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Abstract

Motivation: Spatial omics data demand computational analysis but many analysis tools have computational resource requirements that increase with
the number of cells analyzed. This presents scalability challenges as researchers use spatial omics technologies to profile millions of cells.

Results: To enhance the scalability of spatial omics data analysis, we developed a rasterization preprocessing framework called SEraster that
aggregates cellular information into spatial pixels. We apply SEraster to both real and simulated spatial omics data prior to spatial variable gene
expression analysis to demonstrate that such preprocessing can reduce computational resource requirements while maintaining high perfor-
mance, including as compared to other down-sampling approaches. We further integrate SEraster with existing analysis tools to characterize
cell-type spatial co-enrichment across length scales. Finally, we apply SEraster to enable analysis of a mouse pup spatial omics dataset
with over a million cells to identify tissue-level and cell-type-specific spatially variable genes as well as spatially co-enriched cell types that
recapitulate expected organ structures.

Availability and implementation: SEraster is implemented as an R package on GitHub (https://github.com/JEFworks-Lab/SEraster) with

additional tutorials at https://JEF.works/SEraster.

1 Introduction

Spatial omics technologies enable high-throughput molecular
profiling of single cells or small groups of cells while preserv-
ing their spatial relationships within tissue sections (Bressan
et al. 2023). This high-throughput profiling demands compu-
tational analysis to leverage both molecular and spatial infor-
mation in extracting relevant biological insights. Various
computational tools have been developed for such analysis,
ranging from those that identify spatially variable genes
(SVGs) (Svensson et al. 2018, Sun et al. 2020, Kats et al.
2021, Miller et al. 2021, Zhu et al. 2021, Weber et al. 2023)
to those that delineate spatial organization and interactions
between different cell types (Shao et al. 2022, Cang et al.
2023, Kim et al. 2023, Li et al. 2023, Peixoto et al. 2023).
However, many of these computational tools have runtime
and memory requirements that increase with the number of
single cells or spatial points analyzed, presenting challenges
as technologies continue to improve and researcher apply
them to generate large-scale spatial omics data with millions
of spatial points. Therefore, preprocessing to streamline such
large-scale spatial omics data analyses is needed.

A similar scalability challenge previously emerged for the
analysis of single-cell RNA sequencing (scRNA-seq) datasets.

To address this problem, preprocessing frameworks were de-
veloped to subsample cells while maintaining representative
transcriptional heterogeneity (Hie et al. 2019, Ren et al.
2019) or aggregate transcriptionally similar cells into meta-
cells prior to downstream analysis (Baran et al. 2019, Bilous
et al. 2022). For spatially resolved data specifically, self-
organizing maps have also been applied to aggregate neigh-
boring single-cells into nodes that preserve the topological
relations and relative densities of the sample (Hao et al.
2021). These preprocessing techniques, by either subsampling
or aggregating, reduce the number of cells analyzed, thereby
lessening the computational resource requirements of down-
stream analysis and enhancing scalability.

Here, to enhance the scalability of spatial omics data analy-
sis, we developed a preprocessing framework called SEraster
to aggregate spatially proximal cells into pixels using raster-
ization prior to downstream analysis. SEraster further imple-
ments sparse matrix representations and parallel processing
for enhanced efficiency. We benchmarked the performance of
SEraster on downstream spatial omics data analyses includ-
ing identifying SVGs and cell-type co-enrichment to demon-
strate that SEraster enables scalable and accurate analysis of
large-scale spatial omics datasets through integration with
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existing spatial omics data analysis tools. SEraster is imple-
mented as an R package (available on GitHub https://github.
com/JEFworks-Lab/SEraster) and with SeuratWrappers (avail-
able on GitHub https:/github.com/satijalab/seurat-wrappers),
which are amenable to SpatialExperiment and Seurat infra-
structures, respectively, for storing spatial omics data, allow-
ing for streamlined integration with existing spatial omics
analysis tools.

2 Materials and methods

SEraster reduces the number of spatial points in spatial omics
datasets for downstream analysis through a process of raster-
ization where single cells’ gene expression or cell-type labels
are aggregated into equally sized square or hexagonal pixels
based on a user-defined resolution (Fig. 1A, Supplementary
Information S1). Here, we refer to a particular resolution of
rasterization by the side length for square pixels and the dis-
tance between opposite edges for hexagonal pixels such that
finer resolution indicates smaller pixel size and vice versa
(Fig. 1B). To create a rasterized representation, SEraster ini-
tially employs the sf package (Pebesma et al. 2018) to gener-
ate pixels by defining square or hexagonal grids that span the
x and vy spatial coordinate values in the spatial omics dataset.
Square pixels are used by default and for all subsequent anal-
yses. For continuous variables such as gene expression or
other molecular information, SEraster aggregates the ob-
served raw counts or normalized expression values for each
molecule within each pixel using means by default. Such
rasterization can also be performed in a cell-type-specific
manner by restricting to cells of a particular cell-type prior to
rasterization. Alternatively, to create a rasterized representa-
tion of categorical variables such as cell-type or cluster labels,
SEraster first converts the labels to a model matrix using a
one-hot encoding and then treats the model matrix as a
features-by-observations matrix to aggregate the number of
cells for each label within each pixel using sums by default.
In general, the aggregation function can be chosen to accom-
modate user-defined purposes. This rasterization process is
implemented in a pixel-wise manner, which is optionally par-
allelized with the BiocParallel package (Morgan et al. 2023).
Compared to other R packages that perform rasterization on
vector data represented as dense matrices such as terra
(Hijmans et al. 2024) or stars (Pebesma et al. 2023), SEraster
rasterizes spatial omics datasets represented as either dense or
sparse matrices with the Matrix package (Bates et al. 2024).
Since the features-by-observations matrix and model matrix
are often sparse, this feature further allows SEraster to reduce
resource requirements upon rasterization preprocessing. In
addition, since rasterized values may be sensitive to edge
effects such as the specific boundaries of grids upon rasteriza-
tion, SEraster enables permutation by rotating the dataset at
various angles before rasterization (Fig. 1C, Supplementary
Information S2). The rasterized output is returned as a
SpatialExperiment object, allowing for streamlined integra-
tion with existing spatial omics analysis tools within the R/
Bioconductor framework (Righelli et al. 2022) for down-
stream analyses. SEraster is also implemented as a
SeuratWrappers (SeuratWrappers Contributors 2024) to run
directly on Seurat objects, enabling further analysis following
existing Seurat spatial pipelines.

