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18.1 � INTRODUCTION

As the adoption of machine learning continues to thrive and inspire major interests across broad 
applications (e.g., driving assistance or automation, face recognition, healthcare), fairness in the 
data-driven algorithms has drawn serious attention and become a key factor for their application 
to real decision-making. This chapter focuses on location-based fairness (a.k.a., spatial fairness), 
which is critical for a variety of essential societal applications, in which location information is 
heavily used in decision and policy-making. Spatial biases incurred by learning, if left unattended, 
may cause or exacerbate unfair distribution of resources, social division, spatial disparity, etc. In this 
chapter, we evaluate the methods in the context of agricultural monitoring. The population growth 
has caused immense pressure on food production and supply across the globe, which is worsened 
by climate change and its consequences (e.g., extreme events and frequent disturbances). The pres-
sure has resulted in multiple initiatives in large-scale crop monitoring, including The National 
Aeronautics and Space Administration (NASA) Harvest and G20’s GEOGLAM global agriculture 
monitoring (GEOGLAM, 2021). As the size of the satellite imagery that these types of projects 
commonly rely on is reaching far beyond the capacity of manual processing, crop modeling heavily 
relies on data-driven methods to assist in the generation of crop maps (Ghosh et al., 2021; Kamilaris 
et al., 2018; Kussul, Lavreniuk, Skakun, & Shelestov, 2017). Major derived products such as acre-
age estimates (Olofsson et al., 2014) are further used to inform critical actions such as the distribu-
tion of subsidies (Bailey & Boryan, 2010; Boryan, Yang, Mueller, & Craig, 2011; NASEM, 2018) 
and other resources, to allow resilience against disturbances and long-term sustainability. Location-
related model bias can often lead to unfair distribution of resources.

Prior work has explored a variety of fairness-preserving approaches to problems where fairness 
can be defined based on certain categorical attributes such as race, gender, or income level. The 
most common and generally applicable approach is regularization-based, which includes additional 
fairness-related losses during the training process (Kamishima, Akaho, & Sakuma, 2011; Serna et 
al., 2020; Yan & Howe, 2019; Zafar, Valera, Gomez Rodriguez, & Gummadi, 2017). Another major 
approach aims to learn group-invariant features (Alasadi, Al Hilli, & Singh, 2019), in which addi-
tional discriminators are included in the training to penalize learned features that can reveal the iden-
tity of a group (e.g., gender) in an adversarial manner. Sensitive category decorrelation also employs 
the adversarial learning regime. However, it aims to mitigate the polarization of predictions (e.g., 
the sentiment of a phrase) for each category (e.g., a language) rather than learning group-invariant 
features (Alasadi et al., 2019; Sweeney & Najafian, 2020; Zhang & Davidson, 2021). From the 
data perspective, strategies have also been developed for data collection and filtering to reduce bias 
in downstream learning tasks (Jo & Gebru, 2020; Steed & Caliskan, 2021; Yang, Qinami, Fei-Fei, 
Deng, & Russakovsky, 2020). Other approaches have also been discussed in a recent survey by 
Mehrabi, Morstatter, Saxena, Lerman, and Galstyan (2021). These approaches have been applied 
to tasks where groups are well-defined by categorical attributes, for example, face detection (Serna 
et al., 2020), text analysis (Sweeney & Najafian, 2020), and online bidding (Nasr & Tschantz, 2020). 
For spatial data, location-explicit frameworks (Xie, He, et al., 2021a, Xie, Jia, et al., 2021b) have 
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been developed to improve prediction performance over locations, but they do not consider fairness 
over space.

Compared to the traditional fairness-preserving techniques designed for categorical groups, 
evaluation and enforcement of spatial fairness introduce two major layers of complication. First, 
different from categorical attributes such as race and gender, space is continuous and can be parti-
tioned in different ways, for example, states, counties, districts, or manually defined spatial regions. 
Statistics evaluated over multiple space partitions can be very sensitive to the changes in the space-
partitioning. In other words, a fair map on one partitioning may yield different conclusions when 
evaluated on other partitionings. In statistics, this is known as the Modifiable Areal Unit Problem 
(MAUP; Definition 18.2.4), which shows the fragility of statistical conclusions under the manipu-
lation of partitioning. A high-profile example is gerrymandering, which refers to the partitioning 
manipulation practice used by political parties to gain favor during an election. The growing con-
cerns have raised the issue to the US Supreme Court (NPR, 2019) and state courts (Florida, 2015). 
Another major challenge is that the fairness conclusion can also change due to the changing environ-
ment. This can be caused by the temporal data distribution shift across years. As a result, a fairness-
enforced model learned from training years may fail to preserve fairness in target testing years. 
This chapter explores fairness-aware deep learning for spatial data and will cover recent advances 
in this domain to address these intricate challenges and pave the way for more equitable and robust 
machine learning solutions.

18.2 � KEY CONCEPTS

To formally define spatial fairness, we rely on the following fundamental concepts.

Definition 18.2.1

Partitioning P and partition p. A partitioning P splits an input space into K non-overlapping parti-
tions {p1, …, pK} that together cover the entire space.

Definition 18.2.2

Performance measure mF. A measure that evaluates the solution quality (not related to fairness) of 
a trained model FΘ with parameters Θ. For example, mF can be F1-scores, mean squared errors, 
or a loss function measured during training. In the rest of the chapter, mF(FΘ) is used to denote the 
general performance of FΘ, and mF(FΘ, p) or mF(FΘ, P) specifically denotes the performance of FΘ 
on data samples in space covered by a partition p ∈ P or an entire partitioning P (equivalent to 
the entire dataset in this case).

Definition 18.2.3

Fairness measure fairm . A statistic used to evaluate the fairness of a learning model’s performance 
across several mutually exclusive groups of individual locations. An example of fairm  is the vari-
ance of F1-scores across groups. In this chapter, groups are defined by partitions p ∈ P and fairm  is:
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where p is a partition in P (Definition 18.2.1), d(·, ·) is a distance measure (e.g., squared or abso-
lute distance), MF(FΘ, p) is the score (e.g., F1-score) of FΘ on p’s training data, |P| is the number of 
partitions in P, and EP, another key variable, represents the mean (expected) performance at each 
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local partition p ∈ P. If mF(FΘ, p) has a large deviation from the mean (weighted or unweighted), 
the model FΘ is potentially unfair across partitions. Finally, EP is calculated from a base model FΘ0, 
where parameters Θ0 are trained without any consideration of spatial fairness:
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The benefit of using FΘ0, to set the mean, is that, ideally, we want to maintain the same level of 
overall model performance (e.g., F1-score without considering spatial fairness) while improving 
spatial fairness. Thus, this choice automatically takes the overall model performance into consid-
eration as the objective function (Equation 18.1) will increase if FΘ’s overall performance diverges 
too far from it (e.g., a model that yields F1-scores of 0 on all partitions, which is fair but poor, will 
not be considered a good candidate).

