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ABSTRACT

The surge in machine learning research and recent advance-
ments in 3D printing technologies have significantly enriched
materials science and engineering, particularly in the domain of
mechanical metamaterials, which commonly consist of periodic
truss materials. Despite the extensive exploration of their tai-
lorable properties, truss-based metamaterial design has predom-
inantly adhered to cubic and orthotropic unit-cells, a limitation
arising from the conventional design method, where the type of
symmetry related to the designed truss-based material is deter-
mined after the design process is done. To overcome this issue,
this work introduces a groundbreaking 3D truss material design-
ing framework that departs from this constraint by employing six
distinctive material symmetries (cubic, hexagonal, tetragonal,
orthotropic, trigonal, and monoclinic) within the design process.
This innovative approach represents a versatile paradigm shift
compared to previous design approaches. Furthermore, we are
able to integrate anisotropy into the design framework, thus en-
hancing the property space exploration capability of the proposed
design framework. Probing materials property space using our
design framework demonstrates its capacity to achieve a diverse
range of mechanical properties, surpassing even the most exten-
sive datasets available in the literature. The proposed method
facilitates the generation of a comprehensive truss dataset, which
can be represented in a trainable continuous format suitable for
machine learning and data-driven approaches. This advance-
ment paves the way for the development of robust inverse design
tools for truss materials, marking a significant contribution to the
mechanical metamaterial community.

1. INTRODUCTION

Architected metamaterials, propelled by inspiration from
crystallographic networks, tailored microstructural design, and
additive manufacturing, are reshaping the realm of attainable ma-
terial properties, marking an era of unparalleled functionality [1-
3]. In crafting periodic cellular structures, a meticulous approach
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entails precise control over the architecture of repeating unit-cells
[3, 4]. This intentional design process yields cellular structures
capable of advanced macroscopic mechanical properties, includ-
ing negative Poisson’s ratios [5, 6], remarkable strength-to-weight
ratios [7, 8], and controlled instabilities [9, 10]. These cellular
materials have also applications across a wide spectrum of phe-
nomena, ranging from counter-intuitive negative compressibil-
ity [11] to mechanical cloaking [12], extreme energy absorption
[13, 14], and guided acoustic waves [15, 16]. Truss materials are
widely recognized for their extensive use among available cellular
material designs, primarily due to their straightforward manufac-
turing process and remarkable strength-to-weight ratios [7, 8].
The attractive features of truss metamaterials lie in the huge de-
sign flexibility influenced by both lattice topology (dictated by
beam network connectivity) and geometric features (dictated by
the length, orientation, and cross-sectional shape of individual
strut).

Despite the vast potential for exploration, a significant por-
tion of truss structures’ design space remains unexplored. Nu-
merous designs have adhered to a small, well-established lattice
catalog, where the primary focus has been on modifying repre-
sentative catalog geometrical parameters. Identifying these cata-
logs typically occurs through trial and error, limiting the scope of
potential design variations [17, 18]. Moreover, its potential is sig-
nificantly constrained in terms of topological tunability, thereby
limiting the achievable properties of the families cataloged in the
related catalog. Several truss optimization solutions have em-
braced deterministic and heuristic search strategies to uncover
extreme structures, iteratively adjusting active topological ele-
ments within the design domain based on mechanics-based crite-
ria [19, 20]. While pure topology optimization approaches have
the potential to introduce novel extreme truss material, they of-
ten come with computational complexities, particularly in three-
dimensional (3D) scenarios. These challenges encompass high
computational costs and issues such as nonuniqueness and sen-
sitivity to the starting point of the solutions [21]. Furthermore,
discovering genuine extreme designs in truss structures is chal-
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lenging for large-scale design endeavors due to the multitude of
possible topological and geometrical configurations and their in-
tricate mechanical and physical interrelations [1]. In addressing
these hurdles, recent advancements in computational data-driven
approaches [22-25] offer a means to navigate the intricacies of
truss structure design space. This is achieved by predicting struc-
tures from models that are trained on a parametrized training
dataset through applying geometric modification on well-studied
unit-cells encompassing different topologies, resulting in a more
spread exploration of the design space [22-24]. However, explor-
ing novel structures using data-driven methods requires a design
space that encompasses a wide range of topologies, including
novel and extreme designs.

To address the limited design and property space challenge,
Lumpe and Stankovic have recently presented an extensive cata-
log of truss lattices inspired by the molecular structure of crys-
talline lattices [1]. However, a persistent issue arises from the
diverse topologies inherent in these designs, making them chal-
lenging to effectively represent for machine learning purposes
due to their disjoint design space. While Lumpe and Stankovic’s
designs can be expressed in voxel format, this format is sensitive
to shape completion and connectivity issues stemming from the
noisy design space intrinsic to voxel representation. On top of
that, voxel representation requires resource-intensive computa-
tional power, the same as topology optimization methods.

