖 = 𝐻𝑖 ⋉ 𝐵𝑖 , as prescribed by [15, Thm. 2.5], (ii) select a generator
𝑏𝑖 for 𝐵𝑖 , and (iii) select an isomorphism for 𝐻1 � 𝐻2 by specify-
ing cube generating sequences (or decide if 𝐻1 ≇ 𝐻2). Step (iii)
utilizes the proof of [12, Thm. 4.1] in the full version. As |𝐻1 | =
|𝐻2 | ≤ (log𝑛)poly log log𝑛 , there are only poly(𝑛) such generating
sequences to consider.
Suppose 𝐻1 � 𝐻2, 𝐵1 � 𝐵2, and gcd(|𝐵 𝑗 |, |𝐻 𝑗 |) = 1 for 𝑗 = 1, 2.

We have by the Schur–Zassenhaus Theorem that 𝐺 𝑗 = 𝐻 𝑗 ⋉𝜃 𝑗

𝐵 𝑗 (𝑗 = 1, 2). By Taunt’s Lemma [39], it remains to test whether
the actions 𝜃1 and 𝜃2 are equivalent. This step is computable in
AC

0 (DTISP(polylog(𝑛), log(𝑛))); see [12, Thm. 6.1] for details. □

6 QUASIGROUP ISOMORPHISM

The main results in the remainder of the paper do not rely on our
order-finding Lem. 3.1, but rather on other techniques. The following
proof is inspired by [14] where a similar problem is shown to be in
the third level of the polynomial hierarchy using the same approach.

Theorem 6.1. Quasigroup Isomorphism belongs to

∃log
2 𝑛∀log𝑛∃log𝑛DTISP(polylog(𝑛), log(𝑛)) .

Note thatwe have∃log2 𝑛∀log𝑛∃log𝑛DTISP(polylog(𝑛), log(𝑛)) ⊆
∃log2 𝑛AC0 (DTISP(polylog(𝑛), log(𝑛))) ⊆ quasiAC

0 ∩ ∃log2 𝑛L ∩
∃log2 𝑛FOLL.

Proof sketch. Careful analysis of the algorithm of [10, Thm. 3.4].
The key idea is to guess cube generating sequences for both input
groups (in the ∃log2 𝑛 part) and then in the remaining computation
verify whether these are in fact cube generating sequences that,
indeed, induce an isomorphism. □

We obtain several corollaries, that all essentially follow by known
AC

0-reductions; [25] is a convenient reference for definitions of the
problems below and the reductions.

Corollary 6.2. The following isomorphism problems are in

∃log
2 𝑛
AC

0 (DTISP(polylog(𝑛), log(𝑛))) :
(1) Isomorphism of Steiner triple systems

(2) Isomorphism of pseudo-STS graphs

(3) Isomorphism of Steiner (𝑡, 𝑡 + 1)-designs
(4) Isomorphism of Latin square graphs

(5) Latin Square Isotopy.

Latin square graphs are one of the four families11 of strongly
regular graphs under Neumaier’s classification [30]. Levet [25] es-
tablished an upper bound of ∃log2 𝑛AC0 for isomorphism testing of
conference graphs, which is a stronger upper bound than we obtain
11the other families being line graphs of Steiner 2-designs, conference graphs, and
graphs whose eigenvalues satisfy the claw bound

for Latin square graphs. In contrast, the best known algorithmic run-
time for identifying conference graphs is 𝑛2 log(𝑛)+𝑂 (1) [5], whereas
Latin square graphs admit an 𝑛log(𝑛)+𝑂 (1) -time solution [29].

7 MINIMUM GENERATING SET

In this section, we consider theMinimum Generating Set (MGS)
problem for groups, quasigroups, and arbitrary magmas.

7.1 MGS for Groups in AC
1 (L)

Theorem 7.1. MGS for groups belongs to AC
1 (L).

We begin with the following lemma from the full version [12].

Lemma 7.2. Let 𝐺 be a group. We can compute a chief series for 𝐺

in AC
1 (L).

Proof of Thm. 7.1. By Lem. 7.2, we can compute a chief series
𝑁1⊳𝑁2⊳· · ·⊳𝑁𝑘 = 𝐺 inAC1 (L). We proceed inductively down the𝑁𝑖 .
As 𝐺/𝑁𝑘−1 is a finite simple group, and hence at most 2-generated,
we can find a generating set in L [38].

Fix 𝑖 < 𝑘 . Given a minimum generating sequence 𝑔1, . . . , 𝑔𝑑 ∈ 𝐺
for𝐺/𝑁𝑖 we construct a minimum generating sequence for𝐺/𝑁𝑖−1
as follows. If 𝑁 = 𝑁𝑖/𝑁𝑖−1 is Abelian (case 1):

• Case 1a: We have 𝐺/𝑁𝑖−1 = ⟨𝑔1, · · · , 𝑔𝑖 , 𝑔 𝑗𝑛,𝑔 𝑗+1, · · · , 𝑔𝑑 ⟩
for some 𝑗 ∈ [𝑑] and some 𝑛 ∈ 𝑁 (possibly 𝑛 = 1). There are
at most 𝑑 · |𝑁 | generating sets to consider in this case and we
can test each of them in L with Membership [8; 33].