Definition 18.2.4

Modifiable Areal Unit Problem. MAUP states that statistical results and conclusions are sensitive 
to the choice of space-partitioning P. Specifically, given a statistic τ that aggregates the informa-
tion inside a partition p, MAUP entails that the distribution of τ or conclusions based on it varies 
as P changes. This is often considered a dilemma as statistical results are expected to vary if dif-
ferent aggregations or groupings of locations are used.

Statistical sensitivity by MAUP has been commonly exploited in practice, including examples 
of gerrymandering (Florida, 2015; NPR, 2019). In this work, MAUP leads to the challenge that the 
conclusion on “fair vs. biased” is fragile to variations in partitionings or scales. Figure 18.1 shows 
an illustrative example of the effect of MAUP on spatial fairness evaluation. Figure 18.1 (a1) and 
(b1) show two example spatial distributions of prediction results (green: correct; red: wrong): (a1) 
has a large bias where the left side has 100% accuracy and the right side has 0%, and (b1) has a 
reasonably even distribution of each. However, as shown in Figure 18.1 (a2–3) and (b2–3), different 
partitionings or scales can lead to completely opposite conclusions, making fairness scores fragile 
in the spatial context.

(a1)

(b1)

(a2) (a3)

(b2) (b3)

Legend
Correct 
prediction
Incorrect 
prediction

FIGURE 18.1  Illustrative examples showing the sensitivity of fairness conclusion to both space-partitioning 
and scale. (a1) Distribution A (a2) Unfair  (a3) Fair (b1) Distribution A (b2) Unfair (b3) Fair.
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Definition 18.2.5

MAUP-aware fairness measure Mfair. A fairness measure that explicitly considers multiple parti-
tionings {P} during evaluation, defined as:
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where |{P}| is the cardinality of partitionings used for MAUP-aware fairness evaluation.

18.3 � FAIRNESS ENFORCEMENT THROUGH BI-LEVEL LEARNING

When preserving the fairness result on a specific partitioning P using mfair in Equation 18.1, a tra-
ditional way is to add the fairness into the loss function, that is, L = Lpred + λ · mfair, where Lpred 
is the prediction loss (e.g., cross-entropy or dice loss) and λ is a scaling factor or weight. This 
regularization-based formulation has three limitations when used for spatial fairness enforcement: 
(1) the performance metrics mF used in mfair (Equation 18.1) are ideally exact functions such as 
precision, recall, or F1-scores. However, approximations are often needed (e.g., threshold-based, 
soft-version) because many of these metrics are not differentiable when used in the loss function 
(e.g., with the use of arg max to extract predicted classes). The uncertainty created by the errors in 
these metrics can be quickly accumulated and amplified when they are used to derive fairness indi-
cators; (2) the regularization term mfair requires another scaling factor λ, the choice of which directly 
impacts final output and varies from problem to problem; and (3) since deep learning training often 
uses mini-batches due to data size, it is difficult for each mini-batch to contain representative sam-
ples from all partitions {pi ∣ ∀ pi ∈ P} when calculating mfair. We propose a bi-level training strategy 
that disentangles the two types of losses with different purposes (i.e., Lpred and mfair) (Xie et  al., 
2022). In particular, before each epoch, a referee evaluates the spatial fairness using Equation 18.1 
with exact metrics mF (e.g., F1-score); no approximation is needed as back-propagation is not part of 
the referee. The evaluation is performed on all partitions pi ∈ P, guaranteeing the representativeness. 
Note that the model is evaluable for the very first epoch because the fairness-driven training starts 
from a base model, as discussed in the previous section and explained in Equation 18.1. Based on 
an individual partition pi’s deviation |mF(FΘ, pi) − EP| (a summand in mfair’s numerator in Equation 
18.1), we assign its learning rate ηi for this epoch as:
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where ηinit is the learning rate used for training the base model, ηη η η′′ ′ ′ >|=min argmin {
i
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i i . The intuition is that, if a partition’s fairness measure is lower than the 
expectation Ep, its learning rate ηi will be increased (relative to other partitions’) so that its prediction 
loss will have a higher impact during parameter updates in this epoch. In contrast, if a partition’s 
performance is the same or higher than the expectation, its ηi will be set to 0 to prioritize other lower-
performing partitions. Positive learning rates after the update are normalized back to the range [0, 
ηinit] to keep the gradients more stable. Using the learning rates {ηi} assigned by the referee, we per-
form regular training with the prediction loss Lpred, iterating over data in all individual partitions pi ∈ 
P in mini-batches. This bi-level design also relieves the need for an extra scaling factor to combine 
the prediction and fairness losses.
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18.4 � FRAGILITY OF SPATIAL FAIRNESS UNDER MAUP

This section proposes a set of techniques to maneuver in the sphere of spatial fairness and bias dur-
ing the training process under the MAUP challenge (He et al., 2022).

18.4.1 � Key Instances

In the following, we present three key instances of the spatial fairness problem.

18.4.1.1 � Pure Fairness-Driven Learning
This instance focuses only on fairness-related objectives defined by the MAUP-aware fairness mea-
sure Mfair:

	
( ) ( ) ( ) αΘ Θ Θ
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where SP = {P} is a set of user-selected partitionings used for MAUP-aware fairness training, Θ0 
is the set of parameters obtained after training without fairness consideration (Definition 18.2.3), 
mF(FΘ) and mF(FΘ0) evaluate the global model performance on the entire data (during training, we 
use validation data as a proxy for test data), and α ∈ ℝ+.

