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Average nucleotide identity-based Staphylococcus aureus strain 
grouping allows identi!cation of strain-speci!c genes in 
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ABSTRACT Staphylococcus aureus causes both hospital- and community-acquired 
infections in humans worldwide. Due to the high incidence of infection, S. aureus is 
also one of the most sampled and sequenced pathogens today, providing an outstand!
ing resource to understand variation at the bacterial subspecies level. We processed 
and downsampled 83,383 public S. aureus Illumina whole-genome shotgun sequences 
and 1,263 complete genomes to produce 7,954 representative substrains. Pairwise 
comparison of average nucleotide identity revealed a natural boundary of 99.5% that 
could be used to de"ne 145 distinct strains within the species. We found that intermedi!
ate frequency genes in the pangenome (present in 10%–95% of genomes) could be 
divided into those closely linked to strain background (“strain-concentrated”) and those 
highly variable within strains (“strain-di#use”). Non-core genes had di#erent patterns 
of chromosome location. Notably, strain-di#use genes were associated with prophages; 
strain-concentrated genes were associated with the vSaβ genome island and rare genes 
(<10% frequency) concentrated near the origin of replication. Antibiotic resistance genes 
were enriched in the strain-di#use class, while virulence genes were distributed between 
strain-di#use, strain-concentrated, core, and rare classes. This study shows how di#erent 
patterns of gene movement help create strains as distinct subspecies entities and 
provide insight into the diverse histories of important S. aureus functions.

IMPORTANCE We analyzed the genomic diversity of Staphylococcus aureus, a globally 
prevalent bacterial species that causes serious infections in humans. Our goal was to 
build a genetic picture of the di#erent strains of S. aureus and which genes may be 
associated with them. We reprocessed >84,000 genomes and subsampled to remove 
redundancy. We found that individual samples sharing >99.5% of their genome could 
be grouped into strains. We also showed that a portion of genes that are present in 
intermediate frequency in the species are strongly associated with some strains but 
completely absent from others, suggesting a role in strain speci"city. This work lays the 
foundation for understanding individual gene histories of the S. aureus species and also 
outlines strategies for processing large bacterial genomic data sets.

KEYWORDS genomics, pangenome, Staphylococcus aureus, antimicrobial resistance

S taphylococcus aureus is a ubiquitous human pathogen capable of causing numerous 
disease manifestations, including more than 100,000 bloodstream infections in 2017 

in the USA alone (1). S. aureus genomes typically have a ~2.8-Mb chromosome and 
zero to a few plasmids. Like other bacterial pathogens, its success at responding to 
pathogenic niches comes from adaptations in the “core” portion of the genome and in 
non-core genes that form the extended species genome, or “pangenome” (2). Non-core 
genes form part of the extensive genetic repertoire for evading the immune response 
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and damaging the host and have allowed S. aureus to survive treatment with various 
antibiotics developed since the middle of the 20th century (3–6).

Microbiologists have long known that there are consistent di#erences in phenotypes 
between taxonomic groups below the species level in S. aureus. Di#erent “strains” have 
been shown to be more likely to cause speci"c disease etiologies than others. Examples 
are multi-locus sequence type (MLST) ST582, which is associated with scalded skin 
syndrome (7) and livestock-associated CC97 infections (8). Among other phenotypes, 
strains also show di#erent propensities to acquire drug resistance genes and high or low 
levels of toxin production and can produce di#erent spectra of mutations when under 
strong selection (9–12). Understanding the genetic basis of strain speci"city therefore 
o#ers potential insight into many mechanisms that de"ne S. aureus pathology. Interest in 
strain speci"city has also been prompted by attempts to use shotgun metagenomic data 
to de"ne environmental conditions that separate di#erent genotypes with species (13, 
14). However, the cardinal problem with these approaches is that there is no generally 
accepted bacterial strain de"nition appropriate for the genomic era. Instead, the term 
“strain” has been used loosely to apply to di#erent levels of subspecies variation.

The aims of this work were to seek a consistent de"nition of a S. aureus strain that 
could be applied to genomic and ultimately metagenomic data, to understand which 
portions of the non-core genome were strain associated, and to survey the extent of 
strain variation in the public data. We used an approach based on an earlier work$ow 
(12) where we reprocessed all extant public Illumina whole-genome shotgun (WGS) 
data. Here, we re"ned the strategy by implementing stringent steps to "lter WGS 
potentially contaminated with other bacterial contigs and S. aureus mixtures. We also 
included high-quality complete genomes and dereplicated the "nal data set to remove 
highly similar sequences. Critically, we opted to de"ne relationships between genomes 
based on average nucleotide identity (ANI), rather than relying on the traditional clonal 
complex (CC) and sequence type (ST) designations of multi-locus sequence typing.

RESULTS

ANI threshold of 99.5% de!nes 145 S. aureus strains from a large public 
genome data set

To obtain a comprehensive view of S. aureus genetic diversity, we "rst examined all 
83,383 whole-genome data sets available on the National Center for Biotechnology 
Information website in September 2022 for data quality and created a curated data 
set with 58,034 genomes. Then, we "ltered to reduce redundancy and selected 7,954 
high-quality “substrains” that represented the overall diversity (Fig. 1; Fig. S1A; Materials 
and Methods).

