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Abstract
Motivation: Spatial omics data demand computational analysis but many analysis tools have computational resource requirements that increase with 
the number of cells analyzed. This presents scalability challenges as researchers use spatial omics technologies to profile millions of cells.
Results: To enhance the scalability of spatial omics data analysis, we developed a rasterization preprocessing framework called SEraster that 
aggregates cellular information into spatial pixels. We apply SEraster to both real and simulated spatial omics data prior to spatial variable gene 
expression analysis to demonstrate that such preprocessing can reduce computational resource requirements while maintaining high perfor
mance, including as compared to other down-sampling approaches. We further integrate SEraster with existing analysis tools to characterize 
cell-type spatial co-enrichment across length scales. Finally, we apply SEraster to enable analysis of a mouse pup spatial omics dataset 
with over a million cells to identify tissue-level and cell-type-specific spatially variable genes as well as spatially co-enriched cell types that 
recapitulate expected organ structures.
Availability and implementation: SEraster is implemented as an R package on GitHub (https://github.com/JEFworks-Lab/SEraster) with 
additional tutorials at https://JEF.works/SEraster.

1 Introduction
Spatial omics technologies enable high-throughput molecular 
profiling of single cells or small groups of cells while preserv
ing their spatial relationships within tissue sections (Bressan 
et al. 2023). This high-throughput profiling demands compu
tational analysis to leverage both molecular and spatial infor
mation in extracting relevant biological insights. Various 
computational tools have been developed for such analysis, 
ranging from those that identify spatially variable genes 
(SVGs) (Svensson et al. 2018, Sun et al. 2020, Kats et al. 
2021, Miller et al. 2021, Zhu et al. 2021, Weber et al. 2023) 
to those that delineate spatial organization and interactions 
between different cell types (Shao et al. 2022, Cang et al. 
2023, Kim et al. 2023, Li et al. 2023, Peixoto et al. 2023). 
However, many of these computational tools have runtime 
and memory requirements that increase with the number of 
single cells or spatial points analyzed, presenting challenges 
as technologies continue to improve and researcher apply 
them to generate large-scale spatial omics data with millions 
of spatial points. Therefore, preprocessing to streamline such 
large-scale spatial omics data analyses is needed.

A similar scalability challenge previously emerged for the 
analysis of single-cell RNA sequencing (scRNA-seq) datasets. 

To address this problem, preprocessing frameworks were de
veloped to subsample cells while maintaining representative 
transcriptional heterogeneity (Hie et al. 2019, Ren et al. 
2019) or aggregate transcriptionally similar cells into meta
cells prior to downstream analysis (Baran et al. 2019, Bilous 
et al. 2022). For spatially resolved data specifically, self- 
organizing maps have also been applied to aggregate neigh
boring single-cells into nodes that preserve the topological 
relations and relative densities of the sample (Hao et al. 
2021). These preprocessing techniques, by either subsampling 
or aggregating, reduce the number of cells analyzed, thereby 
lessening the computational resource requirements of down
stream analysis and enhancing scalability.

Here, to enhance the scalability of spatial omics data analy
sis, we developed a preprocessing framework called SEraster 
to aggregate spatially proximal cells into pixels using raster
ization prior to downstream analysis. SEraster further imple
ments sparse matrix representations and parallel processing 
for enhanced efficiency. We benchmarked the performance of 
SEraster on downstream spatial omics data analyses includ
ing identifying SVGs and cell-type co-enrichment to demon
strate that SEraster enables scalable and accurate analysis of 
large-scale spatial omics datasets through integration with 
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existing spatial omics data analysis tools. SEraster is imple
mented as an R package (available on GitHub https://github. 
com/JEFworks-Lab/SEraster) and with SeuratWrappers (avail
able on GitHub https://github.com/satijalab/seurat-wrappers), 
which are amenable to SpatialExperiment and Seurat infra
structures, respectively, for storing spatial omics data, allow
ing for streamlined integration with existing spatial omics 
analysis tools.