18.4.1.2 � Pure Bias-Injection Learning
Opposite to the previous instance, this instance aims to inject bias into a model. Here we consider two 
different forms of bias injection: (1) a high Mfair value on a target partitioning P (here |{P}| = 1 for 
Mfair, making Mfair equivalent to its special case mfair); and (2) a low model performance mF(FΘ, p) on 
one specific partition p ∈ P. The two forms are shown in Equation 18.7. Here we assume that higher 
performance metrics mF indicates better performance (e.g., F1-score), while lower fairness measure 
Mfair indicates better fairness (e.g., variance of performance metrics over space).
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18.4.1.3 � False Fairness-Preserving Learning
The first two instances are relatively easier for training as each of them has a single objective, either 
fairness- or bias-based. Like the previous instance, this instance uses the F1-score as the performance 
metric and deals with a more complex scenario, which hides biases under a seemingly fair model:
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As we can see, the objective includes both a fairness objective from Equation 18.6 and a bias-
injection objective from Equation 18.7; again, the bias can be expressed in the same two forms in 
Equation 18.7. Here, fair

PS  represents a set of partitionings that we aim to preserve fairness within; 
Pbias and pbias respectively refer to the partitioning and partition into which we intend to inject bias; 
βbias and βfair represent two weights corresponding to the fairness-preserving objective and the bias-
injection objective. For the first form of bias (partitioning level), we do need an additional constraint, 
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which requires that Pbias is not a member of fair
PS . Finally, the weights βfair and βbias are used to com-

bine the objectives; in this work, we set βbias to 1 and βfair to fair
PS . If biases can be injected under the 

coverage of fairness objectives, it can become much more challenging to recognize or detect them 
in practice. Thus, it is important to understand the interactions to design more robust mechanisms 
to avoid bias risks.

18.4.2 � Pure Fairness-Preserving Learning

Pure fairness-preserving learning (Section 18.4.1.1) can be achieved by extending the training strat-
egies from Section 18.3. We propose a stochastic training strategy to achieve the fairness over mul-
tiple partitionings in SP. In each iteration or epoch, we randomly sample a partitioning from SP and 
use it to evaluate a fairness-related loss mfair (e.g., Equation 18.1). The model is then updated to 
optimize the fairness over the selected partitioning in each epoch.

Since it is in general difficult to apply hard constraints during the back-propagation process, 
in our solution we model the constraints in Equations 18.6 to 18.8 as soft constraints. In order to 
minimize the deviation from the overall performance (e.g., global F1-score) achieved by the uncon-
strained model FΘ0 (no fairness consideration), we use the following strategies to keep the training 
of FΘ maneuvering around mF(FΘ0).

We introduce a new performance-reconditioning epoch:

Definition 18.4.1

A performance-reconditioning epoch temporarily ignores the fairness (or bias) criteria and focuses 
only on overall performance mF, as a mitigation strategy to move closer to mF(FΘ0, P). In this con-
text, this means the learning rates will be the same for all partitions p ∈ P. One performance-
reconditioning epoch is executed whenever the constraint |mF(FΘ) − mF(FΘ0)| ≤ α is violated.

Validation of the constraint in Definition 18.4.1 is performed by evaluating the model on the 
training dataset with exact metrics (e.g., F1-score instead of approximation by loss functions). The 
evaluation is delayed for twait epochs (e.g., twait = 5) if the condition is met to save computation, and 
otherwise performed immediately after each epoch so that more execution of the reconditioning 
epoch may be used to maneuver back to a similar level of overall performance.

18.4.3 � Pure Bias-Injection Learning

18.4.3.1 � Partitioning-Level Bias Injection
Pure bias-injection learning for a target partitioning, that is, maxΘ Mfair(FΘ, mF, P) in Equation 18.7 
can adopt the same high-level training process. The major difference is that the learning rates will be 
assigned in a different way. Instead of pushing the performance on different partitions p ∈ P toward 
mF(FΘ0, P), here we increase their discrepancies by only providing a learning rate (ηmax) to partitions 
with performance above mF(FΘ0). As allocating positive learning rates to partitions with lower perfor-
mances may narrow their distances to mF(FΘ0), we set their rates to zero in the bias-injection epochs.

In practice, the reconditioning epoch is often not activated much during pure fairness-preserving 
learning. However, it becomes important when we consider bias injection. The main reason is that 
partitions with higher mF(FΘ), in general, have less space for further growth. This is different from 
the scenario in pure fairness-preserving learning, where the training process tries to increase mF(FΘ) 
on lower-performing partitions. On the other hand, during bias-injection, lower-performing parti-
tions that are not assigned learning rates often have a faster decrease in mF(FΘ). This makes it easy 
for mF(FΘ) − mF(FΘ0) to be smaller than −α. Thus, having the new reconditioning epoch in Definition 
18.4.1 is necessary during bias injection, which was not considered in Section 18.4.2. Based on our 
experiments, the reconditioning epoch is often executed for more than 50% of the epochs.
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18.4.3.2 � Partition-Level Bias Injection
As discussed in Section 18.4.1.2, partition-level bias-injection targets performance decrease 
on only a single partition ∈p P , that is, ( )Θ Θmin ,Fm F p  in Equation 18.7, where the constraint 

( ) ( ) αΘ Θ− ≤0F Fm F m F  remains the same. We further discuss two related scenarios for the single 
partition (p) level:

	 •	 Uncontrolled decrease on mF(FΘ, p), where the only bias-injection purpose is to reduce the 
performance on p;

	 •	 Controlled decrease on mF(FΘ, p), where the prediction is manipulated toward a user-
specified target (e.g., from “oil palm plantation area” to “forest”).

The training strategy for both scenarios can be simple. For the uncontrolled scenario, we can simply 
leave out data samples from the partition during training. One may also apply more aggressive strate-
gies such as gradient ascent, that is, Θ = Θ + η · ∇ LFΘ(Xp, yp). According to our experiments, the left-
out strategy is self-sufficient in most scenarios. For the controlled scenario, we swap the training labels 
in p to the target labels. Note that for both scenarios, the reconditioning epoch is still needed to keep 
the model performance at the level of mF(FΘ0). Moreover, currently, we only target partitions with 
relatively small sizes (e.g., less than 10% of the entire study area). This may not be feasible with major 
changes in labels. For example, depending on the original mF(FΘ0), a certain proportion of change may 
result in a bounded performance of mF(FΘ), which is below mF(FΘ0) − α. In the future, we will explore 
strategies to control only a learned/optimized subset of labels to inject location-based bias.

18.4.4 � False Fairness-Preserving Learning

Here we target the final problem defined in Section 18.4.1.3, where the goal is to simultaneously 
preserve fairness and inject bias during the training process. Such manipulations in opposite direc-
tions are often infeasible for traditional fairness problems, where the groups (e.g., race, gender) are 
pre-defined. In the location-based fairness problem, due to the existence of non-stationary groupings 
(i.e., different partitionings), we will show that it is possible for a model to have “hidden bias” under 
the cover of “fair results,” which may be more easily unnoticed or undetected in practice.

