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ABSTRACT  Staphylococcus aureus causes both hospital- and community-acquired
infections in humans worldwide. Due to the high incidence of infection, S. aureus is
also one of the most sampled and sequenced pathogens today, providing an outstand-
ing resource to understand variation at the bacterial subspecies level. We processed
and downsampled 83,383 public S. aureus lllumina whole-genome shotgun sequences
and 1,263 complete genomes to produce 7,954 representative substrains. Pairwise
comparison of average nucleotide identity revealed a natural boundary of 99.5% that
could be used to define 145 distinct strains within the species. We found that intermedi-
ate frequency genes in the pangenome (present in 10%-95% of genomes) could be
divided into those closely linked to strain background (“strain-concentrated”) and those
highly variable within strains (“strain-diffuse”). Non-core genes had different patterns
of chromosome location. Notably, strain-diffuse genes were associated with prophages;
strain-concentrated genes were associated with the vSa3 genome island and rare genes
(<10% frequency) concentrated near the origin of replication. Antibiotic resistance genes
were enriched in the strain-diffuse class, while virulence genes were distributed between
strain-diffuse, strain-concentrated, core, and rare classes. This study shows how different
patterns of gene movement help create strains as distinct subspecies entities and
provide insight into the diverse histories of important S. aureus functions.

IMPORTANCE We analyzed the genomic diversity of Staphylococcus aureus, a globally
prevalent bacterial species that causes serious infections in humans. Our goal was to
build a genetic picture of the different strains of S. aureus and which genes may be
associated with them. We reprocessed >84,000 genomes and subsampled to remove
redundancy. We found that individual samples sharing >99.5% of their genome could
be grouped into strains. We also showed that a portion of genes that are present in
intermediate frequency in the species are strongly associated with some strains but
completely absent from others, suggesting a role in strain specificity. This work lays the
foundation for understanding individual gene histories of the S. aureus species and also
outlines strategies for processing large bacterial genomic data sets.
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taphylococcus aureus is a ubiquitous human pathogen capable of causing numerous

disease manifestations, including more than 100,000 bloodstream infections in 2017
in the USA alone (1). S. aureus genomes typically have a ~2.8-Mb chromosome and
zero to a few plasmids. Like other bacterial pathogens, its success at responding to
pathogenic niches comes from adaptations in the “core” portion of the genome and in
non-core genes that form the extended species genome, or “pangenome” (2). Non-core
genes form part of the extensive genetic repertoire for evading the immune response
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and damaging the host and have allowed S. aureus to survive treatment with various
antibiotics developed since the middle of the 20th century (3-6).

Microbiologists have long known that there are consistent differences in phenotypes
between taxonomic groups below the species level in S. aureus. Different “strains” have
been shown to be more likely to cause specific disease etiologies than others. Examples
are multi-locus sequence type (MLST) ST582, which is associated with scalded skin
syndrome (7) and livestock-associated CC97 infections (8). Among other phenotypes,
strains also show different propensities to acquire drug resistance genes and high or low
levels of toxin production and can produce different spectra of mutations when under
strong selection (9-12). Understanding the genetic basis of strain specificity therefore
offers potential insight into many mechanisms that define S. aureus pathology. Interest in
strain specificity has also been prompted by attempts to use shotgun metagenomic data
to define environmental conditions that separate different genotypes with species (13,
14). However, the cardinal problem with these approaches is that there is no generally
accepted bacterial strain definition appropriate for the genomic era. Instead, the term
“strain” has been used loosely to apply to different levels of subspecies variation.

The aims of this work were to seek a consistent definition of a S. agureus strain that
could be applied to genomic and ultimately metagenomic data, to understand which
portions of the non-core genome were strain associated, and to survey the extent of
strain variation in the public data. We used an approach based on an earlier workflow
(12) where we reprocessed all extant public lllumina whole-genome shotgun (WGS)
data. Here, we refined the strategy by implementing stringent steps to filter WGS
potentially contaminated with other bacterial contigs and S. aureus mixtures. We also
included high-quality complete genomes and dereplicated the final data set to remove
highly similar sequences. Critically, we opted to define relationships between genomes
based on average nucleotide identity (ANI), rather than relying on the traditional clonal
complex (CC) and sequence type (ST) designations of multi-locus sequence typing.

RESULTS

ANI threshold of 99.5% defines 145 S. aureus strains from a large public
genome data set

To obtain a comprehensive view of S. aureus genetic diversity, we first examined all
83,383 whole-genome data sets available on the National Center for Biotechnology
Information website in September 2022 for data quality and created a curated data
set with 58,034 genomes. Then, we filtered to reduce redundancy and selected 7,954
high-quality “substrains” that represented the overall diversity (Fig. 1; Fig. ST1A; Materials
and Methods).

The 7,954 representative substrains were used to create a species pangenome (the
“7954-set”) using the PIRATE software (15) based on a minimum of 50% protein sequence
identity. A total of 9,533 distinct gene families were identified (we use the shortened
“genes” to refer to these gene families in this article). Of these genes 2,008 (21.1%) were
considered core (found in >95% of the genomes); 71.3% (6,794) were rare (<10% of
genomes); and 7.7% (731) were intermediate between core and rare. Ninety percent of
the genes were in single copy (Fig. S2).