2 Materials and methods
SEraster reduces the number of spatial points in spatial omics 
datasets for downstream analysis through a process of raster
ization where single cells’ gene expression or cell-type labels 
are aggregated into equally sized square or hexagonal pixels 
based on a user-defined resolution (Fig. 1A, Supplementary 
Information S1). Here, we refer to a particular resolution of 
rasterization by the side length for square pixels and the dis
tance between opposite edges for hexagonal pixels such that 
finer resolution indicates smaller pixel size and vice versa 
(Fig. 1B). To create a rasterized representation, SEraster ini
tially employs the sf package (Pebesma et al. 2018) to gener
ate pixels by defining square or hexagonal grids that span the 
x and y spatial coordinate values in the spatial omics dataset. 
Square pixels are used by default and for all subsequent anal
yses. For continuous variables such as gene expression or 
other molecular information, SEraster aggregates the ob
served raw counts or normalized expression values for each 
molecule within each pixel using means by default. Such 
rasterization can also be performed in a cell-type-specific 
manner by restricting to cells of a particular cell-type prior to 
rasterization. Alternatively, to create a rasterized representa
tion of categorical variables such as cell-type or cluster labels, 
SEraster first converts the labels to a model matrix using a 
one-hot encoding and then treats the model matrix as a 
features-by-observations matrix to aggregate the number of 
cells for each label within each pixel using sums by default. 
In general, the aggregation function can be chosen to accom
modate user-defined purposes. This rasterization process is 
implemented in a pixel-wise manner, which is optionally par
allelized with the BiocParallel package (Morgan et al. 2023). 
Compared to other R packages that perform rasterization on 
vector data represented as dense matrices such as terra 
(Hijmans et al. 2024) or stars (Pebesma et al. 2023), SEraster 
rasterizes spatial omics datasets represented as either dense or 
sparse matrices with the Matrix package (Bates et al. 2024). 
Since the features-by-observations matrix and model matrix 
are often sparse, this feature further allows SEraster to reduce 
resource requirements upon rasterization preprocessing. In 
addition, since rasterized values may be sensitive to edge 
effects such as the specific boundaries of grids upon rasteriza
tion, SEraster enables permutation by rotating the dataset at 
various angles before rasterization (Fig. 1C, Supplementary 
Information S2). The rasterized output is returned as a 
SpatialExperiment object, allowing for streamlined integra
tion with existing spatial omics analysis tools within the R/ 
Bioconductor framework (Righelli et al. 2022) for down
stream analyses. SEraster is also implemented as a 
SeuratWrappers (SeuratWrappers Contributors 2024) to run 
directly on Seurat objects, enabling further analysis following 
existing Seurat spatial pipelines.

To explore the potential utility of rasterization in spatial 
omics analysis, we apply SEraster as a preprocessing step 

prior to downstream spatial omics analysis using both simu
lated and real spatial omics data. In particular, we character
ize the impact of rasterization on runtime and benchmark 
accuracy in identifying SVGs with the nnSVG package 
(Weber et al. 2023) as compared to other down-sampling 
approaches. We further demonstrate how rasterized cell types 
can be used with the CooccurrenceAffinity package (Mainali 
and Slud 2022, Mainali et al. 2022) to recapitulate expected 
pairs of cell types that tend to be spatially co-enriched. In this 
manner, SEraster can be used as a preprocessing step to en
able scalable and accurate analysis of large-scale spatial 
omics datasets with existing tools.

3 Results
3.1 Rasterization reduces runtime while 
maintaining accuracy in the identification of 
spatially variable genes
To evaluate the potential utility and impact of rasterization 
on the performance of downstream analysis, we focused on 
identifying SVGs within tissues. A number of computational 
tools have been previously developed to identify SVGs 
(Svensson et al. 2018, Sun et al. 2020, Kats et al. 2021, 
Miller et al. 2021, Zhu et al. 2021, Weber et al. 2023). We 
applied SEraster and one of these methods, nnSVG, to a 
single-cell resolution spatial transcriptomics dataset of a cor
onal section of the mouse brain containing 83 546 cells 
assayed by MERFISH (Fig. 2A, Supplementary Information 
S3I). We first evaluated the runtime of SVG analysis without 
parallelization (1 CPU core) when applied to the dataset at 
single-cell resolution (sc) vs rasterized at 50, 100, 200, and 
400 mm resolutions (Fig. 2B). Combining SEraster and 
nnSVG reduced the total runtime to 26.8%, 9.9%, 3.9%, 
and 2.7% of that when running nnSVG at single-cell resolu
tion for 50, 100, 200, and 400 mm rasterization resolutions, 
respectively (Fig. 2C, Supplementary Information S4). This 
shorter runtime is expected due to the fewer numbers of spa
tial points considered, particularly at coarser resolutions with 
larger pixel sizes (Supplementary Fig. S1A). Further, the con
tribution to runtime from SEraster preprocessing itself is min
imal compared to the runtime of nnSVG (Supplementary Fig. 
S1B and C). Generally, SEraster preprocessing reduces run
time, though the extent of runtime reduction depends on the 
scalability of the downstream analysis tool with respect to 
the number of spatial points.

