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Abstract. Recent years have seen a resurgence of interest in Bayesian algorithms for the
multiarmed bandit (MAB) problem, such as Thompson sampling. These algorithms seek to
exploit prior information on arm biases. The empirically observed performance of these
algorithms makes them a compelling alternative to their frequentist counterparts. Nonethe-
less, there appears to be a wide range in empirical performance among such Bayesian
algorithms. These algorithms also vary substantially in their design (as opposed to being
variations on a theme). In contrast, if one cared about Bayesian regret discounted over an in-
finite horizon at a fixed, prespecified rate, the celebrated Gittins index theorem offers an
optimal algorithm. Unfortunately, the Gittins analysis does not appear to carry over to mini-
mizing Bayesian regret over all sufficiently large horizons and computing a Gittins index is
onerous relative to essentially any incumbent index scheme for the Bayesian MAB problem.
The present paper proposes a tightening sequence of optimistic approximations to the Git-
tins index. We show that the use of these approximations in concert with the use of an in-
creasing discount factor appears to offer a compelling alternative to state-of-the-art index
schemes proposed for the Bayesian MAB problem in recent years. We prove that these opti-
mistic indices constitute a regret optimal algorithm, in the sense of meeting the Lai-Robbins
lower bound, including matching constants. Perhaps more interestingly, the use of even the
loosest of these approximations appears to offer substantial performance improvements
over state-of-the-art alternatives (including Thompson sampling, information direct sam-
pling, and the Bayes UCB algorithm) while incurring little to no additional computational
overhead relative to the simplest of these alternatives.
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1. Introduction

(Russo and Van Roy 2018). The ultimate motivation for

The multiarmed bandit (MAB) problem is perhaps the
simplest example of a learning problem that exposes
the tension between exploration and exploitation. In
its simplest form, we are given a collection of random
variables or arms. By adaptively sampling these ran-
dom variables, we seek to eventually sample consis-
tently from the random variable with the highest
mean. This is typically formalized by asking that we
minimize cumulative regre’; a notion we make precise
in a later section.

Recent years have seen a resurgence of interest in
Bayesian algorithms for the MAB problem. In this vari-
ant of the MAB problem, we are endowed with a prior
on arm means, and a number of algorithms that exploit
this prior have been proposed and analyzed. These
include Thompson sampling (Thompson 1933), Bayes-
upper confidence bound (UCB) (Kaufmann et al.
2012b), Kullback-Leibler (KL)-UCB (Garivier and
Cappé 2011), and information directed sampling (IDS)
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these algorithms appears to be the empirical perfor-
mance they offer. Specifically, these Bayesian algo-
rithms appear to incur smaller regret than their
frequentist counterparts such as the UCB algorithm
proposed by Auer et al. (2002), even when regret is
measured in a frequentist sense. This empirical evidence
has, very recently, been reinforced by theoretical perfor-
mance guarantees. For instance, it has been shown that
both Thompson sampling and Bayes UCB enjoy upper
bounds on frequentist regret that match the Lai-Robbins
lower bound (Lai and Robbins 1985). Interestingly, even
amongst the various Bayesian algorithm proposed there
appears to be a wide range in empirical performance.
For instance, empirical evidence presented in Russo and
Van Roy (2018) suggests that the IDS algorithm offer a
substantial improvement in frequentist regret over
Thompson sampling and the Bayes UCB algorithm,
among others. The former algorithm does not, however,
enjoy the optimal data dependent frequentist regret
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bounds that the latter two do. Perhaps more importantly,
these algorithms also vary substantially in their design
(as opposed to being variations on a theme).

Now a prior on arm means endows us with the
structure of a Markov decision process (MDP), and
none of the Bayesian algorithms alluded to previously
exploit this structure. This is especially surprising in
light of the celebrated Gittins index theorem. That
breakthrough result proved the optimality of a certain
index policy for a horizon dependent variant of the
Bayesian MAB. Specifically, imagine that we cared
about the expected (Bayes) regret incurred over an ex-
ponentially distributed horizon, where the mean hori-
zon length is known to the algorithm designer. This
problem is nominally a high dimensional MDP.
Gittins, however, proved that a simple to compute in-
dex rule was optimal for this task resolving a problem
that had remained open for several decades (Gittins
1979). Why does the Gittins index theorem not imme-
diately help resolve the design of an optimal algo-
rithm for the variant of the Bayesian MAB problem
that is the subject of the approaches discussed in the
preceding paragraph? As we will discuss more care-
fully in our literature review, this is certainly not from
lack of research effort (Lattimore 2016). In fact, one
must deal with several substantial challenges:

1. Dependence on Horizon: The notion of regret opti-
mality as popularized by Lai and Robbins (1985) is
‘anytime’. Colloquially, this can be thought of as follows:
we desire an algorithm that performs well for any time
horizon. This fact is fundamentally at odds with Gittins’
variant of the MAB problem that (via a discount factor)
effectively specifies a (exponentially distributed) horizon.
Gittins’ result is intimately connected to this choice of ho-
rizon; even seemingly minor changes appear to render
the problem intractable. For instance, it is known that
a Gittins-like index strategy is suboptimal for a fixed,
finite-horizon (Berry and Fristedt 1985). Algorithms for
other notions of optimality that one may reasonably con-
jecture are better aligned with ‘anytime’ regret optimality
(such as, say, Cesaro-overtaking optimality) are similarly
elusive (Katehakis and Rothblum 1996).

2. Computation: Separate from the issues made in
the previous point, consider the task of computing a
Gittins index at every point in time. The computation
of a Gittins index can be reduced to the solution of a
certain infinite horizon stopping problem. For the
Bayesian MAB, the state space for this problem must
describe all possible posteriors one may encounter on a
given arm. Assuming conjugate priors, one may hope
for a finite dimensional state space, but tractable com-
putation will typically call for some form of state-space
truncation. This computation is far more onerous than
any of the aforementioned indices. Furthermore, it is
reasonable to conjecture that as time progresses one

may require increasingly more accurate estimates of
the Gittins index, which further complicates computa-
tion, and calls into question the correctness of a naive
state-space truncation scheme.

Against this backdrop, the present paper makes the
following contribution. We show that picking arms ac-
cording to a certain tractable approximation to their
Gittins index, computed for a time dependent discount
factor we characterize precisely, constitutes a regret opti-
mal bandit policy. The resulting index rule is both simple
to compute and in computational experiments appears to
outperform state-of-the-art bandit algorithms by a mate-
rial margin.

In greater detail, we outline our contributions as
follows:

1. Optimistic Approximations: We propose a sequence
of ‘optimistic” approximations to the Gittins index. These
optimistic approximations can be interpreted as provid-
ing a tightening sequence of upper bounds on the optimal
stopping problem defining a Gittins index, yielding the
index itself in the limit. The computation associated with
the simplest of these approximations is no more burden-
some than the computation of indices for the Bayes UCB
algorithm, and several orders of magnitude faster than
the best performing alternative from an empirical per-
spective (the IDS algorithm).

2. Regret Optimality: We establish that an arm selec-
tion rule that is greedy with respect to any optimistic
approximation to the Gittins index achieves optimal re-
gret in the sense of meeting the Lai-Robbins lower
bound (including matching constants) for the canonical
case of Beta-Bernoulli bandits. A crucial ingredient re-
quired for this scheme to work is that as time pro-
gresses, the discount factor employed in computing the
index must be increased at a certain rate which we
characterize precisely. This implicitly resolves the chal-
lenge of horizon dependence.