When pairwise ANI between substrains was plotted as a histogram, we observed
three major ANI peaks (Fig. 2A). We interpreted the left peak (smallest average nucleotide
distances) as intrastrain distance and the second and third as between-strain distances
within the two major S. aureus clades (16) and between the clades, respectively. The
threshold for intrastrain relatedness appeared to be at, or very near to, 99.5%, identical to
a value suggested by Rodriguez-R et al. to separate strains across 330 bacterial species
(17). When we used 99.5% as a threshold for clustering, we obtained 145 groups of
genomes that we termed strains and marked each with a suffix, “99.5_i," where i denoted
the unique strain number of one of the 145 strains. All strain clusters had median within-
cluster ANI of >99.7 (Fig. S1B). Both gene discovery rate and lineage discovery rate were
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FIG 1 Sankey diagram showing the fate of 83,383 S. aureus whole-genome shotgun data sets and 1,475 complete genomes through processing and filtering.

improved by dereplicating the initial curated 58,034 genomes compared to using a
random set (Fig. STC and D).

Of the 10 CCs defined by the S. aureus PUbMLST site (18), 7 were split across different
strains at the 99.5% clustering threshold (Fig. 2B). The most extreme example was CC1,
where pairs of substrains differed by as much as 1.4% ANI (Fig. 2C), and the clonal
complex was ultimately split across 14 strains. Across all strains, we found that >99.9%
of the genomes in the same strain had the same agrD specificity allele (1-4) of the
agr quorum-sensing system (Fig. 2D). [The one exception was strain PS/BAC/317/16/W
(GCF_018093225.1) (19), the single agr group 2 genome in 4,469 CC30 genomes.] This
result confirmed an earlier genome-based screen (20) showing that the agr type is
strongly strain specificin S. aureus.

We noted that there was a “bump” of pairwise distances (~99.5% to 99.1% ANI) in
the otherwise clear gap between within-strain and between-strain comparisons (Fig. 2A).
When we clustered substrains at 99.1% core genome ANI, we found that 30 99.5%-
defined strains merged together to form 115 putative strains. One of the merged strains
comprised genomes of $99.5_2 and 599.5_27, both largely mapped to CC8. The $99.5_27
strain consisted of ST239, which is known to have been created by the recombination
of a large portion of a CC30 genome with a CC8 background (21, 22). The other nine
sets of merged strains consisted of a small number of genomes. For two of the merged
strains, we had a complete genome which we used to align 10,000-bp sliding windows
against a genome from the same strain at 99.5% ANI and one from a different strain
that was merged at 99.9% ANI. These were strains $99.5_33 and 599.5_4 (both mapped
to CC45) and $S99.5_7 and S99.5_111 (CC15), each pair merged into one strain using
ANI 99.1% thresholds. Neither analysis revealed the clear pattern of large-scale genome
replacement seen in ST239. All but 3 STs out of 1,706 mapped only to one strain. The
exceptions were two CC45 STs that mapped to three different strains (599.5_33, $99.5_4,
and S99.5_57) and one CC15 ST that mapped to two different strains (599.5_7 and
$99.5_111).

Intermediate frequency genes in the pangenome can be divided into strain
concentrated and strain diffuse

We wanted to know what proportion of the S. aureus non-core genes were strongly
linked to strain background, in the same manner as agr type. We adapted the commonly
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FIG 2 An average nucleotide identity of >99.5% defines the strain boundary of S. aureus. For our data set of 7,954 substrains, all-vs-all pairwise average

nucleotide (AN) distances were plotted as a histogram. (A) Sample pairs less than 0.005 AN distance apart (i.e., greater than 99.5% ANI) were grouped as a strain.

(B) Strains and clonal complex (CC) designations do not exactly overlap. The pairwise AN distance histogram was colored by whether the genomes were in

the same CC. (C) CC1 genomes are in different strains. AN distances of genomes assigned to CC1 showing that there are within- and between-strain distances.

(D) Genomes in the same strain have the same agr group. The pairwise AN distance histogram was colored by whether the genomes were in the same agr group.

used genetic statistic, also known as fixation index (Fst), as a measure of segregation
of a gene between different strains (23). A Fs7 of 0 indicated a gene that displays no
genetic segregation; i.e., it was indiscriminately found across different strains. In contrast,
a Fs7 of 1 indicated perfect genetic segregation, with the gene limited to all members
of a group of strains. Rare and core genes were constrained in their distribution and had
uninformative Fgt scores around 0. Therefore, we focused our analysis on intermediate
gene families.