To evaluate the impact of SEraster on nnSVG results, we 
compared the ranks of each gene based on nnSVG’s likeli
hood statistics between single-cell and each rasterized resolu
tion (Fig. 2D). Since nnSVG’s gene rankings indicate the 
strength of the spatial gene expression patterns, the observed 
high correlations of gene rankings suggests that the spatial 
pattern strengths of genes are generally retained even with 
SEraster preprocessing. We do observe comparatively lower 
correlations at coarser rasterization resolutions, suggesting 
that the forementioned relationships may be less well retained 
at coarser resolutions. We further characterized the 
performance of nnSVG in identifying SVGs when applied to 
rasterized gene expression by comparing SVGs identified at 
single-cell resolution, which were treated as ground truth, to 
those detected at each rasterized resolution (Supplementary 
Information S4).

We used this evaluation strategy to compare SEraster with 
other down-sampling approaches that can also be used to 
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reduce the number of spatial points considered, including 
SOMDE, geometric sketching, and uniform down-sampling 
(Supplementary Information S4). Briefly, SOMDE integrates 
spatial information and applies self-organizing map to aggre
gate single-cell information into nodes (Hao et al. 2021). 
Geometric sketching integrates transcriptional information to 
select a subset of the original dataset while retaining its tran
scriptomic heterogeneity (Hie et al. 2019). Lastly, uniform or 
naïve down-sampling randomly selects a subset of the origi
nal dataset without taking neither spatial nor transcriptomic 
information into account. For SEraster, we observed that true 
positive rate (TPR) and positive predictive value (PPV)—also 
known as sensitivity and precision, respectively—remained 

high across rasterization resolutions, ranging from 0.96 to 
0.99 for TPR and from 0.92 to 0.96 for PPV (Fig. 2E). 
SOMDE showed similar results, which is expected as 
SOMDE also aggregates single-cell information based on spa
tial information. TPR and PPV for SOMDE ranged from 
0.87 to 1.00 and from 0.88 to 0.91, respectively (Fig. 2E). 
On the other hand, TPR for both geometric sketching and 
uniform sampling drastically decreased as down-sampled 
datasets contained fewer spatial points. For certain geometric 
sketching and uniform sampling down-sampled datasets, 
nnSVG failed, resulting in NaN values (Fig. 2E). However, 
among genes that were predicted to be SVGs for down- 
sampled datasets, both geometric sketching and uniform 

Figure 1. Overview of SEraster. (A) SEraster reduces the number of spatial points in a given spatial omics dataset prior to downstream analysis by 
rasterizing or aggregating single cells’ gene expression (using mean) or cell-type labels (using sum) into equally sized pixels. SEraster can be applied to 
aggregate gene expression in a label-specific (e.g. cell-type or cluster) manner as well. (B) SEraster allows users to control the rasterization resolution or 
the side length of the pixel. Finer resolution corresponds to a smaller pixel size and coarser resolution corresponds to a larger pixel size. Plots are colored 
by total gene expression per pixel (aggregated using mean). (C) SEraster enables permutation by rotating the dataset at various angles before 
rasterization. Downstream analyses performed on rotated datasets can be summarized to help control for edge effects. Plots show total gene expression 
per pixel (aggregated using mean)
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Figure 2. Impact of rasterization on the identification of spatially variable genes (SVGs). (A) Spatial transcriptomics dataset of a coronal section of mouse 
brain assayed by MERFISH shown at single-cell resolution colored by log-normalized total gene expression per cell. (B) MERFISH mouse brain dataset 
rasterized at 50, 100, 200, and 400 mm resolutions showing total rasterized gene expression per pixel (aggregated using mean). (C) Time (in min) required 
to run nnSVG at single-cell (sc) resolution and SEraster preprocessing with nnSVG at selected rasterized resolutions (n¼ 5 for each resolution) without 
parallelization (1 CPU core). Boxplots represent medians, first, and third quartiles, and whiskers extend to values no further than 1.5 times the 
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sampling retained high PPV ranging from 0.96 to 0.98 
and from 0.96 to 0.99, respectively (Fig. 2E). Comparatively, 
spatially aware down-sampling methods performed worse in 
terms of TNR, or specificity. TNR for both geometric 
sketching and uniform sampling remained high ranging from 
0.86 to 0.94 and from 0.88 to 0.95, respectively, while TNR 
for both SEraster and SOMDE were comparatively lower 
ranging from 0.58 to 0.83 and from 0.30 to 0.59, respectively 
(Fig. 2E).