3. Empirical Performance: We show empirically that
even the simplest optimistic approximation to the Git-
tins index outperforms the state-of-the-art incumbent
schemes discussed in this introduction by a nontrivial
margin. Our empirical study is careful to recreate sever-
al ensembles of problem instances considered by previ-
ous authors (including a particularly computationally
intensive study by Chapelle and Li (2011) that prompted
the reexamination of the Thompson sampling algorithm
in recent years). The margin of improvement we dem-
onstrate increases further as one employs successfully
tighter optimistic approximations, at the cost of compu-
tational effort.

In summary, we propose a new index rule for the
Baysian MAB problem that uses Gittins indices in a
novel way. This new index rule enjoys the strongest
possible data-dependent regret guarantees while also
offering excellent empirical performance.
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1.1. Relevant Literature

We organize our literature review around the primary
topics that this paper touches on. The study of
exploration-exploitation problems is vast, even if it is
restricted to a problem with a finite number of arms.
Consequently, our review will be focused on stochas-
tic, noncontextual, versions of the MAB problem.
Even with this restriction, the literature remains vast,
and therefore we focus on papers that are either semi-
nal in nature or particularly relevant to our own
work; this review is by no means comprehensive with
respect to the MAB problem.

1.1.1. Regret Optimality and the Bandit Problem. Rob-
bins (1952) motivated the study of the MAB problem
and left open questions on how to design effective
policies. Since then, Lai and Robbins (1985) proved a
cornerstone result, namely an asymptotic lower
bound on regret that any consistent strategy incurs.
The same paper proposes an upper-confidence bound
(UCB) algorithm that asymptotically achieves the low-
er bound. Computationally efficient UCB algorithms
were developed by Agrawal (1995) and Katehakis and
Robbins (1995). Later, Auer et al. (2002) and Audibert
and Bubeck (2010) proved finite time regret bounds
for UCB algorithms and demonstrated ways to tune
them to improve performance. Garivier and Cappé
(2011) and Maillard et al. (2011) have proposed other
UCB-type algorithms where the confidence bounds are
calculated using the KL-divergence function. Those au-
thors provide a finite-time analysis, and their algo-
rithms are shown to achieve the Lai-Robbins bound.

1.1.2. Bayesian Bandit Algorithms. Another powerful
approach to bandit problems is to work with a Bayesian
prior to model one’s uncertainty about an arm’s expected
reward. Lai (1987) proves an asymptotic lower bound on
Bayes’ risk and develops a horizon-dependent algorithm
that achieves it. Thompson sampling (Thompson 1933),
one of the earliest algorithms proposed for the MAB
problem, is in fact a Bayesian one. Empirical studies by
Chapelle and Li (2011) and Scott (2010) highlight Thomp-
son sampling’s hugely superior performance over some
UCB algorithms even when the prior is mismatched. A se-
ries of tight regret bounds for Thompson sampling have
been established by Agrawal and Goyal (2012, 2013) and
Kaufmann et al. (2012b). These authors have shown
Thompson sampling to be regret optimal for the canonical
Beta-Bernoulli bandit. Recently, Korda et al. (2013) gener-
alized the aforementioned results to bandit problems
where the arm distributions belong to a one-dimensional
exponential family. Interestingly enough, Robbins (1952)
seems to have been unaware of Thompson sampling and
its effectiveness in the non-Bayesian setting.

Several other Bayesian algorithms exist. Kaufmann
et al. (2012b) propose Bayes UCB, which they show is

competitive with Thompson sampling. The main idea
behind Bayes UCB is to treat quantiles of the arm’s
prior as an upper confidence bound and let the quan-
tile grows at some prespecified rate. Russo and Van
Roy (2018) propose information directed sampling
(IDS), an algorithm that exploits information theoretic
quantities arising from the prior distributions over the
arms. In simulations, IDS is shown to dominate many
of the aforementioned algorithms, including Thompson
sampling, Bayes UCB, and KL-UCB. In our empirical
investigation, we will see that IDS is the closest compet-
itor to the approach we propose here (we recreate the
experiments from Russo and Van Roy (2018)).

1.1.3. Gittins Index and Its Approximations. There is
another stream of literature that models the MAB
problem as an MDP. For the case of two arms, where
one arm’s reward is deterministic, Bradt et al. (1956)
showed that for this one-dimensional MDP, an index
rule is an optimal strategy. When the objective is to
maximize the infinite sum of expected discounted re-
wards Gittins (1979) famously showed the optimality of
an index policy. The Gittins index is similar to that pro-
posed by Bradt et al. (1956) but takes discounting into
account. Several alternative proofs of Gittins’ result are
available (Whittle 1980, Weber et al. 1992, Tsitsiklis
1994) and (Bertsimas and Nino-Mora 1996). These alter-
native proofs also provide illuminating alternative in-
terpretations of the Gittins index.

Computing the Gittins index can be an onerous task, es-
pecially when the state space corresponding to posterior
sufficient statistics is large or high-dimensional. As such,
approximations to the index have been proposed by Yao
et al. (2006), Katehakis and Veinott (1987), and Varaiya
et al. (1985) (see Chakravorty and Mahajan 2013 for a sur-
vey). Our approach allows us to transparently leverage ap-
proaches developed in the literature to quickly compute
Gittins indices. For instance, whereas the experiments in
the present paper leverage approximations to the Gittins
index proposed in Brezzi and Lai (2002) and Powell and
Ryzhov (2012), parametric linear programming-based ap-
proaches may also be used as an attractive alternative for
finite state bandits (Nifio-Mora 2007).

It is also worth noting that asymptotic links between
Gittins indices and UCB methods have been recognized
by Fang and Lai (1987). That paper considers a diffu-
sion approximation to the stopping problem associated
with the computation of a Gittins index and shows that
the analog to the Gittins index in the context of that
problem enjoys an asymptotic expansion that resem-
bles an upper confidence bound. Subsequent to our
work here, Russo (2021) establishes an explicit relation-
ship between Gittins indices and Bayesian UCBs.

This paper also relies on Gittins index approxima-
tions, and we develop simple general ones that enable
our algorithm to be regret optimal.
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Bayesian bandit algorithms (such as Bayes UCB,
Thompson sampling, or IDS) all admit natural exten-
sions to settings substantially more complex that the
independent arm case that is the focus of this paper. It
is also the case that the Gittins index theorem has in-
spired index calculations for more sophisticated bandit
problems (an example is Whittle’s heuristic; Whittle
1988). Our hope is that together with the use of an in-
creasing discount factor schedule analyzed in this pa-
per, such index policies can provide a starting point for
algorithm design in more complex bandit problems.

Finally, we note that others have (contemporaneous
with an earlier version of the present work) attempted to
leverage the Gittins index in the construction of a Bayesian
MAB algorithm. For instance, Kaufmann (2018) considers
a variety of heuristics based on a finite horizon version
of the Gittins index (essentially, the index proposed by
Bradt et al. (1956)) and shows promising empirical results.
Lattimore (2016) analyzes the regret under a similar index
and shows it to be logarithmic for a fixed horizon. Unfortu-
nately, the index policies studied in both Kaufmann
(2018) and Lattimore (2016) require a priori knowledge of
a horizon. As such, this does not yield an index rule that
works for any sufficiently large horizon but rather one
that only works for a fixed prespecified horizon. In fact,
such schemes cannot be expected to work well for time
horizons other than the prespecified horizon determining
the index. In contrast, we seek to provide a compelling al-
ternative to the host of state-of-the-art “anytime” regret
optimal index rules discussed heretofore.