Strikingly, the Fg7 statistic across intermediate genes showed a distinct bimodal
distribution (Fig. 3A). This pattern disappeared when the strain labels were randomly
mixed and Fs7 was recalculated (Fig. 3B), reverting to a normal distribution, showing
that it was a feature of the specific population structure of S. aureus rather than an
inherent property of the data. From this result, we divided intermediate genes into
two groups based on a Fst threshold of 0.75. Those genes with high Fgt [295 of
731 (40%) intermediate genes], which we termed strain concentrated, were strongly
linked to strain backgrounds, while those with low Fst (strain diffuse) [436 of 731 (60%)
intermediate genes] were more promiscuous, with respect the strain background. These
patterns were illustrated using 10 S. aureus toxins with a range of Fst scores: leukocidins
LukFS (Panton-Valentine leukocidin) and LukED, toxic shock syndrome toxin 1 (TSST),
superantigen-like protein SSL8, and different types of staphylococcal enterotoxins (SEA,
SEB, SEG, and SEU) (Fig. 4). Leukocidins comprise two proteins, the F component and
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FIG 3 Bimodal distribution of Fsy for intermediate genes. Each circle represents an individual intermediate gene from the 7,954-substrain pangenome.

Percentage prevalence on the x-axis is the percentage of genomes the gene is found in. Fst or “fixation index” is on the y-axis. (A) Fs7 scores calculated for

each intermediate gene with 99.5% ANI-based clustering. (B) As a control, FsT scores were calculated for each intermediate gene when clusters were randomly

assigned.

the S component, both acting synergistically to form pores in host-cell membranes (24).
TSST, SEs, and SSL8 are superantigens or superantigen-like proteins, highly potent toxins
that can elicit severe inflammatory responses and other immunomodulatory effects (25).
The leukocidin LukFS, enterotoxins SEA and SEB, and TSST, showed high levels of gain
and loss on the species tree typical of low Fsr. In contrast, the enterotoxins SEG and SEO,
and leukocidin LUkED, found together on genomic island vSap had high Fst (>0.9) and
were either almost entirely present or absent in each strain background. For example,
LukD was not present in any substrain of 60 of 145 (41%) strains but present in >80% of
the substrains of 77 (53%) strains.

We also used Fst to test whether there was any association between the agr type of a
strain and intermediate gene distribution but found no similar pattern (Fig. S3A).

The 7,954 representative substrains were distributed unevenly, with 58 strains having
a single substrain and 15 strains having >100. This “unbalanced” sampling was an
obstacle to visualizing gene abundance patterns. Genes that were present even in a
low percent of the most numerous strains would still account for more substrains than
the rarest strains. We created the “740-set,” created by randomly sampling 20 shotgun
assembled substrains from the top 37 most populous strains to make a more balanced
sampling of S. aureus (Materials and Methods). The 740-set had similar numbers of core
and intermediate genes (2,139 and 739, respectively) to the 7954-set but fewer rare
genes (2,687), the latter expected to increase with the number of genomes sampled
in a species. The Fs7 distribution of the 740-set to the original pangenome was almost
identical (Fig. S3B).

When we plotted the number of strains each gene was found in, given the numbers
of genomes, we saw two distinct patterns. The strain-concentrated genes were close to
the minimum possible number of strains for a given gene (solid black line), while the
strain-diffuse genes were more similar to the shape of a random assortment of strains
(asymptotic exponential distribution, dashed black line) (Fig. 5A). Strain-diffuse genes
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FIG 4 Strain-group specificity and co-occurrence of specific staphylococcal toxins. Core genome phylogeny of the 7954-set. Heatmap on right shows presence

absence and Fsy of specific staphylococcal toxins: Panton-Valentine leukocidin (LukF and LukS), toxic shock syndrome toxin (TSST), and staphylococcal
enterotoxins types A, B, G, and U (SEA, SEB, SEG, and SEU), superantigen-like protein (SSL8), and leukocidin ED (LukE and LukD). The colors of the whole-genome

phylogeny are based on strain assignments.

were present in markedly more strains at a given prevalence than strain-concentrated
genes.

Figure 3 and 4 depict a pattern where strain-diffuse genes appeared to undergo gain
and loss on the phylogenetic tree at a higher rate than strain-concentrated genes . Based
on the results from HomoplasyFinder (26) on the core gene phylogeny of the 740-set, we
found this pattern was consistent across all intermediate genes (Fig. 5B). Strain-concen-
trated genes mostly had fewer than 30 minimum predicted state changes on the tree,
and there was no trend in increase of this number with prevalence. Strain-diffuse genes
had a higher rate of character state change, which rose with prevalence initially but fell
with the most common genes, probably due to saturation of available state changes.