To explore the potential utility of rasterization in spatial
omics analysis, we apply SEraster as a preprocessing step
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prior to downstream spatial omics analysis using both simu-
lated and real spatial omics data. In particular, we character-
ize the impact of rasterization on runtime and benchmark
accuracy in identifying SVGs with the nnSVG package
(Weber et al. 2023) as compared to other down-sampling
approaches. We further demonstrate how rasterized cell types
can be used with the CooccurrenceAffinity package (Mainali
and Slud 2022, Mainali et al. 2022) to recapitulate expected
pairs of cell types that tend to be spatially co-enriched. In this
manner, SEraster can be used as a preprocessing step to en-
able scalable and accurate analysis of large-scale spatial
omics datasets with existing tools.

3 Results

3.1 Rasterization reduces runtime while
maintaining accuracy in the identification of
spatially variable genes

To evaluate the potential utility and impact of rasterization
on the performance of downstream analysis, we focused on
identifying SVGs within tissues. A number of computational
tools have been previously developed to identify SVGs
(Svensson et al. 2018, Sun et al. 2020, Kats et al. 2021,
Miller et al. 2021, Zhu et al. 2021, Weber et al. 2023). We
applied SEraster and one of these methods, nnSVG, to a
single-cell resolution spatial transcriptomics dataset of a cor-
onal section of the mouse brain containing 83 546 cells
assayed by MERFISH (Fig. 2A, Supplementary Information
S31I). We first evaluated the runtime of SVG analysis without
parallelization (1 CPU core) when applied to the dataset at
single-cell resolution (sc) vs rasterized at 50, 100, 200, and
400 um resolutions (Fig. 2B). Combining SEraster and
nnSVG reduced the total runtime to 26.8%, 9.9%, 3.9%,
and 2.7% of that when running nnSVG at single-cell resolu-
tion for 50, 100, 200, and 400 pm rasterization resolutions,
respectively (Fig. 2C, Supplementary Information S4). This
shorter runtime is expected due to the fewer numbers of spa-
tial points considered, particularly at coarser resolutions with
larger pixel sizes (Supplementary Fig. ST1A). Further, the con-
tribution to runtime from SEraster preprocessing itself is min-
imal compared to the runtime of nnSVG (Supplementary Fig.
S1B and C). Generally, SEraster preprocessing reduces run-
time, though the extent of runtime reduction depends on the
scalability of the downstream analysis tool with respect to
the number of spatial points.

To evaluate the impact of SEraster on nnSVG results, we
compared the ranks of each gene based on nnSVG’s likeli-
hood statistics between single-cell and each rasterized resolu-
tion (Fig. 2D). Since nnSVG’s gene rankings indicate the
strength of the spatial gene expression patterns, the observed
high correlations of gene rankings suggests that the spatial
pattern strengths of genes are generally retained even with
SEraster preprocessing. We do observe comparatively lower
correlations at coarser rasterization resolutions, suggesting
that the forementioned relationships may be less well retained
at coarser resolutions. We further characterized the
performance of nnSVG in identifying SVGs when applied to
rasterized gene expression by comparing SVGs identified at
single-cell resolution, which were treated as ground truth, to
those detected at each rasterized resolution (Supplementary
Information S4).

We used this evaluation strategy to compare SEraster with
other down-sampling approaches that can also be used to
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Figure 1. Overview of SEraster. (A) SEraster reduces the number of spatial points in a given spatial omics dataset prior to downstream analysis by
rasterizing or aggregating single cells’ gene expression (using mean) or cell-type labels (using sum) into equally sized pixels. SEraster can be applied to
aggregate gene expression in a label-specific (e.g. cell-type or cluster) manner as well. (B) SEraster allows users to control the rasterization resolution or
the side length of the pixel. Finer resolution corresponds to a smaller pixel size and coarser resolution corresponds to a larger pixel size. Plots are colored
by total gene expression per pixel (aggregated using mean). (C) SEraster enables permutation by rotating the dataset at various angles before
rasterization. Downstream analyses performed on rotated datasets can be summarized to help control for edge effects. Plots show total gene expression

per pixel (aggregated using mean)

reduce the number of spatial points considered, including
SOMDE, geometric sketching, and uniform down-sampling
(Supplementary Information S4). Briefly, SOMDE integrates
spatial information and applies self-organizing map to aggre-
gate single-cell information into nodes (Hao et al. 2021).
Geometric sketching integrates transcriptional information to
select a subset of the original dataset while retaining its tran-
scriptomic heterogeneity (Hie et al. 2019). Lastly, uniform or
naive down-sampling randomly selects a subset of the origi-
nal dataset without taking neither spatial nor transcriptomic
information into account. For SEraster, we observed that true
positive rate (TPR) and positive predictive value (PPV)—also
known as sensitivity and precision, respectively—remained