The 7,954 representative substrains were used to create a species pangenome (the 
“7954-set”) using the PIRATE software (15) based on a minimum of 50% protein sequence 
identity. A total of 9,533 distinct gene families were identi"ed (we use the shortened 
“genes” to refer to these gene families in this article). Of these genes 2,008 (21.1%) were 
considered core (found in >95% of the genomes); 71.3% (6,794) were rare (<10% of 
genomes); and 7.7% (731) were intermediate between core and rare. Ninety percent of 
the genes were in single copy (Fig. S2).

When pairwise ANI between substrains was plotted as a histogram, we observed 
three major ANI peaks (Fig. 2A). We interpreted the left peak (smallest average nucleotide 
distances) as intrastrain distance and the second and third as between-strain distances 
within the two major S. aureus clades (16) and between the clades, respectively. The 
threshold for intrastrain relatedness appeared to be at, or very near to, 99.5%, identical to 
a value suggested by Rodriguez-R et al. to separate strains across 330 bacterial species 
(17). When we used 99.5% as a threshold for clustering, we obtained 145 groups of 
genomes that we termed strains and marked each with a su!x, “99.5_i,” where i denoted 
the unique strain number of one of the 145 strains. All strain clusters had median within-
cluster ANI of >99.7 (Fig. S1B). Both gene discovery rate and lineage discovery rate were 
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improved by dereplicating the initial curated 58,034 genomes compared to using a 
random set (Fig. S1C and D).

Of the 10 CCs de"ned by the S. aureus PubMLST site (18), 7 were split across di#erent 
strains at the 99.5% clustering threshold (Fig. 2B). The most extreme example was CC1, 
where pairs of substrains di#ered by as much as 1.4% ANI (Fig. 2C), and the clonal 
complex was ultimately split across 14 strains. Across all strains, we found that >99.9% 
of the genomes in the same strain had the same agrD speci"city allele (1–4) of the 
agr quorum-sensing system (Fig. 2D). [The one exception was strain PS/BAC/317/16/W 
(GCF_018093225.1) (19), the single agr group 2 genome in 4,469 CC30 genomes.] This 
result con"rmed an earlier genome-based screen (20) showing that the agr type is 
strongly strain speci"c in S. aureus.

We noted that there was a “bump” of pairwise distances (~99.5% to 99.1% ANI) in 
the otherwise clear gap between within-strain and between-strain comparisons (Fig. 2A). 
When we clustered substrains at 99.1% core genome ANI, we found that 30 99.5%-
de"ned strains merged together to form 115 putative strains. One of the merged strains 
comprised genomes of S99.5_2 and S99.5_27, both largely mapped to CC8. The S99.5_27 
strain consisted of ST239, which is known to have been created by the recombination 
of a large portion of a CC30 genome with a CC8 background (21, 22). The other nine 
sets of merged strains consisted of a small number of genomes. For two of the merged 
strains, we had a complete genome which we used to align 10,000-bp sliding windows 
against a genome from the same strain at 99.5% ANI and one from a di#erent strain 
that was merged at 99.9% ANI. These were strains S99.5_33 and S99.5_4 (both mapped 
to CC45) and S99.5_7 and S99.5_111 (CC15), each pair merged into one strain using 
ANI 99.1% thresholds. Neither analysis revealed the clear pattern of large-scale genome 
replacement seen in ST239. All but 3 STs out of 1,706 mapped only to one strain. The 
exceptions were two CC45 STs that mapped to three di#erent strains (S99.5_33, S99.5_4, 
and S99.5_57) and one CC15 ST that mapped to two di#erent strains (S99.5_7 and 
S99.5_111).

Intermediate frequency genes in the pangenome can be divided into strain 
concentrated and strain di"use

We wanted to know what proportion of the S. aureus non-core genes were strongly 
linked to strain background, in the same manner as agr type. We adapted the commonly 

FIG 1 Sankey diagram showing the fate of 83,383 S. aureus whole-genome shotgun data sets and 1,475 complete genomes through processing and "ltering.
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used genetic statistic, also known as "xation index (FST), as a measure of segregation 
of a gene between di#erent strains (23). A FST of 0 indicated a gene that displays no 
genetic segregation; i.e., it was indiscriminately found across di#erent strains. In contrast, 
a FST of 1 indicated perfect genetic segregation, with the gene limited to all members 
of a group of strains. Rare and core genes were constrained in their distribution and had 
uninformative FST scores around 0. Therefore, we focused our analysis on intermediate 
gene families.

Strikingly, the FST statistic across intermediate genes showed a distinct bimodal 
distribution (Fig. 3A). This pattern disappeared when the strain labels were randomly 
mixed and FST was recalculated (Fig. 3B), reverting to a normal distribution, showing 
that it was a feature of the speci"c population structure of S. aureus rather than an 
inherent property of the data. From this result, we divided intermediate genes into 
two groups based on a FST threshold of 0.75. Those genes with high FST [295 of 
731 (40%) intermediate genes], which we termed strain concentrated, were strongly 
linked to strain backgrounds, while those with low FST (strain di#use) [436 of 731 (60%) 
intermediate genes] were more promiscuous, with respect the strain background. These 
patterns were illustrated using 10 S. aureus toxins with a range of FST scores: leukocidins 
LukFS (Panton-Valentine leukocidin) and LukED, toxic shock syndrome toxin 1 (TSST), 
superantigen-like protein SSL8, and di#erent types of staphylococcal enterotoxins (SEA, 
SEB, SEG, and SEU) (Fig. 4). Leukocidins comprise two proteins, the F component and 

FIG 2 An average nucleotide identity of >99.5% de"nes the strain boundary of S. aureus. For our data set of 7,954 substrains, all-vs-all pairwise average 

nucleotide (AN) distances were plotted as a histogram. (A) Sample pairs less than 0.005 AN distance apart (i.e., greater than 99.5% ANI) were grouped as a strain. 

