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ABSTRACT: Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion
such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize
absorption using surface plasmons and/or Fabry−Perot cavities, which limits the weight efficiency of the device. Here, we show the
theoretical and experimental realization of an unpatterned/planar semiconductor thin-film absorber based on monolayer transition-
metal dichalcogenides. We experimentally demonstrate an average total absorption in the visible range (450−700 nm) of >70%
using <4 nm of semiconductor absorbing materials scalable over large areas with vapor phase growth techniques. Our analysis
suggests that a power conversion efficiency of 15.54% and a specific power >300 W g−1 may be achieved in a photovoltaic cell based
on this metamaterial absorber.
KEYWORDS: multiheterostructure, broadband absorber, photovoltaic, transition-metal dichalcogenide, nanophotonic

Absorption occurs when light−matter interactions lead to
an energy transfer from an incident photon to the

irradiated material. In the context of optoelectronic devices,
absorption is typically required to be either narrow-band
(single wavelength) or broad-band (spectral) depending on
the application. In the past decade, the field of thin-film, near-
unity broadband absorption has garnered interest given its
numerous benefits compared to bulk absorbers, such as
decreased material usage and cost, shorter carrier collection
distance that decreases recombination losses,1 and decreased
weight. While these characteristics open doors for the use of
broadband absorbers for efficient ultrathin optoelectronic
applications, such as photovoltaics,2 photoelectrochemical
processes,3,4 and photodetection,5 it is equally critical to
continue innovating in the field of ultrathin broadband
absorbing metamaterials, in and of itself, to pave the way for
future device breakthroughs.
In the submicron range, the dominant approach to achieving

broadband absorption has been engineering metamaterials
using plasmonic nanocavities to generate localized surface
plasmon−polaritons to strongly confine light in the absorbing

material.6 Metal−insulator−metal (MIM) structures were
extensively studied with various plasmonic structures as the
top layer.7−10 Unfortunately, the energy absorbed by metals is
lost through the thermalization of carriers, which is not useful
and is often detrimental for optoelectronic devices. To combat
this issue, thin-film semiconductors have been coupled to
plasmonic nanostructures to enhance light−matter interac-
tion.11−13 However, employing metal plasmonic structures as
the dominant mechanisms for strong light−matter coupling
results in Joule heating losses in the metal; this parasitic
absorption does not contribute to the optoelectronic function,
decreasing the weight efficiency of the device. One strategy to
avoid parasitic absorption in the metal nanostructures has been
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to pattern the semiconductor itself to form cavity modes that
couple to the incident light. Although this has been done to a 1
μm Si slab to achieve >80% absorption in the visible range,14 it
comes at the expense of scalability because of the complex
patterning needed. Another strategy to increase the strength of
light−matter interactions in a planar geometry is to alter the
thickness of a layer to create a thin-film interference effect.15,16

Absorption in planar semiconducting thin films on top of metal
or metal/dielectric substrates has been demonstrated for
MoSe2,

17 Ge,13,18 MoS2,
19,20 and graphene.21 While these

studies concentrate most incident light into the semiconduct-
ing active layers, they do not push the boundary of ultrathin
materials−the atomically thin limit−that would achieve the
greatest energy efficiency by weight.
Previous work from our team has demonstrated near-unity

narrowband absorption using a scalable multilayer superlattice
structures based on atomically thin 2D transition-metal
dichalcogenides (TMDCs) measuring <1 nm in thickness
per layer,22 and other recent work has demonstrated that a
semi-transparent superlattice using four monolayers of active
material can approach the absorption limit.23 In this letter, we
numerically and experimentally demonstrate a broadband
visible absorber based on <4 nm of large area, scalable, planar
(unpatterned) monolayer TMDCs. We achieve electronic
isolation of each semiconducting layer within the multi-
heterostructure stack to obtain multiple resonance peaks,
contributing to a broadband absorption spectrum with an
average total (sum of the absorptance of each layer) absorption
in the visible range (450−700 nm) greater than 70%. This is
the thinnest, scalable visible broadband absorber reported to
date without the use of any bottom-up self-assembly, top-down
nanopatterning, or integration of complex plasmonic nano-
structures. We also simulate the potential photovoltaic
performance of the multiheterostructure and find that it has
a large potential specific power (>300 W g−1). Our structure
pushes the light−matter coupling efficiency limit of ultrathin
semiconducting materials and is applicable for a plethora of
optoelectronic devices.
Figure 1a illustrates our ultrathin visible broadband absorber