Finally, in trying to extend the contemporaneous
Lattimore (2016) policy to one that does not require
the horizon to be prespecified, one may rely on the
so-called doubling trick. The doubling trick involves
breaking up the MAB problem into a sequence of epi-
sodes, each one doubling in length, and analyzing an
algorithm that systematically increases the amount of
exploration in each episode (see Section 3.2 for details).
In using the doubling trick, one incurs a multiplicative
increase in regret by a log T factor yielding a suboptimal
regret bound. A recent paper (Besson and Kaufmann
2018) apparently motivated by the same issue, shows
that exponential doubling tricks can reduce this multipli-
cative term to a constant (that constant is precisely two)
for the Lattimore (2016) approach. Although much bet-
ter, this bound remains slightly suboptimal. More inter-
estingly, however, the resulting algorithm performs
very poorly, by up to almost an order of magnitude
worse than vanilla UCB (Besson and Kaufmann 2018).

1.2. Structure of the Paper

The remainder of this paper is organized as follows: in
the next section, we state our notation, objectives of in-
terest and key results such as the Lai-Robbins lower
bound. The third section focuses on the Gittins index
and explains how it fails to minimize regret in a sense

that is made clear later. At the end, we address another
issue, namely the computational cost of calculating the
Gittins index, which inspires us to develop the opti-
mistic Gittins index (OGI) policy. Section 4 establishes
an optimal regret bound for the algorithm; namely,
one that matches the Lai-Robbins lower bound. Fol-
lowing that, Section 5 presents experiments showing
how OGI achieves lower Bayesian regret than state of
the art policies and is computationally efficient. In ad-
dition to the problem studied in earlier sections of the
paper, we also demonstrate computationally the algo-
rithm’s effectiveness in a more general setting where it
is possible to pull several arms at once in every itera-
tion. Finally, in Section 6 we state open questions that
remain following this work.

2. Model and Preliminaries

The multiarmed bandit problem is described via a
handful of primitives. These include the notion of an
arm, the concept of an arm selection rule or policy
and the notion of regret. This section seeks to formal-
ize each of these notions.

2.1. Arms

We consider a multiarmed bandit problem with A > 1
arms. We index arms by i and denote by A the set of
all arm indices, {1,...,A}. At each point in time, t € N,
we are permitted to select or pull a single arm. We de-
note by N;(f) the cumulative number of pulls of arm i
up to and including time t. If arm i were pulled at
time ¢, we collect a reward X; y,») € R.

All random variables are generated on a common
probability space (Q, F,P). For a given arm i, (X;,s €
N) is assumed to be an independent and identically dis-
tributed (i.i.d.) sequence of random variables, each dis-
tributed according to a distribution pg,(-). Denote by
1(6;) the mean of this distribution. Thus, 6; is a parame-
ter specifying the reward distribution for arm i and we
denote by O the set of all possible values of 0;. We let

0 £ (61,0,,...,04)

denote a tuple of the parameters defining the reward
distributions for all of the arms. (X, i€ A,s €N) is it-
self assumed to be an independent sequence of ran-
dom variables so that the arms are independent.

2.2. Policies

At every point in time, we choose an arm to pull ac-
cording to some history dependent policy n. Formal-
ly, any policy m is specified by an .A-valued stochastic
process (1;,t € N). Denote by F; the filtration generat-
ed by the sequence of indices of the first t arms pulled,
as well as their corresponding rewards

Fi & G((T(S/an,an(s))/s =1,2,.. .,t).
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We require that the process 7, be F;-predictable’ and
denote by IT the space of all such policies.

2.3. Frequentist Regret and Regret Optimality
Over time, the agent accumulates rewards, and we de-
note by

V(r,T,0):=E 0

T
Z Xni/Nn[ ()
t=1

the reward accumulated up to time T when using pol-
icy m. Denote by p*(0) the maximum expected reward
across arms for a given 0: u*(0) £ max;u(6;). The fre-
quentist regret of a policy over T time periods, for a
given 0 € @, is the expected shortfall against always
pulling the optimal arm for that 8, namely

Regret(rnt, T, 0) :=Tu"(0) - V(r, T, 0).

In a seminal paper, Lai and Robbins (1985) established a
lower bound on achievable regret. They showed that for
any policy m €1, and any 0 such that the set of arms
with expected reward u*(0) is a singleton, we must have

Regret (n, T, 0) Zy “(0) — u(6;)
log T dxi(pe, po,)’

hmef (1)
where dy;. is the Kullback-Liebler divergence. A poli-
cy ' that achieves this lower bound is considered re-
gret optimal. Specifically, n" is regret optimal if and
only if

Regret(r/, T, 0) Z‘u*(ﬂ) w(6;)
logT dxi(po,, po.)

limsup
T

2.4. Bayesian Bandits

A Bayesian MAB problem is endowed with additional
structure: we are given a prior on 0. Specifically, we
suppose that each 6; is, in fact, an independent draw
according to some prior distribution g that is sup-
ported on @. We assume that g is conjugate to pg, and
that E[|y(91-)|] < oo, With a minor abuse of notation,
we denote by y the sufficient statistic specifying g and
by Y the set of all possible values of y.

An algorithm that leverages knowledge of g will
frequently maintain a posterior distribution on 0; giv-
en observations from that arm. To that end, denote by
gis the posterior distribution on 6; given the first s re-
wards from that arm, X;1,X;»,...,X;s. Denote by y;,
the corresponding values of the sufficient statistic de-
scribing the posterior. Of course, g;9 £ 4.

Now, one can define a notion of regret that depends
on the prior g. Specifically, the Bayes risk (or Bayesian
regret) for any policy 7 is simply the expected regret
over draws of 0 according to the prior g:

Regret (1, T) := / Regret (71, T, 0)q"(d0).
®

In yet another landmark paper, Lai (1987) showed
that for a restricted class of priors g, a similar class of
algorithms to those found to be regret optimal in
Lai and Robbins (1985) was also Bayes optimal in the
sense that they achieved a lower bound on the Bayes
risk (also established in Lai 1987). Interestingly, how-
ever, this class of algorithms ignores information
about the prior altogether; that is, they do not require
knowledge of q. However, this class of algorithms is
not anytime and does require knowledge of the prob-
lem horizon. A number of algorithms that do exploit
prior information have in recent years received a good
deal of attention; these include Thompson sampling
(Thompson 1933), Bayes UCB (Kaufmann et al. 2012b),
KL-UCB (Garivier and Cappé 2011), and IDS (Russo
and Van Roy 2018). All these algorithms maintain a
posterior on the mean of an arm but leverage this
posterior in different ways. It has been empirically ob-
served that these approaches offer excellent perfor-
mance, even in a frequentist sense. In fact, Thompson
sampling, Bayes UCB, and KL-UCB have each been
shown to be regret optimal in the sense of meeting the
lower bound (1).

2.5. Discounted Infinite Horizon Objective
Assuming the structure afforded by the Bayesian set-
ting, that is, the prior q, one may consider a distinct
objective to Bayesian regret. Specifically, given some
fixed discount factor y <1, one could consider the
problem of maximizing discounted infinite horizon
rewards. Assume we start with a prior g on the mean
of any arm and as before denote by y the sufficient sta-
tistic corresponding to this prior. In the parlance of
MDPs, we might refer to this as starting with every
arm in state y. For a given policy 7, we define the ex-
pected discounted infinite horizon reward under that
policy according to

Vi(y) =Ey| >} Vt_lxm,Nnt(n]/
t=1

where y is an A-tuple with every entry equal to y. The
subscript on the expectation indicates that 0; is drawn
according to a prior with sufficient statistic y for each
arm i. An optimal such policy must solve the problem

* A U
Vi (y) & max Vi(y).