18.4.4.1 � Partitioning Level
Compared to the first two problems with pure objectives, false fairness-preserving learn-
ing is much more challenging due to the conflicts that often exist between the objectives in 

( )( ) ( )β βΘ Θ Θ
 − +  

bias bias fair fair
fairmin · , , · , ,F fair F PM F m P M F m S ; as a reminder, lower Mfair values 

correspond to fairer results. Although we have included an additional constraint that ∉bias fair
PP S

, different partitionings are not independent and often share a certain level of overlaps. For this 
reason, the attempt to directly combine the training strategies in Sections 18.3 and 18.4.3.1, as we 
tested, often gets stuck in a middle ground with little progress either on fair

PS  or Pbias. Thus, we pro-
pose an Agreement-driven simultaneous Fairness-preserving And Bias-injection (A−FAB) training 
approach to target the two goals for the same model FΘ. In the following, we first demonstrate the 
feasibility of the task and then present the A-FAB algorithm.

Feasibility: Figure 18.2 shows two illustrative examples of changes in performance distribu-
tions, which make results in one partitioning fairer while the other is more biased. The 
grids represent different examples of space-partitionings, and the numbers in the partitions 
show the accuracy values achieved by a model. For simplicity of illustration, we assume 
all the partitions have the same number of data samples. The first example consists of 
Figure 18.2 (a) and (b), where all four partitionings share the same overall performance 
(i.e., global accuracy at 0.5). The changes from (a) to (b) make the location-based fairness 
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improve (perfectly fair) for the partitionings at the top. However, they introduce more bias 
into the partitionings in the second row, that is, the values move further away from the 
global mean at 0.5. Figure 18.2(c) and (d) show the second example, where similar pat-
terns appear when changes are made from (c) to (d). Similarly, all partitionings share the 
same global accuracy at 0.4. In both cases, the fairness results get better after the change 
for the partitionings in the top row but deteriorate for the partitionings at the bottom. The 
two examples demonstrate that it is feasible to simultaneously incur improvements and 
degradation in fairness.

A-FAB Algorithm: To realize the feasible scenarios in Figure 18.2, the A-FAB training pro-
cess executes in a paired-fashion, where each pair (Pfair, Pbias) is a combination of a par-
titioning in fair

PS  (the goal is to improve fairness for partitionings in the set) and the target 
partitioning for bias injection Pbias. The general sequence of training is that each epoch uses 
one pair from the set and continues to loop over it until convergence.

The key step during the training of each pair (Pfair, Pbias) is to identify agreement between them. 
Specifically, A-FAB uses directional agreement (Definitions 18.4.2 and 18.4.3) to determine whether 
a partition should be trained in the current epoch.

Definition 18.4.2

Desired direction. A desired direction of performance change for a partition p ∈ P is the direction 
that moves its performance mF(FΘ, p) in order to improve its objective function value. The direc-
tions are different for fairness preservation and bias injection. For fairness preservation, a desired 
direction of p will be to increase if its score is below the global mean mF(FΘ0, P), and to decrease 
if its score is above the mean, which helps reduce Mfair:

	
( ) ( ) ( )0fair or1, if , ,

or 1, otherwise
F Fm F p m F P

dir p Θ Θ↑ ≤= 
↓ − 	

(18.9)

For bias injection, the directions are the opposite in order to increase Mfair.

(a) (b) (c) (d)

FIGURE 18.2  Examples showing the feasibility of improving fairness on one partitioning while injecting 
bias in another. (a) Global F1: 0.5 (b) Global F1: 0.5 (c) Global F1: 0.4 (d) Global F1: 0.4.
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Definition 18.4.3

Directional agreement. Given two overlapping partitions pfair ∈ Pfair and pbias ∈ Pbias, a directional 
agreement between them means that their desired directions of performance change are identical 
for the current epoch. Note that the directional agreements vary over epochs due to the continued 
updates on model parameters.

Figure 18.3 shows an example of directional agreement between a pair (Pfair, Pbias) in an epoch. 
Directional agreement is important as it identifies common grounds between two seemingly “con-
flicting” objectives. For the training of each epoch, we only carry out training on partitions from Pbias 
(or Pfair) that agreed on the directions of intersecting partitions from Pfair (or Pbias). The partitioning 
to choose partitions from is determined based on the average number of overlapping partitions O, 
for example, 

−
== ∩∑

fair1fair fair fair bias
0

P
i iO P p P . The partitioning with the smaller O will be selected.

If a partition p overlaps with multiple partitions in the other partitioning, we use the majority vote 
to determine if it will be included in training or not (ties are broken in favor of “agreement”). The 
reconditioning epoch is also employed to maintain overall performance.

18.4.4.2 � Partition-Level
The solution at the partition-level is much simpler. The training process is a combination of the algo-
rithm for fairness-preserving learning in Section 18.4.2 and the partition-level bias-injection learn-
ing in Section 18.4.3.2. Specifically, for the uncontrolled bias injection, we perform the algorithm 
as regular, and the only difference is that, the intersection between any partitioning ∈fair fair

PP S  and 
the single partition pbias is skipped in training. For the controlled bias injection (altering prediction 
labels), instead of skipping the samples in pbias for training, we use manipulated samples with label 
changes for the training of the partition, following the strategy in Section 18.4.3.2.

18.4.5 �E xperiments

18.4.5.1 � Datasets
We evaluate our proposed method on the following datasets:

California crop mapping: Accurate mapping of crops is critical for estimating crop areas and 
yield, which are often used for distributing subsidies and providing farm insurance over 
space. Our input X for crop and land cover classification is the multispectral remote sensing 
data from Sentinel-2 in Central Valley, California, and the study region has a size of 4096 
× 4096(∼ 6711 km2 at 20 m resolution). We use the multi-spectral data captured in August 
2018 for the mapping, and each location has reflectance values from 10 spectral bands, 

(a) (b) (c)

FIGURE 18.3  Illustrative example of directional agreement. (a) Pbias directions (b) Sfair directions, (c) 
Agreement. 
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which are used as input features, and the label y is from the United States Department 
of Agriculture (USDA) Crop Data Layer (CDL) (CDL, 2017). In our tests, we randomly 
select 20%, 20%, and 60% locations for training, validation, and testing, respectively.