Because of the relatively slower rate of gene gains and losses, the strain-concentrated
genes contributed more to characteristic strain-specific differences in gene content than
strain-diffuse genes. This could be effectively visualized using t-distributed stochastic
neighbor embedding (t-SNE, Fig. 6). When strain-concentrated genes’ presence/absence
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(number of genomes out of 740) and number of strains (out of 37) each gene is found in is shown. The curves for the theoretical minimum number of strains for a
given number of genomes (x/20) are shown in solid black, and the extreme random distribution (37x(1-exp(—x/37)) is shown in dashed black. (B) The relationship

between prevalence of estimated number of changes on the species tree calculated by HomoplasyFinder (26).

was used as input for t-SNE, the genomes that comprised individual strains were resolved
into distinct spatial units (Fig. 6C). However, there was no similar pattern when strain-
diffuse genes were used (Fig. 6B). Rare genes produced an intermediate result, with
some distinctive strains and some areas of the plot with mixtures of strains (Fig. 6A).
When all non-core genes were used, the strains could be readily distinguished, indicating
that for the t-SNE approach, the strain-specific structure of strain-concentrated and rare
gene content was dominant to the non-strain-specific strain-diffuse genes (Fig. 6D). We
also visualized the effect of the different classes of non-core gene is a way that was
independent of strain classification: plotting the gene content similarity (represented by
hamming distance) of each pair of genomes against the patristic distance on the core
gene phylogeny (Fig. S4). The rare and strain-diffuse genes had greater numbers of gene
differences between strains very closely related to each other (Patristic distance <0.005),
but the rate of growth of the distance in strain-concentrated genes over larger distances
on the phylogeny was greater.

We suspected that the underlying differences between the two groups of genes
were due to strain-concentrated genes being primarily located on the chromosome and
primarily spread between strains by homologous recombination, whereas strain-diffuse
genes were on mobile elements such as prophages, plasmids and integrative conjuga-
tive elements that would be located more frequently on non-chromosomal contigs.
This was supported by the rate of linkage to single copy highly conserved core genes
(defined as whether the gene was found to be on the same contig) was much lower
in strain-diffuse genes (65.5%) than strain-concentrated (86.5%). By comparison, the
rates for rare genes were 61.5% and those or for randomly selected genes were 93.5%.
We used the geNomad software and database of mobile element genes (27) to see if
there were different distributions in the different classes of genes in the pangenome.
While differences between the classes were mostly statistically significant at P < 0.05 in
pairwise Tukey’s tests (Fig. S5), the differences in mean scores were mostly quite small,
probably reflecting the relatively small size of the S. aureus training set for the software
compared to our large pangenome sampling. The strain-diffuse genes had the most
distinctive signal, having the lowest mean scores for “chromosome” and “plasmid” and
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highest for “virus!” This result corroborated the association of strain-diffuse genes with
prophage regions of the genome.

We noted that the intermediate genes had a lower median clustering threshold
than the rare or core genes [the PIRATE software uses iterative thresholds at increasing
stringency to find the final clustering threshold for a gene (15)]. To ensure the patterns
seen were not an artifact of lower clustering, we ran the 740-set pangenome with a
minimum clustering threshold of 90% amino acid identity (which we called “740-set-90").
While the more stringent clustering split several rare and intermediate gene families
(the 740-set-90 pangenome consisted of 4,490 rare, 982 intermediate, and 2,085 core),
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the characteristic divergence in features between strain-concentrated and strain-diffuse
genes did not change (Fig. S6). We also obtained similar results when the same analyses
were run with the original 7,954-substrain pangenome, although the unbalanced nature
of the collection (some strains had thousands of genomes, many only one) obscured
the differences between strain concentrated and strain diffuse in regard to the relation-
ship between strains each gene was detected in at different prevalence (Fig. S6A).
The strain-concentrated genes though had many fewer predicted state changes on the
phylogenetic tree (Fig. S6B).

Different non-core gene classes cluster in specific regions of the S. aureus
chromosome, with a strong tendency for rare genes to be near the origin of
replication

We used two alternative methods to view the distribution of non-core genes on the S.
aureus chromosome (Fig. 7; Fig. S7). In the first method, we plotted the start coordinate
of genes from 337 complete chromosomes (Fig. 7A; Fig.S7). There was noise in the
exact coordinates of individual genes, but overall, this method showed discrete peaks
in the locations of rare, strain-concentrated, and diffuse genes. The second method
was to link non-core genes from all 7,954 substrains to the nearest core gene on the
same contig (non-core genes on contigs without core genes were excluded). The gross
patterns of distribution of the counts of non-core genes mapped to the nearest core
gene coordinate (Fig. 7B) were similar to that in Fig. 7A. Differences between plots in the
proportion of genes within each category at each genomic bin (y-axis) were probably
due to a combination of the indirect measurement of gene position in the linked core
gene method and the fact that the 7,954 substrains were more balanced reflection of S.
aureus diversity than the 337 complete genomes.

Strain-diffuse and strain-concentrated genes had markedly distinct distributions on
the chromosome and were mostly located as part of distinct clusters (Fig. 7). This could
also be seen clearly in the individual chromosomes of six substrains chosen to represent
both methicillin-resistant S. aureus and methicillin-sensitive S. aureus from three strains
(Fig.S7). The vSap genome island was a notably strain-concentrated-rich gene cluster,
while the vSay island, phiSa2, and phiSa3 prophages were rich in strain diffuse. The
presence of strain-diffuse gene clusters was more variable between genomes than
strain-concentrated clusters (Fig. S7). Some genetic elements (e.g., SCCmec, type VI
secretion loci, and phiSal) contained a relatively high proportion of both types of
intermediate genes. Three regions of the chromosome relatively rich in strain-concen-
trated genes (at approximate coordinates 100,00-300,000, 1,250,000-1,500,000, and
2,500,000-2,800,000) did not correspond to known genetic elements , although the first
region contained several genes involved in polysaccharide capsule synthesis.