To further explore the cause of these comparatively poorer 
performance with respective to TNR, we visualized false 
positives or genes misidentified as SVGs and saw they were 
primarily driven by hotspot artifacts, or small clusters 
(Supplementary Fig. S2A). To quantify this, we calculated the 
percentage of cells with nonzero expression and observed 
that false positive genes were all expressed by small propor
tions of cells whereas true positive genes were expressed by 
varying proportions of cells (Supplementary Fig. S2B). We 
hypothesized that if false positives were driven by hotspot 
artifacts, they would not be consistently misidentified across 
permutations, as hot spot artifacts would only happen at cer
tain orientations of the tissue with respect to rasterization 
grids. Therefore, we sought to use permutations to improve 
our TNR. Briefly, we permuted the original dataset by rotat
ing it at 10 different angles (Fig. 2F, Supplementary 
Information S2). Then, for each permuted dataset, we raster
ized at selected resolutions and identified SVGs with nnSVG 
(Supplementary Information S4). Finally, we combined SVG 
classifications from the 10 independent results and deter
mined genes to be SVGs if they were detected as SVGs in a 
minimum number of permutations, which we call required 
votes (Supplementary Information S4). As the number of re
quired votes increased, TPR decreased slightly (Fig. 2G). For 
example, with at least one required vote, TPR ranges from 
0.99 to 1.00, while with 10 required votes, TPR ranges from 
0.88 to 0.97. This is because not all true positives are consis
tently detected as SVGs in all permuted grid orientations, 
which become false negatives when the number of required 
votes increases to become more restrictive. On the other 
hand, as the number of required votes increased, both PPV 
and TNR increased due to fewer false positives (Fig. 2G). For 
instance, with one required vote, PPV ranges from 0.88 to 
0.92, and TNR ranges from 0.35 to 0.57. On the other hand, 
with 10 required votes, PPV ranges from 0.97 to 1.00, and 
TNR ranges from 0.88 to 0.99. This is because not all false 
positives are consistently detected as SVGs in all permuted 
grid orientations, which become true negatives when the 
number of required votes increases to become more restric
tive. It is important to note that the magnitude of changes in 
TNR was much larger than those in TPR and PPV, which can 

be explained by asymmetric ground truth labels in this partic
ular dataset with 401 SVGs and 82 non-SVGs predicted at 
single-cell resolution. Although the optimal number of re
quired votes requires balancing various performance metrics 
and vary across datasets of interest, our results suggest 
that permutations can be an effective strategy for mitigating 
false positives to improve the TNR in SVG analysis with 
rasterization.

To further characterize the effects of rasterization resolu
tion on nnSVG’s performance, we simulated spatial omics 
data with 100 SVGs and 900 noise genes across 4992 spatial 
points using a previously developed simulation framework 
(Supplementary Information S5i; Weber et al. 2023). By us
ing simulations, we were able to modulate the scale of spatial 
patterns (large, medium, and small corresponding to circular 
spatial patterns for SVGs with radii of 1500, 750, and 
150 mm, respectively) (Fig. 2H). We evaluated performance 
by comparing the simulated ground truth SVG or noise labels 
for each gene to those predicted by nnSVG when applied at 
single-cell vs at rasterized resolutions ranging from 60 to 
600 mm (Supplementary Information S4). For simulated data
sets with large and medium spatial patterns, nnSVG’s perfor
mance with rasterization remained high, with TPR values 
consistently at 1, PPV ranging from 0.95 to 1, and TNR rang
ing from 0.99 to 1 across evaluated resolutions (Fig. 2H). 
Notably, at all evaluated resolutions, the rasterized pixel size 
was smaller than the simulated SVGs’ circular spatial pat
terns with radii of 1500 and 750 mm. However, for simulated 
datasets with small spatial patterns, TPR started decreasing 
at 240 mm resolution and reached 0 at 360 mm resolution 
(Fig. 2H) due to nnSVG failing to detect any SVG at 300 mm 
and coarser resolutions, resulting in undefined PPV values 
and high TNR. These results are expected since the simulated 
SVGs’ circular spatial pattern has a radius of 150 mm. At 
coarser resolutions, the rasterized pixel size is too large such 
that cells with high expression of SVGs are aggregated with 
those with low expression of SVGs, eliminating signals 
(Fig. 2I). These findings suggest that users should choose a 
rasterization resolution that is sufficient to capture the size of 
spatial patterns of interest in order to maintain accuracy in 
their SVG analysis when using rasterization as a preprocess
ing step.

3.2 Rasterization enables scalable characterization 
of spatial cell-type co-enrichment
To demonstrate additional potential applications of rasteriza
tion, we sought to use SEraster in identifying spatially 
co-enriched cell types. We applied SEraster to a single-cell 
resolution spatial proteomics dataset of a human intestine 
containing 38 371 cells assayed by CODEX (Fig. 3A, 