Mapping palm oil plantations in Indonesia: We validate our framework in detecting oil palm 
plantations, which is a key driver for deforestation in Indonesia. Plantations have similar 
greenness levels to tropical forests. Our ground truth labels were created in Kalimantan, 
Indonesia, in 2014 based on manually created plantation mapping products by the 
Roundtable on Sustainable Palm Oil (RSPO) (Gunarso, Hartoyo, Agus, & others., 2013) 
and Tree Plantation (Petersen et al., 2016). Each location is labeled as one of the catego-
ries from {plantation, nonplantation, unknown}, where the “unknown” class represents the 
locations with inconsistent labels between the RSPO and Tree Plantation dataset. We do 
not consider the “unknown” class in the classification. We utilize the 500-meter resolution 
multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) satellite image, 
which consists of 7 reflectance bands (620 − 2155 nm) collected by MODIS instruments 
onboard NASA’s satellites, and was collected in January 2014.

18.4.5.2 � Candidate Methods
We implement a diverse set of methods:

	 •	 Base: The base deep learning model (fully connected Deep Neural Networks (DNN) and 
Long Short-Term Memory (LSTM) networks without consideration of spatial fairness.

	 •	 REG: This method for enforcing spatial fairness involves adding a regularization term to 
the loss function of the base model. In this experiment, we set the weight of the regular-
izer to 10.

	 •	 Adversarial Discriminating-based Learning (ADL): This baseline is an extension of the 
discriminator-based fairness enforcing approach (Alasadi et al., 2019). We include a sepa-
rate discriminator for each partitioning in fair

PS  and Pbias. For fairness preservation, the model 
aims to learn group-invariant (or fair) features that make it difficult for a discriminator to 
identify the partition p ∈ P from which data samples come. For bias injection, we do the 
opposite to reward features that are in favor of the discriminator.

	 •	 FAIR: The proposed pure fairness-preserving learning approach described in Section 18.4.2.
	 •	 BI: The proposed pure bias-injection learning approach described in Section 18.4.3. There 

are three variants of BI: (1) BIP: partitioning-level bias injection; (2) BIp: partition-level 
bias-injection (without label control); and (3) ∗BI p: partition-level bias-injection with target 
label control.

	 •	 A-FAB: The proposed method that simultaneously performs fairness preservation and bias 
injection, discussed in Section 18.4.4. Similarly, depending on the type of bias injection, 
there are three variants: A-FABP, A-FABp, and ∗A-FABp.

18.4.5.3 � Results
18.4.5.3.1 � California Crop Mapping Dataset
We evaluate the proposed method using randomly selected partitionings for fairness-preservation 
and bias injection. We report the performance of each method by injecting bias into the partitioning 
(4, 4) while preserving fairness over different sets of partitionings (Figure 18.4). The sets cover dif-
ferent numbers of partitionings, that is, from 1 to 4, as shown in Figure 18.4(a–d).

Overall performance: The results on the crop mapping dataset show several major trends. 
First, our proposed methods (FAIR, BI and A-FAB) are able to maintain similar global 
F1-scores as the other methods. This confirms the capacity of the training strategies in 
controlling the results in the fairness-bias sphere (i.e., improving or degrading the fairness) 



Fairness-Aware Deep Learning in Space� 303

(a)

(b)

(c)

(d)

FIGURE 18.4  The fairness and overall performance with a different number of fairness-preserving 
partitionings (from 1 to 4). For each test, we show three results for all the methods: left—obtained fairness scores 
(mfair in Definition 18.2.4) for each of fairness-preserving partitionings; middle—obtained fairness scores for 
the bias-injecting partitioning; and right—the overall performance. The higher fairness score indicates worse 
fairness performance. (a) Fairness preserving (1, 3), bias injection (4, 4), (b) Fairness preserving (2, 2) and 
(1, 5), bias injection (4, 4), (c) Fairness preserving (2, 4), (2, 3), and (1, 5), bias injection (4, 4), and (d) Fairness 
preserving (2, 5), (2, 4)(1, 3), and (1, 2), bias injection (4, 4).
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without compromising the overall classification performance, revealing the importance of 
explicit and thorough consideration of location-based fairness in important applications.

Fairness-preserving performance: The proposed methods (FAIR and A-FAB) in general 
produce much better fairness scores (lower the better; Definition 18.2.3) for partitionings 
under fairness-protection compared to the base model, REG and ADL. This confirms the 
effectiveness of our method in maintaining fairness by using the learning-rate-based strat-
egy (i.e., improved sample representativeness). Especially, the fairness scores obtained by 
A-FAB are similar to the FAIR method, which confirms that A-FAB can simultaneously 
preserve the fairness for certain partitionings while injecting bias for a target partitioning, 
thanks to the use of directional agreements. The ADL method focuses on reducing the 
distributional gap across partitions. As a result, it treats different partitions equally in the 
classification process by eliminating partition-specific information, but it is not as effective 
for the enforcement of fairness across partitions.

Bias-injection performance: The proposed methods (A-FAB and BI) are more effective in bias 
injection at the partitioning-level, compared to FAIR, REG, and ADL. We also observe 
that in some scenarios the A-FAB method resulted in less bias on the partitioning (4, 4) 
compared to the base model, especially when we need to preserve fairness for more parti-
tionings, for example, Figure 18.4(b–d). This is mainly due to the fact that the base model 
is unconstrained and is not bounded by the additional fairness-preserving objectives in 
A-FAB (Section 18.4.4). As we decrease the number of fairness-preserving partitionings, 
it becomes easier to inject bias into the target partitioning. In particular, if we only con-
sider bias-injection, that is, no fairness-preserving partitionings, the pure bias-injection 
method BI can lead to higher bias for the target partitioning. Figs. 5(a) and (b) show the 
performance of injecting bias on (4, 4) and (2, 3), respectively. In Figure 18.5(c) and (d), 
we also show the distribution of F1-score on each of the 2-by-3 partitions. It can be seen 
that BI (Figure 18.5(b)) can achieve a more unbalanced F1 distribution compared to the 

(a) (b)

(c) (d)

FIGURE 18.5  (a, b) The fairness and overall predictive performance on the target partition (4,4) or (2,3) 
after applying bias injection. (c, d) The obtained F1-scores over different partitions in (2,3) using (c) Base and 
(d) BIP. (a) Bias injection (4,4), (b) Bias injection (2,3), (c) Base on (2,3), (d) BIP on (2,3) in (4,4) on (1,5) 
and (2,2).
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base model (Figure 18.5(a)). These results together suggest that it is critical to increase the 
number of partitionings used in fairness preservation, which in general leaves less room for 
bias injection. Explicit consideration of fairness on only a few partitioning may not be able 
to reduce the risk of unnoticed/hidden bias.