high across rasterization resolutions, ranging from 0.96 to
0.99 for TPR and from 0.92 to 0.96 for PPV (Fig. 2E).
SOMDE showed similar results, which is expected as
SOMDE also aggregates single-cell information based on spa-
tial information. TPR and PPV for SOMDE ranged from
0.87 to 1.00 and from 0.88 to 0.91, respectively (Fig. 2E).
On the other hand, TPR for both geometric sketching and
uniform sampling drastically decreased as down-sampled
datasets contained fewer spatial points. For certain geometric
sketching and uniform sampling down-sampled datasets,
nnSVG failed, resulting in NaN values (Fig. 2E). However,
among genes that were predicted to be SVGs for down-
sampled datasets, both geometric sketching and uniform
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Figure 2. Impact of rasterization on the identification of spatially variable genes (SVGs). (A) Spatial transcriptomics dataset of a coronal section of mouse
brain assayed by MERFISH shown at single-cell resolution colored by log-normalized total gene expression per cell. (B) MERFISH mouse brain dataset
rasterized at 50, 100, 200, and 400 pm resolutions showing total rasterized gene expression per pixel (aggregated using mean). (C) Time (in min) required
to run nnSVG at single-cell (sc) resolution and SEraster preprocessing with nnSVG at selected rasterized resolutions (n =5 for each resolution) without
parallelization (1 CPU core). Boxplots represent medians, first, and third quartiles, and whiskers extend to values no further than 1.5 times the
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sampling retained high PPV ranging from 0.96 to 0.98
and from 0.96 to 0.99, respectively (Fig. 2E). Comparatively,
spatially aware down-sampling methods performed worse in
terms of TNR, or specificity. TNR for both geometric
sketching and uniform sampling remained high ranging from
0.86 to 0.94 and from 0.88 to 0.95, respectively, while TNR
for both SEraster and SOMDE were comparatively lower
ranging from 0.58 to 0.83 and from 0.30 to 0.59, respectively
(Fig. 2E).

To further explore the cause of these comparatively poorer
performance with respective to TNR, we visualized false
positives or genes misidentified as SVGs and saw they were
primarily driven by hotspot artifacts, or small clusters
(Supplementary Fig. S2A). To quantify this, we calculated the
percentage of cells with nonzero expression and observed
that false positive genes were all expressed by small propor-
tions of cells whereas true positive genes were expressed by
varying proportions of cells (Supplementary Fig. S2B). We
hypothesized that if false positives were driven by hotspot
artifacts, they would not be consistently misidentified across
permutations, as hot spot artifacts would only happen at cer-
tain orientations of the tissue with respect to rasterization
grids. Therefore, we sought to use permutations to improve
our TNR. Briefly, we permuted the original dataset by rotat-
ing it at 10 different angles (Fig. 2F, Supplementary
Information S2). Then, for each permuted dataset, we raster-
ized at selected resolutions and identified SVGs with nnSVG
(Supplementary Information S4). Finally, we combined SVG
classifications from the 10 independent results and deter-
mined genes to be SVGs if they were detected as SVGs in a
minimum number of permutations, which we call required
votes (Supplementary Information S4). As the number of re-
quired votes increased, TPR decreased slightly (Fig. 2G). For
example, with at least one required vote, TPR ranges from
0.99 to 1.00, while with 10 required votes, TPR ranges from
0.88 to 0.97. This is because not all true positives are consis-
tently detected as SVGs in all permuted grid orientations,
which become false negatives when the number of required
votes increases to become more restrictive. On the other
hand, as the number of required votes increased, both PPV
and TNR increased due to fewer false positives (Fig. 2G). For
instance, with one required vote, PPV ranges from 0.88 to
0.92, and TNR ranges from 0.35 to 0.57. On the other hand,
with 10 required votes, PPV ranges from 0.97 to 1.00, and
TNR ranges from 0.88 to 0.99. This is because not all false
positives are consistently detected as SVGs in all permuted
grid orientations, which become true negatives when the
number of required votes increases to become more restric-
tive. It is important to note that the magnitude of changes in
TNR was much larger than those in TPR and PPV, which can

Figure 2. Continued

be explained by asymmetric ground truth labels in this partic-
ular dataset with 401 SVGs and 82 non-SVGs predicted at
single-cell resolution. Although the optimal number of re-
quired votes requires balancing various performance metrics
and vary across datasets of interest, our results suggest
that permutations can be an effective strategy for mitigating
false positives to improve the TNR in SVG analysis with
rasterization.

To further characterize the effects of rasterization resolu-
tion on nnSVG’s performance, we simulated spatial omics
data with 100 SVGs and 900 noise genes across 4992 spatial
points using a previously developed simulation framework
(Supplementary Information S5i; Weber et al. 2023). By us-
ing simulations, we were able to modulate the scale of spatial
patterns (large, medium, and small corresponding to circular
spatial patterns for SVGs with radii of 1500, 750, and
150 um, respectively) (Fig. 2H). We evaluated performance
by comparing the simulated ground truth SVG or noise labels
for each gene to those predicted by nnSVG when applied at
single-cell vs at rasterized resolutions ranging from 60 to
600 um (Supplementary Information S4). For simulated data-
sets with large and medium spatial patterns, nnSVG’s perfor-
mance with rasterization remained high, with TPR values
consistently at 1, PPV ranging from 0.95 to 1, and TNR rang-
ing from 0.99 to 1 across evaluated resolutions (Fig. 2H).
Notably, at all evaluated resolutions, the rasterized pixel size
was smaller than the simulated SVGs’ circular spatial pat-
terns with radii of 1500 and 750 um. However, for simulated
datasets with small spatial patterns, TPR started decreasing
at 240 um resolution and reached 0 at 360 um resolution
(Fig. 2H) due to nnSVG failing to detect any SVG at 300 pm
and coarser resolutions, resulting in undefined PPV values
and high TNR. These results are expected since the simulated
SVGs’ circular spatial pattern has a radius of 150 um. At
coarser resolutions, the rasterized pixel size is too large such
that cells with high expression of SVGs are aggregated with
those with low expression of SVGs, eliminating signals
(Fig. 2I). These findings suggest that users should choose a
rasterization resolution that is sufficient to capture the size of
spatial patterns of interest in order to maintain accuracy in
their SVG analysis when using rasterization as a preprocess-
ing step.

