
On the Robustness of LDP Protocols for Numerical
Attributes under Data Poisoning Attacks
Xiaoguang Li

Xidian University, Purdue University
xg li@outlook.com

Zitao Li
Alibaba Group (U.S.) Inc.
zitao.l@alibaba-inc.com

Ninghui Li
Purdue University

ninghui@purdue.edu

Wenhai Sun
Purdue University

whsun@purdue.edu

Abstract—Recent studies reveal that local differential privacy
(LDP) protocols are vulnerable to data poisoning attacks where
an attacker can manipulate the final estimate on the server
by leveraging the characteristics of LDP and sending carefully
crafted data from a small fraction of controlled local clients.
This vulnerability raises concerns regarding the robustness and
reliability of LDP in hostile environments.

In this paper, we conduct a systematic investigation of the
robustness of state-of-the-art LDP protocols for numerical at-
tributes, i.e., categorical frequency oracles (CFOs) with binning
and consistency, and distribution reconstruction. We evaluate
protocol robustness through an attack-driven approach and
propose new metrics for cross-protocol attack gain measurement.
The results indicate that Square Wave and CFO-based protocols
in the Server setting are more robust against the attack compared
to the CFO-based protocols in the User setting. Our evaluation
also unfolds new relationships between LDP security and its
inherent design choices. We found that the hash domain size
in local-hashing-based LDP has a profound impact on protocol
robustness beyond the well-known effect on utility. Further,
we propose a zero-shot attack detection by leveraging the rich
reconstructed distribution information. The experiment show that
our detection significantly improves the existing methods and
effectively identifies data manipulation in challenging scenarios.

I. INTRODUCTION

Local differential privacy is the de facto standard for
privacy-protective data collection and statistical estimates [1],
[2], [3], [4] against untrusted data curators. It has been
deployed by many tech companies, such as Google [5], Apple
[6], and Microsoft [7]. Recent studies raise security concerns
about LDP since malicious local data providers can report
bogus data and take advantage of the LDP design to effectively
skew the estimates on the server. This data poisoning attack
has been confirmed by prior works in various statistic tasks,
such as frequency and heavy hitter [8], [9], key-value data
[10], mean and variance [11]. These studies focused on attack
exploration, which is important for us to understand the
attack strategies and their impacts on the adoption of LDP in
practice. However, there is still a deficiency in understanding
the robustness and reliability of LDP with various design

principles and the defensive implications due to their algorith-
mic differences. Specifically, we aim to answer the following
research questions in this paper.
RQ-1. How can we translate attack effectiveness to LDP
robustness given diverse LDP designs to enable meaningful
comparison? We would like to understand the principle of var-
ious attack strategies and propose unified metrics to quantify
the attack strength for the foundation of fair LDP robustness
comparison.
RQ-2. How robust are the compared LDP protocols against
the data poisoning attack? One protocol is less robust than
another if, under the same setting, the attack is more effective
in influencing the estimated statistical quantity. Currently, LDP
protocols are often compared based on versatility (i.e., types of
statistics that can be estimated) and estimation accuracy/utility;
we argue that robustness adds another critical dimension and
would generate new insights into security-aware LDP design.
RQ-3. Can we design an effective detection function with
minimum information for existing vulnerable LDP protocols
to elevate their attack resilience? A unified solution facilitates
adoption and standardization of LDP protocols but is also
challenging since the data ground truth is unknown and clients
in different protocols report distinct information.

In this paper, we look into the numerical domain, which
includes various applications utilizing ordinal or numerical
data, e.g., income, age, health assessment data, etc. We focus
on the distribution estimation as it is a primary statistic from
which other statistical properties can be computed without
additional privacy costs. Though the attack design is an
essential part of our evaluation framework, prior research on
attacking statistical sub-tasks (e.g. mean/variance) [11], [9]
provides little insight regarding vulnerability exploit due to
different estimation tasks and attack goals.

In particular, we look at two types of distribution estimation
techniques: categorical frequency oracles with binning and
consistency, and direct distribution recovery. The protocols
in the first category bin the numerical attributes and then
apply CFOs to estimate the histogram. They then apply
post-processing to force the histogram to be consistent with
natural distributions. In this category, we study four state-
of-the-art CFOs, i.e., HST [9], GRR, OUE and OLH [2].
Depending on who (either the server or the user) selects the
hash functions, we further look at HST and OLH in the Server
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setting and User setting respectively. For the direct distribution
recovery, we study a representative mechanism, SW [3]. In
SW, the server considers the ordinal nature of the numerical
domain and uses Expectation Maximization with Smoothing
to reconstruct the distribution.

We propose an attack-driven evaluation framework to mea-
sure the robustness of each attacked protocol. To this end, we
present a suite of Distribution-Shift Attacks in which the
attacker aims to shift the estimated distribution to the right-
most end.1 We propose new metrics to quantitively compare
robustness across different LDP protocols. The first is Abso-
lute Shift Gain (ASG) inspired by Wasserstein distance to
quantify the extent to which the distribution is shifted towards
the right side. Smaller ASG indicates better attack resilience.
We also look at Shift Gain Ratio (SGR), the ratio of ASG of
the proposed attack to that of a baseline attack (i.e., sending
the maximum input value xmax to skew the distribution). The
baseline attack is indistinguishable from the case where the
true inputs of a group of users are also xmax, and thus its
impact is the same on any LDP mechanism that produces
an unbiased estimation. Therefore, SGR helps us evaluate the
protocol robustness using the baseline attack as a reference
regardless of the attack background, such as the number of
malicious users and the ground truth distribution. SGR > 1
indicates the attack outperforms the baseline. The larger the
metric is, the less robust the underlying LDP protocol is.

Results on Robustness. First, the robustness of the studied
protocols varies under the attack. For the attack strategy
that maximizes the frequency of the right-most bin in the
domain, SW is more robust than CFO-based mechanisms
because of the smoothing step of SW. To further reveal
the more vulnerable sides of SW, we allow the attacker to
report values sampled in a higher-end range. We observe that
SW and CFOs in the Server setting consistently outperform
CFOs in the User setting. Our experiment reports enhanced
robustness of all protocols with an increasing privacy budget.
The attack effectiveness will degrade to the baseline with a
reasonably large ϵ (e.g., 1). In addition, our study uncovers
a new correlation between protocol design and LDP security
beyond prior findings that only privacy preference affects the
LDP robustness [8], [11]. Our evaluation shows a trade-off
between the security and hash domain size of local-hashing-
based LDP, i.e., the larger the hash domain size, the less robust
the protocol.

Detection Exploration. To help vulnerable protocols re-
store the attack resilience, we design a zero-shot attack de-
tection by analyzing the distribution of reported values. Our
detection provides a unified solution that accommodates dif-
ferent LDP protocols. It demonstrates significant performance
improvement compared to the state-of-the-art detection [8].
Since the fake values are crafted without following the LDP
protocol, the main idea of our detection is to capture the
difference between the randomness of fake values and the
LDP perturbation. Specifically, we synthesize the data based

1Our attacks can be adapted to other regions.

on the estimated distribution and push them through the LDP
perturbations. Since the perturbed results are not polluted, they
are expected to carry strong LDP randomness and thus can be
used as a benchmark of “no attack”. The noisy report then can
be considered unpolluted when it is statistically close to this
benchmark. To evaluate detection performance, we plot the
Receiver Operating Characteristic (ROC) curve and measure
the Area Under the Curve (AUC), where a larger AUC indi-
cates a better detection result. The experimental results on both
real-world and synthesized datasets show that our detection
substantially outperforms the state-of-the-art [8]. In contrast
to the existing method that fails to identify the attack in
most cases, our detection demonstrates superior performance,
especially on SW, OUE, and CFO-based mechanisms under
User setting. Specifically, the AUC of our detection constantly
remains over 0.92 with the attacker only controlling 5% of the
total clients. When the attack appears to evade our detection,
its efficacy also diminishes quickly to the baseline, indicating
that it is no longer a serious security concern. We summarize
our contributions below.
1) We systematically investigate the robustness of the LDP

protocols for numerical data against data poisoning attacks.
The studied protocols consist of a wide array of state-
of-the-art distribution estimation mechanisms to show the
current threat landscape and further reveal its profound
impact.

2) To evaluate the robustness of the protocols, we look into
the design of effective attacks and provide new metrics
to measure LDP robustness informed by attack strength
regardless of diverse design principles of underlying LDP
protocols.

3) We both theoretically and empirically evaluate and compare
the robustness of the studied LDP protocols. We found
that these protocols are not equally resilient against the
threat. The CFOs under Server setting and SW offer better
security. We also uncover new factors in LDP design that
influence protocol robustness other than the well-known
privacy-security relationships.

4) We propose a novel detection method to identify data ma-
nipulation. Our method leverages the distribution properties
of the reported data without knowing the ground truth in-
formation to detect attacks that introduce statistically non-
negligible bias to the distribution. The experiment shows
that our method consistently outperforms the existing ones
in many challenging scenarios.

II. BACKGROUND AND RELATED WORK

A. Local Differential Privacy

LDP considers the setting that there are n local users and
a remote untrusted data collector. Each user possesses private
data x ∈ D, which is of interest to the data collector. To protect
privacy, each user randomly perturbs x with an algorithm Ψ,
and only reports the perturbed data Ψ(x) to the data collector.
The algorithm Ψ provides LDP protection if and only if it
satisfies the following definition.
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Definition 1 (ϵ-Local Differential Privacy [1]). An algorithm
Ψ(·) : D → D̂ satisfies ϵ-LDP if and only if for any xi, xj ∈ D
and any t ∈ D̂, the following inequality holds,

Pr[Ψ(xi) = t] ≤ eϵ Pr[Ψ(xj) = t].

A smaller ϵ, referred to as the privacy budget, corresponds
to a more tightened privacy level but also a lower data utility.

B. CFO with binning and consistency

We first introduce the CFOs used in this paper and then
discuss the post-processing methods for consistency.
Categorical frequency oracles. We assume the protocol
discretizes the numerical domain [0, 1] into mo bins, and
denote the index of the bin that contains the user’s private
value x as xb for convenience.
Generalized Randomized Response (GRR) [2]. GRR directly
perturbs each input xb by keeping xb unchanged with prob-
ability p = eϵ

eϵ+mo−1 and changing it to another index
with probability q = 1

eϵ+mo−1 . The frequency of each
bin Bi(∀i ∈ [mo]) is estimated by aggregation function

ΦGRR(Bi) =
∑n

j=1 I[i](y(j))−nq

n(p−q) , where y(j) is the j-th user’s
report and I[i](y(j)) is the indicator function equal to 1 if
y(j) = i and 0 otherwise.
Optimal Unary Encoding (OUE) [2]. OUE is one of the op-
timal categorical frequency oracles that attains the theoretical
lower bound of the LDP protocol L2 error. It first encodes
each input xb as a one-hot vector v = [0, ..., 1, .., 0], where
all elements are 0 except for the element at position xb. Then
it flips the bits in v to get v̂ as follows: if the bit is 1, it is
flipped to 0 with probability 1

2 ; otherwise a bit 0 is flipped to
1 with probability 1

eϵ+1 .
The frequency of each bin Bi(∀i ∈ [mo]) is estimated by

aggregation function ΦOUE(Bi). With the j-th user’s report

denoted as v̂(j), ΦOUE(Bi) =
∑n

j=1 v̂(j)[i]− n
eϵ+1

n( 1
2−

1
eϵ+1 )

.