We further tested the proposed method for injecting bias on a specific target partition, as shown in 
Figure 18.6. We randomly select one partition from the (4, 4) partitioning. We can see that both BIp 
and ∗BI p can effectively degrade the F1-scores for the target partition for intervention while maintain-
ing the fairness for partitionings under fairness preservation.

18.4.5.3.2 � Palm Oil Plantation Mapping Dataset

We conduct the same tests for mapping palm oil plantations, and we can observe similar results on 
this dataset (Figure 18.7). In Figure 18.7(b), we notice that the FAIR method (optimized on (3, 3) 
and (2, 1)) produces very good fairness even for the partitioning (1, 5). This is because the palm oil 
plantations in this dataset are relatively homogeneous over space and thus improving the fairness 
on certain partitionings could easily promote the fairness over other partitionings. Also, according 

(a) (b)

FIGURE 18.6  Bias injection on a specific partition: (a) shows the pure bias-injection learning and (b) shows 
the false fairness-preserving learning. (a) Bias injection to the 11th partition (b) Bias injection to the 1st 
partition in (4,4) while preserving fairness in (4,4) on (1,5) and (2,2). 

  

(a) (b) 

(c)  

FIGURE 18.7  The fairness and performance of the DNN model on plantation mapping with (a, b) bias 
injection on partitioning (1,5), and (c, d) bias injection on a specific partition. Tests in (a) and (d) do not 
have any fairness-preserving partitionings. (a) Bias injection (1,5), (b) Fairness preserving (3,3) and (2,1), 
bias injection (1,5), (c) bias injection to the 5th partition in (d) Bias injection to the 9th partition in (5,5) while 
reserving fairness (3,3) on (3,3) and (2,1).
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to Figure 18.7, the gap between { }∗A-FAB ,A-FABp p  and {Base, FAIR} is smaller than that in the 

crop dataset. This is also due to the homogeneous nature of the plantations, that is, degrading the 
F1 performance on a specific partition may break the fairness on fairness-preserving partitionings 
(3, 3) and (2, 1). Finally, Figure 18.8 shows an example result of controlled partition-level bias injec-
tion by ∗BI p (highlighted a local region inside the 5th partition), where the palm oil plantation area 
is largely changed to the forest (the global F1-score of the entire area remains at a similar level as 
shown in Figure 18.7(c)).

18.5 � TIME-AWARE SPATIAL FAIRNESS

Due to temporal variations in environmental conditions across different locations, a fairness-
enforced model trained on data from previous years may fail to maintain fairness when applied to 
testing data for subsequent years. This section introduces a physics-guided neural network model, 
which leverages the physical knowledge from existing physics-based models to guide the extrac-
tion of representative physical information and discover the temporal data shift across years (He 
et al., 2023).

18.5.1 � Problem Formulation and Preliminary

Problem: The objective is to predict the county-level yield for corn in target years. For each 
county i, we are provided with input features within each year t, as Xi, t= { }…1 2

, , ,, , , D
i t i t i tx x x , 

which are available at daily scales, that is, D = 365 in a non-leap year. The daily features ,
d
i tx  

include weather drivers (e.g., precipitation, solar radiation), and soil and crop properties. 
The feature values are obtained as the average of the variable values from a set of randomly 
sampled farm locations in each county; see details in the Experiment Section (Section 
18.5.4). Additionally, we have access to the crop yield labels Y = {yi, t} from agricultural 
surveys in the training years . In the target testing years  , we only have the input fea-
tures but do not have the crop yield labels in the training process. In this problem, we use 
the predictive root mean square error (RMSE) as the performance metric, while fairness 
remains consistent with Equation 18.1.

In addition to the real crop yield dataset, we also run the physics-based Ecosys model (Zhou et al., 
2021) to simulate crop yield. We use   to represent the set of locations and years (i, t) for which we 
have the simulated crop yield. Another benefit of the physics-based model is that it can also simulate 

(a) (b)

FIGURE 18.8  Controlled partition-level bias injection: palm oil plantation (white) to forest (blue). (a) Ground 
truth and (b) Result by BIp∗.
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some intermediate physical variables in the crop growing process, such as variables involved in 
carbon and nitrogen cycling. It is noteworthy that physics-based models are often biased as they 
are necessarily approximations of reality due to incomplete knowledge or excessive complexity in 
modeling underlying processes. Hence, the simulated data can only be used for weak supervision.

Attention-based crop yield predictive model: The predictive model ( )Θ ,i tx  used in this work 
is based on an LSTM-Attention network. In this model, Θ represents all the parameters in 
the network. Specifically, we first use an LSTM network to extract hidden representations 
at every time step (i.e., each date in a year), as ( )= ==1: 1:

, ,LSTMd D d D
i t i th x . Then we create 

attention weights for each time step from its corresponding hidden representation via a 
linear transformation and a softmax function, as follows:
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where wα ∈ ℝD
h and bα ∈ ℝ1 are attention model parameters; hereinafter we use {w∗, W∗, b∗, b∗} 

to represent model parameters.
The embedding for each county i in year t can be obtained by the weighted mean over all the time 

steps using the attention weights, as:
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(18.11)

Finally, the model outputs the predicted yield value of the county i in year t as:

	 ( )Θ = +, , .i t y i t yF bx w e 	 (18.12)

The model can be trained by minimizing a mean squared error-based loss function, as follows:
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where N is the total number of counties.
Sample reweighting strategy: Sample reweighting strategy has been explored to reduce the gap of 

input space between the source and target domains (Bickel, Brückner, & Scheffer, 2007; Freedman 
& Berk, 2008). In our problem, a classifier  is trained to distinguish between source/training and 
target/testing years. The classifier  is implemented as a four-layer fully connected network. Its out-
put is in the range of [0, 1], and is closer to 1 if it predicts the data to be more likely from the target 
years and otherwise is closer to 0. Then, the weight of each sample (e.g., county i in each year) is 
estimated as:
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(18.14)

After gathering the estimated sample weights, we normalize them to the range of [γ, 1], where γ is a 
small value, for example, 0.1 in our test, which is used to ensure that all the samples are involved in 
the training process. We represent the normalized weights as w.
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The obtained weights can then be used in the training loss function to alleviate the temporal data 
shift in the training process, as follows:
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x
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(18.15)

18.5.2 � Physics-Guided Sample Reweighting

We first build the PG-AN model to embed key variables involved in the carbon cycle and improve 
the prediction of crop yield (Figure 18.9). During the crop growing process, carbon is cycled through 
the atmosphere, crops, and soil. Carbon makes a major contribution to soil fertility and soil’s capac-
ity to retain water (Zhou et al., 2021). Carbon is absorbed by crops in the form of carbon dioxide, 
which contributes to the growth of crops. While the crops grow up, their produced roots and leaves 
also affect the soil carbon storage.