• Case 1b: If Case 1a does not hold, then by [27, Thm. 4] we
have that 𝐺/𝑁𝑖−1 = ⟨𝑔1, · · · , 𝑔𝑑 , 𝑥⟩ for any non-identity ele-
ment 𝑥 ∈ 𝑁 .

Otherwise, 𝑁 is non-Abelian (case 2), and we have by [28, Cor. 13]
the following holds. Let 𝜂𝐺 (𝑁) denote the the number of factors in
a chief series with order |𝑁 |. Let 𝑢 = max{𝑑, 2} and 𝑡 = min{𝑢, ⌈ 85 +
log |𝑁 | 𝜂𝐺 (𝑁)⌉}. Then there exist 𝑛1, . . . , 𝑛𝑡 ∈ 𝑁𝑖−1 (possibly 𝑛1 =

· · · = 𝑛𝑡 = 1) such that 𝐺/𝑁𝑖−1 = ⟨𝑔1𝑛1, · · · , 𝑔𝑡𝑛𝑡 , 𝑔𝑡+1, · · · , 𝑔𝑑 ⟩.
By [28, Cor. 13], there are at most |𝑁 |⌈

8
5+log|𝑁 | 𝜂𝐺 (𝑁) ⌉ generating

sets of this form. As log |𝑁 | 𝜂𝐺 (𝑁) ∈ 𝑂 (1), we may write down
these generating sets in parallel with a single AC0 circuit and test
whether each generates 𝐺/𝑁𝑖−1 in L using Membership.

Since a chief series has 𝑂 (log𝑛) terms, this algorithm requires
𝑂 (log𝑛) iterations and each iteration is computable in L, resulting
in an algorithm for MGS in AC

1 (L). □

Improving upon the AC1 (L) bound onMGS for groups appears
daunting. We thus inquire as to families of groups where MGS is
solvable in complexity classes contained within AC

1 (L). To this end,
we examine the class of nilpotent groups. Arvind & Torán previously
established a polynomial-time algorithm for nilpotent groups [1,
Thm. 7]. We improve their bound as follows. Here, 𝑑 (𝐺) denotes
the minimum size of a generating set for 𝐺 .

Proposition 7.3. For a nilpotent group 𝐺 , we can compute 𝑑 (𝐺) in
L ∩ AC

0 (NTISP(polylog(𝑛), log(𝑛))).

Proof sketch. Use order-finding (Cor. 3.2) to compute the Sylow
𝑝-subgroups in AC

0 (DTISP(polylog(𝑛), log(𝑛))); we have 𝑑 (𝐺) =
maxSylow𝑃 𝑑 (𝑃). For each Sylow subgroup 𝑃 , compute the Frattini

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

Constant Depth Circuit Complexity for Generating Quasigroups • 111:7

subgroup 𝑃𝑝 [𝑃, 𝑃] based on the Burnside Basis Theorem (see [34,
Thm. 5.3.2]) and Cor. 3.2. Then 𝑑 (𝑃) = |𝑃/𝑃𝑝 [𝑃, 𝑃] |. A key fact we
use along the way is that every element of [𝑃, 𝑃] is the product of
at most log |𝑃 | commutators [36, I.§4 Ex. 5]. □

Remark 7.4. While Prop. 7.3 allows us to compute 𝑑 (𝐺) for a
nilpotent group 𝐺 , the algorithm is non-constructive. It is not clear
how to find such a generating set in L. We can, however, provide such
a generating set in AC

1 (NTISP(polylog(𝑛), log(𝑛))). This bound is
incomparable to AC

1 (L). See the full version [12, Rmk. 7.4] for
details.

7.2 MGS for Quasigroups

In this section, we consider theMinimum Generating Set problem
for quasigroups. Our goal is to establish the following.

Theorem 7.5. For MGS for quasigroups,

(a) The decision version belongs to∃log2 𝑛∀log𝑛NTIME(polylog(𝑛));
(b) The search version belongs to∃log2 𝑛SAC1 ⊆ DSPACE(log2 𝑛);12

and

(c) The search version belongs to quasiAC
0
.

In the paper in which they introduced (polylog-)limited nonde-
terminism, Papadimitriou and Yannakakis conjectured that MGS for
quasigroups was ∃log2 𝑛P-complete [31, after Thm. 7]. While they
did not specify the type of reductions used, it may be natural to
consider polynomial-time many-one reductions. Thm. 7.5 refutes
two versions of their conjecture under other kinds of reductions,
that are incomparable to polynomial-time many-one reductions:
quasiAC

0 reductions unconditionally and polylog-space reductions
conditionally. We note that their other ∃log2 𝑛P-completeness result
in the same section produces a reduction that in fact can be done in
logspace and (with a suitable, but natural, encoding of the gates in
a circuit) also in AC

0, so our result rules out any such reduction for
MGS.