Optimal Local Hashing (OLH) [2]. OLH is an optimal categor-
ical frequency oracle with the same minimal L2 error as OUE.
OLH leverages a family of hash functions H, each of which
maps xb ∈ {1, ...,mo} to xh ∈ {1, ..., g}, where g = ⌊eϵ+1⌋.
For simplicity, we denote the domain {1, ...,mo} and {1, ..., g}
as [mo] and [g]. An example of a hash function family is
xxh32 [12] with different seeds. In OLH, each user first uses
a randomly selected hash function H ∈ H to encode the value
xb as xh = H(xb). Given the hash function, each user perturbs
the hash value xh as follows and reports the tuple ⟨H, x̂h⟩.

∀x̂h∈[g] Pr[ΨOLH(xb) = x̂h] =

{
p = eϵ

eϵ+g−1 , if x̂h = xh

q = 1
eϵ+g−1 , if x̂h ̸= xh

Then OLH mechanism estimates the frequency of each bin
Bi(∀i ∈ [mo]). Denote the reported tuple from j-th user as
y(j) = ⟨H(j), x̂

(j)
h ⟩. It first counts the noisy data falling into

Bi as C(Bi) = |{j|H(j)(xb) = x̂
(j)
h , xb = i}| and transforms

it by an aggregation function ΦOLH(Bi) =
C(Bi)−n

g

n( eϵ

eϵ+g−1−
1
g )

to
obtain the unbiased frequency estimate.

ExplicitHist (HST) [9]. Initially, each user j independently
samples a uniform public vector s(j) ∈ {±1}mo . Then he
picks the xb-th element s(j)xb in the vector and perturbs it as
follows to report.

Pr[ΨHST (s
(j)
xb

) = ŝ(j)xb
] =

{
eϵ

eϵ+1 , if ŝ
(j)
xb = eϵ+1

eϵ−1 × s
(j)
xb

1
eϵ+1 , if ŝ

(j)
xb = − eϵ+1

eϵ−1 × s
(j)
xb

The protocol then aggregates all reports and estimates the
frequency of each bin Bi(∀i ∈ [mo]) by the aggregation
function ΦHST(Bi) =

1
n

∑n
j=1 ŝ

(j)
xb ×s(j)[i]. The effect is that

each user with value in Bi contributes eϵ+1
eϵ−1 with probability

eϵ

eϵ+1 and − eϵ+1
eϵ−1 with probability 1

eϵ+1 to ΦHST(Bi). Thus
the expected contribution is 1.
Relationship between HST and OLH. Previous work [2]
shows that HST is equivalent to OLH when g = 2 since HST
essentially uses binary local hashes to map each input into the
domain {−1, 1}.

A key challenge of applying binning is to choose an
appropriate binning granularity mo [3]. A larger mo leads to
accumulated noise error. A smaller one may discard part of the
distribution information thus introducing a large bias. A good
choice of mo depends on balancing the above two sources of
errors given a privacy budget ϵ. For example, some empirical
results [3] show that mo = 32 is the best choice for some
real-world distributions.
Consistency post-processing. Various post-processing meth-
ods designed for consistency are proposed in previous work
[13]. Among them, Norm-Sub is the maximum likelihood
estimator for noisy estimates and achieves the most accurate
post-processed result overall. The idea of Norm-Sub is to
convert negative values to zero and add a factor α to the
remaining values such that the total frequencies sum up to
one, i.e.,

∑m
i=1 max (ĥi + α, 0) = 1. Then the post-processed

result for ĥi (i.e., the estimated frequency Φ(Bi) of the i-
th bin) is h̃i = max (ĥi + α, 0). We adopt Norm-Sub in this
paper to couple with the CFOs.

C. Distribution Reconstruction

Square Wave (SW) [3]. SW mechanism is another state-of-the-
art mechanism supporting numerical distribution estimation.
Different from binning-based methods that perturb values in
a discrete manner, the SW mechanism considers the ordinal
information of the numerical domain, and each value is
perturbed as

Pr[ΨSW(x) = x̂] =

{
p, if |x− x̂| ≤ b

q, if |x− x̂| > b
,

where p = eϵ

2beϵ+1 , q = 1
2beϵ+1 and b = ϵeϵ−eϵ+1

2eϵ(eϵ−1−ϵ) . While the
input domain is [0, 1], the output domain of SW is [−b, 1+ b].

The aggregation ΦSW(·) of SW is not a closed-form
mathematical expression, but the Expectation–Maximization
with Smoothing (EMS) algorithm approximates the maximum-
likelihood distribution given the reported values while keeping
the smoothness of distributions in the numerical domain by
weight average.

3



SW also needs to choose the number of bins ms. Similar
to CFO, smaller ms also raise the bias in the estimated result.
However, larger ms does not lead to larger LDP noise because
the binning is in the aggregation phase and keeping increasing
ms does not significantly improve SW performance but makes
EMS converge slowly when ms is large enough. According
to the empirical study [3], SW performs best in most cases
under ms = 512.

D. Related Work
Data Poisoning Attack. We discuss the related work on data
poisoning attacks to LDP. Cheu et al. [9] studied the issue of
data manipulation and showed that the vulnerability is inherent
to non-interactive LDP protocols. The attacks on frequency
estimation and key-value data collection were also studied in
[8] and [10] respectively. They focused on maximizing the
statistics of the attacker-chosen items by sending bogus data
to the server. In contrast to straightforward maximization, Li
et al. [11] considered an attack that allows the attacker to
fine-tune the final estimate to a target value for the mean and
variance estimation. We, in this paper, also target the numerical
data but focus on the more flexible and versatile distribution
estimation, where prior work cannot be applied.
Mitigation. To detect the attack attempt, Cao et al. [8]
proposed malicious user detection (MUD) and conditional
probability-based attack detection (CPAD) against the attack
only on frequency estimation. However, tuning parameters
of CPAD for good performance depends on the ground-
truth knowledge, which may not be practical. MUD was also
adopted in [14] for attack detection for OUE and OLH. We
compare MUD with our detection method for CFO-based
protocols in Section V-B. Wu et al. studied detection for
attacks on key-value data [10]. However, it is challenging to
obtain true data of specific genuine users to train the classifier.
They also designed the detection for interactive LDP protocols
by tracking the reports in different rounds of communications
between users and the server. Nevertheless, this method cannot
work for non-interactive LDP protocols for numerical data in
that the distribution is estimated through one-round reports.
Pollution tolerance [15], [16], [11] is another type of defense
that serves as a post-attack recovery method to restore the
corrupted utility as much as possible. However, due to the
lack of ground truth and attack information (e.g., whether the
attack has been launched, the fraction of malicious users, etc.),
tuning parameters for satisfactory recovery is challenging. In
this paper, we design a novel zero-shot attack detection to
identify poisoning attacks without ground truth information.

III. ROBUSTNESS EVALUATION FRAMEWORK

In this section, we introduce the evaluation framework to
assess the robustness of LDP protocols for numerical data.
We first introduce the overview of our evaluation methodology.
Then we concretely describe each step in the framework.

A. Overview
The main methodology of the framework is to conduct

an attack-driven robustness evaluation for the studied LDP

protocols. By measuring the attack effectiveness, the resilience
of each protocol against the data poisoning attack can be
learned and compared. To this end, the first step of the
evaluation framework is to formulate the attack model and
define metrics for the attack effectiveness measurement.

A straightforward metric to measure the attack efficacy is
the Wasserstein distance, which measures the distance between
the estimated distribution under attack and the clean one.
However, Wasserstein distance is directionless and it cannot
reflect in which direction the attacked distribution is skewed.
Therefore, it is necessary to design new metrics to overcome
the limitations and facilitate attack evaluation.

In light of the distinct design choices of the underlying
LDP protocols, one type of attack may not stay effective on
all of them, leading to biased evaluation results. Hence, we
customize the attack to make sure that the attack goal can be
achieved and the result can be fairly compared.

Given the attacks and metrics, we will empirically study
the robustness of the LDP protocols in various settings. It
is anticipated that lower attack effectiveness indicates better
LDP robustness. In what follows, we introduce each step
in the evaluation framework and the experimental results in
Section IV.

B. Attack Model

Attacker’s Capability. To be consistent with previous work
[9], we assume the attacker can control nf = βn users to
send crafted fake values Ŷ = [ŷ(i)]

nf

i=1 to the server, where n
is the total number of users and 0 ≤ β ≤ 1. The remaining
ng = (1 − β)n users are considered benign, sending the
perturbed true values to the server. We also assume the attacker
can access the encoding and perturbation steps in the LDP
protocol because these steps are deployed locally. Therefore,
the attacker knows the parameters of the LDP protocols,
including the privacy budget ϵ, the perturbation probability,
and the number of bins.
Attacker’s Goal. The attacker aims to shift the distribution
to the right-most end as much as possible. Our attacks are
adaptable to other regions of the distribution. For ease of
demonstration, we focus on the right side in this paper.

Despite intuitive, our attack poses real-world threats. For
example, the attacker can trick consumers into downloading
target apps in online stores by skewing their rating distribution
to the higher end. There may exist more sophisticated attacks
with other goals. However, they may require additional knowl-
edge, such as the fraction of controlled users β and the true
data distribution, which is difficult to acquire in practice. On
the other hand, our attack is inspired by prior work [8] and
generalizable by focusing on the best-effort maximization for
distribution skewness, which enables robustness analysis of
LDP against known attack strategies.
Baseline Attack. In a general LDP context, the baseline attack
on the LDP protocol is that the attacker skews the estimates
by providing fake values in the input domain to the LDP
protocol and reporting the corresponding randomized outputs.
The baseline is considered a universal attack since its effect
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Fig. 1: Examples of ASG. The difference between the cu-
mulative functions of the original and shifted distributions is
positive in the green area and negative in the red area.

is indistinguishable from that of honest protocol execution.
It was also adopted and called input manipulation/attack in
prior work [9], [11] for attack performance evaluation. For
distribution-shift attacks, since the frequencies of all bins
sum up to one, an effective way to shift the distribution is
to maximally increase the frequency of the right-most bin
and decrease the frequencies of other bins at the same time.
Therefore, the baseline attacker injects maximums in the input
domain of the LDP protocol as fake values. Specifically,
the baseline attacker repeats ΨHST(mo) (or correspondingly,
ΨOLH(mo) for OLH, ΨSW(1) for SW) for nf times and sends
the randomized outputs to the server.

The users controlled by a baseline attacker behave identi-
cally to those users who happen to own and submit the same
values by following the protocol. Therefore, without prior
information about the true distribution or other authentication
techniques, the server has no way to detect the baseline attack.
Due to the unbiasedness of LDP protocols, the aggregated
distribution (before consistency) of the baseline attack X̂base

a

is approximately equal to E(X̂base
a ) = Xbase

a , where Xbase
a

is the skewed distribution in the input domain after baseline
attack. Therefore, the outcome of the baseline attack is al-
most independent of post-processing since Xbase

a has satisfied
consistency.