Figure 2. Continued 
interquartile range from each quartile. Percentage values of runtime at rasterized resolutions compared to that at single-cell resolution are shown. (D) 
Correspondence of gene rankings based on the estimated LR statistic from nnSVG at single-cell resolution and selected rasterized resolutions. 
Corresponding Spearman’s correlation coefficients are shown as text labels. (E) Performance comparison of SVG detection in terms of True Positive Rate 
(TPR), Positive Predictive Value (PPV), and True Negative Rate (TNR) for down-sampled (using SEraster, SOMDE, geometric sketching, or uniform 
sampling) MERFISH mouse brain data. Line plots show the mean and SD across 10 permutations for SEraster, geometric sketching, and uniform 
sampling methods. Line plots show the result of 1 permutation for SOMDE. NaN values are omitted. (F) MERFISH mouse brain data rasterized at 100 mm 
resolution and permutated across 10 angles. Plots are colored by total gene expression per pixel (aggregated using mean). (G) Performance comparison 
in terms of TPR, PPV, and TNR for rasterized (at 100 mm resolution) MERFISH mouse brain data using the voting method with 10 permutations. Colored 
line plots show performance metrics for the corresponding minimum required number of votes. Gray line plots indicate corresponding mean and SD 
across 10 permutations from (e) for comparison. (H) Simulated SVG dataset shown at single-cell resolution with large, medium, and small bandwidths 
showing log-normalized gene expression of ground truth SVG (top). Performance comparison in terms of TPR, PPV, and TNR for rasterized simulated 
data (bottom). Line plots show mean and SD across 10 permutations. NaN values are omitted. (I) Close-up visualizations of SVG with small bandwidth at 
single-cell resolution showing log-normalized gene expression and grid used upon rasterization at selected resolutions (top). Close-up visualizations of 
SVG with small bandwidth at selected resolutions showing rasterized gene expression (aggregated using mean) (bottom)
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Supplementary Information S3ii). We used SEraster to aggre
gate cell counts for each cell-type within 50 mm pixels by ras
terizing at 50 mm resolution. This allows us to treat rasterized 
cell-type counts in a classic balls (cell types) in boxes (50 mm 
pixels) framework to identify cell-type pairs that are co- 
enriched (Supplementary Information S6). Briefly, for each 
cell type, its rasterized cell-type count is used to compute a 
relative enrichment (RE) metric, or the ratio of observed to 
expected cell-type counts, per pixel to account for variability 
in cell density and cell-type proportions (Fig. 3B). Each pix
el’s RE value is then binarized based on a selected threshold 

(Fig. 3B). Based on the binarized data, we apply the 
CooccurrenceAffinity package to compute the maximum 
likelihood estimate of the affinity metric, α̂, for each cell-type 
pair, with positive α̂ indicating co-enrichment and negative α̂ 
suggests depletion (Mainali and Slud 2022, Mainali et al. 
2022). Using this approach, we identified cell-type pairs with 
statistically significant co-enrichment (α̂>0, adjusted P-value 
≤.05) at 50mm rasterization resolution that are consistent 
with previously identified tissue neighborhoods based on 
multi-scale neighborhood analysis (Hickey et al. 2023). For 
example, we identified enterocytes, neuroendocrine, and 

Figure 3. Rasterization of cell-type labels enables analysis of cell-type co-enrichment. (A) Spatial proteomics dataset of the human intestine assayed by 
CODEX shown at single-cell resolution with corresponding cell types. (B and C) Enterocytes in the CODEX human spleen dataset shown as rasterized cell- 
type count (aggregated using sum), relative enrichment (RE) metric, and binarized value per pixel at (B) 50 mm and (C) 400 mm resolutions (from left to right). 
(D) Summary of cell-type co-enrichment analysis with SEraster and CooccurrenceAffinity at 50 mm resolution. Heatmap shows the maximum likelihood 
estimate of the affinity metric (alpha MLE or α̂) for corresponding cell-type pairs. Statistically significant co-enrichments or depletions (adjusted P-value 
≤.05) are indicated by asterisks (�). (E and F) Cell types with statistically significant co-enrichment (α̂>0, adjusted P-value ≤.05) at 50mm visualized at 
single-cell resolution with corresponding cell types. (G) Simulated co-enrichment dataset shown at single-cell resolution with corresponding cell types. (H) 
Close-up visualizations of cell-type co-enrichment patterns at single-cell resolution with the grid used upon rasterization shown at selected resolutions (top). 
Summarized results of cell-type co-enrichment analysis with SEraster and CooccurrenceAffinity at selected rasterization resolutions. Heatmaps show α̂, 
and statistically significant co-enrichment or depletions (adjusted P-value ≤.05) are indicated by asterisks (�) (bottom)
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transit amplifying (TA) cells to be spatially co-enriched 
among each other (Fig. 3D and E), consistent with previously 
identified epithelial neighborhoods (Hickey et al. 2023). 
Likewise, we identified CD4þ T cells, dendritic cells (DC), 
CD8þ T cells, and neutrophils to be spatially co-enriched 
among each other (Fig. 3D and F), consistent with previously 
identified immune-related neighborhoods (Hickey et al. 
2023). Notably, at 50mm rasterization resolution, some im
mune- and epithelial-neighborhood-associated cell types are 
identified as significantly spatially depleted among each other 
(α̂<0, adjusted P-value ≤.05, Fig. 3D).