Corollary 7.6. MGS for quasigroups and Quasigroup Isomorphism

are not ∃log2 𝑛P-complete...

(a) ...under quasiAC
0
Turing reductions;

(b) ...under polylog-space Turing reductions unless EXP = PSPACE.

Proof. (a) As Parity is in P but not in quasiAC
0, problems in

quasiAC
0 can’t be ∃log2 𝑛P-complete under quasiAC0 reductions.

(b) Both MGS for quasigroups and Quasigroup Isomorphism
are in DSPACE(log2 𝑛) by Thm. 7.5 (b), resp. [10]. The closure of
DSPACE(log2 𝑛) under poly-log space reductions is contained in
polyL =

⋃
𝑘≥0 DSPACE(log𝑘 𝑛). If either of these two quasigroup

problems were complete for ∃log2 𝑛P under polylog-space Turing
reductions, we would get ∃log2 𝑛P ⊆ polyL. Under the latter as-
sumption, by a standard padding argument, we can show that
EXP = PSPACE. See [12, Cor. 7.6] for full details. □

Now we return to establishing the main result of this section,
Thm. 7.5. To establish Thm. 7.5 (a) and (c), we will crucially leverage

12Wolf [43] showed the containment ∃log2 𝑛
SAC

1 ⊆ DSPACE(log2 𝑛) .

the Membership problem for quasigroups. To this end, we will first
establish the following.

Theorem 7.7. Membership for quasigroups belongs to

NTIME(polylog(𝑛)).

Thm. 7.7 immediately yields the following corollary.

Corollary 7.8. For quasigroups, Membership and MGS are not hard

under AC
0
-reductions for any complexity class containing Parity.

The proofs of Thms. 7.7 and 7.5 rely crucially on the following
adaption of the Babai–Szemerédi Reachability Lemma [4, Thm. 3.1]
to quasigroups. We first generalize the notion of a straight-line
program for groups [4] to SLPs for quasigroups. Let 𝑋 be a set
of generators for a quasigroup 𝐺 . We call a sequence of elements
𝑔1, . . . , 𝑔ℓ ∈ 𝐺 a straight-line program (SLP for short) if each 𝑔𝑖
(𝑖 ∈ [ℓ]) either belongs to 𝑋 , or is of the form or 𝑔 𝑗𝑔𝑘 , 𝑔 𝑗\𝑔𝑘 , or
𝑔 𝑗/𝑔𝑘 for some 𝑗, 𝑘 < 𝑖 (recall from §1 that 𝑎\𝑏 resp. 𝑏/𝑎 denotes
the unique 𝑥 such that 𝑎𝑥 = 𝑏 resp. 𝑥𝑎 = 𝑏). An SLP is said to
compute or generate a set 𝑆 (or an element 𝑔) if 𝑆 ⊆ {𝑔1, . . . , 𝑔ℓ }
(resp. 𝑔 ∈ {𝑔1, . . . , 𝑔ℓ }).

Lemma 7.9 (Reachability Lemma for quasigroups). Let𝐺 be a finite

quasigroup and let 𝑋 be a set of generators for 𝐺 . For each 𝑔 ∈ 𝐺 ,
there exists a straight-line program over 𝑋 generating 𝑔 which has

length 𝑂 (log2 |𝐺 |).

We follow the same strategy as in the proof of [4, Thm. 3.1], but
there are some subtle, yet crucial, modifications due to the fact that
quasigroups are non-associative and need not posses an identity
element.

Proof. For any sequence of elements 𝑧1, . . . , 𝑧𝑘 , let 𝑃 (𝑧1𝑧2 · · · 𝑧𝑘)
denote the left-to-right parenthesization, e.g., 𝑃 (𝑧1𝑧2𝑧3) = (𝑧1𝑧2)𝑧3.
For some initial segment 𝑧0, 𝑧1, . . . , 𝑧𝑖 define the cube

𝐾 (𝑖) = {𝑃 (𝑧0𝑧𝑒11 · · · 𝑧𝑒𝑖
𝑖
) : 𝑒1, . . . , 𝑒𝑖 ∈ {0, 1}},

where 𝑒 𝑗 = 0 denotes omitting 𝑧 𝑗 from the product (since there need
not be an identity element).