design employing alternate layers of semiconducting (TMDC)
monolayers and dielectrics (Al2O3), along with a back reflector
(Ag). This geometry constitutes a multi-quantum well
(MQW),24 or multi-heterostructure, and it has been reported
in our work that employed a single TMDC to enhance the

narrowband absorption of a superlattice.22 Monolayer TMDCs
are chosen for the semiconductor layers because of their
strong, quantum-confined excitons that are highly absorptive,
their bandgaps that range from 1.1 to 2.0 eV, and their direct
bandgap nature in the atomically thin limit which is highly
desirable in optoelectronic applications.25−31 Although the
four bottom layers follow the trend of decreasing bandgap
from top to bottom, which is typical in multitandem solar
cells,32 the smallest bandgap (2H-MoTe2) is placed on the top.
This is done to reduce the amount of degradation of MoTe2
during fabrication since it is the most sensitive TMDC used to
the ambient environment.33,34 Simulations show negligible
differences in absorption when the MoTe2 is on the top or
bottom of the SL since the overall thickness of the structure is
much smaller than the wavelength of photons in the visible
part of the spectrum (Figure S1a). Further simulations (Figure
S1b) additionally indicate that other layer configurations, such
as ordering in increasing bandgap from top to bottom,
negligibly affect the total absorption of the system but do affect
the absorption of individual layers due to optical screening.
The Al2O3 insulating layers are 3 nm thick since previous
studies of TMDC/insulator/TMDC heterostructures, using
both a single35 and two different types36−38 of TMDCs, have
shown the formation of interlayer excitons when the insulator
is <3 nm thick. Interlayer excitons form as a result of the
exciton wave function extending outward into multiple
monolayers. Using a 3 nm thick insulator confines the wave
function to a single monolayer, allowing for the preservation of
monolayer properties.39 The bottom dielectric underneath the
SL strongly affects the light−matter interactions over a narrow-
band range because of its effect on interference within the SL.
Because of this, the bottom dielectric function thickness is the
only degree of freedom (DoF) that is used to optimize the
broadband absorption of the system. The optimization process
is done using the transfer matrix method (TMM) along with
refractive index values measured using spectroscopic ellipsom-
etry (Figure S2) to calculate the absorption of the multi-
heterostructure. The refractive index of monolayer 2H-MoTe2
was approximated as its bulk value (10 nm) because of a lack
of the monolayer value in the literature.40 The back mirror is
200 nm of E-beam evaporated Ag, which is far thicker than the
penetration of visible light (14 nm @ λ = 500 nm). This
ensures that no transmission occurs through the device, and
absorption can be calculated directly from reflection (A = 1 −

Figure 1. (a) Front-view schematic of an N = 5 TMDC multi-heterostructure composed of TMDC monolayers, dielectric spacers (Al2O3) with a
bottom dielectric thickness of 33 nm, and a silver back reflector mirror. (b) Optical microscope (OM) images of the step-by-step fabrication
process of an N = 5 large area sample.
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R). Silver is chosen specifically to minimize parasitic
absorption.41