C. Attack Effectiveness

To quantitatively measure the efficacy of the attacks, we
propose two metrics in this paper to show how far the poisoned
distribution can deviate from the true distribution.
Absolute Shift Gain (ASG). A straightforward metric for
attack efficacy is Wasserstein distance, which measures the
distance between the estimated distribution with the poisoning
attack and the clean one. However, it cannot reflect the direc-
tion in which the attacked distribution is skewed. Any local
skews on the distribution, whether towards the right or left, can
increase the Wasserstein distance. To address this problem, we
adapt the definition of L1 Wasserstein distance but replace the
L1 norm with differences with signs to form our new metric.
Denote the original and the estimated distributions as X =
[Φ(Bi)]

mo
i=1 and X̂a = [Φ(B̂i)]

mo
i=1 respectively. ASG can be

formally defined as ASG(X̂a) =
∑mo

v=1 P (X, v) − P (X̂a, v),
where P (X, v) =

∑v
i=1 Φ(Bi) is the cumulative function

over distribution X . The intuition behind the metric is shown
in Figure 1. As the distribution is shifted to the right end,

the value of the cumulative function on the left side of the
domain gets smaller while becoming larger on the right side.
The farther the distribution is shifted to the right end, the
larger

∑mo

v=1 P (X, v) is than
∑mo

v=1 P (X̂a, v). Thus, larger
ASG indicates a better shift effect, thus better attack efficacy.
Besides, negative ASG indicates the overall distribution is
shifted to the left side.
Shift Gain Ratio (SGR). The ASG is a straightforward
metric that aligns with the attacker’s goal and can measure
the ultimate effectiveness of attacks on the numerical LDP
protocols. However, it is implicitly influenced by many factors,
including how many users are corrupted by the attacker and
what the true data distribution is. Besides, as we look into
the attacks that are more effective than the baseline attacks,
ASG fails to demonstrate the advantage of the proposed attacks
over the baseline. Thus, we propose a new metric, SGR, to
measure the effectiveness of the proposed attacks compared
to the baselines and thus enable the analysis of the robustness
of LDP protocols.

We first consider the ratio of the shift gain of our attack
to that of the baseline attack, i.e., ASG(X,X̂a)

ASG(X,X̂base
a )

, where X̂base
a

is the estimated distribution after baseline attack. Since the
baseline is universal regardless of the underlying protocol,
comparing the attack effectiveness using SGR is viable across
different protocols, thus enabling the assessment of protocol
robustness. However, directly using this ratio as a metric
may lead to an unstable measurement of additional variance
because the denominator includes X̂base

a , a random variable
with LDP noise. We replace the term X̂base

a with the skewed
distribution in the input domain Xbase

a . Note that this is a
reasonable substitution because the estimated distribution in
well-designed LDP protocols should be close to the distribu-
tion in the input domain. Formally,

SGR(X̂a) =
ASG(X, X̂a)

ASG(X,Xbase
a )

(1)

By Equation (1), a smaller value of the metric means lower
attack efficacy. Specifically, the metric equal to 1 indicates the
attack performs similarly to the baseline. When the metric is
less than 1, the attack underperforms the baseline. Moreover,
when the ratio is negative, the attack efficacy tends to move in
a different direction than the baseline, e.g., the baseline shifts
the distribution to the right end, but the measured attack is not
able to achieve this goal.

With a predetermined dataset and a fixed number of cor-
rupted users, SGR is proportional to ASG. Thus, SGR essen-
tially measures the attack efficacy improvement per fake user
in the proposed attack versus the baseline, that is, how many
fake users are needed in the baseline to achieve the same effect
of one fake user in our attack. When SGR = 1

β , β fake users in
our attack equals β× 1

β = 100% malicious users in baseline. In
this case, the frequency of the right-most bin is 1. Therefore, 1

β
is the upper bound of SGR. Besides, the normalization with the
baseline attack gain brings two benefits. The first is that SGR is
more consistent for the protocols across different datasets. The
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other is that SGR can show how the attack efficacy is affected
by different portions of corrupted users, while the ASG will
monotonically increase with the corrupted portion.

D. Attack on CFO with binning and consistency

Optimal attacks for shifting distribution with different CFOs
depend on the real data distribution, which may not be known
to the attacker in general. However, the main idea of shifting
the distribution to the right side is to increase the frequencies
of large values. For robustness analysis, we consider a heuristic
attack that increases the frequency of the largest value Φ(Bmo

)
as much as possible. This attack can ensure the distribution
is shifted in the direction as attacker expected for all distri-
bution and empirically achieves significant attack efficacy. We
describe Φ(Bmo

) with nf malicious users and the creation of
fake reports to each protocol.

1) Attacking GRR: The aggregated result Φ(Bmo
) and

corresponding fake reports are as follows.
• Aggregation Φ(Bmo

): The estimated frequency Φ(Bmo
) =∑ng

j=1 I[mo](y
(j))+

∑nf
j=1 I[mo](ŷ

(j))− n
eϵ+mo−1

n(eϵ−1)
eϵ+mo−1

.

• Fake report craft: The most effective way to promote
Φ(Bmo) is to set all fake values ŷ(j) = mo such that the
item

∑nf

j=1 I[mo](ŷ
(j)) = nf .

2) Attacking OUE: The aggregated result Φ(Bmo) and
corresponding fake reports are as follows.
• Aggregation Φ(Bmo): The estimated frequency Φ(Bmo) =∑ng

j=1 v̂(j)[mo]+
∑nf

j=1 ŷ(j)[mo]− n
eϵ+1

1
2−

1
eϵ+1

.
• Fake report craft: Since the compromised users in OUE

can craft the fake report vector ŷ, the most effective way to
promote Φ(Bmo

) is to craft ŷ = [0, 0, .., 1] such that only
the frequency of the mo-th bin is contributed.
3) Attacking HST: There are two different implementations

of HST depending on whether users or the server samples the
public vector s(i) ∈ {±1}mo . Without the attack, these two
implementations give the same privacy and utility guarantee.
However, our experiments show that when the server generates
the public vector for each user, the attack can be largely
constrained on his attack efficacy. Thus, we elaborate on our
two implementations as follows.
HST-User. The aggregated result Φ(Bmo

) and corresponding
fake reports are as follows.
• Aggregation Φ(Bmo): When the users can select public

vectors by themselves, they can pick binary vectors that
promote the frequency of the largest value in the domain.
Thus, the estimated frequency of the mo-th bin is Φ(Bmo

) =
1
n (

∑ng

j=1 ŝ
(j)
xb ×s(j)[mo]+

∑nf

j=1 ŷ
(j)×ŝ(j)[mo]), where ŝ(j)

is the binary vector picked by malicious user j.
• Fake report craft: The idea of promoting Φ(Bmo) is

to craft fake value ŷ(j) and carefully select public binary
vector ŝ(j) so that the aggregated result ŷ(j) × ŝ(j)[mo]
only contributes to Φ(Bmo

). Specifically, the attacker sets
the public binary vector as s(j) = [−1,−1, ..., 1] where only
the right-most is 1, and then crafts fake value ŷ(j) as eϵ+1

eϵ−1
to maximally increase the frequency of the right-most bin.

HST-Server. The server sets the public binary vector for each
user uniformly at random at the beginning of the protocol.
Thus, the aggregated result Φ(Bmo) and corresponding fake
reports for HST-Server are different from HST-User.

• Aggregation Φ(Bmo
): Each user in HST-Server must use

the assigned binary vector. Thus, the attacker is con-
strained to use s(j) for its corrupted user j. Consequently,
the estimated frequency of the mo-th bin is Φ(Bmo

) =
1
n (

∑ng

j=1 ŝ
(j)
xb × s(j)[mo] +

∑nf

j=1 ŷ
(j) × s(j)[mo]).

• Fake report craft: Attacker can only manipulate the fake
value ŷ(j) as the same value as eϵ+1

eϵ−1 × s(j)[mo] and in
this way the aggregated result ŷ(j) × s(j)[mo] can promote
the largest value in the domain. However, since the vector
follows uniform distribution and each report supports about
half of the bins, the attacker cannot increase the frequency
of the largest bin only.

4) Attacking OLH: There are also two implementations for
OLH depending on whether users or the server chooses the
hash function, which become equivalent in terms of privacy
and utility guarantees without the attack. Given a hash function
H , the attacker can search the hash mappings and learn the
inverse of the hash function H−1, mapping a hash output in [g]
to a subset of [mo]. Our experiments also show that when the
server decides the hash functions for each user, the attacker
can be largely constrained on its manipulation efficacy. The
two implementations are as follows.
OLH-User. The aggregated result Φ(Bmo

) and corresponding
fake reports are below.

• Aggregation Φ(Bmo): When the users randomly choose the
hash function by themselves, the attacker can choose the
hash functions from a set of all hash functions H for the
compromised users. Thus, the aggregated result Φ(Bmo

) =
Cg(Bmo )+Cf (Bmo )−n

g

n( eϵ

eϵ+g−1−
1
g )

, where Cg(Bmo) = |{j|H(j)(mo) =

x̂
(j)
h , j ∈ genuine users}|, Cf (Bmo

) = |{j|Ĥ(j)(mo) =
ŷ(j), j ∈ malicious users}| and ⟨Ĥ(j), ŷ(j)⟩ is fake report
of malicious user j.

• Fake report craft: Ideally, the attacker hopes to craft a
fake report ⟨Ĥ(j), ŷ(j)⟩ where the hash function only maps
the largest value into ŷ(j). However, they may not be able
to find such a function within a given amount of time in
the set H. To address this problem, we randomly sample
1,000 hash functions as the candidate set in which we find
each Ĥ(j). The fake report should satisfy two conditions:
1) Ĥ(j)(mo) = ŷ(j) and 2) all values mapped into ŷ(j)

should concentrate on the higher end as much as possible,
i.e., the mean of these values should be largest among all
hash functions in H. The first condition guarantees that the
fake report promotes the frequency of the largest value and
the second ensures that the fake report does not contribute
to frequencies of small values and weakens attack efficacy.

OLH-Server. OLH-Server has different aggregated result
Φ(Bmo) and corresponding fake reports since the server picks
a hash function for each user at the beginning of the protocol.
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Fig. 2: Attack results with varying ϵ from 0.1 to 4. Each row corresponds to one dataset. The left two columns show ASG
and SGR with β = 1% and the right two columns depict ASG and SGR with β = 5%.

• Aggregation Φ(Bmo
): Since all users are constrained to

use the assigned hash functions, the aggregated result
Φ(Bmo

) =
Cg(Bmo )+Cf (Bmo )−n

g

n( eϵ

eϵ+g−1−
1
g )

, where Cg(Bmo
) is the

same as that in OLH-User but Cf (Bmo) = |{j|H(j)(mo) =
ŷ(j), j ∈ malicious users}| and ⟨H(j), ŷ(j)⟩ is a fake report
of malicious user j.

