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Abstract

Motivation: Displaying proportional data across many spatially resolved coordinates is a challenging but important data visualization task, partic-
ularly for spatially resolved transcriptomics data. Scatter pie plots are one type of commonly used data visualization for such data but present
perceptual challenges that may lead to difficulties in interpretation. Increasing the visual saliency of such data visualizations can help viewers
more accurately identify proportional trends and compare proportional differences across spatial locations.

Results: We developed scatterbar, an open-source R package that extends ggplot2, to visualize proportional data across many spatially resolved
coordinates using scatter stacked bar plots. We apply scatterbar to visualize deconvolved cell-type proportions from a spatial transcriptomics
dataset of the adult mouse brain to demonstrate how scatter stacked bar plots can enhance the distinguishability of proportional distributions

compared to scatter pie plots.

Availability and implementation: scatterbar is available on CRAN https://cran.r-project.org/package=scatterbar with additional documentation

and tutorials at https://jef.works/scatterbary.

1 Introduction

Effective data visualization plays a pivotal role in uncovering
insights and communicating complex information clearly
(Wong 2010). This is particularly important when dealing
with proportional data in addition to spatial coordinates, as
it combines quantitative values with their spatial context,
providing a more comprehensive understanding of the under-
lying phenomena present and noting certain areas of interest.
Such visualization of proportional data in addition to spatial
coordinates is important for spatial transcriptomics (ST). ST
enables high-throughput profiling of gene expression within
tissue sections, often at multi-cellular pixel resolution (Stahl
et al. 2016, Rodriques et al. 2019, Liu et al. 2020). Such data
demand appropriate visualizations to accurately represent the
presence of multiple cell types and their respective propor-
tions in each pixel while preserving their spatial coordinates.
Detecting cell-type-specific spatial variation such as propor-
tional changes across spatial locations is important for under-
standing tissue organization and disease mechanisms.
Therefore, there is a need for more effective visualization
techniques that enhance the saliency of proportional changes
and make it easier to interpret such complex spatial datasets.

Currently, a widely used method for this visualization is
the scatterplot of pie charts, commonly referred to as “scatter
pie plots” as implemented through the scatterpie R package
(Yu 2024). Scatter pie plots offer a way of displaying
proportions at specific spatial locations by combining the

spatial plane of scatterplots with the proportionate data rep-
resentation of pie charts. However, in the context of visualiz-
ing ST data, scatter pie plots can leave significant amounts of
whitespace in between spatial locations, which limits the effi-
cient use of space, and are prone to visual artifacts such as
moiré effects, which can distort perception. In general, the
limitations of using pie charts to accurately visualize quanti-
tative proportional information have been previously well
characterized (Cleveland and McGill 1984, Mackinlay 1986,
Heer and Bostock 2010). Specifically, pie charts encode
quantitative data using angles, resulting in decreased accu-
racy in data interpretation compared to if the quantitative
data was encoded using lengths (Mackinlay 1986, Heer and
Bostock 2010). Previous studies have shown that accurately
comparing the sizes of the slices in a pie chart, especially
when the differences are subtle, is more challenging than
comparing the lengths of bars, e.g. in a bar chart (Mackinlay
1986, Heer and Bostock 2010). As such, the use of scatter
pie plots for ST data visualization may make it challenging to
accurately interpret and compare cell-type proportions
to identify potentially interesting changes across spa-
tial locations.

2 Materials and methods

Here, we present an R package called scatterbar, which pro-
vides an alternative visualization for displaying proportional
data across many spatially resolved coordinates. Given a set
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of (x, y) coordinates and matrix of associated proportional
data, scatterbar creates a stacked bar chart, where bars are
stacked based on the proportions of different categories cen-
tered at each (x, y) location.

The package’s core functionality is in the function
“scatterbar.” The function inputs comprise of a data frame
(data) containing the proportions of different categories for
each location, where each row represents a location in a 2-D
plane and each column represents a category, and a data
frame (xy) containing the positional information for each lo-
cation specified in the row names.