Although most variables in the carbon cycle are not observable, they can be simulated by exist-
ing physics-based models based on known physical theories. In this work, we use the physics-based 
Ecosys model (Zhou et al., 2021) to simulate three key variables in the carbon cycle, ecosystem 
autotrophic respiration (Ra), ecosystem heterotrophic respiration (Rh), and net ecosystem exchange 
(NEE). The entire carbon cycle can be captured by a mass conservation relation, as −NEE = GPP − Ra 
− Rh, where GPP represents the gross primary production, and can be estimated from remote sensing. 
The estimated GPP values are available over large regions and used as input to the predictive model.

Given the hidden representation ,
d
i th  extracted by the LSTM-Attention model on each date d, we 

predict the physical variables Ra, Rh, and NEE using another transformation ( )=, ,ˆ d d
i t i tfq h , where q̂ 

represents the predicted values of [Ra,Rh,NEE] on the date d, and f(·) can be implemented as a fully 
connected network. By applying the model on the simulated data, we can compare the predicted q̂ 
and the simulated values q in each year, as follows:

	
−− = −∑ ,

2
sim , ,ˆDiff i t

d d
i t i t

d

q q
	

(18.16)

Given the GPP values, we also consider a penalty for violating the carbon mass conservation, as follows:

	
( )= − − +∑ 2

, , , , ,MC GPP Ra Rh NEEd d d d
i t i t i t i t i t

d 	
(18.17)

FIGURE 18.9  The overall flow of the proposed method. An LSTM-Attention network is used as a base model.
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We then combine Diff-sim and mass conservation (MC) to define a physical loss. Here Diff-sim can 
be measured only on the simulated data. The MC can be measured on both simulated data and real 
data (both  and  ) using the predicted Ra, Rh, and NEE. The physical loss can be expressed as:
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where β1 and β2 are model hyper-parameters.
Finally, we optimize the model by combining the supervised loss (Equation 18.13) and the physi-

cal loss (Equation 18.18), as follows:

	 − = +PG AN sup phy   	 (18.19)

We obtain the model   by minimizing the loss −PG AN . We will then use the obtained embed-
dings e from this PG-AN model to estimate the weights { },i tw  following Equation 18.14 and the 
normalization.

18.5.3 � Fairness-Driven Model Refinement

After collecting the normalized weights ,i tw , we refine the PG-AN model   to alleviate the temporal 
domain shift while preserving the spatial fairness. Note that the direct fine-tuning using the prelimi-
nary reweighted loss function (Equation 18.15) only reduces the temporal gap but may impair the 
spatial fairness. Hence, we propose a bi-level fairness-driven refining strategy for the PG-AN model 
that considers both the temporal data shift and the spatial fairness.

First, we modify the original fairness objective (Equation 18.1) by considering the similarity to the 
target dataset   based on the obtained sample weights ,i tw . Each partition p contains training samples 
from multiple locations and multiple years. We will increase the weight for each sample (i, t) if the 
corresponding weight ,i tw  is higher. This will be reflected in the performance measure mF(FΘ, p) and 
the overall mean performance EP in the fairness definition (Equation 18.1). In this work, we use the 
predictive RMSE as the performance metric, and the weighted performance on each partition p and 
the weighted overall performance can be computed as:
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Then we use the weighted performance measure to re-define the spatial fairness, as follows:
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Finally, the physics-guided neural network will be refined via a bi-level optimization process based 
on the reweighted fairness objective.

18.5.4 �E xperiments

18.5.4.1 � Dataset
We use the corn yield data in Illinois and Iowa from the years 2000–2020 provided by the USDA 
National Agricultural Statistics Service (NASS).1 In particular, there are in total 199 counties in our 
study region (100 counties in Illinois and 99 counties in Iowa). The corn yield data (in gCm−2) are avail-
able for each county each year. The input features have 19 dimensions, including NLDAS-2 climate 
data (Xia et al., 2012), 0–30 cm gSSURGO soil properties,2 crop type information, the 250 m Soil 
Adjusted Near-Infrared Reflectance of vegetation (SANIRv) based daily GPP product (Jiang, Guan, 
Wu, Peng, & Wang, 2021), and calendar year. Moreover, we use the physics-based Ecosys model (Zhou 
et al., 2021) to simulate Ra, Rh, NEE, and crop yield for 10,335 samples for the years 2001–2018.

In our experiments, we consider two major use cases for yield prediction, data reanalysis, and 
future prediction, and, hence, two testing scenarios are applied, using the years 2005–2006 and the 
last two years 2019–2020 as target testing years, respectively. In each testing scenario, the remain-
ing years are used for model training. We also consider two different spatial partitionings. The first 
partitioning P199 treats each county as a spatial partition, and there are totally 199 partitions. The 
second partitioning P30 merges neighboring 6–10 counties as a partition, and contains in total 30 
partitions. The number of counties in each partition varies across different partitions as we need to 
ensure each partition is continuous over space.

18.5.4.2 � Experimental Design
We aim to answer several questions in our experiments:

	 1.	 Can the proposed method outperform existing methods given the temporal data 
shift? The proposed method is compared against multiple baselines, including the stan-
dard LSTM-Attention networks (LSTM-Attn), the adversarial domain adaptation methods 
(DA) (Ganin et al., 2016), the ADL (Alasadi et al., 2019), regularization-based fairness 
enforcement method (REG) (Kamishima et al., 2011; Yan & Howe, 2019), REG with the 
reweighting strategy (REGrew), and self-training-based fairness enforcement method (Self-
training) (An, Che, Ding, & Huang, 2022). All these methods use the base LSTM-Attn 
model but adopt different strategies for preserving fairness or addressing the temporal data 
shift. Among these methods, ADL and REG consider the fairness objective, DA considers 
the temporal data shift, and REGrew and Self- training consider both. We also compare two 
methods that leverage simulated data for enhancing the LSTM-Attn model. As inspired 
by the prior work (Jia et al., 2021; Read et al., 2019), the first method SIM-ptr pre-trains 
the LSTM-Attn model using simulated yield data and then fine-tunes it using real data. 
The second method SIM-inp is trained using simulated data to predict Ra, Rh, and NEE, 
and then use them as additional input features. We also implement the SIM-inp method 
with the bi-level refinement (SIM-inpref). Finally, we evaluate two versions of the proposed 
method PG-AN (without using the bi-level refinement) and PG-ANref (using the bi- level 
refinement). For each method, we measure the predictive RMSE and the spatial fairness 
(Equation 18.1 using the mean absolute distance) under two different partitionings, P199 
and P30.