• Fake report craft: The attacker is constrained to use the
assigned H(j) for its corrupted user. Thus, the attacker only
needs to find ŷ(j) such that H(j)(mo) = ŷ(j).

E. Attack on SW

The convergence point of EMS algorithm depends on the
privacy budget ϵ and the underlying data, which are unknown
to the attacker [3]. Consequently, the recovered distribution
is unpredictable. It is also challenging to find the optimal
attack for SW. Similar to the CFO-based methods, the solution
to shifting the distribution under SW is still to promote the
frequencies of large values in the domain while reducing other
values’ frequencies accordingly.

We consider an intuitive way to achieve the attack in
practice. We inject the fake values into the bins near the right
end of the output domain [−b, 1+b] to promote the frequencies
of large values. Specifically, we uniformly at random inject the
fake values into 1) the right-most bin, 2) range [1+ 2b

3 , 1+ b],
3) range [1, 1 + b] and 4) range [1− b, 1 + b].

Regarding RQ-1, we find no one-size-fits-all attack strategy
for various LDP protocols. However, it is possible to use
unified metrics to measure LDP robustness regardless of the
design differences of the underlying protocols. We propose
two new metrics, i.e., ASG and SGR, to quantify the attack
strength for fair robustness evaluation, which may also
benefit future research.

IV. ROBUSTNESS EVALUATION

A. Experiment Setup

Datasets. We use one synthetic dataset and two real-world
datasets to conduct our experiments. The dataset information

is summarized below and the distribution of the datasets is
shown in Figure 9 in Appendix B.
1) Synthetic Gaussian dataset. We draw 105 samples from

normal distribution N (0, 10) to generate the synthetic
dataset.

2) Taxi [17]. This dataset was published by the New York
Taxi Commission in 2018. It contains 2,189,968 samples
of pickup time in a day (in seconds).

3) Retirement [18]. This dataset contains data about San Fran-
cisco employee retirement plans, ranging from −28, 700
to 101,000. We extract non-negative values smaller than
60,000 for evaluation. After pre-processing, there are
178,012 samples in our experiments.

It is worth noting that all mechanisms map the data into [0, 1].
Therefore, we linearly map the data into the corresponding
range for perturbation.
Parameter Settings. The attack efficacy depends on privacy
budget ϵ and the fraction of compromised users β. We vary ϵ
from 0.1 to 4 since they are common values in LDP. We also
set β from 1% to 7.5% to study the impact of each parameter
on robustness. We also set the number of bins for CFO-based
protocols and SW as mo = 32 and ms = 512 respectively,
because this setting achieves the best performance in most
cases [3]. For each dataset and each attack, we repeat the
experiment 100 times and show the average result.

B. Results

1) Robustness comparison: In this subsection, we study
the impact of varying parameters on the robustness of LDP
protocols.
Impact of ϵ. We first empirically study the impact of ϵ on the
robustness of LDP protocols. We attack the SW mechanism
by selecting four different ranges and choosing the one that
yields the highest SGR with varying ϵ for a fair comparison
with other protocols. We defer the discussion on the attack
performance on SW with different ranges to Section IV-B3.
Figure 2 shows the attack efficacy with three datasets. We have
the following key observations.
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Fig. 3: Attack results with varying β from 1% to 7.5%. Each row corresponds to one dataset. The left two columns show ASG
and SGR with ϵ = 0.2 and the right two columns depict ASG and SGR with ϵ = 0.6.

• In most cases, SW and Server setting of HST and OLH
have the smallest ASG and SGR and thus have better natural
resilience against the attack.
– For SW, the reason is that the fake values promote the

frequencies of bins near the right end of the domain. The
EMS can average the frequencies of polluted bins with
other bins and thus reduce their frequencies, making the
attack efficacy drop.

– For Server setting, the hash functions in OLH-Server and
public binary vector in HST-Server are assigned by the
server and the malicious user cannot ensure that the fake
value only supports higher-end bins.

• GRR, OUE and User setting of OLH and HST provide the
weakest robustness. This is because in HST-User, GRR and
OUE, malicious users can set fake reports to only contribute
to the frequency of the right-most bin, and fake reports for
OLH-User can also contribute to bins at the higher end of
the domain.

• For small β (e.g., β = 1%), OLH-User sometimes is more
robust than GRR, OUE and HST-User but its robustness
becomes weaker for large β. This is because the attack
only focuses on a single bin (i.e., the right-most bin in the
domain) for GRR, OUE and HST-User, while bogus data
for OLH-User would support a range of values on the right
end. Thus, the attack performs better on OLH-User with a
small number of malicious users.

• Although GRR, OUE and HST-User can only support the
right-most bin, OUE shows better robustness, especially for
large ϵ given enough compromised users (e.g., β = 5%).
This is because the denominator in ΦOUE(·) increases as ϵ
grows, leading to small frequencies of higher-end bins and
weak attack efficacy.

• ASG (SGR) reduces as ϵ grows and the attack efficacy is
close to the baseline given a larger ϵ (e.g., ϵ ≥ 1). This is
because a larger ϵ leads to smaller noise, and thus the results
recovered by aggregation are closer to the input values and
ASG (SGR) is closer to the baseline.

• GRR shows the worst robustness for small β (e.g., β = 1%)

and the gap between GRR and other protocols is large.
This is because the denominator of ΦGRR(·) is much
smaller than others, promoting the frequency of the right-
most bin in attack. However, the gap is small for large
β = 5% since fake values in other protocols also influence
frequencies of other bins, which helps shift the distribution
with consistency and fill the gap with GRR.

• The CFO-based methods on Taxi performs the worst against
the attack, and the ASG (SGR) is the largest over a wide
range of ϵ. This is because the distribution of the dataset
is “flat”, i.e., there is no significantly high probability
density region. Therefore, even under a relatively large ϵ,
the frequencies of all bins except for the polluted bins could
be negative under the attack. After the Norm-Sub, only the
polluted bins have positive frequencies.

Impact of β. We then empirically study the impact of β.
We plot the upper bound 1

β of SGR and show the attack
effectiveness as a function of β in Figure 3. We have the
following observations.

• In general, attack effectiveness increases as β grows and
SGR asymptotically reaches the upper bound. However, SW,
HST-Server and OLH-Server still have the smallest ASG
(SGR) given various β in most cases due to the EMS and
malicious users in Server setting cannot ensure that fake
values only support higher-end bins.

• Due to the same reason, GRR, OUE, OLH-User, and HST-
User provide the weakest robustness since malicious users
can set fake reports to only contribute to the frequency of
the higher-end bins.

• We also observe that SGR of GRR, OUE and HST-User
reach the upper bound when β is sufficiently large, espe-
cially with Taxi, while OLH-User does not with a large β.
This is because the fake values in GRR, OUE and HST-
User only support the right-most bin. But in OLH-User, its
fake values do not support the maximal xb only. Thus, the
estimate cannot reach the maximum of the domain.

• The results show that the proposed metric SGR is stable
with varying β. This is because SGR measures the attack
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improvement per compromised user compared with the
baseline, irrelevant to the number of malicious users.
2) Robustness and g Trade-off: We are still in the early

stage of understanding the threat landscape. It is only known
that LDP security has a strong connection with user privacy
preference in prior work [11], [8], i.e., tuning ϵ could enhance
security. However, it is not the only factor deciding the
protocol’s robustness. For the local-hashing-based LDP, we
found the hash domain size g also has a profound influence.

Theorem 1. For local-hashing-based CFOs with fixed ϵ, the
expected ASG becomes lower (higher) when the hash domain
g is smaller (larger) before post-processing.

Proof. See Appendix A

The intuition is that in the aggregation, each report con-
tributes to the frequencies of mo

g bins on average, which
becomes smaller as g grows. Consequently, it is easier for the
attacker to manipulate the higher-end bins, leading to enhanced
attack performance.

Theorem 1 proves the relationship between attack efficacy
and g without the post-processing that has no closed-form
solution. However, our experiment further shows that the
relationship remains in Figure 4. We have similar observations
across different ϵ and β and only show the result with ϵ = 0.2
and β = 5%. We also observe that attack efficacy under User
setting and Server setting tend to be close as g grows. This
is because each report can support fewer bins under larger
g. When g is excessively large, fake data only contributes to
higher-end bins, leading to weaker robustness (higher ASG)
even under Server setting.

5 10 15
g

0.3

0.4

0.5

N
or

m
al

ASG = 0.2, = 5%

5 10 15
g

0.3

0.4

Ta
xi

ASG = 0.2, = 5%
Attack…on…Server…Setting Attack…on…User…Setting

5 10 15
g

0.4

0.6

Re
tir

em
en

t

ASG = 0.2, = 5%

Fig. 4: Relationship between attack efficacy and hash domain
size g.

3) A Closer Look at Attack on SW: We empirically study
the efficacy of all four attack strategies on the SW mechanism.
We have similar observations across all three datasets and
only show the result with the dataset N (0, 10) in Figure 5
due to space limitations. The rest are shown in Figure 8 in
Appendix B. Overall, except for injecting fake values into the

right-most bin, other attack types perform similarly, and all of
them can effectively increase the ASG/SGR of the baseline and
achieve satisfactory attack performance. In particular, the SGR
is greater than 10 with ϵ = 0.1. This is because these types
of attacks increase the probability density region of the right
end of the domain, thus skewing the distribution substantially.
We choose the attack range [1, 1+ b] as the best attack in this
paper since it is the empirically strongest one.

We also observe that injecting fake values into the right-
most bin performs the worst in our experiments. Its SGR is
less than that of the baseline in most cases and even negative
sometimes. Moreover, increasing β does not lead to an obvious
improvement in attack effectiveness because the fake values
are only in one bin, and the smoothing step in EMS can
significantly reduce the anomaly high frequency of this bin
even with a large β. In addition, since injecting fake values
into only one bin is largely impacted by EMS whose output
is unpredictable, the relationship between attack efficacy and
ϵ is also uncertain.

The third observation is that the attack efficacy is close to
the baseline with a large ϵ. This is because a larger ϵ leads to
smaller noise. Thus the results recovered by aggregation are
closer to the input values and the SGR approaches that of the
baseline.

For RQ-2, our research reveals that different LDP protocols
indeed exhibit distinct robustness in the presence of the
attack. SW and CFO-based protocols in Server setting
are more resilient due to the additional smoothing step
and constrained resources. Our investigation generates new
knowledge about the relationship between LDP implemen-
tation and security, i.e., the hash domain size g in OLH will
affect the attack resilience. The result highlights the need to
study attack-resilient post-processing and fine-tune related
parameters for real-world LDP implementation.

V. ZERO-SHOT ATTACK DETECTION

We illustrate our detection method in this section. We call
it zero-shot attack detection because it does not require any
ground truth data, similar to zero-shot learning [19].
A. Detection Details

In a scenario without poisoning attacks, the recovered dis-
tribution should be close to the original distribution. However,
in the presence of poisoning attacks, attackers submit fake
values directly to the data collector instead of executing
LDP random perturbation. This results in the distribution of
poisoned reports being a very low likelihood outcome of any
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Fig. 6: Zero-shot Detection Workflow.
valid input distribution. In other words, it is unlikely to observe
a perturbed distribution similar to that of poisoned reports
given any valid input distribution.