This is, of course a challenging MDP in that it has a
high dimensional state space (J). The celebrated Git-
tins index theorem (which we present in the next sec-
tion) provides an approach to computing an optimal
policy by instead simply solving a dynamic program
on the state space ).
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3. Optimistic Gittins Index Algorithm

This section introduces the notion of an optimistic Gittins
index and presents an algorithm for the MAB problem
that we will subsequently show is optimal in that it
achieves the Lai-Robbins lower bound. We will begin
with reviewing the Gittins index theorem for the dis-
counted infinite horizon bandit problem and show that
one cannot expect the use of the index from that well
known result to yield a regret optimal policy for the MAB
problem. We then show that the use of the Gittins index
in concert with an increasing discount factor yields poly-
logarithmic Bayesian regret. This coarse result motivates
the discount factor schedule we eventually propose. Fi-
nally, we present a series of optimistic approximations
to the Gittins index with the view of minimizing the com-
putational burden of index computation. Putting these
ingredients together yields the optimistic Gittins index al-
gorithm that is the subject of our paper. The regret opti-
mality of the optimistic Gittins index, for Beta-Bernoulli
bandits, is proved in Section 4 (Theorem 1). That is our
main theoretical result.

3.1. Gittins Index and Regret

The Gittins index theorem presents a surprisingly
simple solution to the problem of computing an opti-
mal policy for the discounted infinite horizon bandit
problem. Specifically, the theorem defines for each
arm state y € ), an index we denote v,(y); we define
this index shortly. The theorem shows that an arm se-
lection rule that at every time selects the arm with the
highest index is optimal. The result is powerful in that
the computation of the index for a given arm requires
the solution of an MDP on the state space ), as op-
posed to solving an MDP on the considerably larger
state space ).

One way to compute the Gittins index v, (y) for an
arm in state y is via the so-called retirement value for-
mulation (Whittle 1980). Specifically, v,(y) is defined
as the value of A that solves

A
——=sup E,
1- >0

d A
tflxi + 7_’ (2)
2y Kty 1—7}

where the subscript on the expectation indicates that
the prior on the (say, ith) arm’s mean at time t = 1, y;0,
equals y. If one thought of the notion of retiring as re-
ceiving a deterministic reward A in every period, then
the value of A that solves the above equation could be
interpreted as the per-period retirement reward that
makes us indifferent between retiring immediately,
and the option of continuing to play arm i with the
potential of retiring at some future time. The Gittins
index policy itself, which we denote by 7%, can suc-
cinctly be stated as follows:

Attime t, playanarmin theset argmax;v, (y; n,i-1)),

where N;(0) =0 and y;p is understood to be the suffi-
cient statistic corresponding to the prior on that arm.
Ignoring computational considerations, we cannot
hope for the policy % to be regret optimal. In fact,
as the result below indicates, one cannot even hope
for such a policy to be consistent (i.e., have sublinear
regret) in the sense of Lai and Robbins (1985):

Lemma 1. For any y >0, there exists an instance of the
multi armed bandit problem with a prior ¢* and vector € in
the support of q*, for which

Regret (17, T, 8) = Q(T).

The proof, given in Appendix A, rests on the simple
fact that for any fixed discount factor, if the posterior
means on the two arms are sufficiently apart, the Git-
tins index policy will pick the arm with the larger pos-
terior mean. The threshold beyond which the Gittins
policy exploits depends on the discount factor and
with a fixed discount factor there is a positive proba-
bility that the superior arm is never explored suffi-
ciently so as to establish that it is, in fact, the superior
arm.

3.2. Increasing Discount Factors Yield Sublinear
Bayesian Regret

Lemma 1 tells us that we cannot hope for sublinear
regret by applying the Gittins index policy with a cons-
tant discount factor. One may naturally wonder wheth-
er an increasing discount factor might fix this issue.
Now observe that any schedule of increasing discount
factors effectively implies a change in the tradeoff be-
tween exploration and exploitation. With a fixed dis-
count factor, we have already seen that once the priors
between two arms are sufficiently far apart, the Gittins
policy will not explore, thereby leading to the possibili-
ty of linear regret. As the discount factor increases, the
gap between priors that exploration is not justified goes
up over time. If we increase this gap too fast, we might
incur too much exploration; too slow, and we might in-
cur too little exploration. As such, the schedule at which
we increase the discount factor is likely to play a signifi-
cant role in determining the regret of the resulting
policy.

Now notice that the Gittins index policy for a dis-
count factor y can be viewed as optimal for a random
finite horizon, distributed geometrically with parame-
ter 1 —y. As y approaches one, this may be thought of
as a near optimal policy for the fixed finite horizon
1/(1—v). Now consider for a moment that we had ac-
cess to a policy that has optimal T period expected re-
gret (assuming T is known in advance). One way to
convert such a policy into a policy that has low regret
for any T is to use the so-called doubling trick: Apply
the optimal policy for the horizon T for T steps, then
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the optimal policy for horizon 2T for the following 2T
steps, followed by the optimal policy for 4T for the
next 4T steps, and so forth. Intuitively, such doubling
tricks leverage finite time horizon results to get so-called
anytime results by picking an update schedule such
that the choice of horizon at any point is roughly con-
sistent with the elapsed time up to that point; Besson
and Kaufmann (2018) provide an insightful analysis of
this trick and its broad applicability. This doubling
trick is akin to using a discount factor that increases at
roughly the rate 1 -1/t and will be near-optimal for
any horizon. The remainder of this section makes this
intuition precise but can be skipped without loss of
continuity.

Consider using discount factors that increase at
roughly the rate 1 — 1/¢; specifically, consider setting

1
yi’ = 1 - 2|_10g2[J 4

and consider using the policy that at time ¢ picks an
arm from the set arg max,v), (y;n,-1))- Denote this pol-
icy by 7. The following proposition shows that this
doubling policy achieves Bayes risk that is within a
factor of log?T of the optimal Bayes risk. Specifically,
we have the following.

Proposition 1. Assume that q satisfies the requirements of
theorem 3 in Lai (1987). Then,

Regret (1°, T) = O(log *T),

where the constant in the big-Oh term depends on the prior
gand A.

The proof of this result (Appendix B) relies on
showing that the finite horizon regret achieved by us-
ing a Gittins index with an appropriate fixed discount
factor is within a constant factor of the optimal finite
horizon regret. The second ingredient is the doubling
trick described above. The previous coarse analysis il-
lustrates that the use of the Gittins index policy to-
gether with an increasing discount factor does indeed
yield an algorithm with sublinear Bayesian regret. It is
worth noting that the previous result does not show
that such a policy achieves optimal Bayesian regret
(the achievable lower bound being on the order of
log?T; Lai 1987). The analysis does, however, suggest
a candidate discount rate schedule that we will even-
tually show to yield a regret optimal policy (in a fre-
quentist sense).

3.3. Optimistic Approximations to the
Gittins Index

The retirement value formulation makes clear that com-

puting a Gittins index is equivalent to solving a dis-

counted, infinite horizon stopping problem. Solving

this problem requires substantially more computational

effort than, say, Thompson sampling or the Bayes UCB
algorithm. In fact, this computation can even be ren-
dered intractable should the prior on the mean of an
arm be specified by a high-dimensional parameter vec-
tor, that is, should ) be high-dimensional. This moti-
vates an approximation to the Gittins index that is the
subject of this section. Specifically, we introduce a se-
quence of optimistic approximations to the Gittins in-
dex that will alleviate computational burden.