3.2 Rasterization enables scalable characterization
of spatial cell-type co-enrichment

To demonstrate additional potential applications of rasteriza-
tion, we sought to use SEraster in identifying spatially
co-enriched cell types. We applied SEraster to a single-cell
resolution spatial proteomics dataset of a human intestine
containing 38 371 cells assayed by CODEX (Fig. 3A,

interquartile range from each quartile. Percentage values of runtime at rasterized resolutions compared to that at single-cell resolution are shown. (D)
Correspondence of gene rankings based on the estimated LR statistic from nnSVG at single-cell resolution and selected rasterized resolutions.
Corresponding Spearman’s correlation coefficients are shown as text labels. (E) Performance comparison of SVG detection in terms of True Positive Rate
(TPR), Positive Predictive Value (PPV), and True Negative Rate (TNR) for down-sampled (using SEraster, SOMDE, geometric sketching, or uniform
sampling) MERFISH mouse brain data. Line plots show the mean and SD across 10 permutations for SEraster, geometric sketching, and uniform
sampling methods. Line plots show the result of 1 permutation for SOMDE. NaN values are omitted. (F) MERFISH mouse brain data rasterized at 100 um
resolution and permutated across 10 angles. Plots are colored by total gene expression per pixel (aggregated using mean). (G) Performance comparison
in terms of TPR, PPV, and TNR for rasterized (at 100 um resolution) MERFISH mouse brain data using the voting method with 10 permutations. Colored
line plots show performance metrics for the corresponding minimum required number of votes. Gray line plots indicate corresponding mean and SD
across 10 permutations from (e) for comparison. (H) Simulated SVG dataset shown at single-cell resolution with large, medium, and small bandwidths
showing log-normalized gene expression of ground truth SVG (top). Performance comparison in terms of TPR, PPV, and TNR for rasterized simulated
data (bottom). Line plots show mean and SD across 10 permutations. NaN values are omitted. () Close-up visualizations of SVG with small bandwidth at
single-cell resolution showing log-normalized gene expression and grid used upon rasterization at selected resolutions (top). Close-up visualizations of
SVG with small bandwidth at selected resolutions showing rasterized gene expression (aggregated using mean) (bottom)

G20z Idy Gg uo sasn Aysieaiun suydoH suyor Aq 012969//2 L ¥OB1Q/L/01/2]01e/SolewIoulolq/wod dnoolwspede//:sdiy woly papeojumoq


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data

Aihara et al.

A Single-cell Resolution B .
Enterocyte, 50pm Resolution
2 c
5 25 2
] 2 E g
8 Sg o
S
° & cE g
5
£ 3
<8
)
MR PR
oc ) PR Fle o SRR
Q¢
os cotsoe [N ] e R snarcecll o [
5 C 02468 0246 8
= Enterocyte, 400pm Resolution
]
7}
© - =
[in] < 5
12} 29 =
2 ©
EE N
3 S 53
cE £
e B ® CD8+T @ Goblet ® MUCI+Enterocyte ® Paneth 9 a
© CD4sToel ® CyingTA e IcC o Nere o Pasma
Celltype ® CD57+Enterocyte ® DC ® Lymphatic ®  Neuroendocrine @ Smooth muscle
© CDGo+Enterocyle ® Endothell ® M1 Macrophage ® Neutrophi o swoma
® CO7+immune  ® Enterocyte ® M2Macophage ® NK e celisipivel [, | RE sinarized [Jf] o (] +
020 40 60 60 100 01 23 4
D 50pm Resolution
it Single-cell Resolution
Alpha MLE ¢ g
#s 7+ Immune
4 Enterocyte
5 « Neuroendocrine
\of TA Q
o & * e %
W & W 2
-10 IS CD4+ T cell M1 Macrophage ©e b
Nerve Plasma » Cell type
Lymphatic X 27 Lymphate T o A
ensonra g MO X X X 3
o all® W gt = o8
Y LXK i 3
B oc © °
‘CC””” ORI X - K c
™ X S % «  Neutrophi £ oD
TR S % . ST~
CO7+ Immune X KA 4 % % CyoingTA
L5 ’ * * * * KA + MUC1+ Enterocyte
D574 Enterocyte A X A X S 2K X o 4 CD6Gs Enterocyte
B VY PO VVVVVVVVVEYVVVVVYVY VYV
H 50um Resolution 100pm Resolution 200pm Resolution
- ENEENNE 1. LT e ok

® Enterocyte ® Newoendocrine ® TA ® CDasTcell ® CD8+T ® DC ® Neutrophil

A B C D A B C D

Alpha MLE
05 0 5 10

Figure 3. Rasterization of cell-type labels enables analysis of cell-type co-enrichment. (A) Spatial proteomics dataset of the human intestine assayed by
CODEX shown at single-cell resolution with corresponding cell types. (B and C) Enterocytes in the CODEX human spleen dataset shown as rasterized cell-
type count (aggregated using sum), relative enrichment (RE) metric, and binarized value per pixel at (B) 50 um and (C) 400 um resolutions (from left to right).
(D) Summary of cell-type co-enrichment analysis with SEraster and CooccurrenceAffinity at 50 um resolution. Heatmap shows the maximum likelihood
estimate of the affinity metric (alpha MLE or &) for corresponding cell-type pairs. Statistically significant co-enrichments or depletions (adjusted P-value
<.05) are indicated by asterisks (*). (E and F) Cell types with statistically significant co-enrichment (@>0, adjusted P-value <.05) at 50 pm visualized at
single-cell resolution with corresponding cell types. (G) Simulated co-enrichment dataset shown at single-cell resolution with corresponding cell types. (H)
Close-up visualizations of cell-type co-enrichment patterns at single-cell resolution with the grid used upon rasterization shown at selected resolutions (top).
Summarized results of cell-type co-enrichment analysis with SEraster and CooccurrenceAffinity at selected rasterization resolutions. Heatmaps show @,
and statistically significant co-enrichment or depletions (adjusted P-value <.05) are indicated by asterisks (*) (bottom)