(B) Strains and clonal complex (CC) designations do not exactly overlap. The pairwise AN distance histogram was colored by whether the genomes were in 

the same CC. (C) CC1 genomes are in di#erent strains. AN distances of genomes assigned to CC1 showing that there are within- and between-strain distances. 

(D) Genomes in the same strain have the same agr group. The pairwise AN distance histogram was colored by whether the genomes were in the same agr group.
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the S component, both acting synergistically to form pores in host-cell membranes (24). 
TSST, SEs, and SSL8 are superantigens or superantigen-like proteins, highly potent toxins 
that can elicit severe in$ammatory responses and other immunomodulatory e#ects (25). 
The leukocidin LukFS, enterotoxins SEA and SEB, and TSST, showed high levels of gain 
and loss on the species tree typical of low FST . In contrast, the enterotoxins SEG and SEO, 
and leukocidin LukED, found together on genomic island vSaβ had high FST (>0.9) and 
were either almost entirely present or absent in each strain background. For example, 
LukD was not present in any substrain of 60 of 145 (41%) strains but present in >80% of 
the substrains of 77 (53%) strains.

We also used FST to test whether there was any association between the agr type of a 
strain and intermediate gene distribution but found no similar pattern (Fig. S3A).

The 7,954 representative substrains were distributed unevenly, with 58 strains having 
a single substrain and 15 strains having >100. This “unbalanced” sampling was an 
obstacle to visualizing gene abundance patterns. Genes that were present even in a 
low percent of the most numerous strains would still account for more substrains than 
the rarest strains. We created the “740-set,” created by randomly sampling 20 shotgun 
assembled substrains from the top 37 most populous strains to make a more balanced 
sampling of S. aureus (Materials and Methods). The 740-set had similar numbers of core 
and intermediate genes (2,139 and 739, respectively) to the 7954-set but fewer rare 
genes (2,687), the latter expected to increase with the number of genomes sampled 
in a species. The FST distribution of the 740-set to the original pangenome was almost 
identical (Fig. S3B).

When we plotted the number of strains each gene was found in, given the numbers 
of genomes, we saw two distinct patterns. The strain-concentrated genes were close to 
the minimum possible number of strains for a given gene (solid black line), while the 
strain-di#use genes were more similar to the shape of a random assortment of strains 
(asymptotic exponential distribution, dashed black line) (Fig. 5A). Strain-di#use genes 

FIG 3 Bimodal distribution of FST for intermediate genes. Each circle represents an individual intermediate gene from the 7,954-substrain pangenome. 

Percentage prevalence on the x-axis is the percentage of genomes the gene is found in. FST or “"xation index” is on the y-axis. (A) FST scores calculated for 

each intermediate gene with 99.5% ANI-based clustering. (B) As a control, FST scores were calculated for each intermediate gene when clusters were randomly 

assigned.
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were present in markedly more strains at a given prevalence than strain-concentrated 
genes.

Figure 3 and 4 depict a pattern where strain-di#use genes appeared to undergo gain 
and loss on the phylogenetic tree at a higher rate than strain-concentrated genes . Based 
on the results from HomoplasyFinder (26) on the core gene phylogeny of the 740-set, we 
found this pattern was consistent across all intermediate genes (Fig. 5B). Strain-concen!
trated genes mostly had fewer than 30 minimum predicted state changes on the tree, 
and there was no trend in increase of this number with prevalence. Strain-di#use genes 
had a higher rate of character state change, which rose with prevalence initially but fell 
with the most common genes, probably due to saturation of available state changes.

Because of the relatively slower rate of gene gains and losses, the strain-concentrated 
genes contributed more to characteristic strain-speci"c di#erences in gene content than 
strain-di#use genes. This could be e#ectively visualized using t-distributed stochastic 
neighbor embedding (t-SNE, Fig. 6). When strain-concentrated genes’ presence/absence 

FIG 4 Strain-group speci"city and co-occurrence of speci"c staphylococcal toxins. Core genome phylogeny of the 7954-set. Heatmap on right shows presence 

absence and FST of speci"c staphylococcal toxins: Panton-Valentine leukocidin (LukF and LukS), toxic shock syndrome toxin (TSST), and staphylococcal 

enterotoxins types A, B, G, and U (SEA, SEB, SEG, and SEU), superantigen-like protein (SSL8), and leukocidin ED (LukE and LukD). The colors of the whole-genome 

phylogeny are based on strain assignments.
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was used as input for t-SNE, the genomes that comprised individual strains were resolved 
into distinct spatial units (Fig. 6C). However, there was no similar pattern when strain-
di#use genes were used (Fig. 6B). Rare genes produced an intermediate result, with 
some distinctive strains and some areas of the plot with mixtures of strains (Fig. 6A). 
When all non-core genes were used, the strains could be readily distinguished, indicating 
that for the t-SNE approach, the strain-speci"c structure of strain-concentrated and rare 
gene content was dominant to the non-strain-speci"c strain-di#use genes (Fig. 6D). We 
also visualized the e#ect of the di#erent classes of non-core gene is a way that was 
independent of strain classi"cation: plotting the gene content similarity (represented by 
hamming distance) of each pair of genomes against the patristic distance on the core 
gene phylogeny (Fig. S4). The rare and strain-di#use genes had greater numbers of gene 
di#erences between strains very closely related to each other (Patristic distance <0.005), 
but the rate of growth of the distance in strain-concentrated genes over larger distances 
on the phylogeny was greater.