The high number of rare gene genes in the 0-100,000 region (which includes the
SCCmec cassette) was an outlier compared to other chromosomal regions (P value
<2.2e-16, Grubbs one-tailed test) (Fig. 7; Fig. S7). This was the case in both MRSA and
MSSA strains, suggesting that this region might be a hotspot for insertion of rare genes,
possibly through plasmid integration, rather than being specifically linked to SCCmec.

Functional differences in strain-concentrated and strain-diffuse genes

Fst and prevalence of intermediate gene families can provide insight into ongoing
evolutionary processes in the species. This is illustrated by analysis of three classes of
genes encoding antimicrobial resistance (AMR) phage defense and virulence determi-
nants (Fig. 8). No AMR genes (30) were found to be in the strain-concentrated group but
were either rare or strain diffuse [70 (82.4%) and 15 (17.6%), respectively] . This result
follows from the recent introduction of many AMR genes into S. aureus on mobile genetic
elements and their frequent gains and losses below the strain level (31). The absence of
fixation within strains also suggested possible loss of mobile elements in the absence
of antibiotic selection. Genes associated with protection from phage infection in the
defense-finder database (32) were mostly low prevalence [69 of 80 (86.3%) were rare,
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chromosome, and the proportion of the total for each class is plotted (i.e., the sum of the values of the 10,000 bins is 1). Purple denotes rare genes; green
(Continued on next page)
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FIG 7 (Continued)

denotes strain-concentrated genes; and brown denotes strain-diffuse genes. (B) Location based on the nearest core gene. For all 7,954 substrains, the closest
core gene on the same contig was determined. The x-axes are start sites for the core genes of genome N315 (GCA_000009645) (28). The values were binned and
proportionalized as in panel A. For both panels A and B, the location of selected features is shown: I, SCCmec; Il, type VIl secretion system; Ill, vSaa; IV, phiSa1; V,
vSay; VI, phiSa2; VII, vSa; VIII, phiSa3; IX, vSa4. N315 coordinates are based on Gill et al. (28) and Warne et al. (29), except phiSa2 and phiSa3, which are from Mu50
and MW?2, respectively.

and 10 of 80 (9.1%) intermediate had prevalence <0.5]. The low prevalence may reflect
diversifying selection caused by phage countermeasures. However, unlike AMR genes,
the majority of intermediate genes in this class were strain concentrated, suggesting that
defense from phage infection may help define S. aureus strains. Intermediate virulence
genes [mostly toxins (33, 34)] in the AMRFinder+ database fell into two groups: one
strain diffuse with low prevalence and the other strain concentrated with mostly higher
prevalence. Strain-diffuse virulence genes were mostly associated with prophages and
Sa-Pls, while strain-concentrated genes were associated with the vSap genome island.
This partition suggested an as-yet unexplained complexity in the hierarchy of functions
that make up the toxin profile of an individual substrain.
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FIG 8 Prevalence vs Fst for intermediate antimicrobial-resistance (AMR), virulence, and phage defense genes. AMR and virulence genes were identified using
AMRFinder+ (30); phage defense genes were identified using defense-finder (32). The dashed horizontal line represents the boundary between strain diffuse and
strain concentrated.
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DISCUSSION

In this study, we distilled a starting set of >84,000 S. aureus genome sequences to 145
strains using an ANI cutoff of 99.5%, which we found to be in a natural valley between
clustered isolates. This threshold, or values close to it, has been reported in other studies
as a bacterial subspecies boundary (17). A large number of S. aureus strains were rare [92
of 145 (63.4%) represented by one to two substrains]. While this could represent some
aspect of the true distribution of strain abundances in the species, it could also be a
function of uneven sampling of S. aureus genomes. There are large ascertainment biases
in selection as most strains are from clinical settings in Western countries. It is probable
that the number of strains will grow significantly in the future as we extend sampling.

The 145 representative genomes defined here could be used for assignment of a new
genome to an existing strain using fastANI or similar software. This simple approach for
strain assignment has the advantage of not needing a core phylogeny calculated that is
inherent to tree-based clustering and may turn out to be similarly accurate owing to the
population structure of the within- and between-strain differences in the species (Fig. 1).
In some cases, we found that the current MLST-based CCs were split into more natural
strain clusters by ANI. This is not surprising, as MLST schema was developed for PCR
amplification and sequencing, before routine whole-genome sequencing was available,
and the seven loci used for assignment only cover a small portion of the variation in the
chromosome (35, 36). MLST, though useful for rapid strain typing, is outperformed by
whole genome-based methods for lineage assignment (36, 37).