Supplementary Information S3ii). We used SEraster to aggre-
gate cell counts for each cell-type within 50 um pixels by ras-
terizing at 50 pm resolution. This allows us to treat rasterized
cell-type counts in a classic balls (cell types) in boxes (50 um
pixels) framework to identify cell-type pairs that are co-
enriched (Supplementary Information S6). Briefly, for each
cell type, its rasterized cell-type count is used to compute a
relative enrichment (RE) metric, or the ratio of observed to
expected cell-type counts, per pixel to account for variability
in cell density and cell-type proportions (Fig. 3B). Each pix-
el’s RE value is then binarized based on a selected threshold

(Fig. 3B). Based on the binarized data, we apply the
CooccurrenceAffinity package to compute the maximum
likelihood estimate of the affinity metric, @, for each cell-type
pair, with positive & indicating co-enrichment and negative &
suggests depletion (Mainali and Slud 2022, Mainali et al.
2022). Using this approach, we identified cell-type pairs with
statistically significant co-enrichment (& > 0, adjusted P-value
<.05) at 50 um rasterization resolution that are consistent
with previously identified tissue neighborhoods based on
multi-scale neighborhood analysis (Hickey ez al. 2023). For
example, we identified enterocytes, neuroendocrine, and
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transit amplifying (TA) cells to be spatially co-enriched
among each other (Fig. 3D and E), consistent with previously
identified epithelial neighborhoods (Hickey et al. 2023).
Likewise, we identified CD4+ T cells, dendritic cells (DC),
CD8+ T cells, and neutrophils to be spatially co-enriched
among each other (Fig. 3D and F), consistent with previously
identified immune-related neighborhoods (Hickey et al.
2023). Notably, at 50 um rasterization resolution, some im-
mune- and epithelial-neighborhood-associated cell types are
identified as significantly spatially depleted among each other
(@ <0, adjusted P-value <.05, Fig. 3D).

To evaluate spatial co-enrichment relationships at a different
length scale, we repeated this analysis rasterizing at 400 pm res-
olution (Fig. 3C). At 400 um resolution, the immune- and
epithelial-neighborhood-associated cell types previously identi-
fied as spatially depleted at 50 pm resolution are now identified
as co-enriched (Supplementary Fig. S3). Notably, the immune-
and epithelial-neighborhood-associated cell types still distinctly
separate from endothelial, smooth muscle, and stromal cells,
consistent with broad separations between the mucosa and
submucosa/muscularis areas of the intestine (Supplementary
Fig. S3B and C). These results suggest that choice of rasteriza-
tion resolution can reveal spatial co-enrichment relationships at
different length scales.

To further evaluate the impact of rasterization resolution
on cell-type co-enrichment analysis, we employed a previ-
ously developed simulated dataset that mimics cell-type local-
izations at various scales (Peixoto et al. 2023). In this dataset,
cell types B and C are spatially intermixed in circular spatial
patterns with radius of 100 pm, and cell-type A surrounds
cell types B and C in doughnut-shaped spatial patterns with
radii ranging from 100 to 300 um, separating them from cell-
type D (Fig. 3G, Supplementary Information S5ii). At a ras-
terization resolution of 50 pm, cell types B and C had high,
positive @ while A and B as well as A and C had a~0
(Fig. 3G). This is expected because 50um resolution is
smaller than the size of cell-type A’s doughnut-shaped struc-
tures. As a result, pixels did not capture the spatial pattern
that cell-type A surrounds cell types B and C. With coarser
resolutions—for instance, 100 and 200 um resolutions that
are within the range of cell-type A’s doughnut-shaped struc-
tures—pixel size is large enough to capture spatial patterns
formed by cell types A, B, and C in one pixel. Thus, cell types
A and B as well as A and C were identified as co-enriched
(Fig. 3H). These results suggest that changing rasterization
resolutions can capture cell-type co-enrichment relationships
at various spatial length scales. Overall, SEraster can trans-
form spatial omics data with cell-type labels into a classic
balls-in-boxes formulation to enable characterization of cell-
type co-enrichment.

3.3 Rasterization enables spatial analysis of spatial
transcriptomics data of a whole mouse pup with
over a million cells

Having demonstrated that our approach works as expected,
we applied SEraster to a single-cell resolution spatial tran-
scriptomics dataset of a whole mouse pup containing
1 330 087 cells assayed by Xenium (Fig. 4A, Supplementary
Information S3iii). To identify SVGs, we again attempted to
use nnSVG. However, running nnSVG, which scales linearly
with the number of spatial points, at single-cell resolution
failed to complete within 24 h (Supplementary Information
S4). On the other hand, rasterizing the dataset to 100 pm

resolution using SEraster and running nnSVG required an av-
erage total runtime of 54 +4min without parallelization
(1 CPU core) and 4 = 0.1 min with parallelization (across 20
CPU cores) (n=3, error is computed as SD, Supplementary
Information S4), further highlighting the potential utility of
SEraster in reducing computational resource requirements.
We thus performed SVG analysis on the entire tissue raster-
ized at 100 um resolution. Expectedly, all 379 profiled genes
were identified as SVGs given that these genes were chosen to
identify specific organs and tissue regions, which are highly
spatially compartmentalized.