A method for generating a continuous dataset and creating
new structures independent of a single catalog is influenced by
leveraging crystallographic material symmetries [2, 26]. In con-
trast to the conventional design approaches where truss materials
are designed first, followed by attempts to understand their me-
chanical behavior through the utilization of material symmetries,
the mentioned resource pioneers a reverse process as the design
concept is inspired by material symmetry or directional forces
within the material. These symmetries resulted in the creation
of Cubic and Orthotropic continuous datasets [2, 26]. However,
the proposed method in the previous study doesn’t include other
highly anisotropic materials. It overlooks coupling components
like shear—normal and shear—shear in the effective stiffness ten-
sor, even though it’s acknowledged that these components could
be beneficial for tasks such as compliance minimization and wave
guidance [27, 28]. Therefore, there is an urgent need for a method
that can create a truss dataset with a continuous design space. The
dataset should be in a format that avoids the computational chal-
lenges linked to machine learning. This format facilitates the
inclusion of various new designs, supports many representations,
and encompasses a wide mechanical property space. The data
generation method should be easily implemented by other de-
signers, eliminating the need for trial and error in design space
exploration.

To bridge the gaps above, we introduce a systematic ap-
proach to generate a diverse truss dataset that spans from cubic
unit-cells to highly anisotropic structures. The proposed method
utilizes the different material planes of symmetry defined in the
science of crystallography, allowing for the creation of symmet-
rical configurations within the dataset. This not only enhances
the parameterization of the generated data but also provides a
foundation for exploring the influence of symmetry on structural

properties. Then, we introduce sources of anisotropies that elimi-
nate the symmetries from the generated structures. Subsequently,
we extend the versatility of our data generation approach, which
enables a more comprehensive exploration of truss structures and
their diverse characteristics in materials science and engineer-
ing applications. The approach permits multiple representations
for data-driven methodologies; each truss lattice can naturally
be characterized as a graph—a mathematical construct compris-
ing edges and nodes, representing struts and their intersections,
respectively. Alternatively, it can be encoded as a parametric
representation where representative parameters can fully encode
each truss. This method also opens the door for exploring cellular
materials beyond the truss-based approach, where other mechan-
ical metamaterials can be integrated. Our contribution can be
summarized as follows:

— Develop a systematic approach inspired by the planes of
symmetry from crystallography to generate a highly diverse
and representative dataset.

— The proposed approach enables multiple representations that
can be seamlessly integrated with data-driven methods.

— The approach illuminates the sources of anisotropy in truss
materials and elucidates how symmetry planes influence the
mechanical properties of truss materials.

The rest of the paper is structured as follows: Section 2
provides a comprehensive review of the literature concerning
methods in truss materials generation, exploration of mechani-
cal symmetry, and materials properties computation. Section 3
delves into the methodology of truss construction. In Section 4,
we showcase simulation samples and the space of properties of
the samples. Sources of anisotropies are elucidated in Section 5.
Finally, Section 6 concludes the paper by discussing contributions
and limitations and outlining future research directions.

2. LITERATURE REVIEW

This section first introduces the methods typically employed
in creating truss datasets. Then, an overview of material sym-
metries crucial for dataset generation is presented. Lastly, a brief
discussion on the homogenization method used to extract the ef-
fective mechanical properties from the truss materials concludes
this section.

2.1 Truss Dataset Generation

Cellular material frequently employ trusses and beams due
to their easy specification and extensive variability. The diversity
of truss topologies alone warrants a dedicated classification of
truss unit-cells, without even considering continuous parameters
such as vertex positions or thickness profiles along beams and
their junctions [26]. The exploration of this extensive space has
been extensively documented in the literature, focusing on ex-
panding the boundaries of property space by trying to achieve
extreme unit-cells [29-31]. The surge in machine learning us-
age has underscored the need for alternative methods to generate
datasets with a broader range of properties. Introduced in 1995,
a technique constructs truss microstructures with 2000 poten-
tial members, optimizing thicknesses for desired properties using
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predetermined elasticity tensors [32]. In their work [22], Chen
et al. employed discrete sampling and continuous optimization
to generate five catalogs of unit-cells with extreme properties.
These catalogs form the basis for their dataset, which is expanded
by modifying the truss diameter. Bastek et al. [23] deformed
and superimposed seven fundamental lattice units to create 262
topologies. They further diversified the dataset by applying ro-
tations and expansions on the unit-cells. In [33], a cubic dataset
was developed, inspired by two representative unit-cell types and
other geometric parameters. A recent procedural graph approach
succinctly represents the construction process of cellular mate-
rials, including truss materials, using a skeleton annotated with
spatially varying thicknesses of the truss and bar [34]. This study
builds upon two foundational works in data generation, both lever-
aging material symmetry. The first, [2], employed nine cubic
symmetry planes, while [26] utilized three orthogonal planes for
orthotropic material. In each method, topologies (nodes and con-
nections) and geometries (cross sections, orientations, etc.) can
be manipulated to explore the property space defined by these
symmetry planes. While all methods have limited property space
coverage, the dataset inspired by crystallography proposed by [1]
covered the widest range. However, it lacks a trainable represen-
tation that demands less computational power.