We suspected that the underlying di#erences between the two groups of genes 
were due to strain-concentrated genes being primarily located on the chromosome and 
primarily spread between strains by homologous recombination, whereas strain-di#use 
genes were on mobile elements such as prophages, plasmids and integrative conjuga!
tive elements that would be located more frequently on non-chromosomal contigs. 
This was supported by the rate of linkage to single copy highly conserved core genes 
(de"ned as whether the gene was found to be on the same contig) was much lower 
in strain-di#use genes (65.5%) than strain-concentrated (86.5%). By comparison, the 
rates for rare genes were 61.5% and those or for randomly selected genes were 93.5%. 
We used the geNomad software and database of mobile element genes (27) to see if 
there were di#erent distributions in the di#erent classes of genes in the pangenome. 
While di#erences between the classes were mostly statistically signi"cant at P < 0.05 in 
pairwise Tukey’s tests (Fig. S5), the di#erences in mean scores were mostly quite small, 
probably re$ecting the relatively small size of the S. aureus training set for the software 
compared to our large pangenome sampling. The strain-di#use genes had the most 
distinctive signal, having the lowest mean scores for “chromosome” and “plasmid” and 

FIG 5 Relationship between gene prevalence, number of strains, and homoplasy for non-core genes. Each dot represents a non-core gene in the 740-set 

pangenome. Purple denotes rare genes; green denotes concentrated genes; and brown denotes di#use genes. (A) The relationship between overall prevalence 

(number of genomes out of 740) and number of strains (out of 37) each gene is found in is shown. The curves for the theoretical minimum number of strains for a 

given number of genomes (x/20) are shown in solid black, and the extreme random distribution (37×(1-exp(−x/37)) is shown in dashed black. (B) The relationship 

between prevalence of estimated number of changes on the species tree calculated by HomoplasyFinder (26).
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highest for “virus.” This result corroborated the association of strain-di#use genes with 
prophage regions of the genome.

We noted that the intermediate genes had a lower median clustering threshold 
than the rare or core genes [the PIRATE software uses iterative thresholds at increasing 
stringency to "nd the "nal clustering threshold for a gene (15)]. To ensure the patterns 
seen were not an artifact of lower clustering, we ran the 740-set pangenome with a 
minimum clustering threshold of 90% amino acid identity (which we called “740-set-90”). 
While the more stringent clustering split several rare and intermediate gene families 
(the 740-set-90 pangenome consisted of 4,490 rare, 982 intermediate, and 2,085 core), 

FIG 6 t-SNE analysis of 740-seq di#erentiated by non-core gene sets. Each dot represents one of the genomes of the 740-set colored by its strain membership. 

Di#erent sets of non-core genes were used as input for the t-SNE: (A) only rare, (B) only strain-di#use, (C) only strain-concentrated, and (D) all non-core.
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the characteristic divergence in features between strain-concentrated and strain-di#use 
genes did not change (Fig. S6). We also obtained similar results when the same analyses 
were run with the original 7,954-substrain pangenome, although the unbalanced nature 
of the collection (some strains had thousands of genomes, many only one) obscured 
the di#erences between strain concentrated and strain di#use in regard to the relation!
ship between strains each gene was detected in at di#erent prevalence (Fig. S6A). 
The strain-concentrated genes though had many fewer predicted state changes on the 
phylogenetic tree (Fig. S6B).

Di"erent non-core gene classes cluster in speci!c regions of the S. aureus 
chromosome, with a strong tendency for rare genes to be near the origin of 
replication

We used two alternative methods to view the distribution of non-core genes on the S. 
aureus chromosome (Fig. 7; Fig. S7). In the "rst method, we plotted the start coordinate 
of genes from 337 complete chromosomes (Fig. 7A; Fig.S7). There was noise in the 
exact coordinates of individual genes, but overall, this method showed discrete peaks 
in the locations of rare, strain-concentrated, and di#use genes. The second method 
was to link non-core genes from all 7,954 substrains to the nearest core gene on the 
same contig (non-core genes on contigs without core genes were excluded). The gross 
patterns of distribution of the counts of non-core genes mapped to the nearest core 
gene coordinate (Fig. 7B) were similar to that in Fig. 7A. Di#erences between plots in the 
proportion of genes within each category at each genomic bin (y-axis) were probably 
due to a combination of the indirect measurement of gene position in the linked core 
gene method and the fact that the 7,954 substrains were more balanced re$ection of S. 
aureus diversity than the 337 complete genomes.