To better understand spatial gene expression variation within
specific organs and tissue regions, we performed cluster-specific
SVG analysis at 100 pm resolution for each transcriptionally
distinct cell-cluster previously identified through graph-based
transcriptional clustering (Supplementary Information S3iii and
S4). As an example, we focused on Cluster 39, which putatively
corresponds to the kidney based on its spatial location and dif-
ferentially upregulated genes (Supplementary Information
S3iii). Rasterizing just cells corresponding to cluster 39, we
again performed SVG analysis to identify 118 SVGs. Among
these SVGs included Cryab, Clecnka, Calbl, which exhibited
statistically significant spatial variation (adjusted P-value <.05)
both in the whole tissue analysis and cluster-specific analysis
(Fig. 4B). On the other hand, genes such as Aifll, Sostdcl,
Ndufs8 only exhibited statistically significant spatial variation
(adjusted P-value <.05) in the whole tissue analysis and not in
the cluster-specific analysis as these genes exhibit more uniform
expression within the cluster (Fig. 4C). These results demon-
strate that SEraster can be used to help identify SVGs in the
whole tissue as well as in a cluster-specific manner.

We further applied SEraster with CooccurrenceAffinity to
characterize cell-cluster co-enrichment in the whole mouse
pup at 100pm resolution (Fig. 4D, Supplementary
Information S6). We evaluated all 2278 possible cell-cluster
pairs to identify 475 with statistically significant co-
enrichment (& >0, adjusted P-value <.05) in 10+ 1 min with-
out parallelization (1 CPU core) and 1+0.02 min with paralle-
lization (across 20 CPU cores) (n = 5, error is computed as
SD, Supplementary Information S4), again underscoring the
scalability of our rasterization-based framework (Fig. 4). We
further performed hierarchical clustering of & values to find
groups of cell-clusters that are co-enriched and visually corre-
spond to spatially distinct organ structures (Fig. 3F,
Supplementary Information S6). Further, we observed that
such cell-cluster co-enrichment patterns forming spatially dis-
tinct organ structures are robust across rasterization resolu-
tions ranging from 50 to 400 um resolutions (Supplementary
Fig. S4), demonstrating the stability of these particular cell-
cluster co-enrichment relationships.

These results demonstrate that rasterization preprocessing
with SEraster can be applied to large-scale spatial omics data-
sets with over a million single cells to enable the identification
of SVGs at the whole tissue as well as cluster-specific levels
and detection of cell-cluster co-enrichment patterns that cor-
respond to spatially distinct organ structures.

4 Discussion

Analysis of spatial omics data provides researchers with
means to delineate spatial patterns of molecular and cellular
organizations. To improve the scalability of spatial omics
data analysis, we developed SEraster to use rasterization as a
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Figure 4. Spatial analysis of a whole mouse pup with over a million cells. (A) Spatial transcriptomics data of a whole mouse pup assayed by Xenium
shown at single-cell resolution with corresponding clusters from graph-based clustering. (B) Rasterized gene expression (aggregated using mean) of
Cryab (left), Clcnka (middle), Calb1 (right) at 100 um resolution for the whole tissue and within cluster 39. (C) Rasterized gene expression (aggregated
using mean) of Aifl1 (left), Sostdc1 (middle), Ndufs8 (right) at 100 um resolution for the whole tissue and within cluster 39. (D) Cluster 1 in the Xenium
whole mouse pup dataset shown as rasterized cluster count (aggregated using sum), relative enrichment (RE) metric, and binarized value per pixel at
100 pm resolution (from top to bottom). (E) Summary of cluster co-enrichment analysis with SEraster and CooccurrenceAffinity. Heatmap shows the
maximum likelihood estimate of the affinity metric (alpha MLE or &) for corresponding cluster pairs. Statistically significant co-enrichments or depletions
(adjusted P-value <.05) are indicated by asterisks (*). (F) Clusters with statistically significant co-enrichment (a>0, adjusted P-value <.05) at 50 um
visualized at single-cell resolution. Based on the spatial locations of co-enriched clusters, these co-enrichment patterns are labeled as lung, brain, skin,

liver, and intestine (left to right)

preprocessing step to reduce the number of spatial points
prior to downstream analysis by aggregating continuous vari-
ables, such as gene expression, or categorical variables, such
as cell-type labels, at single-cell resolution into equally sized
pixels based on a user-defined resolution. Such reduction in
the number of spatial points enabled the spatial analysis of a
whole mouse pup spatial omics dataset with over a million
single cells using existing tools that would not have otherwise
been computationally tractable. Applying SEraster prior to
SVG analysis with nnSVG, we find that SEraster reduces run-
time requirements without substantially compromising

performance compared to single-cell resolution. Likewise,
such SEraster preprocessing can achieve improved performance
with respect to SVG analysis compared to other down-
sampling approach, especially after integrating results from per-
mutations. Finally, SEraster can also enable rapid, pair-wise
cell-type co-enrichment analysis with CooccurrenceAffinity at
multiple rasterization resolutions to explore cell-type spatial
relationships across length scales.

While we exclusively examined single-cell resolution imaging-
based spatial omics datasets in this paper, the same framework
can, in principle, be applied to other non-single-cell resolution
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spatial omics data (Moffitt et al. 2022, Bressan et al. 2023),
though interpretation of results will need to consider the lack
of single-cell resolution and potential confounding due to
cell-type mixtures. Likewise, although we have focused on
applying SEraster to spatial transcriptomics and proteomics
data, the framework can be applied to other spatial omics
technologies as well.

Further, while we have focused on applying rasterization
on individual spatial omics datasets, SEraster can also be ap-
plied to multiple tissue sections in order to create shared pix-
els in the same coordinate framework (Supplementary
Information S1). For instance, such analysis can facilitate
spatial molecular comparisons after structural alignment
(Supplementary Fig. SS5; Clifton et al. 2023). Such analyses
can also be applied to assess molecular differences at structur-
ally matched spatial locations across healthy and diseased tis-
sues, though additional work is needed to characterize the
statistical significance and biological relevance of identified
differences while considering potential morphometric varia-
tion and errors in alignment for example.