Based on the above intuition, we present a novel detection
mechanism by reconstructing a comparison benchmark. The
benchmark is created using the distribution information re-
turned by the LDP mechanism. Without the attack, recovered
data distribution should be close to the original. We denote
the synthesis function as S(X̂, t), which takes noisy report X̂
and an integer t as input, then estimates a distribution from
X̂ and outputs t samples drawn from recovered distribution.
The noisy report X̂ resulting from applying LDP perturbation
to the original distribution, and X̂2 resulting from applying
the same LDP randomizer to S(X̂, t) should have similar
distribution. When applying S to the noisy report X̂2, one
should again recover the similar distribution, and thus X̂3

generated by applying again the LDP randomizer to S(X̂2, t)
should also result in distributions similar to X̂2. Hence, we
can detect the manipulation by measuring the two groups of
distances, one is between X̂ and X̂2 denoted as gdet and the
other is between X̂2 and X̂3 denoted as gben. Since X̂2 and
X̂3 are generated without manipulation and their distribution
should always be close, we consider gben as the benchmark.
Under the attack, the polluted X̂ is low-likelihood outcome
of any valid input, and applying the same LDP randomizer to
such S(X̂, t) cannot output a similar distribution to that of X̂ ,
leading to that gdet statistically different from gben. Figure 6
shows the detection workflow. The detection is described in
Algorithm 1.

Formally, we assume there are n users and denote the
reported perturbed result as X̂ . After receiving X̂ , the server
can estimate the data distribution and draw n samples from the
distribution. Following the LDP protocol, the server perturbs
the sampled data m times and gets a group of reconstructed
noisy results X̂2 = [X̂

(i)
2 ]mi=1. We generate m noisy results

because the perturbation is random and multiple results can
decrease statistical uncertainty. Given the noisy result X̂2,
the server repeats this reconstruction process to derive the
noisy result X̂3 = [X̂

(i)
3 ]mi=1. Then we calculate the pairwise

distribution distance between X̂
(i)
2 and X̂

(i)
3 and form a group

of distances [W1(X̂
(i)
2 , X̂

(i)
3 )]mi=1. We consider the Wasserstein

distance (denoted as W1(·)) since it measures the overall
difference between two distributions. Since we honestly follow
the LDP protocol to generate X̂2 and X̂3, the distance
W1(X̂

(i)
2 , X̂

(i)
3 ) should be small and is used as the benchmark

Algorithm 1 Zero-shot Attack Detection

Input: Noisy results X̂ , significance level α, ϵ, n.
Output: Whether the reported data is polluted.

1: Initialize X̂2 = X̂3 = ∅.
2: Get synthetic data X = S(X̂, n)
3: for i ∈ [m] do ▷ Reconstruct noisy results
4: X̂

(i)
2 ← Perturb X by LDP randomizer with ϵ.

5: Get synthetic data X2 = S(X̂(i)
2 , n)

6: X̂
(i)
3 ← Perturb X2 by LDP randomizer with ϵ.

7: X̂2.append[X̂
(i)
2 ], X̂3.append[X̂

(i)
3 ]

8: end for
9: Benchmark distance group gben ← [W1(X̂

(i)
2 , X̂

(i)
3 )]mi=1

10: Distance group to be detected gdet ← [W1(X̂, X̂
(i)
2 )]mi=1

11: p-value ← Two Sample KS Test(gdet, gben).
12: if p-value < α then
13: return The reported result is polluted.
14: else
15: return The reported result is unpolluted.
16: end if

gben to compare with the distance group [W1(X̂, X̂
(i)
2 )]mi=1

denoted as gdet.
We statistically analyze the similarity between gdet and

gben. Intuitively, gdet and gben should follow the same or
similar distribution if the reported data are clean. Therefore,
we formulate the detection as a hypothesis test problem.
The null hypothesis is that the reported data is not pol-
luted, i.e., gdet and gben come from the same distribution,
and the alternative hypothesis is that the reported data con-
tains bogus data and the distributions of gdet and gben are
differentiable. We adopt the two-sample KS test [20] (see
Appendix C for more details) to solve this hypothesis test
problem. We first calculate the empirical distribution of gben
and gdet. Denoting the empirical distribution function of
gben and gdet as Fben(x) and Fdet(x) respectively, we have
Fben(x) =

1
m

∑m
i=1 I[−∞,x]

(
W1(X̂

(i)
2 , X̂

(i)
3 )

)
and Fdet(x) =

1
m

∑m
i=1 I[−∞,x]

(
W1(X̂, X̂

(i)
2 )

)
, where I[−∞,x](d) is the in-

dicator function equal to 1 if d ≤ x and 0 otherwise. Then
we have the KS statistic S = supx |Fben(x)− Fdet(x)| and
the p-value is p = 2e−2S2 m2

2m [20]. Comparing p with the
specified significance level α, we can accept or reject the null
hypothesis, i.e., whether the reported data is polluted.

For RQ-3, our answer is affirmative. We propose a zero-shot
detection method by leveraging the LDP characteristics and
likelihood information in data distribution for the underlying
LDP protocols. Our method provides a new perspective
for designing universal defense in practice without the
unrealistic assumption of prior knowledge about ground
truth data information.

B. Evaluation

Datasets. We use the same datasets as attack evaluation
introduced in Section IV.
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Adaptive Attack on OUE. In the robustness evaluation, we
focus on the most empirically effective attack to investigate the
robustness of OUE in the worst case. However, the fake value
that only sets the right-most bin as 1 is a clear anomaly report
in LDP, which can be detected trivially. To better evaluate
our detection, we also adopt a more stealthy attack strategy
for OUE. In addition to the right-most bin, the attacker also
randomly samples l bits of the perturbed vector ŷ(j) and
sets them to 1, such that the total number of 1’s is equal
to the expected number of 1’s in the perturbed vector of a
genuine user. Based on the perturbation probability of OUE,
we have l = ⌊mo−1

eϵ+1 −
1
2⌋. We call this attack OUE-Pad in the

experiments. Although OUE-Pad is more stealthy, it is weaker
than the adopted attack (see Table II) and thus the result
would not be a satisfactory indicator of the actual resilience
performance of OUE.
Existing Detection Methods. To the best of our knowledge,
there exists no detection for SW. The existing detection
methods [8], [14] are designed for the poisoning attack on
CFO protocols that aim to promote the frequencies of targeted
items. In [8], two detection methods are proposed, namely,
conditional probability-based attack detection (CPAD) and
malicious user detection (MUD). MUD is also adopted in [14]
for OUE and OLH. The CPAD cannot be applied to attacks
on numerical data since it depends on two assumptions that do
not hold in our attack: 1) the true frequency of the target bin
is close to zero, and 2) the frequency of the target bin after
attack becomes the top-N frequencies. Further, it is ineffective
for small β (e.g., β ≤ 20%) as it depends on the true data
distribution, which is unknown to the server.

When the perturbed frequency closely resembles that de-
rived from a legitimate distribution, the server cannot discern
whether the noisy report is polluted. Consequently, MUD
considers the perturbed result under the assumption that all
users are genuine and their values fall within the targeted
bin (i.e., the right-most bin). In cases where the perturbed
results exhibit statistical divergence in this extreme scenario,
the server can detect the attack by inferring that the perturbed
result cannot be derived from a legitimate distribution. In other
words, if the perturbed reports are generated through LDP
protocols, it is unlikely to observe a large number of reports
supporting the same targeted bin. MUD sets a threshold τ
and triggers an alarm if the number of the perturbed reports
supporting the right-most bin exceeds τ . In [8], MUD does
not work for GRR since the fake value is only a single
index no matter whether or not the attacker follows the
protocol. An effective threshold for OUE is determined as√

n/4
0.01 + n

2 , while for OLH and HST, the thresholds are the
smallest solutions for τ in I( 12 ; τ, n − τ + 1) ≤ 0.01 and
I( eϵ

eϵ+1 ; τ, n − τ + 1) ≤ 0.01 respectively. Here, I is the
regularized incomplete beta function [21].
Metrics. The proposed detection classifies the reported result
as “polluted” or “unpolluted”. Therefore, we can use metrics
for binary classifiers to measure the performance of our
mitigation. In the evaluation, we adopt the Receiver Operating

Characteristic curve [22] to capture the relationship between
the true positive rate and false positive rate of the classifier.
The Area Under the Curve is used to measure the performance
of the classifier. In general, the AUC ranges from 0 to 1. The
larger the AUC is, the better the classifier performs. When
AUC equals 0.5, the classifier predicts a random class for all
the data points. A classifier with 100% false prediction has
an AUC of 0, while a perfect classifier that is always correct
will generate an AUC of 1.0. For the total of 100 trials of
experiments for each protocol, half of the times are under
attack while the other half is without attack. We also mark
the unpolluted and polluted results as the positive class and
negative class respectively.
Parameter Settings. We set the default m = 10. According to
our analysis, the attack efficacy is low with large ϵ. Therefore,
we only evaluate the detection with small ϵ, i.e., 0.2, 0.6 and 1.
In order to comprehensively study the detection effectiveness,
we further test β at 10% for additional insights and thus set the
relevant parameters β = 1%, 2.5%, 5% and 10%, mo = 32
and ms = 512.

1) Detection Results: We have similar observations across
all three datasets and only show AUC values of detection for
SW and CFOs with the dataset Taxi in Table I and Table II
respectively due to space limit. The rest are shown in Table III
and IV in Appendix D. In addition, the defender often cares
about the overall impact of the attack in practice. Thus, we
also compute the average ASG of the attack to show the
absolute shift of the distribution. We have the following key
observations.

• Overall, the results demonstrate our detection is effective.
– For SW, all AUC values are larger than 0.95 for β ≥

2.5%, which demonstrates an excellent detection rate by
generating the benchmark and capturing the deviation of
polluted results from the benchmark. The AUC drops
when β is small (e.g., β = 1%). However, the detection
still works well for attacks on the right-most bin, on the
range [1+ 2

3b, 1+b] and range [1, 1+b]. This is because the
fake values in these attacks are concentrated on a small
region, leading to an obvious statistical abnormality.

– For CFO protocols, our detection significantly outper-
forms MUD. MUD fails to detect the attack except for
only large β and small ϵ but with a very constrained
detection performance (AUC ≤ 0.575). On the contrary,
our method performs consistently across various settings
of β and ϵ. In particular, for GRR, OUE and CFOs in the
User setting, the AUC is over 0.96 in most cases.

• The AUC of GRR, OUE, OUE-Pad and other CFO protocols
under User setting is significantly larger than that of CFO
protocols under Server setting. This is because the attacker
can only forge the value but cannot control the hash function
in Server setting, thus limited information available for
detection. Our detection can still identify the attack in the
Server setting with large β (e.g., β = 10%).

• By the extra padded bits, OUE-Pad achieves lower ASG
than OUE, but our detection still has high AUC on OUE-
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TABLE I: AUC values of attack detection for SW.