Several pangenome studies with S. aureus genomes have been performed for
epidemiological investigations (38-43), vaccine candidate discovery (44, 45), and
evolutionary phylogenomics (46-49). These produced a wide range of results, from a
total pangenome size of 4,250-21,358 genes, with cores ranging from 890 to 2,700 genes
(Table S1). The variability is a feature of the many factors that influence pangenome
estimation, which can be classed into three main groups: sample collection, data quality,
and bioinformatics approaches. In terms of the collection, more individual genomes of
a species tend to produce a larger number of gene families (in an “open” pangenome)
and smaller core (50). Similarly, the more genetic diversity within the species increases
pangenome size. We used essentially all the genome data available in the public domain
by Fall 2022 [although we ended up excluding several thousand experiments based on
quality (Fig. 1)]. Therefore, this study probably has the largest and most diverse input of
S. aureus set used to date. By reducing genome redundancy, we also mitigated some of
the overcounting of highly sampled clones in the public databases. Ideally, all genomes
for a pangenome should be of high quality and complete. However, we chose to include
shotgun assembled genomes, which may contain a certain percentage of missing genes
due to contig breaks, to maximize diversity. Using shotgun assemblies also allowed us
to sample multiple genomes from a larger number of strains, which was important for
characterizing strain-diffuse and strain-concentrated genes. By reprocessing the data
from raw reads, we were able to filter out lower-quality data and have consistent
assemblies (Fig. 1). In tests, we found that pangenomes based on our shotgun assemblies
produce metrics similar to those estimated using only complete genomes, as evidenced
by the 740-set, which was composed entirely of shotgun data. For most complete
genomes, there is no matching raw read data available in public archives, so it is not
possible to know whether the sequence is based on highly redundant reads coverage, as
it is for our Bactopia processed genomes used here. The final group of factors concerns
choices about bioinformatic software and what parameters to use. Out of a wide range of
open source options available, we chose to use highly cited tools Bakta (51) [which uses
the Prodigal (52) gene finder] for annotation and PIRATE (15) for pangenome estimation.
PIRATE iteratively increases the threshold to report the maximum identity that clusters
each gene family and therefore avoids over-splitting gene families. PIRATE also identifies
alleles within families without creating artificial paralog gene families. Tools that split
paralogs into separate gene families [e.g., ROARY (53) using default parameters] will also
produce larger numbers of gene families and fewer core genes. The choice of minimum
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threshold for clustering proteins or genes (usually based on percentage identity of a
pairwise alignment) is important. We realized from constructing the pangenome with a
minimum 50% threshold that 85% of S. aureus gene families were clustered with at least
the 90% identity. When we tested the 740-set pangenome with the minimum threshold
increased to 90%, we found a similar number of core genes (2,139 at 50% minimum vs
2,085 at 90% minimum), but the number of non-core genes increased to from 3,426 to
5,472 (90%). This was because many intermediate gene families had been split at the
higher threshold. However, the different threshold did not affect the key result of this
study, which was that intermediate genes could be placed into two groups based on
segregation with the strains defined by ANI using the Fst statistic. Although we did not
thoroughly explore different options in this study, pangenome estimation in S. aureus
could be further optimized in future benchmarking studies based on the genome data
collected here.

We defined two classes of S. aureus intermediate frequency genes. Strain-diffuse
genes are maintained in the population yet have a high turnover; i.e., they are gained
and lost frequently (e.g., LUKFS, TSST, SEA, and SEB in Fig. 4). These genes are associated
with mobile elements on the chromosome, such as prophages, SaPls, and SCCmec,
and are also often found on contigs unlinked to core genes, as would be expected
of plasmids. S. aureus strain-diffuse genes are strikingly promiscuous in their strain
background (Fig. S4). This suggests high rates of horizontal transfer and, over the
longer term, relatively weak barriers to genetic exchange compared to the strength of
selection for strain-diffuse genes. The second class, strain-concentrated genes, segrega-
ted closely with the strain core gene background. Many of the genes cluster in the S.
aureus genome islands, particularly vSaf. The elements have been described as having
complex, strain-specific genetic structure (54, 55). Strain-concentrated genes also include
significant virulence-related functions located outside of previously defined genetic
elements such as certain type VIl secretion and capsule genes. Strain-concentrated
genes have many fewer predicted gene gains and losses than strain-diffuse genes (Fig.
5) and a much stronger phylogenetic signal (Fig. S4). This suggests that the rate of
horizontal transfer of strain-diffuse genes is much higher, and the probable reason is that
they are on self-transmissible elements such as phages and plasmids (conjugative and
mobilizable). The genome islands appear to have evolved from prophage or SaPIs that
have acquired null mutations in their genes for site-specific recombination. We propose
the mechanism of horizontal transfer of strain-diffuse genes is indirect: homologous
recombination following introduction of DNA into the donor cell.