Several limitations of SEraster should be considered when
integrating SEraster with downstream analysis tools. As
shown with SVG analysis on simulated datasets, rasterization
resolution is a user-inputted hyperparameter that may affect
downstream analysis. A rasterization resolution that is too
coarse to capture the size of spatial patterns of interest will
result in false negatives. Here, we draw a parallel between
rasterization resolution and the concept of “grain size” in
ecology (Wiens 1989), the spatial scale at which ecological
processes are studied. As the choice of grain size will depend
on the ecological phenomena of interest, so will the choice of
rasterization resolution depend on the biological processes of
interest. We recommend optimizing rasterization resolution
based on prior knowledge regarding the scale of biological
processes being studied. Potential future direction may in-
volve leveraging rasterization resolution as an exploratory
analysis tool. For example, SEraster can be performed in a se-
ries of various rasterized resolutions and characterize how
the strengths of spatial expression patterns or length scales of
SVGs change with respect to rasterization resolution.

In addition, SEraster offers a choice of mean or sum for ag-
gregating single-cell information into pixels. By default, the
mean function is used for rasterizing gene expression so that
variability in cell density would not be a cofounding variable
when performing downstream analyses, such as SVG analy-
sis. For example, if sum is used as an aggregation function,
regions with higher cell density would have higher rasterized
gene expression even when a gene of interest is uniformly
expressed by all cells in the tissue. Likewise, if sum is used,
pixels that partially overlap with the tissue would have lower
gene expression compared to those that fully overlap with the
tissue even when a gene of interest is uniformly expressed by
all cells in the tissue. These examples would yield false posi-
tives in the SVG analysis. For rasterizing cell-type labels, the
sum function is used by default because the relative enrich-
ment metric used in our co-enrichment analysis accounts for
variability in cell density. We anticipate future work may in-
volve expanding the range of aggregation functions to further
include max, median, or weighted combinations as used in
SOMDE (Hao et al. 2021) for tailored use cases. Additional
characterization is necessary to determine whether these
alternatives offer any advantages over mean or sum.

Although we have focused on demonstrating the utility of
rasterization preprocessing with SEraster in downstream spa-
tial omics analyses such as identifying SVGs and pair-wise
cell-type co-enrichment, rasterization may also be amenable
as a preprocessing step for other types of spatial omics analy-
sis. For example, a few computational tools for inferring cell—
cell communication have been developed for spatial tran-
scriptomics data (Shao et al. 2022, Cang et al. 2023, Kim
et al. 2023, Li et al. 2023). Potential future work may involve
integrating these methods that leverage distributions of mo-
lecular information with SEraster to enable more scalable
cell-cell communication analysis. However, we caution that
additional statistical characterization is needed to benchmark
performance and mitigate false positives.

In addition to the SpatialExperiment and Seurat objects
that SEraster is built upon, there is a number of R data infra-
structures with corresponding suites of exploratory analysis
pipelines, such as the SpatialFeatureExperiment object for
Voyager (Moses et al. 2023) and the Giotto object for Giotto
Suite (Dries et al. 2021). Since SpatialFeatureExperiment is
an extension of SpatialExperiment and a Giotto object can be
converted into SpatialExperiment as well as vice versa,
SEraster can potentially be integrated into a variety of analy-
sis pipelines.

Finally, as spatial omics datasets continue to increase in
size, in the future, we anticipate spatial omics datasets may
need to be stored in standardized data infrastructure with
lazy representation of larger-than-memory data such as the
Zarr file format used in the SpatialData Python library
(Marconato et al. 2024). Additionally, packages such as
BPCells (Parks 2024), which uses bit-packing compression to
store counts matrices as binary files on disk, are compatible
with Seurat objects to perform memory-efficient analysis in
R. SEraster can potentially be integrated with such data infra-
structure to enable rasterization of larger-than-memory data
in spatially indexed chunks rather than loading the entire
dataset into memory.

To conclude, SEraster improves scalability by reducing the
number of spatial points and broadens statistical methods for
spatial omics data explorations. As spatial omics datasets
continue to increase in the number of spatial points assayed,
integrating such rasterization preprocessing with existing and
new computational tools may enable more efficient analysis.

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

In the past 3years, R.S. has received compensation from
Bristol-Myers  Squibb, ImmunAl, Resolve Biosciences,
Nanostring, 10X Genomics, Neptune Bio, and the NYC
Pandemic Response Lab. R.S. is a co-founder and equity
holder of Neptune Bio.

Funding

J.E., G.A, K.C.,, M.C,, L.A., and B.F.M. acknowledge support
from the National Science Foundation [award number
2047611] and the HuBMAP Integration, Visualization &
Engagement (HIVE) Initiative [OT20D033760]. ]J.W.H.
acknowledges support from NIH Common Fund through the

G20z Idy Gg uo sasn Aysieaiun suydoH suyor Aq 012969//2 L ¥OB1Q/L/01/2]01e/SolewIoulolq/wod dnoolwspede//:sdiy woly papeojumoq


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae412#supplementary-data

10

Office of Strategic Coordination/Office of the NIH Director
[U54AG075936]. R.S. and Z.L. acknowledge support from the
National Human Genome Research Institute [RM1HGO011014]
and the HuBMAP Integration, Visualization & Engagement
(HIVE) Initiative [OT20D033760].

Data availability

The datasets underlying this article were derived from sources
in the public domain and detailed in the Supplementary
Information.

References

Baran Y, Bercovich A, Sebe-Pedros A et al. MetaCell: analysis of single-
cell RNA-seq data using K-nn graph partitions. Genome Biol 2019;
20:206-19.

Bates D, Maechler M, Jagan M et al. 2024. Matrix: Sparse and Dense
Matrix Classes and Methods. R package version 1.6-5.

Bilous M, Tran L, Cianciaruso C et al. Metacells untangle large and
complex single-cell transcriptome networks. BMC Bioinformatics
2022;23:1-24.