Dataset β ϵ
SW right-most bin SW [1+2/3b, 1+b] SW [1, 1+b] SW [1-b, 1+b]
AUC ASG AUC ASG AUC ASG AUC ASG

0.2 1.00 0.00289 1.00 0.0404 1.00 0.04536 0.8592 0.04571
1% 0.6 1.00 0.00199 1.00 0.0224 1.00 0.0239 0.685 0.0179

1 1.00 0.00084 1.00 0.0127 1.00 0.0131 0.56 0.0122
0.2 1.00 0.00364 1.00 0.1042 1.00 0.1132 0.9996 0.1052

2.5% 0.6 1.00 0.00362 1.00 0.0569 1.00 0.0571 0.9872 0.0447
1 1.00 0.00215 1.00 0.03129 1.00 0.0329 0.9840 0.03037
0.2 1.00 0.01114 1.00 0.2056 1.00 0.2284 1.00 0.1915

Taxi 5% 0.6 1.00 0.00962 1.00 0.0981 1.00 0.0991 1.00 0.0891
1 1.00 0.00807 1.00 0.0614 1.00 0.0644 1.00 0.0601
0.2 1.00 0.0171 1.00 0.3155 1.00 0.3416 1.00 0.2615

7.5% 0.6 1.00 0.0213 1.00 0.1324 1.00 0.1352 1.00 0.1286
1 1.00 0.0176 1.00 0.091 1.00 0.0959 1.00 0.0896
0.2 1.00 0.02981 1.00 0.3859 1.00 0.3707 1.00 0.3145

10% 0.6 1.00 0.0363 1.00 0.1642 1.00 0.1696 1.00 0.1652
1 1.00 0.02907 1.00 0.1218 1.00 0.1269 1.00 0.1186

TABLE II: AUC values of attack detection for CFO-based mechanisms. “–” indicates the AUC value is zero.

Dataset β ϵ
HST-Server HST-User OLH-Server OLH-User OUE GRR OUE-Pad

Ours / MUD ASG Ours / MUD ASG Ours / MUD ASG Ours / MUD ASG Ours / MUD ASG Ours / MUD ASG Ours / MUD ASG
0.2 0.4416 / – 0.0484 1.00 / – 0.391 0.476 / – 0.047 0.9952 / – 0.207 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.094

1% 0.6 0.4384 / – 0.0054 1.00 / – 0.101 0.4232 / – 0.0189 0.6224 / – 0.105 1.00 / – 0.071 1.00 / – 0.184 1.00 / – 0.021
1 0.3306 / – 0.008 0.9744 / – 0.058 0.392 / – 0.015 0.5784 / – 0.063 0.6808 / – 0.026 0.8992 / – 0.096 0.6407 / – 0.016
0.2 0.4972 / – 0.0992 1.00 / – 0.391 0.6167 / – 0.117 1.00 / – 0.285 1.00 / – 0.39 1.00 / – 0.391 1.00 / – 0.195

2.5% 0.6 0.4872 / – 0.03432 1.00 / – 0.392 0.4933 / – 0.0407 1.00 / – 0.2012 1.00 / – 0.382 1.00 / – 0.387 1.00 / – 0.063
1 0.3696 / – 0.027 1.00 / – 0.344 0.4 / – 0.035 1.00 / – 0.146 0.9696 / – 0.11 1.00 / – 0.22 0.913 / – 0.044
0.2 0.555 / – 0.18 1.00 / – 0.3912 0.6504 / – 0.204 1.00 / – 0.3353 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.391

Taxi 5% 0.6 0.5352 / – 0.072 1.00 / – 0.391 0.5392 / – 0.106 1.00 / – 0.277 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.147
1 0.4976 / – 0.048 1.00 / – 0.389 0.4844 / – 0.0771 1.00 / – 0.23 1.00 / – 0.389 1.00 / – 0.385 1.00 / – 0.102
0.2 0.6211 / – 0.29 1.00 / – 0.391 0.7411 / – 0.31 1.00 / – 0.357 1.00 / – 0.392 1.00 / – 0.391 1.00 / – 0.391

7.5% 0.6 0.6089 / – 0.108 1.00 / – 0.39 0.6494 / – 0.15 1.00 / – 0.31 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.255
1 0.5667 / – 0.073 1.00 / – 0.391 0.5583 / – 0.11 1.00 / – 0.27 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.154
0.2 0.8432 / 0.575 0.382 1.00 / 0.575 0.392 0.7912 / 0.55 0.377 1.00 / 0.55 0.37 1.00 / 0.55 0.392 1.00 / – 0.391 1.00 / 0.55 0.391

10% 0.6 0.62 / – 0.15 1.00 / – 0.39 0.63 / – 0.207 1.00 / – 0.335 1.00 / – 0.39 1.00 / – 0.391 1.00 / – 0.391
1 0.5072 / – 0.097 1.00 / – 0.39 0.5338 / – 0.15 1.00 / – 0.303 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.248

Pad. This is because OUE-Pad does not concentrate on the
right-most bin and the padding bits is uniformly sampled
instead of following OUE perturbation probability and thus
the recovered data cannot reproduce the polluted report,
leading to a distinction between gdet and gben in detection.

• MUD performs poorly and can only detect the attack with
small ϵ = 0.2 and large β = 10%. This is because it
compares the noisy report with the extreme case and thus
the threshold τ is too large to detect the attack for small β
and large ϵ.

• The AUC of the detection against the attack on [1−b, 1+b]
in SW is lower than those adopting other attack strategies,
especially for small β. The reason is that the distribution of
fake values in this range is close to the output probability
distribution of SW. Therefore, this type of attack is closer
to the baseline and its AUC is the smallest.

• The AUC for OLH-User is lower than that for HST-User,
GRR, OUE and OUE-Pad. This is because fake values in
HST-User, GRR and OUE only support the right-most bin
and OUE-Pad contains dummy bits following a different
distribution from OUE perturbation probability, leading to
higher statistical anomaly than in OLH-User where the
crafted values support a set of bins at the right end.

• As ϵ grows, ASG reduces and the detection performs worse.
This is because larger ϵ results in less noise, thus making
the attack closer to the baseline.

• The ASG and AUC are getting greater with increased β
because more compromised users facilitate the distribu-

tion manipulation, thus increasing the distance between the
reported bogus data and the reconstructed result, which
deviates farther from the benchmark.

• In general, higher ASG leads to higher AUC but AUC is not
solely determined by the attack gain. It is also correlated
with β and ϵ at the same time. Given a fixed ASG, we
observe that the detection rate can be different. For example,
the ASG of attack range [1− b, 1 + b] is about 0.045 under
ϵ = 0.2, β = 1% and ϵ = 0.6, β = 2.5% on dataset Taxi.
However, the AUC is 0.9872 for β = 2.5% but is only
0.8592 for β = 1%.

• Overall, the AUC with dataset Taxi is higher than the other
two datasets. This is because, on Taxi, the probability density
of the region near the right end of the domain is high. Thus,
the frequencies of polluted bins are still high even after
averaging in EMS, leading to higher anomaly.

2) Relationship between ASG and p-value: Despite the
superior overall performance of our detection compared to the
existing method, the results show that the proposed method
cannot effectively detect the attack for small β on SW and
does not achieve high AUC for CFO in the Server setting. In
this subsection, we study the attack efficacy versus detection
performance. To this end, we analyze the relationship between
the ASG and the p-value in the detection. To achieve a low
false positive rate, we set the α = 0.002. We also select the
best attack strategy with the highest ASG/SGR for SW under
each parameter setting. By repeating the attack 10 times, we
use the scatterplot to show the ASG distribution as the function

12



10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4
S

W

ASG = 0.2
= 1% = 2.5% = 5% = 7.5% No…Attack = 0.002

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4
ASG = 0.6

10
6

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4
ASG = 1

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

O
LH

…
S

er
ve

r

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

O
LH

…
U

se
r

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
6

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

H
S

T…
S

er
ve

r

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
6

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

H
S

T…
U

se
r

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
6

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

O
U

E

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

G
R

R

10
6

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
6

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
6

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

O
U

E
…

P
ad

10
6

10
5

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

10
4

10
3

10
2

10
1

10
0

p-value

0.0

0.2

0.4

Fig. 7: Relationship between shift gain and p-value with Taxi. Each row represents a protocol with varying ϵ.

of p-value in detection. We have similar observations across
all three datasets and thus only show the results with Taxi in
Figure 7.

• For SW, there are two key observations:
– When the number of malicious users is sufficient (e.g.,

β ≥ 5%) to contribute to a high ASG, the p-value in
detection is significantly smaller than that of No Attack.
This is because a large number of fake values give rise
to significant anomalies.

– When the attack bypasses the detection (i.e., the p-value
is greater than α) with a small β, the ASG is close to No
Attack because of the diminished attack effectiveness.

• For CFO protocols:
– With HST and OLH in the User setting, GRR, OUE and

OUE-Pad, the attack makes a limited impact on the final
estimate (e.g., ASG ≤ 0.1) when it evades the detection.

– The attack in the Server setting tends to evade the detec-
tion with non-negligible ASG. This is because the attacker
can only manipulate limited information. On the flip side,
the lack of sufficient information prevents identifying the
attack effectively. As a result, it is challenging to detect
the data manipulation in the Server setting.

Why our detection is better than MUD? Our detection
method utilizes the distribution information to construct an ef-
fective benchmark, allowing precise identification of skewness
in noisy reports. In contrast, MUD relies solely on checking
the frequencies of specific bins. It is effective when the attacker
targets a set of bins since it is unlikely that these bins are
all supported by a group of users. However, our attack on
CFO protocols targets only the right-most bin, leading to
statistically insignificant anomalies. Consequently, MUD must
employ a large threshold to mitigate false positives, which
requires control over an exceptionally large user base and
results in poor performance for small β.

In the Server setting, the attacker can only forge values and
lacks control over the hash function. Detection can only rely
on the frequencies of specific bins. However, our approach
utilizes the distribution information across all bins, creating
a robust detection benchmark. Unlike MUD, our method
exploits correlations and inherent statistical properties beyond
bin frequencies, thus achieving better detection.
Summary. Our evaluation unveils a bittersweet result for
CFO-based protocols. For GRR, OUE and CFOs in the User
setting, they are naturally more vulnerable to the data poi-
soning attack. However, the high attack anomaly with these
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protocols also enables our detection to effectively identify the
threat. On the other hand, CFOs in the Server setting are more
robust to data manipulation but suffer from a low detection
rate. In contrast, SW shows good resilience against the attack
and offers rich distribution information to facilitate the detec-
tion. Meanwhile, prior research shows that better utility for
numerical data is obtained with SW compared to CFO-based
protocols [3]. Therefore, SW would be a preferable protocol
with balanced security, privacy, and utility expectations. We
expect our findings will still hold in the scenarios where the
attack is launched towards other regions of the distribution
since the attack intuition remains to increase the distribution
density within the target region.