Strain-di#use and strain-concentrated genes had markedly distinct distributions on 
the chromosome and were mostly located as part of distinct clusters (Fig. 7). This could 
also be seen clearly in the individual chromosomes of six substrains chosen to represent 
both methicillin-resistant S. aureus and methicillin-sensitive S. aureus from three strains 
(Fig.S7). The vSaβ genome island was a notably strain-concentrated-rich gene cluster, 
while the vSa% island, phiSa2, and phiSa3 prophages were rich in strain di#use. The 
presence of strain-di#use gene clusters was more variable between genomes than 
strain-concentrated clusters (Fig. S7). Some genetic elements (e.g., SCCmec, type VII 
secretion loci, and phiSa1) contained a relatively high proportion of both types of 
intermediate genes. Three regions of the chromosome relatively rich in strain-concen!
trated genes (at approximate coordinates 100,00–300,000, 1,250,000–1,500,000, and 
2,500,000–2,800,000) did not correspond to known genetic elements , although the "rst 
region contained several genes involved in polysaccharide capsule synthesis.

The high number of rare gene genes in the 0–100,000 region (which includes the 
SCCmec cassette) was an outlier compared to other chromosomal regions (P value 
<2.2e-16, Grubbs one-tailed test) (Fig. 7; Fig. S7). This was the case in both MRSA and 
MSSA strains, suggesting that this region might be a hotspot for insertion of rare genes, 
possibly through plasmid integration, rather than being speci"cally linked to SCCmec.

Functional di"erences in strain-concentrated and strain-di"use genes

FST and prevalence of intermediate gene families can provide insight into ongoing 
evolutionary processes in the species. This is illustrated by analysis of three classes of 
genes encoding antimicrobial resistance (AMR) phage defense and virulence determi!
nants (Fig. 8). No AMR genes (30) were found to be in the strain-concentrated group but 
were either rare or strain di#use [70 (82.4%) and 15 (17.6%), respectively] . This result 
follows from the recent introduction of many AMR genes into S. aureus on mobile genetic 
elements and their frequent gains and losses below the strain level (31). The absence of 
"xation within strains also suggested possible loss of mobile elements in the absence 
of antibiotic selection. Genes associated with protection from phage infection in the 
defense-"nder database (32) were mostly low prevalence [69 of 80 (86.3%) were rare, 
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FIG 7 Distribution of di#erent categories on non-core genes on the S. aureus chromosome using two alternative methods. (A) Location based on 337 complete 

genome sequences. The start site for every gene in each category was obtained for 337 chromosomes. The totals were placed in 10,000-bp bins on the 

chromosome, and the proportion of the total for each class is plotted (i.e., the sum of the values of the 10,000 bins is 1). Purple denotes rare genes; green

(Continued on next page)
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and 10 of 80 (9.1%) intermediate had prevalence <0.5]. The low prevalence may re$ect 
diversifying selection caused by phage countermeasures. However, unlike AMR genes, 
the majority of intermediate genes in this class were strain concentrated, suggesting that 
defense from phage infection may help de"ne S. aureus strains. Intermediate virulence 
genes [mostly toxins (33, 34)] in the AMRFinder+ database fell into two groups: one 
strain di#use with low prevalence and the other strain concentrated with mostly higher 
prevalence. Strain-di#use virulence genes were mostly associated with prophages and 
Sa-PIs, while strain-concentrated genes were associated with the vSaβ genome island. 
This partition suggested an as-yet unexplained complexity in the hierarchy of functions 
that make up the toxin pro"le of an individual substrain.

FIG 7 (Continued)

denotes strain-concentrated genes; and brown denotes strain-di#use genes. (B) Location based on the nearest core gene. For all 7,954 substrains, the closest 

core gene on the same contig was determined. The x-axes are start sites for the core genes of genome N315 (GCA_000009645) (28). The values were binned and 

proportionalized as in panel A. For both panels A and B, the location of selected features is shown: I, SCCmec; II, type VII secretion system; III, vSaα; IV, phiSa1; V, 

vSa%; VI, phiSa2; VII, vSaβ; VIII, phiSa3; IX, vSa4. N315 coordinates are based on Gill et al. (28) and Warne et al. (29), except phiSa2 and phiSa3, which are from Mu50 

and MW2, respectively.

FIG 8 Prevalence vs FST for intermediate antimicrobial-resistance (AMR), virulence, and phage defense genes. AMR and virulence genes were identi"ed using 

AMRFinder+ (30); phage defense genes were identi"ed using defense-"nder (32). The dashed horizontal line represents the boundary between strain di#use and 

strain concentrated.
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DISCUSSION

In this study, we distilled a starting set of >84,000 S. aureus genome sequences to 145 
strains using an ANI cuto# of 99.5%, which we found to be in a natural valley between 
clustered isolates. This threshold, or values close to it, has been reported in other studies 
as a bacterial subspecies boundary (17). A large number of S. aureus strains were rare [92 
of 145 (63.4%) represented by one to two substrains]. While this could represent some 
aspect of the true distribution of strain abundances in the species, it could also be a 
function of uneven sampling of S. aureus genomes. There are large ascertainment biases 
in selection as most strains are from clinical settings in Western countries. It is probable 
that the number of strains will grow signi"cantly in the future as we extend sampling.

The 145 representative genomes de"ned here could be used for assignment of a new 
genome to an existing strain using fastANI or similar software. This simple approach for 
strain assignment has the advantage of not needing a core phylogeny calculated that is 
inherent to tree-based clustering and may turn out to be similarly accurate owing to the 
population structure of the within- and between-strain di#erences in the species (Fig. 1). 
In some cases, we found that the current MLST-based CCs were split into more natural 
strain clusters by ANI. This is not surprising, as MLST schema was developed for PCR 
ampli"cation and sequencing, before routine whole-genome sequencing was available, 
and the seven loci used for assignment only cover a small portion of the variation in the 
chromosome (35, 36). MLST, though useful for rapid strain typing, is outperformed by 
whole genome-based methods for lineage assignment (36, 37).