Define 𝐿(𝑖) = 𝐾 (𝑖)\𝐾 (𝑖) = {𝑔\ℎ : 𝑔, ℎ ∈ 𝐾 (𝑖)}. We will construct
a sequence 𝑧0, 𝑧1, . . . , 𝑧𝑡 such that 𝑡 ≤ ⌈log2 (𝑛)⌉ and 𝐿(𝑡) = 𝐺 .
Moreover, we derive a bound on the straight-line cost 𝑐 (𝑖) for
{𝑧0, 𝑧1, . . . , 𝑧𝑖 } (1 ≤ 𝑖 ≤ 𝑡), which is defined as the length of the
shortest SLP generating {𝑧0, 𝑧1, . . . , 𝑧𝑖 }.
We take 𝑧0 as an arbitrary element from 𝑋 . Hence, 𝐾 (0) = {𝑧0},

and so 𝑐 (0) = 1. Next, let us construct𝐾 (𝑖+1) from𝐾 (𝑖). If 𝐿(𝑖) ≠ 𝐺 ,
we set 𝑧𝑖+1 to be an element 𝑧′ ∉ 𝐿(𝑖) that minimizes 𝑐 (𝑖 + 1) − 𝑐 (𝑖).
We first claim that |𝐾 (𝑖 + 1) | = 2 · |𝐾 (𝑖) |. Note that 𝐾 (𝑖 + 1) = 𝐾 (𝑖) ∪
𝐾 (𝑖)𝑧𝑖+1 by definition. As right-multiplication by a fixed element is a
bijection in a quasi-group, it suffices to show that 𝐾 (𝑖) ∩𝐾 (𝑖)𝑧𝑖+1 =
∅. So, suppose that there exists some 𝑎 ∈ 𝐾 (𝑖) ∩ 𝐾 (𝑖)𝑧𝑖+1. Then
𝑎 = 𝑔𝑧𝑖+1 for some 𝑔 ∈ 𝐾 (𝑖). Hence, 𝑧𝑖+1 = 𝑔\𝑎, contradicting
𝑧𝑖+1 ∉ 𝐿(𝑖), since both 𝑎 and 𝑔 are in 𝐾 (𝑖).

It now follows that |𝐾 (𝑖) | = 2𝑖 and, hence, 𝑡 ≤ ⌈log2 (|𝐺 |)⌉ and
𝐿(𝑡) = 𝐺 . Moreover, for every 𝑔 ∈ 𝐺 we obtain an SLP of length at
most 𝑐 (𝑡)+2𝑡+1: write𝑔 = 𝑎\𝑏 for 𝑎, 𝑏 ∈ 𝐾 (𝑡) and start with the SLP
computing {𝑧0, 𝑧1, . . . , 𝑧𝑡 }. We obtain an SLP for 𝑎 = 𝑧0𝑧

𝑒1
1 · · · 𝑧𝑒𝑡𝑡 by

adding a new element for each 𝑧0𝑧𝑒11 · · · 𝑧𝑒𝑖
𝑖
with 𝑒𝑖 = 1 (1 ≤ 𝑖 ≤ 𝑡 ,

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

111:8 • Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weiß

thus, at most 𝑡 new elements). Likewise, we get an SLP for 𝑏. Adding
a last element 𝑔 = 𝑎\𝑏, we obtain an SLP computing 𝑔.
It remains to bound the straight-line cost 𝑐 (𝑖) of {𝑧0, 𝑧1, . . . , 𝑧𝑖 }.

Here, we claim that that 𝑐 (𝑖 + 1) − 𝑐 (𝑖) ≤ 4𝑖 + 3. It follows from this
claim that 𝑐 (𝑖) ∈ 𝑂 (𝑖2). We will now turn to proving our claim:

If 𝐺 ≠ 𝐿(𝑖), then either 𝑋 ⊈ 𝐿(𝑖) or 𝐿(𝑖) is not a sub-quasigroup.
Hence, we have one of the following cases:
Case 1: Suppose that there is some 𝑔 ∈ 𝑋 − 𝐿(𝑖). In this case, there
is an SLP of length one for 𝑔 and we obtain 𝑐 (𝑖 + 1) − 𝑐 (𝑖) ≤ 1.
Case 2: Suppose there exist 𝑔, ℎ ∈ 𝐿(𝑖) with one of 𝑔ℎ, 𝑔/ℎ, or 𝑔\ℎ ∉

𝐿(𝑖). For simplicity, suppose 𝑔ℎ ∉ 𝐿(𝑖) . The argument is identical
for 𝑔/ℎ and 𝑔\ℎ. As above, given an SLP to compute {𝑧0, 𝑧1, . . . , 𝑧𝑖 },
we may construct SLPs for 𝑔 and ℎ each of additional length 2𝑖 + 1.
This yields an SLP for 𝑔ℎ of total length at most 𝑐 (𝑖) + 4𝑖 + 3, and
shows that 𝑐 (𝑖 + 1) − 𝑐 (𝑖) ≤ 4𝑖 + 3. The result now follows. □

For proving Thm. 7.7 we follow essentially the ideas of [17]
(though we avoid introducing the notion of Cayley circuits). Fleis-
cher obtained a quasiAC0 bound forMembership for group by then
showing that the Cayley circuits for this problem can be simulated
by a quasiAC0 circuit. We will instead directly analyze the straight-
line programs using an NTIME(polylog(𝑛)) algorithm.