2.2 Material Symmetry

Material symmetry refers to the change in properties con-
cerning direction at a specific point in a material [35, 36]. In this
study, when discussing symmetry, we specifically mean mirror
symmetry. Mirror symmetry occurs when two identical geo-
metric objects are symmetric with respect to a plane, meaning
each point on one object has a corresponding symmetric point
on the other object concerning that plane [37]. Symmetry planes
significantly impact truss material mechanics, notably in deter-
mining the stiffness tensor [38], a mathematical representation of
a material’s response to external forces, capturing its anisotropic
behavior [39]. Anisotropy arises when the material exhibits dif-
ferent mechanical properties along distinct axes, and symmetry
planes contribute significantly to this phenomenon [36]. In the
context of cellular materials, symmetry planes introduce a level
of predictability and order to the distribution of forces within
the structure. These planes act as reference surfaces, enabling
a systematic analysis of the material’s response to various load-
ing conditions [2, 26, 36]. Materials are classified into seven
anisotropic symmetries based on symmetry planes’ number and
orientation: triclinic, monoclinic, trigonal, orthotropic, hexag-
onal, tetragonal, and cubic [37, 40]. Table I illustrates these
symmetries, including orientation (defined by the Normal to the
symmetry plane), the number of symmetry planes, and the count
of independent elastic parameters within the stiffness tensor. For
a detailed explanation of the derivation of independent elastic pa-
rameters, readers can refer to [36], the source from which Table 1
originated.

In Table 1, iy, i>, and i3 represent the normal to the three
primary planes of the cube. By examining the symmetries from
Table 1, researchers and engineers gain insights into how the
material responds to external stimuli, intricately tied to its under-
lying symmetrical characteristics. Therefore, we will use these

TABLE 1: MATERIAL SYMMETRY TYPES AND ITS CHARACTERIS-
TICS.

Type of material Number of planes ~ Number of independent Normals to the

symmetry. of mirror symmetry. elastic coefficient plane of symmetry.
i, 2,13, (1/2) (i1 +12),
- (1/2) (i1 = i2), (1/2) (i1 +13),
Cubic ’ } (/2 =), (1/2)(i2 +73).
and (1/2)(iz - i3)
i1, i, 13, (1/2) (311 +i2),
Hexagonal 7 5 (1/2)(3i1 = i2), (1/2)(iy + 3ia),
and (1/2)(i; — 3i2)
ir 2,3, (1/2) (i1 +i2),
Tetragonal 5 6(7) and (1/2)(i1 - ia)
Orthotropic 3 9 i1,02,13
. i1, (1/2) (i1 +3i2),
Trigonal 3 6 (7) and (1/2)(i1 - 3i)
Monoclinic 1 12 (13) i
Triclinic 0 21 None

symmetries further to explore the space of properties achievable
with truss materials.

2.3 Effective Mechanical Properties Calculations

Numerical homogenization is a computational approach
widely utilized for determining the homogenized macroscopic
mechanical properties, specifically the elasticity tensor, of cellu-
lar materials [41, 42]. The rationale for selecting the elasticity
tensor as a representation of effective mechanical properties lies
in the feasibility of obtaining all elastic terms through common
approximation methods, such as the Voigt—Reuss—Hill method
(VRH) [43], which relies on the elastic stiffness tensor. Numer-
ical homogenization involves the computation of the elasticity
tensor using Eq. (1), where Ej ;4 denotes the stiffness tensor,
stands for the volume of the cellular material, ¢;; is the macro-
scopic displacement within the virtual displacement field, eg(qkl)
indicates the prescribed macroscopic displacement, and v repre-
sents the virtual displacement field. The unknown variable we
seek to solve for is y*!. For 3D cellular materials, Eq. (1) must
be solved under six distinct independent load cases, defining six
prescribed deformations—three axial and three shear deforma-
tions. A comprehensive explanation of this method is available
in the reference [41].

fEi_,-,,q € (V) €pg (X dQ = fEij,,q €;(v) egflk]) dav vveQ (1)
Q Q

3. METHODOLOGY

This section includes two subsections: Sec.3.1 delves into
the framework of the utilization of symmetry planes in the design
of truss material topologies. Sec.3.2 discusses the continuity and
the constraints that are put in place to ensure the connectivity of
the truss structure.

3.1 Design Framework

Our focus is on lattices derived from the periodic tessella-
tion of a cubic representative volume element (RVE). Drawing
inspiration from the cube decomposition approach [2, 26], we
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* 9 symmetry planes.

« 48 tetrahedrons.

« 4 fixed vertex nodes.
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e 24 triangular prisms.
« 6 fixed vertex nodes.
* 9 1-DOF edge nodes.
* 5 2-DOF face nodes.

¢ 5 symmetry planes.
16 triangular prisms.
« 6 fixed vertex nodes.
¢ 9 1-DOF edge nodes.
* 5 2-DOF face nodes.

* 3 symmetry planes.

8 octants.

« 8 fixed vertex nodes.

* 12 1-DOF edge nodes.
* 6 2-DOF face nodes.

* 3 symmetry planes.