VI. DISCUSSION AND FUTURE DIRECTION

ASG/SGR for LDP Robustness Improvement. Security has
become a critical factor when we evaluate LDP protocols
in addition to utility assessment. ASG and SGR as stronger
indicators of attack resilience can be adopted in concert with
utility metrics, such as mean square error (MSE) to offer
a more comprehensive evaluation of LDP in a hostile envi-
ronment. Further, ASG/SGR can provide insights into robust
LDP design. For example, the optimal number g in OLH [2]
is determined by minimizing the MSE of LDP noise while
our analysis shows that g also has an impact on the protocol
robustness. As a result, we may further design a more robust
OLH by finding a g that minimizes attack efficacy informed
by ASG/SGR along with the utility optimization.
Limitation of Our Detection and Alternative Mitigation.
The detection needs m noisy results to produce gdet and gben,
which may incur a time cost that does not favor real-time
applications, especially when a large number of users are
involved. The proposed detection method may not be directly
applicable to categorical data since it is built on Wasserstein
distance for numerical settings.

In addition to detection, attack recovery is another important
defense strategy, especially when the threat is persistent or
recollecting data is impossible [11], [23], [15], [14]. In this
case, accurate detection can provide rich information to help
restore damaged utility by suppressing the attack impact on
the result. We leave this to our future work.
Robustness of Shuffler-based LDP. Shuffler may further
improve robustness. Shuffler-based LDP protocols [24], [25]
deploy a shuffler to break the link between users and their re-
ports. Intuitively, this anonymity can provide a better privacy-
utility trade-off because users can add less noise while achiev-
ing the same level of privacy. Therefore, the results recovered
by aggregation are close to the input values, and the attack
efficacy could be close to the baseline attack. Our detection
framework could apply to shuffler-based protocols for numeri-
cal data [26]. Although the shuffler conceals the user’s identity,
it does not lose the distribution information. Therefore, the
server can still recover the data distribution from the shuffled
noisy reports and reconstruct the noisy results to capture the
attack.

Attack Detection for Graph Statistics Estimation. In graph
data mining, LDP [27] focuses on estimating the modularity,
structural similarity, etc. Node degree and adjacency bit vector
are two atomic graph metrics. To manipulate the statistics
of a graph, the attacker may inject a false adjacency bit
vector to pollute the node degree and adjacent matrix, and
further manipulate the statistics. The server can derive the
degree distribution from the adjacent matrix and our detection
could synthesize a graph by graph generation model [28]. By
performing a reconstruction and a hypothesis test, the attack
is likely to be detected.

VII. CONCLUSION

Studying the robustness of LDP protocols under data poi-
soning attacks is a critical first step toward restoring the
security and reliability of LDP protocols in practice. In this
paper, we investigate the impact of malicious data manipula-
tion on the state-of-the-art LDP protocols for numerical data
estimation and find that not all of these protocols are equally
robust against the concerned threats. The Server setting for
CFO with binning and consistency provides better robustness
than the User setting. CFO-Server along with SW is the
most robust under our data poisoning attack while SW is
preferable with better detection sensitivity and utility. Our
research further advances the prior knowledge and reveals new
relationships between LDP design choices and robustness.
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APPENDIX A
PROOF OF THEOREM 1

Proof. According to [2], HST and OLH are equivalent for
g = 2. Therefore we only study the OLH and the results can
be applied to HST. SGR is proportional to ASG and thus we
only study ASG and the conclusion is also applicable to SGR.
Since local hashing-based mechanisms can be implemented
by two settings, we first study the User case. Ideally, the fake
report ⟨Ĥ, ŷ⟩ contributes only to the estimated frequency of
the largest value in the mo-th bin. To study the relationship
between g and ASG, we need to analyze the expected shift
gain after the attack. The idea is to study frequency change
on each bin after the attack and aggregate them to obtain the
shift gain. The term C(Bi) counts the number of noisy data
falling in the i-th bin Bi, and it can also be presented by
indicating function as

∑n
j=1 Iy(j)(i), where Iy(j)(i) equals 1

if H(j)(i) = x̂
(j)
b . Denote the true frequency of the i-th bin as

fi, the excepted frequency change ∆fi for the i-th (i ̸= mo)
bin is

E(∆fi) = E

[∑(1−β)n
j=1 Iy(j)(i) +

∑βn
j=1 Iŷ(j)(i)− nq

n(p− q)

−
∑n

j=1 Iy(j)(i)− nq

n(p− q)

]
=

1

n(p− q)
E [n(q − p)fiβ − qβ] = −fiβ −

β

g − 2

The second equality is because for i ̸= mo, the Iy(j)(i) is 1
with probability p and 0 with probability q, and the Iŷ(j)(i) for
compromised user is 0 ideally. For the mo-th bin, the expected
frequency change is

E(∆fmo
)

= E

[∑(1−β)n
j=1 Iy(j)(i) +

∑βn
j=1 1− nq

n(p− q)
−

∑n
j=1 Iy(j)(i)− nq

n(p− q)

]
=

β

p− q
− βfmo −

β

(p− q)g

Thus the expected ASG is
∑mo

v=1

∑v
i=1 E(∆fi), which is the

linear combination of E(∆fi)(∀i ∈ [mo]) and is proportional
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to − 1
g . Because the derivative of every E(∆fi) with respect

to g is positive,
∑mo

v=1

∑v
i=1 E(∆fi) increases as g grows.

The proof is the same for Server setting except that the
term

∑βn
j=1 Iŷ(j)(i) is 0 with probability g−1

g while 1 with
probability 1

g . This is because the hash is picked by the server
and each hash maps input to domain [g] uniformly at random.
Then we have the expected shift gain as

E(∆fi) = −βfi (i ̸= mo)

E(∆fmo
) =

β

p− q
− βfmo

− β

(p− q)g

Since the derivative of every E(∆fi) with respect to g is still
positive,

∑mo

v=1

∑v
i=1 E(∆fi) also increases as g grows under

Server setting.

APPENDIX B
DATA DISTRIBUTION AND SUPPLEMENTAL ATTACK

RESULTS

The data distribution is shown in Figure 9. As the supple-
mental experimental results of Figure 5 in Section IV, Figure 8
shows the attack results on SW mechanism with the rest two
datasets Taxi and Retirement. We observe a similar result to
that with dataset N (0, 10). Except for injecting into the right-
most bin, injecting fake values into the range [1 + 2b

3 , 1 + b],
range [1, 1+b] and range [1− b, 1+b] perform similarly since

they all increase the probability density region of the right end
of the domain.

APPENDIX C
TWO-SAMPLE KOLMOGOROV–SMIRNOV TEST

Two-sample Kolmogorov–Smirnov (KS) test [20] is used
to test if two groups of samples follow the same distribution.
It claims two statistical hypotheses. The null hypothesis H0

states that the two groups of samples follow the same dis-
tribution, while the alternative hypothesis H1 claims that the
distributions of two groups are different.

Two-sample KS test has Type I error and Type II error. Type
I error occurs when the H0 is true but the test mistakenly
rejects it. Type II occurs if the H0 is falsely accepted when it
is not true. In most problems, Type I error is important [29],
and analyzers usually require the probability of Type I error be
at most the specified small significance level α (0 ≤ α ≤ 1).
In order to allow users to control the error probability, the KS
test returns a probabilistic estimate p-value p to measure how
likely the null hypothesis is true. The null hypothesis will be
rejected if p is less than the specified α.

Two-sample KS test has three primary steps. Let X1 =

[x
(i)
1 ]ni=1 and X2 = [x

(i)
2 ]mi=1 be two groups of samples to be

tested. KS test first calculates the empirical cumulative distri-
bution function FX1

(x) and FX2
(x) of X1 and X2. Then KS

test computes the test statistic S = supx |FX1(x)− FX2(x)|
to describe how much the test samples differ from the null
hypothesis. Given the statistic S, KS test can finally derive
p-value as p = 2e−2S2 mn

m+n [20] and reject H0 if p ≤ α.

APPENDIX D
DETECTION DETAILS AND SUPPLEMENTAL RESULTS

The full detection results of SW and CFOs are shown in
Table III and IV below.
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TABLE III: AUC Values of Attack Detection on SW

Dataset β ϵ
SW right-most bin SW [1+2/3b, 1+b] SW [1, 1+b] SW [1-b, 1+b]
AUC ASG AUC ASG AUC ASG AUC ASG

0.2 1.00 0.00502 0.9968 0.0177 0.9048 0.0414 0.6168 0.0361
1% 0.6 1.00 0.00075 0.9968 0.0141 0.8984 0.0146 0.5952 0.0134

1 1.00 0.00039 0.9888 0.0107 0.8368 0.0126 0.5928 0.0116
0.2 1.00 0.00329 1.00 0.0996 1.00 0.1049 0.9940 0.077

2.5% 0.6 1.00 0.000103 1.00 0.0415 1.00 0.0418 0.9718 0.0376
1 1.00 -0.00036 1.00 0.0294 0.9996 0.0301 0.9574 0.0269
0.2 1.00 0.00255 1.00 0.2117 1.00 0.2272 0.9972 0.1685

N(0, 10) 5% 0.6 1.00 0.00177 1.00 0.0751 1.00 0.0813 0.9970 0.0764
1 1.00 0.00595 1.00 0.058 1.00 0.0608 0.9900 0.05468
0.2 1.00 0.00951 1.00 0.3126 1.00 0.3297 0.9994 0.2396

7.5% 0.6 1.00 0.00923 1.00 0.1141 1.00 0.1197 0.9983 0.1146
1 1.00 0.0146 1.00 0.0832 1.00 0.0895 0.9976 0.08205
0.2 1.00 0.0102 1.00 0.4259 1.00 0.4517 1.00 0.3269

10% 0.6 1.00 0.02301 1.00 0.1527 1.00 0.1559 1.00 0.1487
1 1.00 0.0237 1.00 0.1099 1.00 0.1158 1.00 0.1095
0.2 1.00 0.00289 1.00 0.0404 1.00 0.04536 0.8592 0.04571

1% 0.6 1.00 0.00199 1.00 0.0224 1.00 0.0239 0.685 0.0179
1 1.00 0.00084 1.00 0.0127 1.00 0.0131 0.56 0.0122
0.2 1.00 0.00364 1.00 0.1042 1.00 0.1132 0.9996 0.1052

2.5% 0.6 1.00 0.00362 1.00 0.0569 1.00 0.0571 0.9872 0.0447
1 1.00 0.00215 1.00 0.03129 1.00 0.0329 0.9840 0.03037
0.2 1.00 0.01114 1.00 0.2056 1.00 0.2284 1.00 0.1915

Taxi 5% 0.6 1.00 0.00962 1.00 0.0981 1.00 0.0991 1.00 0.0891
1 1.00 0.00807 1.00 0.0614 1.00 0.0644 1.00 0.0601
0.2 1.00 0.0171 1.00 0.3155 1.00 0.3416 1.00 0.2615

7.5% 0.6 1.00 0.0213 1.00 0.1324 1.00 0.1352 1.00 0.1286
1 1.00 0.0176 1.00 0.091 1.00 0.0959 1.00 0.0896
0.2 1.00 0.02981 1.00 0.3859 1.00 0.3707 1.00 0.3145

10% 0.6 1.00 0.0363 1.00 0.1642 1.00 0.1696 1.00 0.1652
1 1.00 0.02907 1.00 0.1218 1.00 0.1269 1.00 0.1186
0.2 1.00 0.01242 1.00 0.02808 0.9856 0.0441 0.6256 0.043