Consider the following alternative stopping prob-
lem that requires as input the parameters A (which
has the same interpretation as it did before), and K, an
integer limiting the number of steps that we need to
look ahead. For an arm in state y (recall that the state
specifies sufficient statistics for the current prior on
the arm reward), let R(y) be a random variable distrib-
uted as the prior on expected arm reward specified by
y. Define the retirement value R x(s,y) according to

A, if s<K

R =
2k(5,Y) {max(/\,R(y)), otherwise.

For a given K, the optimistic Gittins index for arm i in
state y is now defined as the value for A that solves

P Rik(T, Yiz1) . 3

A
——=sup E
ys:l 1-y

1-7 1<k

where we recall that the subscript on the expectation
indicates that 1,0 =y. We denote the solution to this
equation by vgf ).

Let us interpret the previous stopping problem. As-
sume that after 7 —1 pulls of an arm, we choose to
pull that arm only once more and then subsequently
retire. If T were less than K, we then receive a reward
A per period, over the rest of time, discounted at the
rate y. This is no different from what happens in the
stopping problem defining the usual Gittins index (2).
In contrast, unlike that formulation, we are forced to
retire after the Kth arm pull if we have not done so al-
ready. Should we retire at that time, nature reveals
the true mean reward of the arm, and we receive the
greater of that quantity and A as our per period retire-
ment payoff. In this manner, one is better off than in
the stopping problem inherent to the definition of the
Gittins index (2), so that we use the moniker optimis-
tic. The following lemma formalizes this intuition.

Lemma 2. The function vI;(y) is nonincreasing in K for all
discount factors y and states y € ). Moreover, v{f(y) -
v, (y) as K — oo.

Proof. See Appendix C.1. O

Now, because we need to look ahead at most K
steps in solving the stopping problem implicit in the
previous definition, the computational burden in in-
dex computation is limited. In fact, we will see in a
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subsequent section that even the choice of K = 1 will
make for a compelling policy.

3.4. Optimistic Gittins Index Algorithm
The discussion thus far suggests a simple class of ban-
dit algorithms we dub the optimistic Gittins index
(OQl) algorithm. The algorithm itself requires as input
a prior on arm means (as does any Bayesian algorithm
for the MAB), and a parameter K.

The OGI algorithm may be summarized succinctly
as follows:

. . K
Attime t play anarm in the set arg max;v,, (ViN,(-1)),

where y, =1-1.

The following section will establish that the previ-
ous algorithm achieves the Lai-Robbins lower bound
(and thus is regret optimal) for any finite K. We will
establish this result for Beta priors and Bernoulli re-
wards. Although we do not state this result formally
until the next section (see Theorem 1), it is worth
pausing to reflect on the implications of such a result:

1. As K grows large the optimistic Gittins index ap-
proaches the Gittins index. The result thus establishes
that the use of a set of arbitrarily close approximations
to the Gittins index with the discount factor schedule
y; =11/t is aregret optimal algorithm. This is a sim-
ple, surprising result that bridges two very different
flavors of the multiarmed bandit problem. It also sug-
gests the natural conjecture that the use of the Gittins
index itself with the discount factor schedule y, =
1—1/tis a regret optimal algorithm.

2. At the other end, because the result establishes re-
gret optimality for any finite K, we have regret optimal-
ity for K = 1. Computing the optimistic Gittins index in
this case is a particularly trivial task and offers the spec-
ter of a computationally practical algorithm. In fact, in
Section 5, we shall see precisely this: the choice of K =1
yields an index that materially outperforms a host of
state-of-the-art alternatives while requiring little to no
computational overhead relative to even the simplest
schemes.

We end this section with some brief commentary on
computation. For concreteness, let us focus on the
case of a Beta-Bernoulli bandit. First, we note that
solving the stopping problem implicit in the definition
of vX(y) for any given value of the retirement subsidy
A requires the solution of a relatively simple dynamic
program with just O(K) states. This dynamic program
can be solved exactly in O(K?) time. The optimal value
of A can be found by bisection. For small values of K
this is substantially less effort than computing a Git-
tins index. The case of K = 1 is particularly appealing.
There, Equation (3) simplifies to

A =E[R(y)] +yE[(A-Ry)"]. 4)

This equation is easily solved via a method such as
Newton-Raphson.” In fact, the gradients required for
the use of the Newton-Raphson approach are often
readily available in closed form. To wit, in the case of a
Beta prior with sufficient statistics (g, b), (4) reduces to
A= (1= yF 0] + AR, () 20(0),

wherein we see that £g,,(1) can be computed in
closed form. This makes the use of the Newton-
Raphson method for the solution of the equation A =
Sap(A) particularly simple. In our computational ex-
periments, we will see that the choice of K = 1 already
provides a material improvement in empirical perfor-
mance over state-of-the-art alternatives.

4. Analysis and Regret Bounds

We establish a regret bound for the OGI algorithm
that applies when the prior distribution g is Beta(1, 1)
(i.e., uniform) and arm rewards are Bernoulli. The
choice of uniform prior is natural since it represents
the lack of prior knowledge about arm rewards; the
analysis here can potentially be extended to certain
other priors. The result shows that the algorithm, in
that case, meets the Lai-Robbins lower bound and is
thus asymptotically optimal in a frequentist sense.
After stating the main theorem, we briefly discuss a
generalization to the algorithm.

In the sequel, we will simplify notation and let
d(x,y) := dxr.(Ber(x), Ber(y)) denote the KL divergence
between Bernoulli random variables with parameters
x and y. We will also refer to the OGI policy, which
uses a look-ahead parameter of K, as 7K and will
write the OGI of the ith arm at time t as v, £
ok JtWiN,¢-1))- That way, for the sake of brevity, we
will suppress the index’s dependence on y; n,;-1). We
are now ready to state the main result.

Theorem 1. Let € > 0 and consider an OGI policy config-
ured with a parameter K € N and that assumes Beta(1, 1)
priors. For the multiarmed bandit problem with Bernoulli
rewards and any parameter vector 0 € (0,1)", there exists
T*=T*(e,0,K) and C =C(e,0,K) such that forall T > T",

(1+€)*(0" -6y

OGK
Regret(n T, 9) < - LZ”:”A 10.0) logT
%0
+C(e, 0,K), ®)

where C(e, 0,K) is a constant that is determined by €, the
parameter 0, and K.

Proof. Assume, without loss of generality, that the
first arm is uniquely optimal so that 0" = 0;. Fix an ar-
bitrary suboptimal arm, which for convenience we
will say is the second arm. We will strategically fix
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three constants in between the expected rewards of
the first and second arms, namely 6, and 6,. In partic-

ular, we let 17,,1,,1; € (02, 01) be chosen such that 1, <
da(n,,
M, <13, d(ny,13) = M%) and d(n,,1m3) = % Next,

1+e

we define the constant L(T) := d(lr(]’gﬁ )
27713

the optimal length of the exploration period.