Proof of Thm. 7.7. To decide whether 𝑔 ∈ ⟨𝑋 ⟩, guess the se-
quence of operations for an SLP of length ℓ , for ℓ ∈ 𝑂 (log2 |𝐺 |),
which exists iff 𝑔 ∈ ⟨𝑋 ⟩ by Lem. 7.9. Computing the values in the
SLP and verifying that 𝑔ℓ = 𝑔 can be done in time poly(ℓ, log𝑛) ≤
polylog(𝑛). □

The proof of Thm. 7.5 (a) and (c) below is by describing a reduction
from MGS to Membership. Thm. 7.5 (b) uses a result of Wagner.

Proof of Thm. 7.5. (a) Let 𝐺 denote the input quasigroup (of or-
der 𝑛). First, observe that every quasigroup has a generating set of
size ≤ ⌈log𝑛⌉ [29]. Therefore, we start by guessing a subset 𝑋 ⊆ 𝐺
of size at most ≤ ⌈log𝑛⌉ (resp. the size bound given in the input).
For the decision version, we use 𝑂 (log2 𝑛) existentially quantified
non-deterministic bits (∃log2 𝑛) to guess a generating sequence. To
find a minimum-sized generating sequence, we enumerate all possi-
ble generating sequences in quasiAC

0. In the next step, we verify
whether 𝑋 actually generates 𝐺 . This is done by checking for all
𝑔 ∈ 𝐺 (universally verifying 𝑂 (log𝑛) bits, ∀log𝑛) whether 𝑔 ∈ ⟨𝑋 ⟩,
which can be done in NTIME(polylog(𝑛)) ⊆ quasiAC

0 by Thm. 7.7.
(c) Proceed as in (a), using the same technique to check that all

𝑌 ⊆ 𝐺 with |𝑌 | < |𝑋 | do not generate 𝐺 .
(b) Existentially guess a generating set using 𝑂 (log2 𝑛) bits, then

use [42, Thm. 10.2.1] to compute ⟨𝑋 ⟩ in SAC
1. Then we check, in

AC
0, whether each element of the quasigroup belongs to ⟨𝑋 ⟩. □

We may similarly reduce Quasigroup Isomorphism to Member-
ship for quasigroups. This formalizes the intuition thatMembership
is an essential subroutine for isomorphism testing and MGS. In par-
ticular, in the setting of quasiAC0, we have that isomorphism testing
and MGS reduce to Membership. This latter consequence might
seem surprising, as in the setting of groups,Membership belongs to
L, while MGS belongs to AC1 (L) (Thm. 7.1), yet it is a longstanding
open problem whether Group Isomorphism is even in P.

7.3 MGS for Magmas

Theorem 7.10. The decision variant of Minimum Generating Set

for magmas is NP-complete.

This NP-completeness result helps explain the use of Integer
Linear Programming in practical heuristic algorithms for the search
version of this problem, e.g., [22].

For the closely related problem Log Generators—given the mul-
tiplication table of a magma of order 𝑛, decide whether it has a
generating set of size ≤ ⌈log2 𝑛⌉—Log Generators of Magmas is
∃log2 𝑛P-complete under polynomial-time reductions [31, Thm. 7].

Proof sketch. The problem is in NP by guessing a suitable
generating set. To show NP-hardness we reduce from 3SAT. Let
𝐹 =

∧𝑚
𝑗=1𝐶 𝑗 with variables 𝑋1, . . . , 𝑋𝑛 be an instance of 3SAT. Our

magma𝑀 consists of the following elements: an element 𝐶 𝑗 for 𝑗 ∈
[𝑚], elements 𝑋𝑖 , 𝑋 𝑖 for 𝑖 ∈ [𝑛], elements 𝑇𝑗,𝑘 for 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑚,
and a zero element 0. We define the multiplication as follows:

𝐶 𝑗𝑋 = 𝑇𝑗, 𝑗 if the literal 𝑋 appears in 𝐶 𝑗

𝑇1,𝑚𝑋𝑖 = 𝑋 𝑖 , 𝑇1,𝑚𝑋 𝑖 = 𝑋𝑖 ,

𝑇𝑗,𝑘𝑇𝑘+1,ℓ = 𝑇𝑗,ℓ .

all other products are defined as 0.
Any generating set for 𝑀 must include all the 𝐶 𝑗 , since without

them, there is no way to generate them from other elements. Simi-
larly, any generating set must include, for each 𝑖 ∈ [𝑛], at least one
of 𝑋𝑖 or 𝑋 𝑖 , since they also can’t be generated from other elements.
We show that 𝐹 is satisfiable if and only if𝑀 can be generated by

