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Abstract
Motivation: Displaying proportional data across many spatially resolved coordinates is a challenging but important data visualization task, partic
ularly for spatially resolved transcriptomics data. Scatter pie plots are one type of commonly used data visualization for such data but present 
perceptual challenges that may lead to difficulties in interpretation. Increasing the visual saliency of such data visualizations can help viewers 
more accurately identify proportional trends and compare proportional differences across spatial locations.
Results: We developed scatterbar, an open-source R package that extends ggplot2, to visualize proportional data across many spatially resolved 
coordinates using scatter stacked bar plots. We apply scatterbar to visualize deconvolved cell-type proportions from a spatial transcriptomics 
dataset of the adult mouse brain to demonstrate how scatter stacked bar plots can enhance the distinguishability of proportional distributions 
compared to scatter pie plots.
Availability and implementation: scatterbar is available on CRAN https://cran.r-project.org/package=scatterbar with additional documentation 
and tutorials at https://jef.works/scatterbar/.

1 Introduction
Effective data visualization plays a pivotal role in uncovering 
insights and communicating complex information clearly 
(Wong 2010). This is particularly important when dealing 
with proportional data in addition to spatial coordinates, as 
it combines quantitative values with their spatial context, 
providing a more comprehensive understanding of the under
lying phenomena present and noting certain areas of interest. 
Such visualization of proportional data in addition to spatial 
coordinates is important for spatial transcriptomics (ST). ST 
enables high-throughput profiling of gene expression within 
tissue sections, often at multi-cellular pixel resolution (Ståhl 
et al. 2016, Rodriques et al. 2019, Liu et al. 2020). Such data 
demand appropriate visualizations to accurately represent the 
presence of multiple cell types and their respective propor
tions in each pixel while preserving their spatial coordinates. 
Detecting cell-type-specific spatial variation such as propor
tional changes across spatial locations is important for under
standing tissue organization and disease mechanisms. 
Therefore, there is a need for more effective visualization 
techniques that enhance the saliency of proportional changes 
and make it easier to interpret such complex spatial datasets.

Currently, a widely used method for this visualization is 
the scatterplot of pie charts, commonly referred to as “scatter 
pie plots” as implemented through the scatterpie R package 
(Yu 2024). Scatter pie plots offer a way of displaying 
proportions at specific spatial locations by combining the 

spatial plane of scatterplots with the proportionate data rep
resentation of pie charts. However, in the context of visualiz
ing ST data, scatter pie plots can leave significant amounts of 
whitespace in between spatial locations, which limits the effi
cient use of space, and are prone to visual artifacts such as 
moir�e effects, which can distort perception. In general, the 
limitations of using pie charts to accurately visualize quanti
tative proportional information have been previously well 
characterized (Cleveland and McGill 1984, Mackinlay 1986, 
Heer and Bostock 2010). Specifically, pie charts encode 
quantitative data using angles, resulting in decreased accu
racy in data interpretation compared to if the quantitative 
data was encoded using lengths (Mackinlay 1986, Heer and 
Bostock 2010). Previous studies have shown that accurately 
comparing the sizes of the slices in a pie chart, especially 
when the differences are subtle, is more challenging than 
comparing the lengths of bars, e.g. in a bar chart (Mackinlay 
1986, Heer and Bostock 2010). As such, the use of scatter 
pie plots for ST data visualization may make it challenging to 
accurately interpret and compare cell-type proportions 
to identify potentially interesting changes across spa
tial locations.

2 Materials and methods
Here, we present an R package called scatterbar, which pro
vides an alternative visualization for displaying proportional 
data across many spatially resolved coordinates. Given a set 
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of (x, y) coordinates and matrix of associated proportional 
data, scatterbar creates a stacked bar chart, where bars are 
stacked based on the proportions of different categories cen
tered at each (x, y) location.

The package’s core functionality is in the function 
“scatterbar.” The function inputs comprise of a data frame 
(data) containing the proportions of different categories for 
each location, where each row represents a location in a 2-D 
plane and each column represents a category, and a data 
frame (xy) containing the positional information for each lo
cation specified in the row names.