One key advantage of using TMDC monolayers is the
advent of techniques to isolate and deposit pristine monolayer
TMDCs on any arbitrary surface on the wafer-scale,42−44 as
shown in Figure 1b. MOCVD is used to grow large area
monolayer MoSe2 (N = 1), WSe2 (N = 2), WS2 (N = 3), and
MoS2 (N = 4) on sapphire for the large area multi-
heterostructure. However, for the partially exfoliated multi-
heterostructure, MoSe2 and WSe2 are exfoliated. The films are
then transferred to an optimized substrate using the wet
transfer process to fabricate the multi-heterostructure (see the
Supporting Information). The refractive index is found to be
unaffected by the wet transfer process, so the total absorption
of the multi-heterostructures is unaffected by the potential
damage of the transfer process (Figure S3).
Monolayer MoTe2 (N = 5) is mechanically exfoliated from a

bulk crystal using a PDMS stamp technique.44 As demon-
strated in subsequent sections, both techniques of transfer
yield high-quality samples with minimal defects, with the N = 4
SL demonstrating exemplary environmental stability. Atomic
layer deposition (ALD) is used to deposit thin-film Al2O3 on
top of the back reflector and between the monolayer TMDC
layers. Figure S4 demonstrates a separate realization of the
multi-heterostructure stack using mechanically exfoliated
MoSe2 (N = 1), WSe2 (N = 2), and MoTe2 (N = 5) and
MOCVD grown WS2 (N = 3) and MoS2 (N = 4). It is
important to note that all of the TMDC monolayers have been
grown on the wafer-scale using MOCVD, demonstrating the
scalability of our system.45−47 In Figure S5, TEM images and
EDS maps are captured, where the individual layers and
identities of the multi-heterostructure stack can clearly be seen.
Further details on the experimental process may be found in
the Supporting Information.

A distinctive feature of monolayer TMDCs from their
multilayer counterparts is their strong photoluminescence
(PL), which is a result of the indirect to direct bandgap
transition in the monolayer limit.48,49 Interlayer coupling
causes multilayer TMDCs to suffer from increased non-
radiative recombination that quenches the intensity of the PL,
reducing their potential optoelectronic efficiency.36,50 In Figure
2a, we verify the monolayer thicknesses and electronic isolation
of the fabricated TMDC layers within our SL through PL
measurements of a characteristic N = 5, partially exfoliated SL
(WSe2, MoSe2, and MoTe2 were mechanically exfoliated while
the MoS2 and WS2 are large area and were transferred using a
wet transfer process). The resulting peaks are generally red-
shifted from the A exciton resonance energy for the identified
monolayer TMDC due to phonon energy loss in radiative
recombination, and all of the peaks are within 50 meV of prior
measurements.27−30,51 Variations are attributed to mechanical
strain introduced to the SL during the extensive fabrication
process,28,52 as well as additional dielectric screening from the
surrounding environment that decreases the electronic
bandgap of the TMDC.53 This is particularly relevant for the
bottom layer, MoSe2, which has the largest deviation from
previous works while also experiencing the most mechanical
mismatch, environmental contamination, and dielectric
encapsulation. The blue-shift of the peak, in particular, can
be attributed to a strong in-plane compressive stress52 placed
on the monolayer as a result of eight additional layers on top of
it. This blue-shift is observed throughout the fabrication
process (Figure S6). The relative intensities of the peaks (WS2,
WSe2, MoS2, MoSe2) are consistent with the simulated
absorption of the monolayers at 405 nm (Figure S7) and
experimentally demonstrated PLQY values.44,54−56 The main
exception to this trend is MoSe2, which performs significantly
worse than expected in comparison to the other TMDCs; this

Figure 2. (a) Normalized photoluminescence (PL) spectra for the multi-heterostructure (orange) and deconvoluted Gaussian fits for individual
layer PL spectra for the partially exfoliated multi-heterostructure. (b) Normalized Raman spectra for the multi-heterostructure matched with
experimental Raman spectra for the CVD-grown/dry-transferred TMDC monolayer. Inset of (a): (left) temperature-dependent PL spectra for the
multi-heterostructure at 300 and 80 K and (right) simplified front-view schematic of the multi-heterostructure.
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is attributed to increased defect states and strains introduced in
the fabrication process, as outlined above, as well as the
screening of photons as they travel through multiple interfaces
in the SL to the collector. The MoX2 (X = S, Se) peaks are also
observed to have larger full width at half maximums (fwhm’s)
compared to their WX2 (X = S, Se) equivalents by 27 and 51
nm, respectively. This behavior is expected for MoS2, which
inherently scatters more energy to phonons than WS2,