To modulate the size of the bar plots, scaling factors
(size_x and size_y) are used. Scaling factors are used to adjust
the height and width of the bars relative to the plot’s coordi-
nate system. They enable the visualization to fit within the
specified plot area and thereby make the proportions more
interpretable. If the scaling factors for the x and y axes are
not provided, the optimal scaling factors are automatically
estimated by computing the distance between the maximum
and minimum values for each axis and dividing by the square
root of the number of spatial spots. Padding for the x and y
axes (padding_x, padding_y) can also be adjusted as needed.
Padding refers to the additional space added around the bars
to prevent overlap with the plot’s boundaries or other ele-
ments. Adjusting the padding ensures that the bars are clearly
visible and separated from each other and the edges of
the plot.

The final scatter bar plot is generated using the grammar
of graphics framework as implemented in ggplot2
(Wickham 2016), with options for customizing the colors of
the bars, the title of the plot, and the legend. The function
returns a ggplot object representing the scatter bar plot,
allowing users to apply standard ggplot2 functions like coor-
d_flip() for orientation adjustments as well as ggplot2
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extensions such as ggthemes for additional esthetic
modifications.

3 Usage scenario

To illustrate the potential utility of the scatterbar package,
we created both the scatter pie and scatter bar plots to visual-
ize a multi-cellular pixel resolution ST dataset of the adult
mouse brain assayed by Visium. Briefly, for this dataset, gene
expression measurements were profiled at 55 um resolution
pixels across the tissue. Using these gene expression measure-
ments, cell-type proportions per pixel were estimated using
the reference-free deconvolution approach STdeconvolve
(Miller ez al. 2022). The input to scatterpie and scatterbar
thus contained the deconvolved cell-type proportions at each
pixel and the corresponding spatial coordinates of each pixel
centroid. As such, we aimed to visualize and compare the
deconvolved cell-type proportions across spatial locations in
the tissue.

While both scatter pie and scatter bar plots allow for the
visualization of cell-type proportions across spatial locations,
it can be more challenging to discern subtle differences in
cell-type proportions between locations based on the scatter-
pie plot due to the visual similarity of angles in pie charts. We
highlight two spatial locations where the proportion of cell-
type i is different, but the proportion of cell-type j is the
same. In visually assessing the areas denoting the proportion
of cell-types i and j in the pie charts of the scatter pie plot, we
note that it is difficult to discern whether these areas are the
same or different across these two spatial locations in the tis-
sue (Fig. 1A). Alternatively, in visually assessing the bars
denoting the proportion of i and j in the bar charts in the
scatter bar plot, we can more readily discern that the
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Figure 1. Comparison of scatter pie and scatter bar plots for deconvolved cell-type proportions in multicellular pixel-resolution ST data of the adult mouse
brain assayed by Visium. (A) Scatterpie plot showing the proportions of 12 cell types across spatial coordinates. Each pie chart represents the
composition of cell types at that specific multicellular pixel in the tissue, with the size of the slice of each pie segment corresponding to the proportion of
each cell type. (B) Scatterbar plot showing the same data. Each bar chart represents the composition of cell types at that specific multicellular pixel in the
tissue, with the height of each bar segment corresponding to the proportion of each cell type. The x-axis and y-axis represent the spatial coordinates of
pixels, and the colors correspond to the different cell types. Inset highlights two spatial locations.
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proportion of cell type 7 is different at the two locations, but
the proportion of cell type j is the same (Fig. 1B).

By using bar charts instead of pie charts, scatterbar enhan-
ces the saliency of cell-type proportion differences between
spots, making it comparatively easier to detect subtle varia-
tions in cell-type distribution across spatial locations in the
tissue. Our observations align with the insights reported by
researchers who have performed perceptual studies on data
visualizations, reinforcing the effectiveness of the scatterbar
approach in visualizing ST data (Cleveland and McGill 1984,
Wong 2010).