This study raises two questions about the manner in which the S. aureus genome
evolves and the underlying selective pressures that drive the observed patterns: (i) what
are the forces that create the “valley” of ANI in the range of 99.1%-99.5% (Fig. 1)?
and (ii) what are the functional implications of the partitioning of intermediate genes
in strain-concentrated and strain-diffuse groups? The ANI valley implies that there is
a limited time that strains can survive as coherent taxonomic units, as measured by
accumulation of neutral mutations. Possibly, strains are replaced from within by the
wavelike expansion of successful clones. Something like this process may be happen-
ing with the expansion of USA300 since the late 1980s, gradually becoming the most
common CC8 strain in the USA (56, 57). This explanation implies that strains occupy
distinct niches, with adaptation possibly defined by the composition of their non-core
genes (58, 59). Substrains would then be competing with each other to occupy the
strain niche. New strains can also emerge from outside by genome-scale recombination
events, exemplified by CC239 strains (21, 22). Judging by the relatively small size of the
“99.1%-99.5% bump” (Fig. 1), these types of events may be a rare but ongoing process.

The second question we highlight concerns the functional implications of the
partition of strain-concentrated and strain-diffuse genes. There is a bias for deletion
in bacterial genomes (60) that implies genes maintained over time are under enduring
strong selection. Conversely, the strain-diffuse gene pattern can be seen as cycles of
gene gain under neutral selection (i.e., driven by gene transfer alone) or short-term
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positive selection followed by rapid removal. However, we do not know of any studies
that address the underlying reasons for the difference in strain-level vs substrain-level
selection. Toxins are interesting in this regard because of their importance for S. aureus
virulence. Why are some toxins maintained as core functions [e.g., alpha-toxin (hly)],
some strain concentrated [e.g., enterotoxin G (seg)], and some strain diffuse, present in
diverse substrains [e.g., Panton-Valentine leukocidin (lukFS)]? (Fig. 4). The superantigen-
type toxins are split between strain-concentrated and strain-diffuse genes, suggesting
that former functions may be strongly linked to strain niches. This also opens up the
possibility of using the strain-concentrated genes as markers for strain identification in
epidemiological studies as suggested by others (61, 62) or in metagenomic samples.

In summary, this work revealed a new partition in the structure of the S. aureus
pangenome that will spur further studies on genome evolution and subspeciation in
the species. The methodology for refining large amounts of public data, defining strains
using ANI, and following strain specificity of the pangenome using Fst can also be
applied to other bacterial species. Comparisons to other species, particularly from the
Staphylococcus genus, will reveal the commonalities and unique selective pressures
acting on the pangenome of this dangerous pathogen.

MATERIALS AND METHODS
Public genome collection, processing, and filtering

Bactopia v.1.7.0 was used to download and process all genomes used in this data
set. Bactopia is a software pipeline for comprehensive analysis of bacterial genomes
based on Nextflow (63, 64). The command “bactopia search “Staphylococcus aureus”
--prefix saureus” was used to download all S. aureus short-read sequences available
on Sequence Read Archive in September 2022. Bactopia used SKESA to assemble
genomes, Bakta to annotate, and Snippy for variant calling (65, 66). Assembly quality
was evaluated using QUAST and CheckM (67, 68). S. aureus CC and ST were based
on the PubMLST database (18) (https://pubmist.org/bigsdb?db=pubmlst_saureus_seq-
def&page=downloadProfiles&scheme_id=1). AgrVATE v.1.0.5 was used to assign agr
types (20). Only samples having greater than 50x coverage, mean per-read quality
greater than 20, mean read length greater than 75 bp, and an assembly with less than
200 contigs were considered for the analysis (corresponding to “gold” and “silver” ranks
as designated by Bactopia. Samples that were detected as not S. aureus according
to kmer-based identification or CheckM were then removed. Coverage for all samples
were capped at 100x. For every sample, bactopia performs variant calling using Snippy
against an auto-chosen reference sequence based on the smallest Mash distance to a
complete S. aureus genome in RefSeq (65, 69). For each variant identified, the allele
frequencies were calculated from the bam files using bcftools mpileup (70). Samples
having average minor allele frequency of >0.05 were considered mixed strains and were
therefore removed. Samples having a total number of variants of >150,000 compared to
the auto-chosen reference (or more than 5% of the genome) were also considered non-S.
aureus and were removed (71). This process reduced 83,383 samples to 56,771. Since
Bactopia collected and processed only short-read S. aureus data, we added complete S.
aureus genome sequences to this set. Out of 1,475 complete genomes publicly available
as of February 2023, 1,263 did not have any ‘N’ characters in their assemblies and were
added to the filtered data set of 56,771, leading to a total of 58,034 genomes (56,771
short-read genomes + 1,263 complete genomes). The 212 complete genomes containing
“N” characters were not used in this study.