Several pangenome studies with S. aureus genomes have been performed for 
epidemiological investigations (38–43), vaccine candidate discovery (44, 45), and 
evolutionary phylogenomics (46–49). These produced a wide range of results, from a 
total pangenome size of 4,250–21,358 genes, with cores ranging from 890 to 2,700 genes 
(Table S1). The variability is a feature of the many factors that in$uence pangenome 
estimation, which can be classed into three main groups: sample collection, data quality, 
and bioinformatics approaches. In terms of the collection, more individual genomes of 
a species tend to produce a larger number of gene families (in an “open” pangenome) 
and smaller core (50). Similarly, the more genetic diversity within the species increases 
pangenome size. We used essentially all the genome data available in the public domain 
by Fall 2022 [although we ended up excluding several thousand experiments based on 
quality (Fig. 1)]. Therefore, this study probably has the largest and most diverse input of 
S. aureus set used to date. By reducing genome redundancy, we also mitigated some of 
the overcounting of highly sampled clones in the public databases. Ideally, all genomes 
for a pangenome should be of high quality and complete. However, we chose to include 
shotgun assembled genomes, which may contain a certain percentage of missing genes 
due to contig breaks, to maximize diversity. Using shotgun assemblies also allowed us 
to sample multiple genomes from a larger number of strains, which was important for 
characterizing strain-di#use and strain-concentrated genes. By reprocessing the data 
from raw reads, we were able to "lter out lower-quality data and have consistent 
assemblies (Fig. 1). In tests, we found that pangenomes based on our shotgun assemblies 
produce metrics similar to those estimated using only complete genomes, as evidenced 
by the 740-set, which was composed entirely of shotgun data. For most complete 
genomes, there is no matching raw read data available in public archives, so it is not 
possible to know whether the sequence is based on highly redundant reads coverage, as 
it is for our Bactopia processed genomes used here. The "nal group of factors concerns 
choices about bioinformatic software and what parameters to use. Out of a wide range of 
open source options available, we chose to use highly cited tools Bakta (51) [which uses 
the Prodigal (52) gene "nder] for annotation and PIRATE (15) for pangenome estimation. 
PIRATE iteratively increases the threshold to report the maximum identity that clusters 
each gene family and therefore avoids over-splitting gene families. PIRATE also identi"es 
alleles within families without creating arti"cial paralog gene families. Tools that split 
paralogs into separate gene families [e.g., ROARY (53) using default parameters] will also 
produce larger numbers of gene families and fewer core genes. The choice of minimum 

Research Article mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00143-2412

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
sy

st
em

s o
n 

25
 A

pr
il 

20
25

 b
y 

17
0.

14
0.

10
4.

34
.

https://doi.org/10.1128/msystems.00143-24


threshold for clustering proteins or genes (usually based on percentage identity of a 
pairwise alignment) is important. We realized from constructing the pangenome with a 
minimum 50% threshold that 85% of S. aureus gene families were clustered with at least 
the 90% identity. When we tested the 740-set pangenome with the minimum threshold 
increased to 90%, we found a similar number of core genes (2,139 at 50% minimum vs 
2,085 at 90% minimum), but the number of non-core genes increased to from 3,426 to 
5,472 (90%). This was because many intermediate gene families had been split at the 
higher threshold. However, the di#erent threshold did not a#ect the key result of this 
study, which was that intermediate genes could be placed into two groups based on 
segregation with the strains de"ned by ANI using the FST statistic. Although we did not 
thoroughly explore di#erent options in this study, pangenome estimation in S. aureus 
could be further optimized in future benchmarking studies based on the genome data 
collected here.

We de"ned two classes of S. aureus intermediate frequency genes. Strain-di#use 
genes are maintained in the population yet have a high turnover; i.e., they are gained 
and lost frequently (e.g., LukFS, TSST, SEA, and SEB in Fig. 4). These genes are associated 
with mobile elements on the chromosome, such as prophages, SaPIs, and SCCmec, 
and are also often found on contigs unlinked to core genes, as would be expected 
of plasmids. S. aureus strain-di#use genes are strikingly promiscuous in their strain 
background (Fig. S4). This suggests high rates of horizontal transfer and, over the 
longer term, relatively weak barriers to genetic exchange compared to the strength of 
selection for strain-di#use genes. The second class, strain-concentrated genes, segrega!
ted closely with the strain core gene background. Many of the genes cluster in the S. 
aureus genome islands, particularly vSaβ. The elements have been described as having 
complex, strain-speci"c genetic structure (54, 55). Strain-concentrated genes also include 
signi"cant virulence-related functions located outside of previously de"ned genetic 
elements such as certain type VII secretion and capsule genes. Strain-concentrated 
genes have many fewer predicted gene gains and losses than strain-di#use genes (Fig. 
5) and a much stronger phylogenetic signal (Fig. S4). This suggests that the rate of 
horizontal transfer of strain-di#use genes is much higher, and the probable reason is that 
they are on self-transmissible elements such as phages and plasmids (conjugative and 
mobilizable). The genome islands appear to have evolved from prophage or SaPIs that 
have acquired null mutations in their genes for site-speci"c recombination. We propose 
the mechanism of horizontal transfer of strain-di#use genes is indirect: homologous 
recombination following introduction of DNA into the donor cell.