To evaluate spatial co-enrichment relationships at a different 
length scale, we repeated this analysis rasterizing at 400 mm res
olution (Fig. 3C). At 400 mm resolution, the immune- and 
epithelial-neighborhood-associated cell types previously identi
fied as spatially depleted at 50 mm resolution are now identified 
as co-enriched (Supplementary Fig. S3). Notably, the immune- 
and epithelial-neighborhood-associated cell types still distinctly 
separate from endothelial, smooth muscle, and stromal cells, 
consistent with broad separations between the mucosa and 
submucosa/muscularis areas of the intestine (Supplementary 
Fig. S3B and C). These results suggest that choice of rasteriza
tion resolution can reveal spatial co-enrichment relationships at 
different length scales.

To further evaluate the impact of rasterization resolution 
on cell-type co-enrichment analysis, we employed a previ
ously developed simulated dataset that mimics cell-type local
izations at various scales (Peixoto et al. 2023). In this dataset, 
cell types B and C are spatially intermixed in circular spatial 
patterns with radius of 100 mm, and cell-type A surrounds 
cell types B and C in doughnut-shaped spatial patterns with 
radii ranging from 100 to 300 mm, separating them from cell- 
type D (Fig. 3G, Supplementary Information S5ii). At a ras
terization resolution of 50 mm, cell types B and C had high, 
positive α̂ while A and B as well as A and C had α̂ � 0 
(Fig. 3G). This is expected because 50mm resolution is 
smaller than the size of cell-type A’s doughnut-shaped struc
tures. As a result, pixels did not capture the spatial pattern 
that cell-type A surrounds cell types B and C. With coarser 
resolutions—for instance, 100 and 200mm resolutions that 
are within the range of cell-type A’s doughnut-shaped struc
tures—pixel size is large enough to capture spatial patterns 
formed by cell types A, B, and C in one pixel. Thus, cell types 
A and B as well as A and C were identified as co-enriched 
(Fig. 3H). These results suggest that changing rasterization 
resolutions can capture cell-type co-enrichment relationships 
at various spatial length scales. Overall, SEraster can trans
form spatial omics data with cell-type labels into a classic 
balls-in-boxes formulation to enable characterization of cell- 
type co-enrichment.

3.3 Rasterization enables spatial analysis of spatial 
transcriptomics data of a whole mouse pup with 
over a million cells
Having demonstrated that our approach works as expected, 
we applied SEraster to a single-cell resolution spatial tran
scriptomics dataset of a whole mouse pup containing 
1 330 087 cells assayed by Xenium (Fig. 4A, Supplementary 
Information S3iii). To identify SVGs, we again attempted to 
use nnSVG. However, running nnSVG, which scales linearly 
with the number of spatial points, at single-cell resolution 
failed to complete within 24 h (Supplementary Information 
S4). On the other hand, rasterizing the dataset to 100 mm 

resolution using SEraster and running nnSVG required an av
erage total runtime of 54 ± 4 min without parallelization 
(1 CPU core) and 4 ± 0.1 min with parallelization (across 20 
CPU cores) (n¼5, error is computed as SD, Supplementary 
Information S4), further highlighting the potential utility of 
SEraster in reducing computational resource requirements. 
We thus performed SVG analysis on the entire tissue raster
ized at 100mm resolution. Expectedly, all 379 profiled genes 
were identified as SVGs given that these genes were chosen to 
identify specific organs and tissue regions, which are highly 
spatially compartmentalized.

To better understand spatial gene expression variation within 
specific organs and tissue regions, we performed cluster-specific 
SVG analysis at 100 mm resolution for each transcriptionally 
distinct cell-cluster previously identified through graph-based 
transcriptional clustering (Supplementary Information S3iii and 
S4). As an example, we focused on Cluster 39, which putatively 
corresponds to the kidney based on its spatial location and dif
ferentially upregulated genes (Supplementary Information 
S3iii). Rasterizing just cells corresponding to cluster 39, we 
again performed SVG analysis to identify 118 SVGs. Among 
these SVGs included Cryab, Clcnka, Calb1, which exhibited 
statistically significant spatial variation (adjusted P-value ≤.05) 
both in the whole tissue analysis and cluster-specific analysis 
(Fig. 4B). On the other hand, genes such as Aif1l, Sostdc1, 
Ndufs8 only exhibited statistically significant spatial variation 
(adjusted P-value ≤.05) in the whole tissue analysis and not in 
the cluster-specific analysis as these genes exhibit more uniform 
expression within the cluster (Fig. 4C). These results demon
strate that SEraster can be used to help identify SVGs in the 
whole tissue as well as in a cluster-specific manner.