1% 0.6 1.00 0.00356 1.00 0.0234 0.985 0.0209 0.605 0.0198
1 1.00 0.00174 1.00 0.0123 0.9816 0.0167 0.5624 0.0157
0.2 1.00 0.0053 1.00 0.1017 1.00 0.1203 0.9630 0.1234

2.5% 0.6 1.00 0.00384 1.00 0.0516 1.00 0.0565 0.9612 0.0498
1 1.00 0.00331 1.00 0.0371 1.00 0.0387 0.9588 0.0382
0.2 1.00 0.00821 1.00 0.2243 1.00 0.2487 0.9816 0.2425

Retirement 5% 0.6 1.00 0.0089 1.00 0.0992 1.00 0.1072 0.9778 0.1025
1 1.00 0.00533 1.00 0.0724 1.00 0.0781 0.9744 0.0762
0.2 1.00 0.0121 1.00 0.3342 1.00 0.3637 1.00 0.3611

7.5% 0.6 1.00 0.0185 1.00 0.1553 1.00 0.1606 1.00 0.1587
1 1.00 0.0172 1.00 0.1098 1.00 0.1148 0.994 0.1176
0.2 1.00 0.0236 1.00 0.4505 1.00 0.4938 1.00 0.4725

10% 0.6 1.00 0.0297 1.00 0.2052 1.00 0.21005 1.00 0.2096
1 1.00 0.03055 1.00 0.1465 1.00 0.1519 0.998 0.1563
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TABLE IV: AUC Values of Attack Detection for CFO. The AUC of MUD is shown in brackets and use “–” if the AUC value
is zero.

Dataset β ϵ
HST-Server HST-User OLH-Server OLH-User OUE GRR OUE-Pad

Ours / MUD ASG Ours / MUD ASG Ours / MUD ASG Ours / MUD ASG Ours / MUD ASG Ours / MUD ASG Ours / MUD ASG
0.2 0.612 / – 0.05 0.8928 / – 0.137 0.5483 / – 0.036 0.9822 / – 0.1565 0.9006 / – 0.129 1.00 / – 0.493 0.866 / – 0.0476

1% 0.6 0.57 / – 0.0179 0.6816 / – 0.034 0.4967 / – 0.0267 0.8656 / – 0.0751 0.5456 / – 0.0341 0.71 / – 0.204 0.51 / – 0.0297
1 0.4322 / – 0.012 0.6096 / – 0.021 0.4248 / – 0.0181 0.8504 / – 0.046 0.5352 / – 0.021 0.62 / – 0.077 0.49 / – 0.0206
0.2 0.6394 / – 0.10447 1.00 / – 0.493 0.5528 / – 0.1025 1.00 / – 0.3273 0.9506 / – 0.493 1.00 / – 0.493 0.92 / – 0.142

2.5% 0.6 0.609 / – 0.04236 1.00 / – 0.11669 0.5072 / – 0.0565 1.00 / – 0.16026 0.9422 / – 0.0856 0.98 / – 0.46 0.89 / – 0.061
1 0.4694 / – 0.0252 0.9717 / – 0.066 0.4667 / – 0.041 0.92 / – 0.109 0.5933 / – 0.053 0.76 / – 0.224 0.54 / – 0.043
0.2 0.7128 / – 0.222 1.00 / – 0.493 0.7192 / – 0.243 1.00 / – 0.4395 1.00 / – 0.493 1.00 / – 0.493 1.00 / – 0.31

N(0, 10) 5% 0.6 0.6912 / – 0.077 1.00 / – 0.493 0.6336 / – 0.106 1.00 / – 0.283 1.00 / – 0.493 1.00 / – 0.493 1.00 / – 0.118
1 0.5912 / – 0.051 0.9784 / – 0.47 0.544 / – 0.078 0.9272 / – 0.1897 1.00 / – 0.115 1.00 / – 0.45 1.00 / – 0.085
0.2 0.7706 / – 0.341 0.8822 / – 0.493 0.7489 / – 0.342 1.00 / – 0.457 1.00 / – 0.493 1.00 / – 0.493 1.00 / – 0.433

7.5% 0.6 0.7256 / – 0.117 1.00 / – 0.493 0.8611 / – 0.158 1.00 / – 0.3718 1.00 / – 0.493 1.00 / – 0.493 1.00 / – 0.178
1 0.689 / – 0.0795 1.00 / – 0.493 0.867 / – 0.117 0.9312 / – 0.268 1.00 / – 0.211 1.00 / – 0.493 1.00 / – 0.127
0.2 0.9416 / 0.525 0.453 1.00 / 0.525 0.493 0.9928 / 0.525 0.448 1.00 / 0.525 0.472 1.00 / 0.525 0.493 1.00 / – 0.493 1.00 / 0.525 0.493

10% 0.6 0.8944 / – 0.162 1.00 / – 0.493 0.9208 / – 0.214 1.00 / – 0.435 1.00 / – 0.493 1.00 / – 0.493 1.00 / – 0.237
1 0.7088 / – 0.105 1.00 / – 0.493 0.9 / – 0.158 0.9661 / – 0.331 1.00 / – 0.493 1.00 / – 0.493 1.00 / – 0.167
0.2 0.4416 / – 0.0484 1.00 / – 0.391 0.476 / – 0.047 0.9952 / – 0.207 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.094

1% 0.6 0.4384 / – 0.0054 1.00 / – 0.1014 0.4232 / – 0.0189 0.6224 / – 0.105 1.00 / – 0.071 1.00 / – 0.184 1.00 / – 0.021
1 0.3306 / – 0.0082 0.9744 / – 0.058 0.392 / – 0.015 0.5784 / – 0.0635 0.6808 / – 0.0261 0.8992 / – 0.096 0.6407 / – 0.016
0.2 0.4972 / – 0.0992 1.00 / – 0.391 0.6167 / – 0.117 1.00 / – 0.285 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.195

2.5% 0.6 0.4872 / – 0.0343 1.00 / – 0.392 0.4933 / – 0.041 1.00 / – 0.201 1.00 / – 0.382 1.00 / – 0.387 1.00 / – 0.063
1 0.3696 / – 0.027 1.00 / – 0.344 0.4 / – 0.03518 1.00 / – 0.146 0.9696 / – 0.11 1.00 / – 0.22 0.913 / – 0.044
0.2 0.555 / – 0.188 1.00 / – 0.39 0.6504 / – 0.204 1.00 / – 0.335 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.391

Taxi 5% 0.6 0.5352 / – 0.072 1.00 / – 0.391 0.5392 / – 0.1069 1.00 / – 0.277 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.147
1 0.4976 / – 0.0486 1.00 / – 0.389 0.4844 / – 0.077 1.00 / – 0.23 1.00 / – 0.389 1.00 / – 0.385 1.00 / – 0.102
0.2 0.6211 / – 0.296 1.00 / – 0.391 0.7411 / – 0.31 1.00 / – 0.357 1.00 / – 0.392 1.00 / – 0.391 1.00 / – 0.391

7.5% 0.6 0.6089 / – 0.108 1.00 / – 0.392 0.6494 / – 0.156 1.00 / – 0.312 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.255
1 0.5667 / – 0.073 1.00 / – 0.39105 0.5583 / – 0.1161 1.00 / – 0.276 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.154
0.2 0.8432 / 0.575 0.382 1.00 / 0.575 0.392 0.7912 / 0.55 0.377 1.00 / 0.55 0.37 1.00 / 0.55 0.392 1.00 / – 0.391 1.00 /0.55 0.391

10% 0.6 0.62 / – 0.15 1.00 / – 0.39 0.63 / – 0.207 1.00 / – 0.335 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.391
1 0.5072 / – 0.0976 1.00 / – 0.3913 0.5338 / – 0.151 1.00 / – 0.303 1.00 / – 0.391 1.00 / – 0.391 1.00 / – 0.248
0.2 0.53 / – 0.1473 0.705 / – 0.1836 0.505 / – 0.138 0.61 / – 0.356 0.7 / – 0.228 1.00 / – 0.731 0.65 / – 0.123

1% 0.6 0.475 / – 0.0591 0.68 / – 0.04072 0.42 / – 0.0452 0.52 / – 0.1324 0.67 / – 0.051 0.81 / – 0.262 0.57 / – 0.04
1 0.465 / – 0.0262 0.59 / – 0.0067 0.345 / – 0.025 0.405 / – 0.0763 0.37 / – 0.0269 0.56 / – 0.128 0.3 / – 0.023
0.2 0.5506 / – 0.204 1.00 / – 0.728 0.53 / – 0.2679 1.00 / – 0.5875 0.9089 / – 0.71 1.00 / – 0.731 0.864 / – 0.23

2.5% 0.6 0.535 / – 0.091 0.9978 / – 0.281 0.52 / – 0.101 1.00 / – 0.293 0.84 / – 0.127 0.91 / – 0.66 0.77 / – 0.083
1 0.5194 / – 0.043 0.8733 / – 0.078 0.4933 / – 0.0693 0.9833 / – 0.168 0.6572 / – 0.059 0.831 / – 0.332 0.603 / – 0.056
0.2 0.58 / – 0.358 1.00 / – 0.7284 0.5906 / – 0.35 1.00 / – 0.6694 1.00 / – 0.7284 1.00 / – 0.731 1.00 / – 0.456

Retirement 5% 0.6 0.575 / – 0.128 1.00 / – 0.726 0.565 / – 0.166 1.00 / – 0.5842 1.00 / – 0.695 1.00 / – 0.731 1.00 / – 0.151
1 0.5574 / – 0.0867 1.00 / – 0.684 0.5402 / – 0.1257 1.00 / – 0.347 0.9914 / – 0.1641 1.00 / – 0.67 0.99 / – 0.11
0.2 0.66 / – 0.53 1.00 / – 0.731 0.7372 / – 0.527 1.00 / – 0.6977 1.00 / – 0.731 1.00 / – 0.731 1.00 / – 0.693

7.5% 0.6 0.6456 / – 0.172 1.00 / – 0.731 0.63 / – 0.2277 1.00 / – 0.656 1.00 / – 0.731 1.00 / – 0.731 1.00 / – 0.248
1 0.5839 / – 0.1091 1.00 / – 0.731 0.6656 / – 0.1686 1.00 / – 0.5261 1.00 / – 0.3577 1.00 / – 0.731 1.00 / – 0.166
0.2 0.725 / 0.525 0.6786 1.00 / 0.525 0.7326 0.88 / 0.525 0.6582 1.00 / 0.525 0.7142 1.00 / 0.525 0.732 1.00 / – 0.731 1.00 / 0.525 0.731

10% 0.6 0.71 / – 0.2405 1.00 / – 0.732 0.8292 / – 0.3216 1.00 / – 0.675 1.00 / – 0.732 1.00 / – 0.731 1.00 / – 0.337
1 0.5976 / – 0.1588 1.00 / – 0.732 0.6783 / – 0.231 1.00 / – 0.6574 1.00 / – 0.729 1.00 / – 0.731 1.00 / – 0.233
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