The main step in this proof will be to upper bound
the expected number of pulls of the second arm, as
follows:

to be, intuitively,

E[N>(T)] < L(T) + ZT] ]P’(T(?G'K =2, No(t-1) > L(T))
t=|L(T)J+1

T
< L(T) + ZP(Uﬁ < r]3)
=1

T
+ ;n»(ngm =2, 0§, 2 1, Na(t = 1) 2 L(T))

T
<L(T)+ Z]P’(vft < 173)
=1

T
+ ZP(H?G’K =2, 0K 2, No(t—1) > L(T))
t=1

(1+eflogT &/ ¢
: d(0, 01) " ;P(vl’t < 773)

A

T
+ ZP(H?G,K =2,05, > 1, No(t-1) > L(T)) ,
t=1

(6)

where the first step is the same as in the analysis of Auer
et al. (2002) and applies to any bandit policy. All that re-
mains is to show that terms A and B are bounded by con-
stants. These bounds are given in Lemmas 3 and 4
whose proofs we will now describe at a high-level and
defer the full details to the Appendix D.2 and D.3.

Lemma 3 (Bound on Term A). For any n < 04, the fol-
lowing bounds holds for some constant C1 = C1(e, 01,K)

00

ZIP’(Uft < n) <G

t=1

Proof Outline. The goal is to bound P(vf, < 1) by an
expression that decays fast enough in t so that the se-
ries converges. This demonstrates that the algorithm
encourages enough exploration such that the optimal
arm is never underestimated for too long, in expecta-
tion. Specifically, we show that there exists a positive
constant & so that P(vf, < )= O(z5) using an induc-
tion argument. Proving the base case requires using
properties specific to Beta and Bernoulli random vari-
ables, whereas the inductive step is more general. The
full proof is contained in Appendix D.2.

We remark that the core steps in the proof of
Lemma 3, at least in the base case of the induction,

rely on properties of the Beta and Bernoulli variables.
Because of this, we suspect our analysis can strength-
en a similar theoretical result for the Bayes UCB algo-
rithm. In particular, the main theorem of Kaufmann
et al. (2012b) states that the quantile parameter in the
Bayes UCB algorithm should be 1-1/(tlog‘T) for
some constant ¢ > 5. However, what is perplexing is
that their simulation experiments suggest that using a
simpler sequence of quantiles, namely 1—1/¢, results
empirically in a lower mean regret. By using techni-
ques in our analysis, it is possible to prove that the
use of the quantiles 1 -1/t would lead to the same op-
timal regret bound. Therefore, the scaling by log“T is
unnecessary. [

Lemma 4 (Bound on Term B). There exists T* = T*(¢, 0)
sufficiently large and a constant C, = Ca(€,61,02) so that
forany T > T*, we have

T
ZP(H?G,K =2, 21, No(t-1) > L(T)) <G
t=1

Proof Outline. This relies on a concentration of mea-
sure result and the assumption that the second arm
was sampled at least L(T) times. Because our index is
nonincreasing in K, from Lemma 2, it is enough to
only consider the simplest case when K = 1. The full
proof is given in Appendix D.3. O

Lemmas 3 and 4, together with (6), imply that

(1+e€)logT
d(62,61)

and from this, the regret bound follows. [

E[N2(T)] < +C1+Cy,

4.1. Generalizations and a Tuning Parameter

As we have shown, the OGI algorithm is regret opti-
mal for the Bernoulli bandit problem. Moreover, it is
possible to generalize our algorithm to problems with
any bounded reward distribution and prove a weaker
O(logT) regret bound. We see this immediately from
the discussion in Agrawal and Goyal (2012), where it is
shown that any bandit algorithm that is regret optimal
for the Bernoulli bandit problem can be modified to
yield an algorithm that has O(log T) regret in a general
setting with (bounded) stochastic rewards. Informally,
this would require emulating a Bernoulli bandit prob-
lem and assuming Beta(1, 1) priors as before.

Yet another key observation is that the discount fac-
tor for OGIs does not need to be exactly 1-1/t. In
fact, a tuning parameter can be included to make the
discount factor y,, , =1-1/(t +a) instead. Intuitively,
this would encourage a greater degree of exploration
over the arms. An inspection of the proofs of Lemmas
3 and 4 shows that the result in Theorem 1 would still
hold were one to use such a tuning parameter. In
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practice, performance is remarkably robust to our Table 1. Gaussian Experiment
choice of K and a.
OGI(c0) Bayes
. . OGI(1)  Approx. 1DS TS ucCB
5. Computational Experiments
Our goal is to benchmark OGIs against state-of-the-art ~ ~¢a 4919 4764 5583 6740 60.30
. . . Standard error 1.61 1.6 2.08 1.5 1.43
Bayesian algorithms. Specifically, we compare our- 550, 17.49 16.88 1861 3746 3141
selves against Thomson sampling, Bayes UCB, and  50% 41.72 40.99 4079  63.06 5771
IDS. Each of these algorithms has in turn been shown — 75% 73.24 7226 7876 9452 86.40
CPU time (s) 0.02 0.01 1118 0.01 0.02

to substantially dominate other extant schemes. Our
experimental setup closely follows that of Russo and
Van Roy (2018), Kaufmann et al. (2012a), and Chapelle
and Li (2011). The experiment from Kaufmann et al.
(2012a) is deferred to Appendix E.1 because it is brief
and sends a similar message to the rest of this section.
We conclude with a novel experiment to test the prob-
lem with multiple simultaneous arm pulls.

For most experiments, we configure the OGI algo-
rithm with K = 1 to keep the computational burden
under control (there we simply use the Newton-
Raphson method to compute the index directly). In
one experiment, included for completeness, we test
OGI with K = 3 and K = oo, where the latter is equiva-
lent to using Gittins indices. There we use direct dy-
namic programming for the K = 3 case and rely on an
approximation because of Powell and Ryzhov (2012)
for the K = oo case. The purpose of those experiments
is to show the (limited) value of a higher lookahead in
the OGI algorithm.

We use a common discount factor schedule in all
experiments setting y, =1~-1/(100 + ). The choice of
a = 100 is second order; our conclusions remain un-
changed and actually appear to improve in an abso-
lute sense with other choices of a. In addition, in one
experiment we examine the regret of OGI relative to
its competitors up to a horizon of 10° epochs, so that
this choice of a does not represent an attempt to tune
the performance of OGI for a specific time horizon.

5.1. Smaller-Scale Experiments with IDS

This section considers a series of smaller scale experi-
ments (10 arms, 1,000 time periods) drawn from the pa-
per introducing the IDS algorithm (Russo and Van Roy
2018). A major consideration in running these experi-
ments is that the CPU time required to execute IDS, the
closest competitor, based on the current suggested im-
plementation is orders of magnitudes greater than that
of the index schemes or Thompson sampling. The main
bottleneck is that IDS uses numerical integration, re-
quiring the calculation of a Cumulative Distribution
Function (CDF) over, at least, hundreds of iterations. By
contrast, the version of OGI with K = 1 uses 10 itera-
tions of the Newton-Raphson method.

5.1.1. Gaussian. We replicate the Gaussian experiments
from Russo and Van Roy (2018). In the first experiment

Note. OGI(1) denotes OGI with K = 1, whereas OGI Approx. uses the
approximation to the Gaussian Gittins index from Powell and
Ryzhov (2012).

(Table 1), the arms generate Gaussian rewards X;; ~
N(6;,1), where each 6; is independently drawn from a
standard Gaussian distribution. That is, the prior g on
each arm’s reward is a stand Gaussian prior. We simulate
1,000 independent trials with 10 arms and 1,000 time pe-
riods. The implementation of OGI in this experiment
uses K = 1. It is difficult to compute exact Gittins indices
in this setting, but a classical approximation for Gaussian
bandits does exist (Powell and Ryzhov 2012, chapter
6.1.3). We term the use of that approximation OGI(co)
Approx. It is shown in Powell and Ryzhov (2012) that the
Gittins index here can be expressed in terms of a univari-
ate function, which cannot be computed analytically but
can be approximated reasonably well with a piecewise
closed-form function. As mentioned in that book, the ap-
proximation is more accurate for smaller values of the
posterior variance; that is, as we play an arm more times,
we expect its Gittins index approximation to improve.