57 as well
as for MoSe2, where increased localized defect scattering
combines with the A exciton peak.58

We further probe the photoluminescence behavior of our
multi-heterostructure by taking low temperature (LT)
measurements of the SL at 80 K, as shown in the inset of
Figure 2a and deconvoluted in Figure S8. The most notable
shifts in PL resonance are in the MoS2 peak, which experiences
a red-shift of 25 meV, and MoSe2, with a red-shift of 45 meV.
The red-shifting is a result of the thermal expansion coefficient
mismatch between layers, changing the stress in the TMDC
layers and counteracting the typical effects of cooling.
The WS2 and WSe2 experience negligible shifts. These peaks

shift as temperature decreases, and this can be attributed to
increased thermally induced tensile stress.28 MoSe2 experiences
the largest thermally induced tensile stress because it has the
highest coefficient of linear thermal expansion among the
TMDCs and dielectric materials, while MoS2 is the second
highest.59−63 Conveniently, the defects in MoSe2 caused by the
initial compressive stress at 300 K is relieved as the
temperature is decreased, increasing the relative intensity of
the MoSe2 PL compared to WSe2.

The identity and thickness of the monolayers are further
confirmed using Raman spectroscopy (Figure 2b), which plots
the Raman spectra for an N = 5 SL against experimentally
acquired Raman spectra for CVD-grown or mechanically
exfoliated monolayers. Thickness-dependent Raman spectra is
highly accurate in pinpointing layer-by-layer increases in
thickness due to additional interlayer vdW interactions that
stiffen the A1g mode from the increased vibration restoring
force, as well as stacking effects that relax the E2g mode from
shifting lattice dimensions.64,65 As seen, the top two layers are
easily discernible in the N = 5 spectra; the A1g modes for
monolayer MoTe2 and WS2 closely match those of previously
acquired values.31,65 The bottom layers are more difficult to
identify due to background noise attributed to interfacial
screening; however, layer-by-layer measurements of an N = 3
SL clearly identified A1g and E2g peaks corresponding to
monolayer values (Figure S9).30,66

Figure S10 demonstrates equivalent data in the representa-
tive N = 5, large area SL depicted in Figure 1b, where
electronic isolation is clearly demonstrated in the photo-
luminescence and Raman measurements.
The absorption spectra are obtained experimentally for a

characteristic N = 4 and N = 5 SL for both large area and
partially exfoliated samples (Figures 3a and 3b). Absorption is
calculated as 1 − reflection, given that the Ag back reflector
blocks all transmission. The multilayer reflections within the
SL lead to a broadband, multiresonant peak absorption
spectrum within the visible range (450−700 nm). An average
total absorption of 58.5% and 73.8% is achieved for the
partially exfoliated N = 4 (active thickness = 2.8 nm) and N =

Figure 3. Measured and calculated total absorption spectra from 450 to 700 nm at normal incidence for the (a) N = 4 and (b) N = 5 multi-
heterostructure, and the corresponding (c and d) calculated layer-by-layer total absorption spectra.
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5 SL (active thickness = 3.5 nm), respectively, while an average
total absorption of 60.6% and 70.5% is achieved for the large
area N = 4 and N = 5 SL. Further, in the 450−520 nm range,
the partially exfoliated N = 5 SL demonstrates >80% average
total absorption while the large area N = 5 SL demonstrates
>75% average total absorption. The visible broadband
absorption is attributed to a combination of the strong
excitonic resonance peaks of the individual semiconducting
layers and an enhancement of light−matter interactions from
the optimized thickness of the bottom dielectric. The first
resonant peak at 516 nm is attributed to the B exciton peak of
WS2.