Substrain dereplication

Samples were grouped by their MLST types as assigned by Bactopia and for each ST, an
all-vs-all Mash distance estimation (69) was run. Samples with a Mash distance of <0.0005
[approximately 50 single nucleotide polymorphisms (SNPs)] (12, 20, 72) were grouped
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into clusters. A randomly chosen representative of each of these 7,954 substrains was
selected for downstream analysis. Where possible, we used complete genomes as the
cluster representative. Samples with unassigned STs were grouped together and treated
the same. The resulting final dereplicated set of 7,954 genomes was used for pangenome
construction. The representative substrains came from 1,706 MLSTs, with 386 substrains
not belonging to a previously assigned ST. The uneven distribution of genomes across
substrains and STs reflected the sampling skew toward well-known S. aureus strains from
predominantly clinical settings. We found that the 15 substrains that represented the
most collapsed genomes comprised 50% of the shotgun data sets. The most numerous
substrain, from CC22, comprised 7,688 of the 58,034 whole genomes (13%), while there
were 5,597 substrains represented by only one genome. Out of 7,954 substrains, 3,857
(48%) were in the 10 most abundant STs (ST5, ST8, ST30, ST398, ST45, ST1, ST22, ST15,
ST59, and ST239), representing 39,366 out of 56,771 genomes (69%).

Pangenome analysis

The Bakta annotation produced by the original Bactopia run was used as input for
pangenome estimation with PIRATE v.1.0.5 (15). PIRATE was run using default parameters
with the additional flags -a to obtain core genome alignments and -k “--diamond” to
use DIAMOND for the amino acid sequence comparisons (73). SNP-sites v.2.5.1 (74) was
run on the PIRATE core genome alignment to extract only polymorphic sites (709,911
sites), and the resulting alignment was used to construct a core genome phylogeny
with FastTree v.2.1.11 (75) (GTR model; 1,000 bootstrap resamples). The phylogeny
was visualized using the R package ggtree (76, 77). A ST93 strain (accession number
GCA_000144955.2) was drawn at the root as described in (20). We used HomoplasyFinder
(26) to count the number of state changes of each non-core gene on the phylogeny.
geNomad v.1.5 (27) was used to predict mobile genetic elements.

Strain definition based on ANI

All-vs-all pairwise ANI was calculated for the 7,954 dereplicated genomes using fastANI
v.1.33 (71). We also calculated all-vs-all pairwise SNP distances based on the concaten-
ated nucleotide sequences of the core genes (2,101,692 nt) using snp-dists v.0.7.0
(https://github.com/tseemann/snp-dists) and observed a similar three-peak distribution
as in Fig. 2A. Strain assignments were performed based on average linkage hierarchical
clustering, and samples that had an ANI of 99.5% or greater were clustered together,
and this 99.5% ANI threshold also corresponded to a valley after the first peak in the
SNP distance distribution (Fig. S8). We decided to use the ANI threshold based on
assemblies rather than the core gene SNP threshold because (i) it is significantly faster to
perform ANI comparisons, thereby making it easier to incorporate new genomes in the
future; and (i) there is existing literature corroborating the 99.5% ANI threshold (17). The
average ANI of each genome with every other genome in a given cluster was calculated,
and the genome with the highest average ANI was assigned as the strain representative.

Calculating Fst

We created a custom R function to calculate the Fst for each gene, with group member-
ship defined as strain type, clonal complex, or agr group, depending on the purpose
of the comparison. The input was a binary presence/absence data frame, with genes as
columns and genomes as rows. Fst was calculated using Weir's formula (23).

Creating the 740-set and 740-set-90 pangenomes

We randomly subsampled 20 substrains each from all strains with >20 substrains (37
strains). We reran PIRATE v.1.0.5 with default parameters and created a core genometree
using FastTree v.2.1.11 as described above. To create the 740-set-90 pangenome, we
ran the 740 genomes through PIRATE v.1.0.5 with minimum clustering threshold of 90%
amino acid identity.
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Chromosomal locations of non-core genes

We used two methods for mapping chromosomal locations of non-core genes based on
the co-ords output of the PIRATE v.1.0.5 pipeline for the 7954-set and 740-set pange-
nomes. First, we screened 377 complete substrain genomes that had dnaA as their first
gene by BLAST and collated the start coordinate of each non-core gene. The second
method was to collate the start coordinate of the nearest core gene on the same contig
as each non-core gene. For each class of non-core gene, 20,000 random genes were
selected as well as a control of 20,000 genes of all classes (including core). If the non-core
gene was on a contig that did not have a core gene, then its status was returned as
“unlinked”

Antibiotic resistance, virulence, and phage defense functions

To assign antibiotic resistance genes, we queried representative protein sequences of
each gene family of the 7954-set produced by PIRATE against the AMRFinder+ (30)
database using tblastn (78) with a threshold of >90% identity as a match. We filtered
out the virulence-associated genes using matches for the terms “serine_protease,’

nou " ou nou "o

“enterotoxin,” “hemolysin,” “Panton,” “adhesin,” “complement,” “aureolysin,” “exfoliative,’
“toxin,” “intracellular_survival,” “serum_survival,” and “leukocidin” and kept the remainder
as antibiotic resistance gene matches. To assign phage defense-related functions, we
queried the 7954-set representative proteins against the online defensefinder database

(32) (https://defense-finder.mdmparis-lab.com/) on 17 October 2023.

Statistical analysis and data visualization

All statistics and t-SNEs were performed in R using the package rstatix (79). All plots
were visualized using R package ggplot2 (80). Other visualizations were performed using
draw.io and Sakneymatic (81, 82).
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