« 3 triangular prisms.

« 6 fixed vertex nodes.

* 8 1-DOF edge nodes.
|« 52-DOF face nodes.

* 1 symmetry plane.

* 2 cuboids.

« 8 fixed vertex nodes.

* 12 1-DOF edge nodes.
* 6 2-DOF face nodes.

F. Monoclinic symmetry.

FIGURE 1: TRUSS STRUCTURE DESIGN LOGIC WITH DIFFERENT SYMMETRIES: A. CUBIC SYMMETRY, B. HEXAGONAL SYMMETRY, C.
TETRAGONAL SYMMETRY, D. ORTHOTROPIC SYMMETRY, E. TRIGONAL SYMMETRY, AND F. MONOCLINIC SYMMETRY.
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partition the cube into a specific number of symmetric geometric
objects (SGOs), as illustrated in Figure 1. This approach allows
us to define only a portion of the truss within a single SGO,
simplifying the exploration search problem complexity while
ensuring substantial flexibility and periodic tilability. Next, we
apply reflection along the planes of symmetries to achieve the
final topology with elastic characteristics resembling the type
of symmetry used in constructing the truss topology. Within
each SGO, the pattern’s topology is defined by a set of edges
connected with predefined nodes; these nodes can be vertex
nodes, edge nodes, or face nodes. While there is a possibility to
define an internal node, we have excluded it from our work as
it does not offer additional coverage of the design space. Note
that for triclinic materials, where there is no symmetry, it won’t
be mentioned in Figure 1. However, the method for obtaining
highly anisotropic unit-cells will be discussed in Section 5.

Figure 1 lists Symmetric Geometric Objects (SGOs)
resulting from dividing the cubic representative volume element
(RVE) using symmetry planes determined by each material
symmetry type. In cubic material, we have employed nine
symmetry planes: three perpendicular to the primary cube axes
and six perpendicular to the bisector of each pair of the primary
three axes. These nine planes divide the cube into 48 symmetric
tetrahedrons. For hexagonal material, seven symmetry planes
are utilized. Six of these planes have normals lying in the same
plane, forming 60° angles with each other. The seventh plane
contains the normals to the other six, dividing the cube into 24
segments. These segments initially contain non-symmetric parts,
which are subsequently removed to shape symmetric triangular
prisms. Although alternative geometries can describe the SGO,
we have chosen simplicity in shape by choosing triangular
prisms. In tetragonal material, five symmetry planes are used:
three perpendicular to the primary cube axes and the other
two perpendicular to the bisector of the first and third primary
cube axes. Tetragonal symmetry partitions the cube into 16
symmetric triangular prisms. Orthotropic materials feature three
perpendicular planes of symmetry that are perpendicular to the
primary axes of the cube. These three planes divide the cube into
eight symmetric octants. Similar to orthotropic materials but
with different symmetry planes’ orientations, trigonal symmetry
features three symmetry planes, with their normals all lying in
the same plane and making angles of 120° with each other. The
application of planes of symmetry in trigonal material results
in six parts; we have modified them to achieve symmetry by
excluding some non-symmetric parts and also some symmetric
portions to simplify the resulting SGO. Consequently, the six
resulting SGOs take the form of triangular prisms. The last
material symmetry we have utilized is Monoclinic symmetry,
where only one plane of symmetry is perpendicular to the third
primary axis of the cube. This symmetry divides the cube into
two cuboids.

It can be seen from Figure 1 that the positioning of vertex
nodes, edge nodes, and face nodes within each SGO. While the
vertex node remains fixed in its motion, edge, and face nodes are
permitted restricted movement only along the edge and within

the face, respectively. The interconnection between the different
nodes within each SGO defines the initial topologies of the truss
dataset. Subsequently, adjustments in the offsets of the nodes
capable of movement within their restricted regions are made
to broaden the space of properties achievable by such datasets.
Figure 2 provides examples of possible topologies generated from
varying the sharing nodes or the offsets within a single prism.

£s
i
A
=

Varying offsets

B A
@ 9B A

G R T K

FIGURE 2: TETRAGONAL TOPOLOGIES ARE GENERATED
THROUGH THE VARIATION OF BOTH THE SHARING NODES AND
THE OFFSETS WITHIN A BASIC SGO (TRIANGULAR PRISM).

3.2 Continuity and Connectivity

One of the novelties of the proposed design approach is the
dual representation of resulting topologies, allowing for repre-
sentations in either parametric or graph form. In both represen-
tations, two types of variables are present: discrete and continu-
ous. The discrete variables are symbolized by the selected nodes
shared in the topology, while the continuous variables are illus-
trated by the positioning of the nodes within each SGO. We have
constrained both types of variables to ensure the connectivity
of the truss structures resulting from the symmetries. Addition-
ally, we ensure that free-to-move nodes, particularly edge and
face nodes, are positioned within their designated spatial bounds.
Otherwise, this might violate the desired symmetries.

We define the offsets of nodes by taking inspiration from the
shape function from the finite element community by utilizing
the natural coordinate system [44], representing their relative
positions with respect to the fixed vertex nodes.