67 A and B exciton peak splitting is well-documented and
is attributed to the splitting of the valence band due to spin−
orbit coupling.68 The second resonance peak at 614 nm is
predominately the A exciton peak of WS2 and the B exciton
peak of MoS2, while the third resonance peak at 653 nm
corresponds to the A exciton of MoS2. Figure S11 additionally
shows experimental resonance peaks at 745 nm from the WSe2
A exciton and 788 and 704 nm from the MoSe2 A and B
excitons, respectively, in the partially exfoliated sample. Solar
absorption under 1.5 AM solar irradiation is calculated as
shown in Figure S12.
The absorption of our SL is simulated using the TMM69 to

verify that our experimental results are consistent with
theoretical models. The simulated absorption spectra in
Figures 3a and 3b were found to agree well with the partially
exfoliated sample, while variations in the large area sample are
attributed to introduced impurities and defects in the growth
and wet transfer process. We verify that the broadband visible
absorption of the SL has been optimized using a constrained
minimization algorithm where the bottom dielectric thickness t
is varied, resulting in t = 33 nm for the N = 4 multi-
heterostructure and t = 31 nm for the N = 5 multi-
heterostructure. For the sake of experimental fabrication, 33
nm alumina was deposited for the sample device presented in
this text.
The TMM model for our SL allows for the layer-by-layer

analysis of our structure (Figures 3c and 3d). The average total

broadband visible absorption, in descending order, of the N =
4 (68.77%) model is MoSe2 (25.28%), WSe2 (17.79%), MoS2
(10.56%), WS2 (9.38%), and Ag (5.76%) while that for the N
= 5 (79.19%) model is MoTe2 (21.37%), MoSe2 (21.03%),
WSe2 (14.85%), MoS2 (8.93%), WS2 (7.94%), and Ag
(5.06%). Layer absorption is particularly enhanced in the
bottom layer of the SL, where absorption values surpass the
values expected from freestanding, electronically isolated
monolayers.70,71 A close fit exists between the experimental
result and the layer-by-layer predicted excitonic resonances,
which further confirms the consistency of the SL.
We benchmark our N = 5 SL against other ultrathin

broadband absorbers in the field in Figure 4 by comparing
average absorption in the 450−700 nm range and effective
active layer thickness. Further details about how the effective
thickness and absorption are calculated are found in the
Supporting Information. We compare our SL to geometries
ranging from plasmonic metasurfaces to planar semiconduc-
tors. Our multi-heterostructure is found to have the record
average absorption in the visible range per nanometer of active
layer thickness (21.1% nm−1 for the partially exfoliated sample
and 20.1% nm−1 for the large area sample). As seen, while
various metal-based absorbers have achieved near-unity
broadband absorption within the visible range, they require
metals that are thicker than the penetration depth of the metals
(10 to 100 nm typically). Additionally, the photocarriers in the
metals lose all of their energy to thermalization. Therefore,
plasmonic metasurfaces are best suited to thermal applications.
While plasmonic nanostructures can be used to effectively
control and guide light to the underlying semiconductor layer,
parasitic absorptions in the metal reduce the efficiency of the
interaction while increasing the total effective thickness/weight
of the absorber. In addition, the need to pattern plasmonic
nanostructures is a key obstacle in realizing many semi-
conductor-metal-coupled absorbers for widespread optoelec-
tronic use; lithographic steps are costly, timely, and technically
difficult to realize and scale. Our multi-heterostructure can
overcome these two key obstacles in achieving ultrathin