To modulate the size of the bar plots, scaling factors 
(size_x and size_y) are used. Scaling factors are used to adjust 
the height and width of the bars relative to the plot’s coordi
nate system. They enable the visualization to fit within the 
specified plot area and thereby make the proportions more 
interpretable. If the scaling factors for the x and y axes are 
not provided, the optimal scaling factors are automatically 
estimated by computing the distance between the maximum 
and minimum values for each axis and dividing by the square 
root of the number of spatial spots. Padding for the x and y 
axes (padding_x, padding_y) can also be adjusted as needed. 
Padding refers to the additional space added around the bars 
to prevent overlap with the plot’s boundaries or other ele
ments. Adjusting the padding ensures that the bars are clearly 
visible and separated from each other and the edges of 
the plot.

The final scatter bar plot is generated using the grammar 
of graphics framework as implemented in ggplot2 
(Wickham 2016), with options for customizing the colors of 
the bars, the title of the plot, and the legend. The function 
returns a ggplot object representing the scatter bar plot, 
allowing users to apply standard ggplot2 functions like coor
d_flip() for orientation adjustments as well as ggplot2 

extensions such as ggthemes for additional esthetic 
modifications.

3 Usage scenario
To illustrate the potential utility of the scatterbar package, 
we created both the scatter pie and scatter bar plots to visual
ize a multi-cellular pixel resolution ST dataset of the adult 
mouse brain assayed by Visium. Briefly, for this dataset, gene 
expression measurements were profiled at 55 µm resolution 
pixels across the tissue. Using these gene expression measure
ments, cell-type proportions per pixel were estimated using 
the reference-free deconvolution approach STdeconvolve 
(Miller et al. 2022). The input to scatterpie and scatterbar 
thus contained the deconvolved cell-type proportions at each 
pixel and the corresponding spatial coordinates of each pixel 
centroid. As such, we aimed to visualize and compare the 
deconvolved cell-type proportions across spatial locations in 
the tissue.

While both scatter pie and scatter bar plots allow for the 
visualization of cell-type proportions across spatial locations, 
it can be more challenging to discern subtle differences in 
cell-type proportions between locations based on the scatter
pie plot due to the visual similarity of angles in pie charts. We 
highlight two spatial locations where the proportion of cell- 
type i is different, but the proportion of cell-type j is the 
same. In visually assessing the areas denoting the proportion 
of cell-types i and j in the pie charts of the scatter pie plot, we 
note that it is difficult to discern whether these areas are the 
same or different across these two spatial locations in the tis
sue (Fig. 1A). Alternatively, in visually assessing the bars 
denoting the proportion of i and j in the bar charts in the 
scatter bar plot, we can more readily discern that the 
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Figure 1. Comparison of scatter pie and scatter bar plots for deconvolved cell-type proportions in multicellular pixel-resolution ST data of the adult mouse 
brain assayed by Visium. (A) Scatterpie plot showing the proportions of 12 cell types across spatial coordinates. Each pie chart represents the 
composition of cell types at that specific multicellular pixel in the tissue, with the size of the slice of each pie segment corresponding to the proportion of 
each cell type. (B) Scatterbar plot showing the same data. Each bar chart represents the composition of cell types at that specific multicellular pixel in the 
tissue, with the height of each bar segment corresponding to the proportion of each cell type. The x-axis and y-axis represent the spatial coordinates of 
pixels, and the colors correspond to the different cell types. Inset highlights two spatial locations.
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proportion of cell type i is different at the two locations, but 
the proportion of cell type j is the same (Fig. 1B).

By using bar charts instead of pie charts, scatterbar enhan
ces the saliency of cell-type proportion differences between 
spots, making it comparatively easier to detect subtle varia
tions in cell-type distribution across spatial locations in the 
tissue. Our observations align with the insights reported by 
researchers who have performed perceptual studies on data 
visualizations, reinforcing the effectiveness of the scatterbar 
approach in visualizing ST data (Cleveland and McGill 1984, 
Wong 2010).