The spatial position of each edge node finds its expression
through the relative positions of the two vertex nodes that de-
lineate the edge. Figure 3-A provides an insightful visualization
of this representation. In Figure 3-A, let pos(en), pos(vi), and
pos(vj) be position vectors in R3 representing nodes e, vi, and
vj, respectively. The position of node e, adheres to the definition
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FIGURE 3: NATURAL COORDINATE SYSTEM FOR: A. EDGE NODE,
B. FACE NODE ENCLOSED WITHIN A 2D PLANE OF 3 VERTEX
NODES, AND C. FACE NODE ENCLOSED WITHIN A 2D PLANE OF
4 VERTEX NODES.

outlined in Eq. (2):
Pos(em) = Wn pos(vi) + (1 W) pos(v;) @)

where wy, stands as a weight parameter within the range 0 <
wm < 1, exerting influence over the contribution of both v; and v;
to the positional determination of ey,.

The face node can reside on a plane constrained between three
or four vertex nodes, as depicted in Figure 3-B and Figure 3-C,
respectively. Note that determining the face node’s position on
the plane requires only three vertex nodes. This positional deter-
mination leverages barycentric coordinates, a set of three scalar
values that represent the weights of the vertices of a triangle in the
formation of a given point within that triangle. As illustrated in
Figure 3-B, pos(fn), pos(vi), pos(v;), and pos(vy) are position
vectors in R3 representing nodes fy,, vj, vj, and vk, respectively.
The position of node f, adheres to the formulation in Eq. (3):

pos(fn) = Wmi pos(Vi) + Wmj pos(Vj) + Wk pos(v) ~ (3)

where Wi, Wnj, and wii are the barycentric weights within the
range 0 < Wy, Wij, Wmk < 1. Figure 3-B illustrates that each
weight corresponds to the area portion of the triangle resulting
from the subdivision of the main plane triangle into three smaller
ones by connecting the vertex nodes with the face node, where
Wmn = Ap/A. Therefore, to ensure the placement of node fi,
within the borders of the triangular region, it is essential that
> Wmn = L. If the face node is intended to reside within the
2D plane constrained by four vertex nodes, the determination
of its position involves dividing the plane into two triangular
regions.  Subsequently, the conditions of the barycentric
coordinates within each triangular region are examined. If either
of the regions satisfies the stipulated conditions, then the node is
situated on the constrained plane defined by the four vertex nodes.

While the former addresses the positioning of nodes on their
designated spatial bound defined by vertex nodes, the latter in-
troduces the possibility of disconnected trusses or the emergence
of a two-dimensional shape after applying the reflections on the
symmetry planes. We addressed the second issue by examining

the coordinates of the resulting nodes after applying the reflection
on symmetry planes. If there is no change in the positioning of
any of the coordinates, it indicates that the structure lies within
a 2D plane. Fortunately, the inherent symmetries prevent the
resulting topology from lying on an inclined 2D plane. In the
rare occurrence of 2D topologies, they consistently align with
one of the three planes perpendicular to the primary axis of the
topology.

The primary issue that may arise is expressed in the form
of unconnected topologies, a concern evident in the dataset pre-
sented by Lumpe and Stankovic [1]. Connected topologies, de-
picted in Figure 4-B, signify the presence of a path linking all
nodes sharing the unit-cell topology construction. Conversely,
if there is no apparent finite path between any two nodes within
the geometry, as illustrated in Figure 4-A, we can infer that the
resulting structures are not connected.

FIGURE 4: 2D VISUAL INSPECTION OF GRAPH CONNECTIVITY: A.
UNCONNECTED GRAPH, AND B. CONNECTED GRAPH.

The connectivity is addressed as follows in our dataset gen-
eration: we expressed the topology using an adjacency matrix
Aq € {0, 1}™" where n represents the number of nodes resulting
from the unit-cell. In the adjacency matrix, a value of 1 denotes
an edge between nodes, while 0 indicates the absence of an edge,
which means the diagonal elements A;; = 1(for all i=1,...,n)
where n is the number of the nodes in the resulted unit-cell. Uti-
lizing the adjacency matrix facilitates a connectivity check, which
is achievable by examining the eigenvalues of the Laplacian ma-
trix L, as defined by Eq. (4) [45].

L=D-Aq “)

where D is a diagonal matrix of vertex degrees, and Ag is the
adjacency matrix. Let the Laplacian eigenvalues follow the order
A1 £ Ay €43 £ ... < Ay = 0. If the second lowest eigenvalue
is greater than zero (1, > 0), then the graph is algebraically
connected [45]. The proposed method can effectively generate
datasets for machine learning applications. However, the key
question now is about the extent to which the property space can
be covered by this method and whether it can explore regions that
have not been explored before.