𝑛+𝑚 elements.When 𝐹 is satisfiable, let𝜑 be a satisfying assignment,
then 𝑀 is generated by {𝐶 𝑗 : 𝑗 ∈ [𝑚]} ∪ {𝑋𝑖 : 𝜑 (𝑥𝑖) = 1} ∪ {𝑋 𝑖 :
𝜑 (𝑥𝑖) = 0}. Conversely, any generating set of size 𝑛 + 𝑚 must
consist of all 𝐶 𝑗 and exactly one of each {𝑋𝑖 , 𝑋 𝑖 }. As the only way
to generate 𝑇𝑗, 𝑗 is for one of the literals to satisfy 𝐶 𝑗 , the choice of
𝑋𝑖 , 𝑋 𝑖 in the generating set must be a satisfying assignment. □

8 OPEN QUESTIONS

The biggest open question about constant-depth complexity on al-
gebras given by multiplication tables is, in our opinion, still whether
or not Group Isomorphism is in AC

0 in the Cayley table model.
Our results make salient some more specific, and perhaps more
approachable, open questions that we now highlight.

Question 8.1. Does MGS for groups belong to L?

Question 8.2. Does Membership for quasigroups belong to L?

The analogous result is known for groups, by reducing to the
connectivity problem on Cayley graphs. The best known bound for
quasigroups is SAC1 [42]. Improvements in this direction would
yield improvements inMGS for quasigroups. A constructive mem-
bership test would also yield improvements for isomorphism testing
of 𝑂 (1)-generated quasigroups. Note that isomorphism testing of
𝑂 (1)-generated groups is known to belong to L [38].

REFERENCES

[1] Vikraman Arvind and Jacobo Torán. The complexity of quasigroup isomorphism
and the minimum generating set problem. In Tetsuo Asano, editor, Algorithms and

Computation, 17th International Symposium, ISAAC 2006, Kolkata, India, December

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

Constant Depth Circuit Complexity for Generating Quasigroups • 111:9

18-20, 2006, Proceedings, volume 4288 of Lecture Notes in Computer Science, pages
233–242. Springer, 2006. doi:10.1007/11940128_25.

[2] James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expressive
power of voting polynomials. In Proceedings of the Twenty-Third Annual ACM

Symposium on Theory of Computing, STOC ’91, page 402–409, New York, NY, USA,
1991. Association for Computing Machinery. doi:10.1145/103418.103461.

[3] László Babai. Graph isomorphism in quasipolynomial time [extended abstract].
In STOC’16—Proceedings of the 48th Annual ACM SIGACT Symposium on Theory

of Computing, pages 684–697. ACM, New York, 2016. Preprint of full version at
arXiv:1512.03547v2 [cs.DS]. doi:10.1145/2897518.2897542.

[4] László Babai and Endre Szemerédi. On the complexity of matrix group problems I.
In 25th Annual Symposium on Foundations of Computer Science, West Palm Beach,

Florida, USA, 24-26 October 1984, pages 229–240. IEEE Computer Society, 1984.
doi:10.1109/SFCS.1984.715919.

[5] László Babai. On the complexity of canonical labeling of strongly regular graphs.
SIAM Journal on Computing, 9(1):212–216, 1980. doi:10.1137/0209018.

[6] D.A.M. Barrington. Quasipolynomial size circuit classes. In [1992] Proceedings of

the Seventh Annual Structure in Complexity Theory Conference, pages 86–93, 1992.
doi:10.1109/SCT.1992.215383.

[7] David A. Mix Barrington, Peter Kadau, Klaus-Jörn Lange, and Pierre McKenzie.
On the complexity of some problems on groups input as multiplication tables. J.
Comput. Syst. Sci., 63(2):186–200, 2001. doi:10.1006/jcss.2001.1764.

[8] David A. Mix Barrington and Pierre McKenzie. Oracle branching programs
and Logspace versus P. Inf. Comput., 95(1):96–115, 1991. doi:10.1016/0890-
5401(91)90017-V.

[9] David A. Mix Barrington and Howard Straubing. Complex polynomials and
circuit lower bounds for modular counting. Comput. Complex., 4:325–338, 1994.
doi:10.1007/BF01263421.

[10] Arkadev Chattopadhyay, Jacobo Torán, and Fabian Wagner. Graph isomorphism
is not AC0-reducible to group isomorphism. ACM Trans. Comput. Theory, 5(4):Art.
13, 13, 2013. Preliminary version appeared in FSTTCS ’10; ECCC Tech. Report
TR10-117. doi:10.1145/2540088.

[11] Anthony E. Clement, Stephen Majewicz, and Marcos Zyman. The theory of

nilpotent groups. Birkhäuser/Springer, Cham, 2017.
[12] Nathaniel A. Collins, Joshua A. Grochow, Michael Levet, and Armin Weiß. On the

constant-depth circuit complexity of generating quasigroups. arXiv:2402.00133
[cs.CC], 2024.

[13] Bireswar Das and Dhara Thakkar. Algorithms for the minimum generating set
problem, 2023. arXiv:2305.08405.