This study raises two questions about the manner in which the S. aureus genome 
evolves and the underlying selective pressures that drive the observed patterns: (i) what 
are the forces that create the “valley” of ANI in the range of 99.1%–99.5% (Fig. 1)? 
and (ii) what are the functional implications of the partitioning of intermediate genes 
in strain-concentrated and strain-di#use groups? The ANI valley implies that there is 
a limited time that strains can survive as coherent taxonomic units, as measured by 
accumulation of neutral mutations. Possibly, strains are replaced from within by the 
wavelike expansion of successful clones. Something like this process may be happen!
ing with the expansion of USA300 since the late 1980s, gradually becoming the most 
common CC8 strain in the USA (56, 57). This explanation implies that strains occupy 
distinct niches, with adaptation possibly de"ned by the composition of their non-core 
genes (58, 59). Substrains would then be competing with each other to occupy the 
strain niche. New strains can also emerge from outside by genome-scale recombination 
events, exempli"ed by CC239 strains (21, 22). Judging by the relatively small size of the 
“99.1%–99.5% bump” (Fig. 1), these types of events may be a rare but ongoing process.

The second question we highlight concerns the functional implications of the 
partition of strain-concentrated and strain-di#use genes. There is a bias for deletion 
in bacterial genomes (60) that implies genes maintained over time are under enduring 
strong selection. Conversely, the strain-di#use gene pattern can be seen as cycles of 
gene gain under neutral selection (i.e., driven by gene transfer alone) or short-term 
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positive selection followed by rapid removal. However, we do not know of any studies 
that address the underlying reasons for the di#erence in strain-level vs substrain-level 
selection. Toxins are interesting in this regard because of their importance for S. aureus 
virulence. Why are some toxins maintained as core functions [e.g., alpha-toxin (hly)], 
some strain concentrated [e.g., enterotoxin G (seg)], and some strain di#use, present in 
diverse substrains [e.g., Panton-Valentine leukocidin (lukFS)]? (Fig. 4). The superantigen-
type toxins are split between strain-concentrated and strain-di#use genes, suggesting 
that former functions may be strongly linked to strain niches. This also opens up the 
possibility of using the strain-concentrated genes as markers for strain identi"cation in 
epidemiological studies as suggested by others (61, 62) or in metagenomic samples.

In summary, this work revealed a new partition in the structure of the S. aureus 
pangenome that will spur further studies on genome evolution and subspeciation in 
the species. The methodology for re"ning large amounts of public data, de"ning strains 
using ANI, and following strain speci"city of the pangenome using FST can also be 
applied to other bacterial species. Comparisons to other species, particularly from the 
Staphylococcus genus, will reveal the commonalities and unique selective pressures 
acting on the pangenome of this dangerous pathogen.

MATERIALS AND METHODS

Public genome collection, processing, and !ltering

Bactopia v.1.7.0 was used to download and process all genomes used in this data 
set. Bactopia is a software pipeline for comprehensive analysis of bacterial genomes 
based on Next$ow (63, 64). The command “bactopia search “Staphylococcus aureus” 
--pre!x saureus” was used to download all S. aureus short-read sequences available 
on Sequence Read Archive in September 2022. Bactopia used SKESA to assemble 
genomes, Bakta to annotate, and Snippy for variant calling (65, 66). Assembly quality 
was evaluated using QUAST and CheckM (67, 68). S. aureus CC and ST were based 
on the PubMLST database (18) (https://pubmlst.org/bigsdb?db=pubmlst_saureus_seq!
def&page=downloadPro"les&scheme_id=1). AgrVATE v.1.0.5 was used to assign agr 
types (20). Only samples having greater than 50× coverage, mean per-read quality 
greater than 20, mean read length greater than 75 bp, and an assembly with less than 
200 contigs were considered for the analysis (corresponding to “gold” and “silver” ranks 
as designated by Bactopia. Samples that were detected as not S. aureus according 
to kmer-based identi"cation or CheckM were then removed. Coverage for all samples 
were capped at 100×. For every sample, bactopia performs variant calling using Snippy 
against an auto-chosen reference sequence based on the smallest Mash distance to a 
complete S. aureus genome in RefSeq (65, 69). For each variant identi"ed, the allele 
frequencies were calculated from the bam "les using bcftools mpileup (70). Samples 
having average minor allele frequency of >0.05 were considered mixed strains and were 
therefore removed. Samples having a total number of variants of >150,000 compared to 
the auto-chosen reference (or more than 5% of the genome) were also considered non-S. 
aureus and were removed (71). This process reduced 83,383 samples to 56,771. Since 
Bactopia collected and processed only short-read S. aureus data, we added complete S. 
aureus genome sequences to this set. Out of 1,475 complete genomes publicly available 
as of February 2023, 1,263 did not have any ‘N’ characters in their assemblies and were 
added to the "ltered data set of 56,771, leading to a total of 58,034 genomes (56,771 
short-read genomes + 1,263 complete genomes). The 212 complete genomes containing 
“N” characters were not used in this study.