Bressan D, Battistoni G, Hannon GJ. The dawn of spatial omics.
Science 2023;381:eabq4964.

Cang Z, Zhao Y, Almet AA et al. Screening cell-cell communication in
spatial transcriptomics via collective optimal transport. Nat
Methods 2023;20:218-28.

Clifton K, Anant M, Aihara G et al. STalign: alignment of spatial tran-
scriptomics data using diffeomorphic metric mapping. Nat
Commun 2023;14:1-14.

Dries R, Zhu Q, Dong R et al. Giotto: a toolbox for integrative analysis
and visualization of spatial expression data. Genome Biol 2021;
22:1-31.

Hao M, Hua K, Zhang X. SOMDE: a scalable method for identifying
spatially variable genes with self-organizing map. Bioinformatics
2021;37:4392-8.

Hickey JW, Becker WR, Nevins SA et al. Organization of the human in-
testine at single-cell resolution. Nature 2023;619:572-84. 2023
619:7970

Hie B, Cho H, DeMeo B et al. Geometric sketching compactly summa-
rizes the single-cell transcriptomic landscape. Cell Syst 2019;8:
483-93.e7.

Hijmans R]J, Bivand R, Pebesma E et al. 2024. terra: Spatial Data
Analysis. R package version 1.7-78.

Kats I, Vento-Tormo R, Stegle O. SpatialDE2: fast and localized vari-
ance component analysis of spatial transcriptomics. bioRxiv,
2021.10.27.466045, 2021, preprint: not peer reviewed.

Kim H, Lovkvist C, Palma AM er al. CellNeighborEX: deciphering
neighbor-dependent gene expression from spatial transcriptomics
data. Mol Syst Biol, 2023;19:¢11670.

LiZ, Wang T, Liu P et al. Spatial DM for rapid identification of spatially
co-expressed ligand-receptor and revealing cell-cell communication
patterns. Nat Commun 2023;14:1-12.

© The Author(s) 2024. Published by Oxford University Press.

Aihara et al.

Mainali KP, Slud E. CooccurrenceAffinity: an R package for computing
a novel metric of affinity in co-occurrence data that corrects for per-
vasive errors in traditional indices. bioRxiv, 2022.11.
01.514801, 2022, preprint: not peer reviewed.

Mainali KP, Slud E, Singer MC et al. A better index for analysis of co-
occurrence and similarity. Sci Adv 2022;8:eabj9204.

Marconato L, Palla G, Yamauchi KA et al. SpatialData: an open and uni-
versal data framework for spatial omics. Nat Methods 2024.

Miller BF, Bambah-Mukku D, Dulac C et al. Characterizing spatial
gene expression heterogeneity in spatially resolved single-cell tran-
scriptomic data with nonuniform cellular densities. Genome Res
2021;31:1843-55.

Moffitt JR, Lundberg E, Heyn H. The emerging landscape of spatial
profiling technologies. Nat Rev Genet 2022;23:741-59.

Morgan M, Wang ], Obenchain V et al. 2023. BiocParallel:
Bioconductor Facilities for Parallel Evaluation. R package ver-
sion 1.36.0.

Moses L, Einarsson PH, Jackson K et al. Voyager: exploratory single-
cell genomics data analysis with geospatial statistics. bioRxiv,
2023.07.20.549945, 2023, preprint: not peer reviewed.

Parks B. 2024. BPCells: Single Cell Counts Matrices to
PCA. R package version 0.2.0

Pebesma E, Bivand R, Racine E et al. Simple features for R: standardized
support for spatial vector data. The R Journal 2018;10:439-46.

Pebesma E, Sumner M, Racine E ez al. 2023. stars: Spatial Data Science:
With applications in R. Chapman and Hall/CRC, London.

Peixoto RdS, Miller BF, Brusko MA et al. Characterizing cell-type spa-
tial relationships across length scales in spatially resolved omics data.
bioRxiv, 2023.10.05.560733, 2023, preprint: not peer reviewed.

Ren X, Zheng L, Zhang Z. SSCC: a novel computational frame-
work for rapid and accurate clustering large-scale single cell
RNA-seq data. Genomics Proteomics Bioinformatics2019;
17:201-10.

Righelli D, Weber LM, Crowell HL et al. SpatialExperiment: infrastruc-
ture for spatially-resolved transcriptomics data in R using biocon-
ductor. Bioinformatics 2022;38:3128-31.

SeuratWrappers Contributors. 2024. SeuratWrappers: Community-
Provided Methods and Extensions for Seurat. GitHub repository.
Shao X, Li C, Yang H et al. Knowledge-graph-based cell-cell communi-
cation inference for spatially resolved transcriptomic data with

SpaTalk. Nat Commun 2022;13:1-15.

Sun S, Zhu J, Zhou X. Statistical analysis of spatial expression patterns
for spatially resolved transcriptomic studies. Nat Methods 2020;17:
193-200.202017:2

Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of
spatially variable genes. Nat Methods 2018 15:52018;15:343-6.

Weber LM, Saha A, Datta A et al. nnSVG: scalable identification of spa-
tially variable genes using nearest-neighbor Gaussian processes. Nat
Commun 2023;14:4059

Wiens JA. Spatial scaling in ecology. Funct Ecol 1989;3:385.

Zhu J, Sun S, Zhou X. SPARK-X: non-parametric modeling ena-
bles scalable and robust detection of spatial expression patterns
for large spatial transcriptomic studies. Genome Biol 2021,
22:1-28.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40, 1-10
https://doi.org/10.1093/bioinformatics/btae412
Original Paper

G20z Idy Gg uo sasn Aysieaiun suydoH suyor Aq 012969//2 L ¥OB1Q/L/01/2]01e/SolewIoulolq/wod dnoolwspede//:sdiy woly papeojumoq



	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References