[14] Heiko Dietrich, Murray Elder, Adam Piggott, Youming Qiao, and Armin Weiß.
The isomorphism problem for plain groups is in Σ

p

3 . In Petra Berenbrink and
Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects

of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual

Conference), volume 219 of LIPIcs, pages 26:1–26:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.STACS.2022.26.

[15] Heiko Dietrich and James B. Wilson. Group isomorphism is nearly-linear time for
most orders. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer

Science (FOCS), pages 457–467, 2022. doi:10.1109/FOCS52979.2021.00053.
[16] Flavio Ferrarotti, Senén González, Klaus-Dieter Schewe, and José María Turull-

Torres. Proper hierarchies in polylogarithmic time and absence of complete
problems. In Andreas Herzig and Juha Kontinen, editors, Foundations of Informa-

tion and Knowledge Systems, pages 90–105, Cham, 2020. Springer International
Publishing.

[17] Lukas Fleischer. The Cayley semigroup membership problem. Theory of Comput-

ing, 18(8):1–18, 2022. doi:10.4086/toc.2022.v018a008.
[18] Joshua A. Grochow and Michael Levet. On the Parallel Complexity of Group

Isomorphism via Weisfeiler-Leman. In Henning Fernau and Klaus Jansen, editors,
Fundamentals of Computation Theory - 24th International Symposium, FCT 2023,

Trier, Germany, September 18-21, 2023, Proceedings, volume 14292 of Lecture Notes
in Computer Science, pages 234–247. Springer, 2023. Preprint of full version at
arXiv:2112.11487 [cs.DS]. doi:10.1007/978-3-031-43587-4_17.

[19] Joshua A. Grochow and Youming Qiao. Algorithms for group isomorphism
via group extensions and cohomology. SIAM J. Comput., 46(4):1153–1216, 2017.
Preliminary version in IEEE Conference on Computational Complexity (CCC)
2014 (DOI:10.1109/CCC.2014.19). Also available as arXiv:1309.1776 [cs.DS] and
ECCC Technical Report TR13-123. doi:10.1137/15M1009767.

[20] Harald Andrés Helfgott, Jitendra Bajpai, and Daniele Dona. Graph isomorphisms
in quasi-polynomial time, 2017. doi:10.48550/ARXIV.1710.04574.

[21] Jeffrey C. Jackson, Adam R. Klivans, and Rocco A. Servedio. Learnability beyond
AC

0 . In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of

Computing, STOC ’02, page 776–784, New York, NY, USA, 2002. Association for
Computing Machinery. doi:10.1145/509907.510018.

[22] Mikolás Janota, António Morgado, and Petr Vojtechovský. Computing generating
sets of minimal size in finite algebras. J. Symb. Comput., 119:50–63, 2023. doi:
10.1016/J.JSC.2023.02.002.

[23] Emil Jerábek. Answer to “is abelian group isomorphism in AC
0?”. Theoretical

Computer Science Stack Exchange, 06 2020. https://cstheory.stackexchange.com/
q/40118 (version: 2020-06-17).

[24] François Le Gall and David J. Rosenbaum. On the group and color isomorphism
problems. arXiv:1609.08253 [cs.CC], 2016.

[25] Michael Levet. On the complexity of identifying strongly regular graphs. Aus-
tralasian Journal of Combinatorics, 87:41–67, 2023. URL: https://ajc.maths.uq.edu.
au/pdf/87/ajc_v87_p041.pdf.

[26] R. J. Lipton, L. Snyder, and Y. Zalcstein. The complexity of word and isomorphism
problems for finite groups. Yale University Dept. of Computer Science Research
Report # 91, 1977. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf.

[27] Andrea Lucchini and Federico Menegazzo. Computing a set of generators of min-
imal cardinality in a solvable group. Journal of Symbolic Computation, 17(5):409–
420, 1994. doi:10.1006/jsco.1994.1027.

[28] Andrea Lucchini and Dhara Thakkar. The minimum generating set problem.
Journal of Algebra, 640:117–128, 2024. doi:10.1016/j.jalgebra.2023.11.012.

[29] Gary L. Miller. On the 𝑛log𝑛 isomorphism technique (a preliminary report). In
Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC
’78, pages 51–58, New York, NY, USA, 1978. Association for Computing Machinery.
doi:10.1145/800133.804331.

[30] A. Neumaier. Strongly regular graphs with smallest eigenvalue −𝑚. Archiv der
Mathematik, 33:392–400, 1979. doi:10.1007/BF01222774.

[31] Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism
and the complexity of the V-C dimension. J. Comput. Syst. Sci., 53(2):161–170,
1996. doi:10.1006/JCSS.1996.0058.

[32] Alexander A Razborov. An Equivalence between Second Order Bounded Domain
Bounded Arithmetic and First Order Bounded Arithmetic. In Arithmetic, proof

theory, and computational complexity. Oxford University Press, 05 1993. doi:
10.1093/oso/9780198536901.003.0012.