4 Conclusion

We presented scatterbar as an R package implementing scat-
ter bar plots for visualizing proportional data across spatially
resolved coordinates. Compared to more commonly used
scatter pie plots, scatter bar plots can enhance the saliency
and distinguishability of proportional distributions, making
it potentially easier to interpret and compare data across dif-
ferent, particularly neighboring, spatial locations. By extend-
ing ggplot2, scatterbar allows users to readily customize and
tailor the visualization to specific datasets and re-
search needs.

Despite these noted enhancements and benefits, the effec-
tiveness of scatterbar may still be limited by certain factors.
First, scatterbar automatically calculates a scale factor to ad-
just the size of each stacked bar plot based on the data input.
However, suboptimal visualizations may result when this
scale factor is too large or too small. For example, when the
scale factors for both axes are set too large, the stacked bar
plots may overlap one over the other, making it impossible to
discern all individual groups across the entire figure.
Conversely, when the scale factor for either axis is too small,
the stacked bar plots may become compressed, losing visual
coherence and the ability to identify the groups and their pro-
portions in an individual stacked bar graph. The padding be-
tween stacked bar plots also plays a significant role in both
the readability of the plot and the perception of the data dis-
tribution. Excessive padding results in scattered and dis-
jointed bars that obscure patterns as they overlap on top of
each other (or should they be so excessive, result in no fig-
ure), reducing legibility. This demonstrates that appropriate
padding depends on the scale and density of the data;
autoscaling may not always provide satisfactory results. In
general, we recommend users should experiment with pad-
ding to avoid under- or over-spacing and manually tune these
various parameters to optimize their visualization.

Another critical limitation lies in color selection. Scatterbar
relies heavily on distinct colors to differentiate between
groups. In cases where user-selected colors are too similar,
groups may become visually difficult to distinguish. As data
complexity grows, and especially with larger numbers of
groups, it becomes essential to carefully choose contrasting
colors to maintain visual clarity. We recommend that users
manually input their own color palettes if the auto-generated
rainbow color palette based on the number of groups present
in the dataset results in indistinguishable colors. We note that
this challenge is not unique to scatterbar and approaches pre-
viously developed for color palette optimization may be inte-
grated (Hou and Ji 2022, Jing et al. 2024).

Finally, by default, scatterbar orders the groups as they ap-
pear in the dataset. However, manual reordering may

improve readability. Generally, in a stacked bar chart, the
top and bottom bars are aligned with a consistent baseline,
making them easier to visually compare across locations. In
contrast, middle bars lack a common baseline, and their posi-
tions shift depending on the size of the bars below them, ren-
dering visual comparisons more challenging due to the lack
of a common reference point. In such scenarios, reordering
groups by reordering the input data frame column ordering
such that the first and last columns correspond to the groups
of interest may facilitate comparisons. Such reordering could
also facilitate interpretation in cases where the sequence of
groups follows a meaningful hierarchy. For example, groups
with typically higher proportions across the dataset could be
ordered first to facilitate easier comparison across spa-
tial locations.

In general, as the number of groups and the number of spa-
tial locations increase, the task of directly comparing numer-
ous proportions over extensive spatial scales becomes
progressively more challenging. Alternative summary statis-
tics and visualizations beyond those enabled by scatterbar
may still be needed to address such challenges.

Although we have focused on demonstrating the utility of
scatterbar in the visualization of deconvolved cell-types in a
ST Visium dataset, it is applicable to other multi-cellular
pixel resolution ST technologies such as Slide-seq (Rodriques
et al. 2019) and DBiT-seq (Liu et al. 2020) as well. Likewise,
although we have focused on demonstrating applications to
ST data, accurately visualizing changes in proportional data
is crucial for a variety of applications, including but not lim-
ited to geographic information systems and phylogeography,
in addition to biological research. As such, we anticipate that
scatterbar will be a relevant tool for a wide range of
applications.
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