We further applied SEraster with CooccurrenceAffinity to 
characterize cell-cluster co-enrichment in the whole mouse 
pup at 100 mm resolution (Fig. 4D, Supplementary 
Information S6). We evaluated all 2278 possible cell-cluster 
pairs to identify 475 with statistically significant co- 
enrichment (α̂>0, adjusted P-value ≤.05) in 10±1min with
out parallelization (1 CPU core) and 1±0.02min with paralle
lization (across 20 CPU cores) (n ¼ 5, error is computed as 
SD, Supplementary Information S4), again underscoring the 
scalability of our rasterization-based framework (Fig. 4). We 
further performed hierarchical clustering of α̂ values to find 
groups of cell-clusters that are co-enriched and visually corre
spond to spatially distinct organ structures (Fig. 3F, 
Supplementary Information S6). Further, we observed that 
such cell-cluster co-enrichment patterns forming spatially dis
tinct organ structures are robust across rasterization resolu
tions ranging from 50 to 400mm resolutions (Supplementary 
Fig. S4), demonstrating the stability of these particular cell- 
cluster co-enrichment relationships.

These results demonstrate that rasterization preprocessing 
with SEraster can be applied to large-scale spatial omics data
sets with over a million single cells to enable the identification 
of SVGs at the whole tissue as well as cluster-specific levels 
and detection of cell-cluster co-enrichment patterns that cor
respond to spatially distinct organ structures.

4 Discussion
Analysis of spatial omics data provides researchers with 
means to delineate spatial patterns of molecular and cellular 
organizations. To improve the scalability of spatial omics 
data analysis, we developed SEraster to use rasterization as a 
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preprocessing step to reduce the number of spatial points 
prior to downstream analysis by aggregating continuous vari
ables, such as gene expression, or categorical variables, such 
as cell-type labels, at single-cell resolution into equally sized 
pixels based on a user-defined resolution. Such reduction in 
the number of spatial points enabled the spatial analysis of a 
whole mouse pup spatial omics dataset with over a million 
single cells using existing tools that would not have otherwise 
been computationally tractable. Applying SEraster prior to 
SVG analysis with nnSVG, we find that SEraster reduces run
time requirements without substantially compromising 

performance compared to single-cell resolution. Likewise, 
such SEraster preprocessing can achieve improved performance 
with respect to SVG analysis compared to other down- 
sampling approach, especially after integrating results from per
mutations. Finally, SEraster can also enable rapid, pair-wise 
cell-type co-enrichment analysis with CooccurrenceAffinity at 
multiple rasterization resolutions to explore cell-type spatial 
relationships across length scales.

While we exclusively examined single-cell resolution imaging- 
based spatial omics datasets in this paper, the same framework 
can, in principle, be applied to other non-single-cell resolution 

Figure 4. Spatial analysis of a whole mouse pup with over a million cells. (A) Spatial transcriptomics data of a whole mouse pup assayed by Xenium 
shown at single-cell resolution with corresponding clusters from graph-based clustering. (B) Rasterized gene expression (aggregated using mean) of 
Cryab (left), Clcnka (middle), Calb1 (right) at 100 mm resolution for the whole tissue and within cluster 39. (C) Rasterized gene expression (aggregated 
using mean) of Aifl1 (left), Sostdc1 (middle), Ndufs8 (right) at 100 mm resolution for the whole tissue and within cluster 39. (D) Cluster 1 in the Xenium 
whole mouse pup dataset shown as rasterized cluster count (aggregated using sum), relative enrichment (RE) metric, and binarized value per pixel at 
100 mm resolution (from top to bottom). (E) Summary of cluster co-enrichment analysis with SEraster and CooccurrenceAffinity. Heatmap shows the 
maximum likelihood estimate of the affinity metric (alpha MLE or α̂) for corresponding cluster pairs. Statistically significant co-enrichments or depletions 
(adjusted P-value ≤.05) are indicated by asterisks (�). (F) Clusters with statistically significant co-enrichment (α̂>0, adjusted P-value ≤.05) at 50 mm 
visualized at single-cell resolution. Based on the spatial locations of co-enriched clusters, these co-enrichment patterns are labeled as lung, brain, skin, 
liver, and intestine (left to right)
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spatial omics data (Moffitt et al. 2022, Bressan et al. 2023), 
though interpretation of results will need to consider the lack 
of single-cell resolution and potential confounding due to 
cell-type mixtures. Likewise, although we have focused on 
applying SEraster to spatial transcriptomics and proteomics 
data, the framework can be applied to other spatial omics 
technologies as well.