	 2.	 How will the performance change by adding sample weights and different levels 
of physical information? We compare the performance of LSTM-Attn, LSTM-Attn + 
sample weights (LSTM-Attnrew), LSTM-Attn + sample weights + pre-training using simu-
lated yield (LSTM-Attnrew+ptr), LSTM-Attn + sample weights + pre-training using simu-
lated yield, Ra, Rh, NEE, and the mass conservation on these simulated variables and GPP 
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(LSTM-Attnrew+phy), and LSTM-Attn + sample weights + training using simulated yield, 
Ra, Rh, NEE, the mass conservation on both simulated data and predicted values in real 
data, and real yield data (the proposed PG-AN model). We will also report the performance 
and fairness for each model either with or without using the bi-level fairness refinement.

	 3.	 Can the bi-level fairness-driven refinement outperform other fairness enforcement 
methods? We will incorporate the same level of physical information and sample weights 
for the REG and ADL methods to create two baselines PG-ANREG and PG-ANADL. We then 
compare their performance with the proposed PG-ANref method.

18.5.4.3 � Results
Performance comparison: Table 18.1 reports the performance of the proposed method and 

other baselines using different testing years and different spatial partitionings. It can be seen 
that the proposed methods (PG-AN and PG-ANref) outperform other methods by a decent 
margin in terms of both predictive RMSE and fairness measures. We also have several 
observations: (1) Compared to the base model LSTM-Attn, existing fairness enforcement 
methods (ADL, REG) only slightly improve the fairness in some testing cases and can even 
lead to degraded fairness when tested in the years 2005–2006. This is because they do not 
consider temporal data shifts across years. (2) The DA method generally produces worse 
performance compared to LSTM-Attn because it cannot extract informative embeddings 
for enforcing invariance in the adversarial learning process. (3) The methods using the 
simulated data (SIM-ptr, SIM-inp, and SIM-inpref) perform better than the base LSTM-Attn 
model and most of other baselines, which confirms the effectiveness of incorporating the 
simulated data. Moreover, SIM-inp performs better than SIM-ptr because it captures the 
intermediate physical variables in the carbon cycle. (4) The comparisons between SIM-inp 
and SIM-inpref and between PG-AN and PG-ANref show the effectiveness of the bi-level 
refinement in enhancing the fairness.

Figure 18.10 also shows the distributions of RMSE for each partition in P199 (i.e., each county) 
for the testing years 2005–2006 by the base LSTM-Attn model, the Self-training model, and the 
proposed PG-AN model. It can be clearly seen that the proposed method can effectively reduce the 

TABLE 18.1
The Fairness and Overall RMSE with Two Different Partitionings for Two Testing Scenarios

Method Testing Scenario 2019–2020 Testing Scenario 2005–2006

Partition ing P30 Partitioni ng P199 Partition ing P30 Partitioni ng P199

RMSE Fairness RMSE Fairness RMSE Fairness RMSE Fairness

LSTM-Attn 37.4284 11.0158 37.4284 16.8612 32.2486 8.9010 32.2486 13.6076

DA 38.0840 11.0802 38.0840 16.8274 32.2888 9.1424 32.0610 13.9750

ADL 38.6144 10.9396 38.2536 16.7950 32.2870 9.0022 32.1376 13.6252

REG

REGrew
37.6738
36.2342

10.9102
10.4966

38.5752
36.5012

16.7746
16.2694

31.6602
29.5366

8.9202
8.6024

31.3974
30.1106

13.5626
13.0416

Self-training 35.6784 10.3912 35.9520 16.1510 31.0714 8.6522 31.0758 12.9724

SIM-ptr 36.0920 10.5758 36.0920 16.1400 30.8404 8.6258 30.8404 12.7468

SIM-inp 34.3598 9.8968 34.3598 15.9064 30.6056 7.8356 30.6056 12.6990

SIM-inpref 33.9332 9.5888 33.9892 15.4732 30.0814 7.3696 31.0480 12.1536

PG-AN 30.3688 7.8064 30.3688 13.6370 24.7858 6.6092 24.7858 10.2498

PG-ANref 29.9558 7.2682 30.9058 12.5252 25.7476 5.7254 25.3546 9.8554
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RMSE for those counties that are poorly modeled by the LSTM-Attn method and the Self-training 
method. Also, the overall RMSE is significantly improved.

Ablation study: Figure 18.11 shows that the model performance and spatial fairness improve 
as we incorporate sample weights and more physical information. The PG-AN model per-
forms better than LSTM-Attnrew+phy due to the gap between simulated and real data. Also, 
the bi-level refinement can always improve the spatial fairness for each model while main-
taining a similar level of overall performance.

Effectiveness of bi-level training: Table 18.2 shows that the PG-AN model with the bi-level 
refinement achieves the best fairness without compromising the predictive RMSE perfor-
mance. This is because the bi-level refinement mitigates the direct competition between 
predictive performance and spatial fairness, and avoids the selection of hyper-parameters.

FIGURE 18.10  The distributions of predictive RMSE in 199 counties by three models for the testing years 
2005–2006 and partitioning P199. (a): The LSTM-Attn model. (b): The Self-training model. (c): The proposed 
PG-AN model.

(a)

(b)

FIGURE 18.11  The performance change for the testing years 2005–2006. A higher fairness score indicates 
larger mean absolute distance values and worse fairness performance. (a) Fairness and predictive RMSE on P30. 
and (b) Fairness and predictive RMSE on P199.
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18.6 � CONCLUSION

This chapter highlights the importance of fairness in the context of machine learning when deal-
ing with spatial data. We conduct a review of recent developments in fairness-aware deep learning 
for spatial data, which aims to address the challenges posed by continuous and dynamic spatial 
partitionings, as well as the need to preserve fairness over time. Experiments demonstrate the effec-
tiveness of these methods in enhancing spatial fairness while also keeping the quality of predictive 
outcomes. These advancements hold great promise in fostering equitable and robust machine learn-
ing solutions in many real-world applications of great societal relevance.
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NOTES

	 1	 https://quickstats.nass.usda.gov/
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