4 Conclusion
We presented scatterbar as an R package implementing scat
ter bar plots for visualizing proportional data across spatially 
resolved coordinates. Compared to more commonly used 
scatter pie plots, scatter bar plots can enhance the saliency 
and distinguishability of proportional distributions, making 
it potentially easier to interpret and compare data across dif
ferent, particularly neighboring, spatial locations. By extend
ing ggplot2, scatterbar allows users to readily customize and 
tailor the visualization to specific datasets and re
search needs.

Despite these noted enhancements and benefits, the effec
tiveness of scatterbar may still be limited by certain factors. 
First, scatterbar automatically calculates a scale factor to ad
just the size of each stacked bar plot based on the data input. 
However, suboptimal visualizations may result when this 
scale factor is too large or too small. For example, when the 
scale factors for both axes are set too large, the stacked bar 
plots may overlap one over the other, making it impossible to 
discern all individual groups across the entire figure. 
Conversely, when the scale factor for either axis is too small, 
the stacked bar plots may become compressed, losing visual 
coherence and the ability to identify the groups and their pro
portions in an individual stacked bar graph. The padding be
tween stacked bar plots also plays a significant role in both 
the readability of the plot and the perception of the data dis
tribution. Excessive padding results in scattered and dis
jointed bars that obscure patterns as they overlap on top of 
each other (or should they be so excessive, result in no fig
ure), reducing legibility. This demonstrates that appropriate 
padding depends on the scale and density of the data; 
autoscaling may not always provide satisfactory results. In 
general, we recommend users should experiment with pad
ding to avoid under- or over-spacing and manually tune these 
various parameters to optimize their visualization.

Another critical limitation lies in color selection. Scatterbar 
relies heavily on distinct colors to differentiate between 
groups. In cases where user-selected colors are too similar, 
groups may become visually difficult to distinguish. As data 
complexity grows, and especially with larger numbers of 
groups, it becomes essential to carefully choose contrasting 
colors to maintain visual clarity. We recommend that users 
manually input their own color palettes if the auto-generated 
rainbow color palette based on the number of groups present 
in the dataset results in indistinguishable colors. We note that 
this challenge is not unique to scatterbar and approaches pre
viously developed for color palette optimization may be inte
grated (Hou and Ji 2022, Jing et al. 2024).

Finally, by default, scatterbar orders the groups as they ap
pear in the dataset. However, manual reordering may 

improve readability. Generally, in a stacked bar chart, the 
top and bottom bars are aligned with a consistent baseline, 
making them easier to visually compare across locations. In 
contrast, middle bars lack a common baseline, and their posi
tions shift depending on the size of the bars below them, ren
dering visual comparisons more challenging due to the lack 
of a common reference point. In such scenarios, reordering 
groups by reordering the input data frame column ordering 
such that the first and last columns correspond to the groups 
of interest may facilitate comparisons. Such reordering could 
also facilitate interpretation in cases where the sequence of 
groups follows a meaningful hierarchy. For example, groups 
with typically higher proportions across the dataset could be 
ordered first to facilitate easier comparison across spa
tial locations.

In general, as the number of groups and the number of spa
tial locations increase, the task of directly comparing numer
ous proportions over extensive spatial scales becomes 
progressively more challenging. Alternative summary statis
tics and visualizations beyond those enabled by scatterbar 
may still be needed to address such challenges.

Although we have focused on demonstrating the utility of 
scatterbar in the visualization of deconvolved cell-types in a 
ST Visium dataset, it is applicable to other multi-cellular 
pixel resolution ST technologies such as Slide-seq (Rodriques 
et al. 2019) and DBiT-seq (Liu et al. 2020) as well. Likewise, 
although we have focused on demonstrating applications to 
ST data, accurately visualizing changes in proportional data 
is crucial for a variety of applications, including but not lim
ited to geographic information systems and phylogeography, 
in addition to biological research. As such, we anticipate that 
scatterbar will be a relevant tool for a wide range of 
applications.
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