Further, while we have focused on applying rasterization 
on individual spatial omics datasets, SEraster can also be ap
plied to multiple tissue sections in order to create shared pix
els in the same coordinate framework (Supplementary 
Information S1). For instance, such analysis can facilitate 
spatial molecular comparisons after structural alignment 
(Supplementary Fig. S5; Clifton et al. 2023). Such analyses 
can also be applied to assess molecular differences at structur
ally matched spatial locations across healthy and diseased tis
sues, though additional work is needed to characterize the 
statistical significance and biological relevance of identified 
differences while considering potential morphometric varia
tion and errors in alignment for example.

Several limitations of SEraster should be considered when 
integrating SEraster with downstream analysis tools. As 
shown with SVG analysis on simulated datasets, rasterization 
resolution is a user-inputted hyperparameter that may affect 
downstream analysis. A rasterization resolution that is too 
coarse to capture the size of spatial patterns of interest will 
result in false negatives. Here, we draw a parallel between 
rasterization resolution and the concept of “grain size” in 
ecology (Wiens 1989), the spatial scale at which ecological 
processes are studied. As the choice of grain size will depend 
on the ecological phenomena of interest, so will the choice of 
rasterization resolution depend on the biological processes of 
interest. We recommend optimizing rasterization resolution 
based on prior knowledge regarding the scale of biological 
processes being studied. Potential future direction may in
volve leveraging rasterization resolution as an exploratory 
analysis tool. For example, SEraster can be performed in a se
ries of various rasterized resolutions and characterize how 
the strengths of spatial expression patterns or length scales of 
SVGs change with respect to rasterization resolution.

In addition, SEraster offers a choice of mean or sum for ag
gregating single-cell information into pixels. By default, the 
mean function is used for rasterizing gene expression so that 
variability in cell density would not be a cofounding variable 
when performing downstream analyses, such as SVG analy
sis. For example, if sum is used as an aggregation function, 
regions with higher cell density would have higher rasterized 
gene expression even when a gene of interest is uniformly 
expressed by all cells in the tissue. Likewise, if sum is used, 
pixels that partially overlap with the tissue would have lower 
gene expression compared to those that fully overlap with the 
tissue even when a gene of interest is uniformly expressed by 
all cells in the tissue. These examples would yield false posi
tives in the SVG analysis. For rasterizing cell-type labels, the 
sum function is used by default because the relative enrich
ment metric used in our co-enrichment analysis accounts for 
variability in cell density. We anticipate future work may in
volve expanding the range of aggregation functions to further 
include max, median, or weighted combinations as used in 
SOMDE (Hao et al. 2021) for tailored use cases. Additional 
characterization is necessary to determine whether these 
alternatives offer any advantages over mean or sum.

Although we have focused on demonstrating the utility of 
rasterization preprocessing with SEraster in downstream spa
tial omics analyses such as identifying SVGs and pair-wise 
cell-type co-enrichment, rasterization may also be amenable 
as a preprocessing step for other types of spatial omics analy
sis. For example, a few computational tools for inferring cell– 
cell communication have been developed for spatial tran
scriptomics data (Shao et al. 2022, Cang et al. 2023, Kim 
et al. 2023, Li et al. 2023). Potential future work may involve 
integrating these methods that leverage distributions of mo
lecular information with SEraster to enable more scalable 
cell–cell communication analysis. However, we caution that 
additional statistical characterization is needed to benchmark 
performance and mitigate false positives.

In addition to the SpatialExperiment and Seurat objects 
that SEraster is built upon, there is a number of R data infra
structures with corresponding suites of exploratory analysis 
pipelines, such as the SpatialFeatureExperiment object for 
Voyager (Moses et al. 2023) and the Giotto object for Giotto 
Suite (Dries et al. 2021). Since SpatialFeatureExperiment is 
an extension of SpatialExperiment and a Giotto object can be 
converted into SpatialExperiment as well as vice versa, 
SEraster can potentially be integrated into a variety of analy
sis pipelines.

Finally, as spatial omics datasets continue to increase in 
size, in the future, we anticipate spatial omics datasets may 
need to be stored in standardized data infrastructure with 
lazy representation of larger-than-memory data such as the 
Zarr file format used in the SpatialData Python library 
(Marconato et al. 2024). Additionally, packages such as 
BPCells (Parks 2024), which uses bit-packing compression to 
store counts matrices as binary files on disk, are compatible 
with Seurat objects to perform memory-efficient analysis in 
R. SEraster can potentially be integrated with such data infra
structure to enable rasterization of larger-than-memory data 
in spatially indexed chunks rather than loading the entire 
dataset into memory.

To conclude, SEraster improves scalability by reducing the 
number of spatial points and broadens statistical methods for 
spatial omics data explorations. As spatial omics datasets 
continue to increase in the number of spatial points assayed, 
integrating such rasterization preprocessing with existing and 
new computational tools may enable more efficient analysis.
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