In addition to regret, we show the average CPU
time taken, in seconds, to execute each trial.

The key feature of the results here is that OGI offers
an approximately 10% improvement in regret over its
nearest competitor IDS and larger improvements
(20% and 40%, respectively) over Bayes UCB and
Thompson sampling. The best performing policy is
OGI with the specialized Gaussian approximation be-
cause it gives a closer approximation to the Gittins in-
dex. At the same time, OGI is essentially as fast as
Thompson sampling and three orders of magnitude
faster than its nearest competitor (in terms of regret).

5.1.2. Bernoulli. We next replicate the Beta-Bernoulli
experiments from Russo and Van Roy (2018). In this ex-
periment, regret is simulated over 1,000 periods, with
10 arms each having a uniformly distributed Bernoulli
parameter. We compute approximations to the exact
Gittins index, that is, OGI(c0), via value iteration.> We
simulate 1,000 independent trials, and Table 2 summa-
rizes the results.

Each version of OGI outperforms other algorithms,
and the one that uses exact Gittins indices shows the
lowest mean regret. Perhaps, unsurprisingly, when
OGI looks ahead three steps (or when the lookahead
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Table 2. Bernoulli Experiment

OGI(1) OGI(3) OGI(x) IDS TS Bayes UCB

Mean 18.12  18.00 1752  19.03 27.39 22.71
Standard error  0.65 0.64 0.68 0.67 0.57 0.56
25% 6.26 5.60 4.45 5.85 14.62 10.09
50% 15.08 14.84 12.06 14.06 23.53 18.52
75% 27.63 27.74 2493 26.48 36.11 30.58

CPU time (s) 0.19 0.89 (?) hours 8.11 0.01 0.05

Notes. OGI(K) denotes the OGI algorithm with a K step approximation
and tuning parameter a=100. OGI(co) is the algorithm that uses
Gittins indices.

is not limited), it performs better than with a single
step. It is, however, apparent that in each of these
cases the improvement over simply setting K=1 is
marginal. Indeed, looking ahead one step is a reason-
ably close approximation to the Gittins index in the
Bernoulli problem. In the Appendix E.3, we report the
approximation error in approximating the Gittins in-
dex for various choice of K. When using an optimistic
one-step approximation, the error is around 15%, and
if K is increased to three, the error drops to around 4%
(Tables E.3 and E.4 in the Appendix).

As an aside, we note that the regret we computed
for the IDS algorithm is slightly different from that re-
ported by Russo and Van Roy (2018). Specifically,
we obtain slightly lower regret for IDS than they re-
port in the Gaussian experiments and slightly higher
values for the Beta-Bernoulli case; we include a link to
the code we used to implement the algorithms* as a
reference.

5.2. Large-Scale Experiment

This experiment replicates a large-scale synthetic
experiment in Chapelle and Li (2011). Here the arms’
rewards are Bernoulli, and their means are indepen-
dently sampled from a uniform prior. Every algorithm
that we will test assumes this same prior over the
arms’ mean rewards. The key feature here is that we
simulate a longer horizon of T=10° and include a
large number of arms; particularly, we let A = 100.
This is an order of magnitude greater than in the ma-
jority of synthetic bandit experiments we are aware
of. Our goal is to see how the algorithms scale both
computationally and in terms of performance. Such a
setup is practically relevant because in applications
such as e-commerce or online advertising, the prob-
lems of interest are typically modeled with many
arms relative to the horizon, where each arm could
represent a product or ad.

Because all the methods we test in our numerical
experiments are regret optimal, any relative difference
in regret must shrink after a sufficiently large number
of time periods. The length of time for this ‘burn in’
period intuitively depends on the number of arms in

the problem. In particular, we can think of the horizon
as giving us a rough budget on the number of trials
per arm via the ratio T/A. The idea is that with more
trials per arm we should expect a smaller relative dif-
ference between the algorithms (and indeed the theo-
retical guarantees for the algorithms require this to
happen). We will see that even when the ratio T/A
and A itself are large, there is a substantial difference
between OGI and the competing benchmarks in both
a relative and absolute sense.

As this experiment requires an order of magnitude
more iterations than the earlier ones, we are only able
to simulate the fastest algorithms, which are OGI with
K =1, Thompson sampling, and Bayes UCB. It was
not possible to include IDS because its performance is
hindered by the fact that each arm pull decision re-
quires time that is quadratic in the number of arms to
compute.

We show the algorithms’ regret averaged over 5,000
trials in Figure 1 and Table 3.

As before, the OGI scheme consistently dominates
the other two. What is particularly interesting is that
despite going out to a horizon of 10° time periods, the
relative improvement in regret over these algorithms
remains substantial. For instance, going from a hori-
zon length of 2x 10° (corresponding to a heuristic
budget of T/A=2,000 pulls per arm) to a horizon
length of 10° (corresponding to a heuristic budget of
T/A =10,000 pulls per arm) resulted in the relative
improvement offered by OGI shrining only marginal-
ly, from 18.9% to 17.4%.

5.3. Bandits with Multiple Arm Pulls

In this section, we consider a somewhat exploratory ex-
periment; we seek to adapt OGI to a more complex
bandit problem (here we allow for multiple simulta-
neous arm pulls). Again, in the discounted infinite

Figure 1. (Color online) Cumulative Regret in the Large-
Scale Problem of This Section Averaged over 5,000 Indepen-
dent Trials
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Note. We plot the number of periods T on a logarithmic scale.
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Table 3. Regret in the Large-Scale Experiment from OGI, Thompson Sampling, and Bayes UCB

T/A OGI Thompson Bayes UCB Relative improvement (%) Absolute improvement
2,000 230.5 284.4 297.9 18.9 53.9
4,000 254.7 311.6 333.5 18.3 57.0
6,000 268.6 327.4 354.5 18.0 58.8
8,000 279.1 339.2 369.6 17.7 60.1
10,000 287.1 347.7 380.7 174 60.6

Note. The last two columns show the relative and absolute difference from Thompson sampling, which is the closest competitor to OGI.

horizon setting, a number of heuristic approaches have
been proposed to adapt the Gittins index to more com-
plex settings; a good example is the so-called Whittle
relaxation for restless bandits. One might consider ap-
plying those same heuristic strategies to the OGL

For this experiment, we consider a more general
MAB problem, where the agent is able to pull up to a
certain number (say m < A) of the arms simultaneous-
ly. To describe the problem, we recall that A is the
total number of arms and define D, :={d e {0,1}":
>di<m} to be the set of all A-dimensional binary
vectors with up to m ones in them, which we take to
be the action space. Let X; = (Xi4,...,Xa,) be a tuple
of (potential) rewards from the A arms at time f,
where the definition of X;; for any arm i is the same as
in Section 2. Given a decision d € D,,,, which encodes
the subset of arms pulled, the reward d"X; is earned
and an arm j’s reward X;; is observed if and only if
that arm is pulled, that is, d; = 1. We can then define a
policy (m;,t € N) to be a D,,-valued stochastic process
adapted to an information set generated by past ac-
tions and observed feedback. A policy n’s regret is
given by the following equation:

A
max > diu(6;)

=1

Regret(n,T)=T-E

T
- > Elm X4,
t=1

where the expectation is over the randomness in the
rewards, the prior, and the policy’s actions.