4. EFFECTIVE MATERIALS PROPERTIES SPACE
Exhaustively exploring the vast design space is impractical.
A suitable sampling method is essential for probing the effec-
tive materials property space of the proposed structure design
framework. In this work, we employed the Metropolis-Hastings
Random Walk sampling technique [46]. In the realm of random
walk sampling, the transition from one state to the next involves
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A ®  Cubic @ Hexagonal
©  Orthotropic O Trigonal

® Tetragonal B
@  Monoclinic

FIGURE 5: RELATIVE EFFECTIVE ELASTIC PROPERTIES OF ALL THE SYMMETRY METHODS FOR THE SAMPLED DATA: A. RELATIVE
EFFECTIVE YOUNG’S MODULI IN THE THREE DIRECTIONAL PRIMARY AXES, AND B. RELATIVE EFFECTIVE SHEAR MODULI IN THE THREE

DIRECTIONAL PRIMARY AXES.

randomly selecting one of the neighboring nodes. Defining which
nodes as neighbors is a critical step. While it’s conceivable to des-
ignate all nodes as neighbors, given the relatively modest number
of nodes compared to larger graphs where this sampling method
is typically applied, we opted for a random definition of node
neighbors. Specifically, we employed the Erdgs-Rényi Graph,
assigning a 50% probability for any two nodes to be neighbors
[47]. It's worth mentioning that we haven’t extensively explored
alternative sampling methods, as the primary focus of this work
is to introduce the truss design framework, which will be in our
future research.

We systematically sampled 2500 distinct topologies from
each symmetry category, except for Cubic, where we sampled
only 800 topologies, imposing a maximum relative density limit
of 0.05 for all the symmetries. This constraint ensures a fair com-
parison of properties across diverse structures. Consequently, a
varying number of nodes share within each SGO to achieve this
relative density. Specifically, the number of sharing nodes ranges
from 2 up to 3, 4, 5, 6, 7, and 12 for Cubic SGOs, Hexagonal
SGOs, Tetragonal SGOs, Orthotropic SGOs, Triagonal SGOs,
and Monoclinic SGOs respectively. Employing a numerical ho-
mogenization approach discussed previously [41], we compute
the linear-elastic effective material properties for all structures.
The underlying solid base material assumes a Young’s modu-
lus (Es) of 200 GPa, a Poisson’s ratio (vs) of 0.3, and a truss
diameter of 0.025. To gauge the property range of the truss struc-
tures within the samples and identify topologies with extreme
mechanical behavior, we calculate and visually represent the ho-
mogenized relative effective Young’s moduli, shear moduli, and
Poisson’s ratios of all 3D unit-cells.

Figure 5-A and Figure 5-B reveal the logarithmic scale rep-

resentation of the relative effective Young’s moduli (E/Es) and
relative effective shear moduli (G/G;) along the three directional
primary coordinates 1, 2, 3, and projected onto the 12 plane, 23
plane, and 13 plane, respectively. The properties exhibit a wide
range covering several orders of magnitude, ranging between
107% and 1072 in the three directions. The red dashed—dotted
lines denote the Voigt bounds, serving as theoretical maximums
for Young’s modulus and shear modulus, which can be deter-
mined by the base materials’ elastic modulus and relative densi-
ties (Bvoige = p Es and Gyoige = p Gs) [48]. Given the density of
data across different categories in the figure, we have included a
separate space of properties for each symmetry type at the end of
Appendix A, Figure Al, for vivid visualization purposes.

Cubic symmetry method establishes a linkage across all
three directional primary axes, which is evident by the effec-
tive Young’s and shear moduli that exhibit similar properties in
all directions. Similarly, both hexagonal and tetragonal materials
manifest two equal properties in two out of the three primary
directions, suggesting a direct linkage between at least two of
the primary axes of the main truss. However, the Orthotropic,
Trigonal, and Monoclinic truss materials show no linkage in the
directional Young’s and shear moduli. The majority of samples
from Cubic, Hexagonal, Tetragonal, and Orthotropic categories
are frequently located in regions characterized by large three-
directional Young’s moduli. However, the versatility of utilizing
symmetry planes in the design process extends to regions where
structures exhibit extreme compliance in one, two, or all three
directions, as observed in some of the Triagonal and Monoclinic
categories. The Triagonal and Monoclinic topologies are po-
sitioned closer to the boundary of the projected property space
compared to other trusses resulting from the other symmetries.
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In symmetries featuring planes that are inclined with respect to
the primary axes of the cube (Cubic, Hexagonal, Tetragonal, and
Trigonal), the directions of maximum stiffness do not always
align with the primary axes. Diagonal planes may result in di-
agonal bars that directly stiffen the structures in the main shear
directions, as depicted in Figure 5-B and the shear moduli figures
in Appendix A.