Figure 4. Benchmark of our absorber against other absorbers according to estimated absorptance and active layer thickness based on metrics of
dominant absorbing material, patterning, and study type.11,12,17,19,74−82
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optoelectronic devices by confining absorption almost entirely
in the semiconducting layers while employing a planar
structure compatible with robust wafer-scale growth and
fabrication.
While our multi-heterostructure does not have the highest

visible broadband absorption of the reviewed publications, we
have achieved the highest broadband absorption in a
semiconductor stack <10 nm thickness. Our device is
simultaneously the thinnest by active material and most
energy-dense by volume in the field, to the best of our
knowledge. The reduced material usage, enhanced physical
flexibility, and feasible scalability of an optimized ultrathin
active absorber will open doors for an array of optoelectronic
applications from photovoltaics (wearable electronics, aero-
space, portable charging, etc.)72 to sensing and stealth
technology.73

To elucidate the potential of our ultrathin absorber in
photovoltaic (PV) applications, we consider the design of a
separate contact PV cell seen in Figure 5a by using a combined
optoelectronic model. Silver and gold electrodes with a
thickness of 0.01 μm and n- and p-regions with widths of
0.01 μm are used. The excitonic effects that dominate TMDC
PV behavior are accounted for as per our previous studies.82

Experimentally demonstrated values for exciton diffusion
length, radiative and nonradiative lifetimes, and binding energy
of freestanding TMDC monolayers are used in the model and
listed in Table S1. Note that binding energy is taken as 10% of
the accepted exciton binding energy of a freestanding
monolayer given that bandgap tuning to this extent has been
demonstrated through the Coulomb engineering of the
localized dielectric environment.83 More details about the
simulations conducted can be found in Table S2.

The performance of the ultrathin PV is optimized for
Figures 5b and 5c. Power conversion efficiency (PCE) scales
with absorption, with the top layer MoTe2 and second layer
WS2 being the largest contributors to JSC and VOC, respectively;
this is expected from the high photocurrent generated in the
top layer of the SL and the large bandgap in the WS2. The IV
curves for the N = 4 cell are provided in Figure S13. We thus
calculate a PCE of 14.05% for the N = 4 SL and 15.54% for the
N = 5, under AM 1.5 normal incidence. This performance can
be benchmarked against other leading material classes for
ultrathin PVs, such as organic PVs (OPVs) and perov-
skites.84,85 In Figure 5d, the metric of the specific power is
used. This is calculated by dividing the converted integrated
spectrum power at AM 1.5 for the device by its effective
thickness, with more details on calculation provided in the
Supporting Information. As seen, the N = 4 and N = 5 SL have
specific densities of 291.6 and 311.4 W g−1, respectively, >2
times higher than the next leading technology, to the best of
our knowledge. This is due to the outstanding excitonic
properties of TMDC-based PVs82 and ultrathin nature of our
material at 2.8 nm (N = 4) and 3.5 nm (N = 5) of active
thickness, <60 nm of effective thickness, and <0.5 g m−2 of
weight.
In summary, we have presented scalable TMDC-based

multi-heterostructures using five different monolayer TMDCs
as light-trapping layers. The incorporation of the various
electronically isolated TMDCs contributes to multiple
excitonic resonant peaks within the same structure, ultimately
achieving >70% average total broadband absorption in the
450−700 nm visible range in a multi-heterostructure using 3.5
nm of active material. Further, the multi-heterostructure is
predicted to have a power conversion efficiency of 15.54% and
a specific power of over 300 W g−1 in a separate contact model

Figure 5. (a) Schematic of the separate-contact model for a photovoltaic (PV) cell based on the multi-heterostructure absorber. (b) Calculated I−
V curves for the N = 5 separate contact model. (c) Layer-by-layer calculated photon conversion efficiency (PCE) based on the N = 4 and N = 5
multi-heterostructure PV. (d) Benchmark of the specific power of the N = 5 multi-heterostructure PV against leading ultrathin PV materials with
estimated effective thicknesses.84−88
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optimized for excitonic effects. Our study presents a robust,
scalable, and realistic approach to engineering broadband
semiconductor absorbers on arbitrary surfaces with versatile
potential applications in photovoltaics, sensing, integrated
circuits, displays, and more.
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