[33] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), sep 2008.
doi:10.1145/1391289.1391291.

[34] D. Robinson. A Course in the Theory of Groups. Springer, 1982.
[35] David J. Rosenbaum. Bidirectional collision detection and faster deterministic

isomorphism testing. arXiv:1304.3935 [cs.DS], 2013.
[36] Jean-Pierre Serre. Galois Cohomology. Springer Berlin, Heidelberg, 1 edition, 1997.

doi:10.1007/978-3-642-59141-9.
[37] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean

circuit complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM

Symposium on Theory of Computing, 1987, New York, New York, USA, pages 77–82.
ACM, 1987. doi:10.1145/28395.28404.

[38] Bangsheng Tang. Towards Understanding Satisfiability, Group Isomorphism

and Their Connections. PhD thesis, Tsinghua University, 2013. URL: http:
//papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf.

[39] D. R. Taunt. Remarks on the isomorphism problem in theories of construction of
finite groups. Mathematical Proceedings of the Cambridge Philosophical Society,
51(1):16–24, 1955. doi:10.1017/S030500410002987X.

[40] Jacobo Torán. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093–
1108, 2004. doi:10.1137/S009753970241096X.

[41] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 1999. doi:10.1007/
978-3-662-03927-4.

[42] F. Wagner. On the complexity of isomorphism testing for restricted classes of graphs.
PhD thesis, Universität Ulm, 2010. URL: https://oparu.uni-ulm.de/xmlui/bitstream/
handle/123456789/3923/vts_7264_10267.pdf.

[43] Marty J. Wolf. Nondeterministic circuits, space complexity and quasigroups. The-
oretical Computer Science, 125(2):295–313, 1994. doi:10.1016/0304-3975(92)
00014-I.

Received 6 February 2024; revised 12 March 2009; accepted 5 June 2009

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2024.

https://doi.org/10.1007/11940128_25
https://doi.org/10.1145/103418.103461
https://arxiv.org/abs/1512.03547v2
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1109/SFCS.1984.715919
https://doi.org/10.1137/0209018
https://doi.org/10.1109/SCT.1992.215383
https://doi.org/10.1006/jcss.2001.1764
https://doi.org/10.1016/0890-5401(91)90017-V
https://doi.org/10.1016/0890-5401(91)90017-V
https://doi.org/10.1007/BF01263421
https://doi.org/10.1145/2540088
https://arxiv.org/abs/2402.00133
https://arxiv.org/abs/2402.00133
http://arxiv.org/abs/2305.08405
https://doi.org/10.4230/LIPIcs.STACS.2022.26
https://doi.org/10.1109/FOCS52979.2021.00053
https://doi.org/10.4086/toc.2022.v018a008
https://arxiv.org/abs/2112.11487
https://doi.org/10.1007/978-3-031-43587-4_17
https://doi.org/10.1137/15M1009767
https://doi.org/10.48550/ARXIV.1710.04574
https://doi.org/10.1145/509907.510018
https://doi.org/10.1016/J.JSC.2023.02.002
https://doi.org/10.1016/J.JSC.2023.02.002
https://cstheory.stackexchange.com/q/40118
https://cstheory.stackexchange.com/q/40118
https://arxiv.org/abs/1609.08253
https://ajc.maths.uq.edu.au/pdf/87/ajc_v87_p041.pdf
https://ajc.maths.uq.edu.au/pdf/87/ajc_v87_p041.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf
https://doi.org/10.1006/jsco.1994.1027
https://doi.org/10.1016/j.jalgebra.2023.11.012
https://doi.org/10.1145/800133.804331
https://doi.org/10.1007/BF01222774
https://doi.org/10.1006/JCSS.1996.0058
https://doi.org/10.1093/oso/9780198536901.003.0012
https://doi.org/10.1093/oso/9780198536901.003.0012
https://doi.org/10.1145/1391289.1391291
https://arxiv.org/abs/1304.3935
https://doi.org/10.1007/978-3-642-59141-9
https://doi.org/10.1145/28395.28404
http://papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf
http://papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf
https://doi.org/10.1017/S030500410002987X
https://doi.org/10.1137/S009753970241096X
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1007/978-3-662-03927-4
https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/3923/vts_7264_10267.pdf
https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/3923/vts_7264_10267.pdf
https://doi.org/10.1016/0304-3975(92)00014-I
https://doi.org/10.1016/0304-3975(92)00014-I

	Abstract
	1 Introduction
	1.1 Methods
	1.2 Prior work

	2 Additional Preliminaries
	2.1 Algebra
	2.2 Computational Complexity

	3 Order Finding and Applications
	4 Abelian Group Isomorphism
	5 Group Isomorphism for Almost All Orders
	6 Quasigroup Isomorphism
	7 Minimum Generating Set
	7.1 MGS for Groups in AC 1(L)
	7.2 MGS for Quasigroups
	7.3 MGS for Magmas

	8 Open questions
	References