For a comprehensive assessment of the materials properties’
gamut of our method, a crucial step involves comparing them
with the extensive dataset provided by Lumpe and Stankovic [1].
Following the same input parameters (200 GPa Young’s Modulus
base material, 0.3 Poisson’s ratio, and 0.025 truss diameter), we
computed the linear-elastic effective material properties for the
entire catalog using the same numerical homogenization method.
Subsequently, we excluded structures with relative densities ex-
ceeding 0.05, a constraint pertinent to the current study. This pro-
cess resulted in the selection of 12,208 topologies from the cata-
log. Upon comparing the homogenized effective Young’s moduli
and shear moduli, as illustrated in Figure A2 in Appendix A, it
becomes evident that a considerable portion of structures from
the Lumpe and Stankovic dataset resides on or near the region
where two or three directional properties are directly linked by
structural symmetries. However, our symmetry plane method
exhibits a broader span by expanding to regions where there is no
direct linkage between directional stiffnesses or where structures
demonstrate extreme compliance in one, two, or all three primary
directions.

Y23
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FIGURE 6: POISSON’S RATIOS vp1,v3 FOR ALL SAMPLES

ACROSS VARIOUS SYMMETRY METHODS AND A DETAILED VIEW
OF THE RANGE -2 <v < 2.

Figure 6 displays the Poisson’s ratios (v2; and v»3) for all
samples across various symmetry methods (additional directions
in Figure A3 in Appendix A). The results align with existing liter-
ature, indicating that an increase in anisotropy, signifying fewer
symmetry planes, correlates with a higher likelihood of struc-
tures exhibiting extreme elastic behavior [49]. The Poisson’s ratio
range for cubic materials is confined to —0.77 < vy, vo3 < 0.49.
In contrast, the range for monoclinic materials ranges between
—2.479 < v31 £ 9.4 and —-3.28 < vp3 < 6.58, reflecting the ab-
sence of a defined limit for the Poisson’s ratio of 3D anisotropic
unit-cells, as reported in [50]. This observation emphasizes the
diverse behavior exhibited by different symmetry materials in

terms of Poisson’s ratios.

The preceding exploration of the property space predomi-
nantly involved combinations of different nodes within each SGO,
considering all types of nodes as fixed nodes. However, owing
to the tileability of the unit-cell, wherein edge and face nodes
exhibit characteristics that allow their continuous representation
within their designated spatial bounds, an expansion of the prop-
erty space becomes feasible. Specifically focused on the tetrag-
onal samples, we have selected unit-cells from the boundaries
of the Young’s moduli space of properties. Subsequently, we
made slight adjustments to the positions of the movable nodes,
generating up to 50 new samples from each structure, as illus-
trated in Figure 7. This showcases an expanded property space
while concurrently preserving the tetragonal behavior of the new
topologies. Figure 7 provides a visual representation of the shar-
ing nodes within each prism from the chosen topologies and
the designated movement range. It is noteworthy that the applied
movement is subtle, not exceeding 0.1 of the weight of the natural
coordinate system in each direction. While a higher movement
might lead to a broader dispersion of data points, it is certain
that they would remain within the Voigt bound. This section has
illuminated a segment of the property space, emphasizing the
potential for broader exploration through increased sampling and
simulations.

FIGURE 7: RELATIVE EFFECTIVE YOUNG’S MODULI ARE DE-
PICTED FOR BOTH THE ORIGINAL TETRAGONAL MATERIAL SAM-
PLES AND THE ALTERED NODES’ POSITIONS WITHIN SELECTED
TOPOLOGIES FROM THE TETRAGONAL SAMPLES. ADDITION-
ALLY, THE SGO (PRISM OF EACH CHOSEN UNIT-CELL) IS ILLUS-
TRATED, PROVIDING INSIGHT INTO THE DESIGNATED RANGE OF
POSITION ADJUSTMENTS.

5. INTRODUCING ANISOTROPY

Our exploration investigates introducing anisotropy within
symmetric planes, a critical facet that enhances the versatility
of truss structures. The fundamental concept revolves around
any geometric modification capable of influencing symmetries
within the constructed topology, thereby inducing anisotropy
[51]. To maintain a consistent dataset in this endeavor, we assume
the use of the same material, truss diameter, and cross-section
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ANISOTROPY BY REMOVING EDGES, C. ANISOTROPY BY ROTATION, D. ANISOTROPY BY EXPANSION, AND E. ANISOTROPY BY APERI-

ODICITY.

across each unit-cell, recognizing their substantial contributions
to anisotropy, particularly in how they can be distributed or lo-
calized within a single unit-cell. Our focus lies primarily on the
following key aspects: the addition or removal of a truss from the

final topology, expanding the length along one dimension, apply-
ing rotation, and joining different unit-cells in an aperiodic man-
ner. When applied to the 2500 samples of the tetragonal material,
these methods illustrate the diverse ways in which anisotropy can

Copyright © 2024 by ASME



be introduced. The specifics of these five distinct methods for
introducing anisotropy are detailed as follows.

Adding edges to the symmetric unit-cell alters its symme-
try. Therefore, we randomly added three new edges, connecting
random points as depicted in Figure 8-A. This has resulted in
a transformed stiffness tensor, now characterized by 21 indepen-
dent elastic coeflicients (Triclinic), in contrast to the conventional
6 or 7 of tetragonal material, indicating highly anisotropic topolo-
gies. Intuitively, the resulting topologies after adding the edges
generally enhance stiffness in the direction where they are added,
as observed in Figure 8-A.