Substrain dereplication

Samples were grouped by their MLST types as assigned by Bactopia and for each ST, an 
all-vs-all Mash distance estimation (69) was run. Samples with a Mash distance of <0.0005 
[approximately 50 single nucleotide polymorphisms (SNPs)] (12, 20, 72) were grouped 
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into clusters. A randomly chosen representative of each of these 7,954 substrains was 
selected for downstream analysis. Where possible, we used complete genomes as the 
cluster representative. Samples with unassigned STs were grouped together and treated 
the same. The resulting "nal dereplicated set of 7,954 genomes was used for pangenome 
construction. The representative substrains came from 1,706 MLSTs, with 386 substrains 
not belonging to a previously assigned ST. The uneven distribution of genomes across 
substrains and STs re$ected the sampling skew toward well-known S. aureus strains from 
predominantly clinical settings. We found that the 15 substrains that represented the 
most collapsed genomes comprised 50% of the shotgun data sets. The most numerous 
substrain, from CC22, comprised 7,688 of the 58,034 whole genomes (13%), while there 
were 5,597 substrains represented by only one genome. Out of 7,954 substrains, 3,857 
(48%) were in the 10 most abundant STs (ST5, ST8, ST30, ST398, ST45, ST1, ST22, ST15, 
ST59, and ST239), representing 39,366 out of 56,771 genomes (69%).

Pangenome analysis

The Bakta annotation produced by the original Bactopia run was used as input for 
pangenome estimation with PIRATE v.1.0.5 (15). PIRATE was run using default parameters 
with the additional $ags -a to obtain core genome alignments and -k “--diamond” to 
use DIAMOND for the amino acid sequence comparisons (73). SNP-sites v.2.5.1 (74) was 
run on the PIRATE core genome alignment to extract only polymorphic sites (709,911 
sites), and the resulting alignment was used to construct a core genome phylogeny 
with FastTree v.2.1.11 (75) (GTR model; 1,000 bootstrap resamples). The phylogeny 
was visualized using the R package ggtree (76, 77). A ST93 strain (accession number 
GCA_000144955.2) was drawn at the root as described in (20). We used HomoplasyFinder 
(26) to count the number of state changes of each non-core gene on the phylogeny. 
geNomad v.1.5 (27) was used to predict mobile genetic elements.

Strain de!nition based on ANI

All-vs-all pairwise ANI was calculated for the 7,954 dereplicated genomes using fastANI 
v.1.33 (71). We also calculated all-vs-all pairwise SNP distances based on the concaten!
ated nucleotide sequences of the core genes (2,101,692 nt) using snp-dists v.0.7.0 
(https://github.com/tseemann/snp-dists) and observed a similar three-peak distribution 
as in Fig. 2A. Strain assignments were performed based on average linkage hierarchical 
clustering, and samples that had an ANI of 99.5% or greater were clustered together, 
and this 99.5% ANI threshold also corresponded to a valley after the "rst peak in the 
SNP distance distribution (Fig. S8). We decided to use the ANI threshold based on 
assemblies rather than the core gene SNP threshold because (i) it is signi"cantly faster to 
perform ANI comparisons, thereby making it easier to incorporate new genomes in the 
future; and (ii) there is existing literature corroborating the 99.5% ANI threshold (17). The 
average ANI of each genome with every other genome in a given cluster was calculated, 
and the genome with the highest average ANI was assigned as the strain representative.

Calculating FST

We created a custom R function to calculate the FST for each gene, with group member!
ship de"ned as strain type, clonal complex, or agr group, depending on the purpose 
of the comparison. The input was a binary presence/absence data frame, with genes as 
columns and genomes as rows. FST was calculated using Weir’s formula (23).

Creating the 740-set and 740-set-90 pangenomes

We randomly subsampled 20 substrains each from all strains with >20 substrains (37 
strains). We reran PIRATE v.1.0.5 with default parameters and created a core genometree 
using FastTree v.2.1.11 as described above. To create the 740-set-90 pangenome, we 
ran the 740 genomes through PIRATE v.1.0.5 with minimum clustering threshold of 90% 
amino acid identity.
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Chromosomal locations of non-core genes

We used two methods for mapping chromosomal locations of non-core genes based on 
the co-ords output of the PIRATE v.1.0.5 pipeline for the 7954-set and 740-set pange!
nomes. First, we screened 377 complete substrain genomes that had dnaA as their "rst 
gene by BLAST and collated the start coordinate of each non-core gene. The second 
method was to collate the start coordinate of the nearest core gene on the same contig 
as each non-core gene. For each class of non-core gene, 20,000 random genes were 
selected as well as a control of 20,000 genes of all classes (including core). If the non-core 
gene was on a contig that did not have a core gene, then its status was returned as 
“unlinked.”

Antibiotic resistance, virulence, and phage defense functions

To assign antibiotic resistance genes, we queried representative protein sequences of 
each gene family of the 7954-set produced by PIRATE against the AMRFinder+ (30) 
database using tblastn (78) with a threshold of ≥90% identity as a match. We "ltered 
out the virulence-associated genes using matches for the terms “serine_protease,” 
“enterotoxin,” “hemolysin,” “Panton,” “adhesin,” “complement,” “aureolysin,” “exfoliative,” 
“toxin,” “intracellular_survival,” “serum_survival,” and “leukocidin” and kept the remainder 
as antibiotic resistance gene matches. To assign phage defense-related functions, we 
queried the 7954-set representative proteins against the online defense"nder database 
(32) (https://defense-"nder.mdmparis-lab.com/) on 17 October 2023.

Statistical analysis and data visualization

All statistics and t-SNEs were performed in R using the package rstatix (79). All plots 
were visualized using R package ggplot2 (80). Other visualizations were performed using 
draw.io and Sakneymatic (81, 82).
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