Removing edges also introduces anisotropy to the symmetric
unit-cells. We randomly deleted three edges from the symmetric
unit-cells, as depicted in Figure 8-B. Similar to adding edges,
removing edges resulted in a highly anisotropic stiffness ten-
sor characterized by 21 independent parameters. The resulting
topologies, after removing the edges, cause increased compli-
ance, indicating reduced stiffness in the direction of the deleted
truss.

Rotation serves as a fundamental technique, enabling the
controlled reorientation of truss elements within symmetric
planes. In our approach, we rotated all tetragonal samples by
15° around the axis defined by directional cosines (I} = —0.5,
I = 0.35, and I3 = 0.79), as seen in Figure 8-C. The impact on
the stiffness tensor mimics that of previous anisotropy methods,
yielding a triclinic stiffness tensor following the rotation [52]. No-
tably, if the six load cases from the homogenization method are
reoriented in alignment with the new orientation of the topology,
the resulting stiffness tensor reverts to a tetragonal configuration.
Hence, designers can leverage rotation to strategically position
and orient the topology for optimal design outcomes.

Expansion of the topology represents another avenue for
anisotropy introduction; in this process, we have expanded the
dimensions along the first primary axis by 50% for all sampled
data, which can be seen from Figure 8-D. Typically, expansion
eliminates symmetries arising from inclined planes. However, if
the planes of symmetry align perpendicularly to the primary axes
of the topology, these symmetries remain preserved. In the case
of the tetragonal material, the resulting topologies, after applying
the expansions, exhibit orthotropic symmetries.

Aperiodicity serves as a more intricate approach involves
the combination of different unit-cells to craft a new structure.
While aperiodicity can manifest through various methods like
gradation, perturbation, and hybridization [53], our focus here is
solely on hybridization for the sake of maintaining consistency
in the topologies. We established an 8-fold periodic unit-cell in-
corporating eight distinct topologies from the tetragonal samples,
where vq serves as one of the sharing nodes of the SGO. This
choice facilitates ease of connectivity between different unit-cells.
The construction involved random generation of 2500 8-fold unit-
cells, each showcasing anisotropy. In Figure 8-E, we depict two
of the unit-cells sharing the randomly illustrated 8-fold unit-cell.
The illustration showcases how the effective Young’s modulus
varies upon superimposing different unit-cells and highlights the
markedly different behavior under the same load conditions in
the resultant structure.

In summary, our pursuit of introducing anisotropy within

symmetric planes encompasses versatile methods; each method
serves as a source in tailoring truss structures to exhibit desired
anisotropic characteristics, expanding the design space for ad-
vanced engineering applications.

6. DISCUSSIONS AND CONCLUSION

In our pursuit of advancing mechanical metamaterials and
engineering, the role of material symmetries is pivotal in tailor-
ing topologies with a diverse range of material properties. These
symmetries serve as a design rational, particularly for cellular ma-
terials such as truss materials. Our truss material design method,
inspired by six material symmetries (Cubic, Hexagonal, Tetrag-
onal, Orthotropic, Trigonal, and Monoclinic), has proven to be a
versatile and innovative approach. The foundation of our method-
ology lies in dividing a cube into symmetric SGOs using planes
of symmetry related to each type of symmetry. Within each
SGO, we define part of the truss material by connecting edges
between predefined nodes. The defined sub-truss undergoes re-
flection on the symmetry planes, resulting in the creation of the
final topology. To ensure structural connectivity and guaran-
tee the formation of a three-dimensional topology, this topology
undergoes two steps of constraints. The suggested design frame-
work enables the description of truss material in representations
suitable for machine learning methods, such as parametric and
graph representations. Our exploration of the property space of
the proposed method showcases its ability to achieve a diverse
range of mechanical properties, even with a limited number of
samples. This surpasses even the most extensive truss datasets
in the literature. Moreover, introducing five anisotropy meth-
ods—bar addition, bar deletion, topology rotation, topology ex-
pansion, and aperiodicity—further enhances the versatility of our
approach. These anisotropy introduction methods not only pro-
vide avenues for tailoring specific mechanical characteristics but
also contribute to the comprehensiveness of our design frame-
work.

Looking forward, there are exciting directions for future re-
search. A more refined sampling method could potentially yield a
more exhaustive exploration of the property space, building upon
the success of our current methodology. Additionally, extending
the application of our method beyond truss structures to generate
other cellular materials, such as defining curved bars or full sur-
faces within each SGO, holds promise for even greater diversity
and broader applications. This opens up new horizons for the
development of advanced materials with tailored properties for
various engineering and design applications.
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APPENDIX A. PROPERTIES DESIGN SPACE EXTRA FIGURES
This appendix includes some of the space of properties figures mentioned in the paper’s context

Elastic Moduli Elastic Moduli ‘Shear Moduli Shear Moduli
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FIGURE A1: RELATIVE EFFECTIVE YOUNG’S MODULI AND EFFECTIVE SHEAR MODULI OF ALL THE SYMMETRY METHODS FOR THE
SAMPLED DATA.
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