We propose a heuristic to this problem using our
scheme, which is to compute the OGI of every arm, at
time £, using a discount factor of 11/t (just as be-
fore). However, for this problem, we pick m arms
with the largest indices. This is essentially Whittle’s
heuristic (Whittle 1988), which was originally given
for the restless bandit problem but can be described as
picking several arms with the largest Gittins indices.
We break ties randomly, and it would be interesting
to explore smarter tiebreaking schemes that could im-
prove performance (Brown and Smith 2020).

To test our policy, we simulate A = 6 binary arms
with uniformly distributed biases and fix m = 3. We
benchmark our heuristic against Thompson sampling
and IDS. Because the arms give independent Bernoulli
rewards, we will use a flat Beta prior for all the algo-
rithms. We implement the version of IDS designed for

the linear bandit problem because this experiment is a
special case of a linear bandit. Our implementation of
IDS also uses 10,000 Monte Carlo samples per iteration.

The results, produced from 1,000 independent tri-
als, are summarized in Figure 2 and Table 4. We no-
tice a significant spread in the performance between
OGI and both Thompson sampling and IDS. Just like
for our main algorithm, the primary computational
bottleneck in using OGI comes from solving the stop-
ping problem, and this can be onerous if K is large.
However, as the results suggest, the policy works well
even for low to moderate look-ahead parameters. The
experiment here sets the stage for an exploration of
the appropriate extensions to the OGI algorithm for
more complex bandit problems (such as contextual
bandits), which we leave for future work.

The results, produced from 2,000 independent trials,
are summarized in Figure 2 and Table 4. The horizon is
limited to 250 time periods because of the increased
computational effort required to execute a single trial
of both the IDS algorithm and Whittle’s heuristic,
when K > 1. This extra time is on the order of minutes
for these algorithms. For the sake of simplicity, we dub
this algorithm as exactly Whittle’s heuristic for the re-
mainder of this section.

We notice a significant spread in performance be-
tween Whittle’s heuristic and Thompson sampling.
Meanwhile, IDS and Whittle’s heuristic show similar
performance; however, the computational cost of run-
ning the latter algorithm is up to 25 times lower (IDS

Figure 2. (Color online) Regret for Bandits with Multiple Si-
multaneous Arm Pulls
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Table 4. Regret from the Multiple Arm Pulls Experiment

DS Thompson Whittle(1) Whittle(2) Whittle(3) Whittle(4)
Mean 10.97 15.23 11.13 11.29 10.93 11.07
Standard error 0.21 0.13 0.14 0.15 0.15 0.15
25% 1.18 6.60 1.66 1.57 1.20 1.39
50% 10.84 14.75 10.34 9.96 9.91 9.74
75% 24.60 23.52 19.62 19.41 19.27 19.13
CPU time (s) 54.45 2.07 14.20 1,122.12 2,196.83 4,106.89

Note. “Whittle(K)” refers to the Whittle heuristic policy, where K look-ahead steps are used in computing the OGI.

requires generating 10,000 Monte Carlo samples on
each iteration). Just like for our main algorithm, the
primary computational bottleneck in using Whittle’s
heuristic comes from solving the stopping problem,
and this can be onerous if K is large. However, as the
results suggest, the policy works well even for low to
moderate look-ahead parameters but nonetheless im-
proves slightly when K increases.

6. Conclusions

This paper proposed a novel way for designing
Bayesian MAB algorithms by treating the problem of
minimizing regret as a sequence of separate MDPs
where the discount factor increases from one prob-
lem to the next, according to a carefully chosen rate.
We showed that the fundamental idea of using such
a heuristic results in sublinear regret and, when ap-
plied to a binary bandit problem, that a simple and
efficient algorithm with a flat Beta prior achieves the
optimal rate of growth in regret.

There are some open questions following this
work. First, it remains to be proven that playing
arms with maximum (exact) Gittins indices together
with the increasing discount factor schedule does
produce an algorithm whose regret matches the Lai-
Robbins lower bound. We have a strong reason to
suspect this because of the findings in our numerical
experiments. Second, it is worth exploring whether
the idea of this framework can be extended to con-
textual bandit problems where dependencies be-
tween arms exist. In our setting, the fact that arms
were independent allowed us to exploit the Gittins
index, but there could be other ways to approximate
optimal solutions to bandit problems with depen-
dent arms.

Appendix A. Proof of Lemma 1

Proof. Consider an instance of the MAB with A = 2 arms
and Bernoulli rewards. We assume that the prior on arm
1 is degenerate with mean A =1/2, whereas arm 2 has a
Beta(a, @ +1) prior where « is a parameter we set later.
Furthermore, we assume that the true parameter for arm
2 is equal to 0 €(1/2,1), which represents a draw from
the prior distribution on that arm. Now, the continuation
value from pulling arm 1 at this stage is lower bounded

by %, whereas the continuation value from pulling arm 2

is upper bounded by

a  yE[max(R(y20),1/2) | y20 = (a,a +1)]
+ .
1+ 2a 1-y

It follows that the Gittins index policy must pull arm 1 if

1/2 . @ yE[max (R(y2,0),1/2) | y20 = (@, a + 1)]
1-y 1+2a 1-y

an inequality that in turn is satisfied if

1/2 >

(1__7’)0‘ +Y(P(R(y20) > 1/2 | y20 = (@, + 1)) + 1/2).

+ 2«

However, the right-hand side of the previous expression
goes to y/2<1/2 as a« — 0. Consequently, we can choose
an « such that the Gittins index policy chooses to pull the
first arm; let a* be the largest such a. Because the state of
the first arm does not change (the prior on that arm was
assumed degenerate), the same condition must hold at
subsequent iterations. Consequently, 7% must incur a T-
period frequentist regret lower bounded by T(0-1/2).
The result follows. O

Appendix B. Proof of Proposition 1

We first establish notation useful in the proof. Specifically,
we let 1" denote the sequence of arms pulled and the cor-
responding rewards earned between periods t and t
(W =0 if ¥ <t). Recall that y denotes the A-tuple of suffi-
cient statistics of priors on the arm means of each of the A
arms. We denote by g(y,h!) the A-tuple of sufficient statis-
tics of posteriors on the arm means of each of the A arms,
obtained starting with the prior y and observing the se-
quence of arm pulls K.

We begin by establishing a simple lemma concerning
the allocation rule proposed in Lai (1987); we note that
the allocation rule there is specified for a fixed time hori-
zon and the following lemma extends it to a policy that
specifies a choice of arm for every epoch.

Lemma B.1. Let the prior with sufficient statistic y satisfy
the requirements of Theorem 3 in Lai (1987). Then, there exists
a policy ty, and a constant C, for which

Regret(7ty, T) £ Ey[Regret(fy, T, 0)] < CylogT,
forall T.
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Proof. By theorem 3 in Lai (1987), we know that there ex-
ists a constant Cy and a sequence of policies, ﬁy,TS such that

i Ev [Regret (fty,r, T, 0)] _ &
T—oo lOgZT

y-
Consequently, there exists a constant Cy, so that for any T,
Ey[Regret(fty,7, T, 0)] < Cylog>T.

Now consider the doubling policy 7y, which at time ¢ se-
lects arms according to the policy 7, applied at the state

g(y,h;;(})_l), where k(t) = [log,(t+1)]. In words, this is the
policy obtained wherein (a) time is divided into epochs

such that the kth epoch extends from time -1 to

281 _ 2 and (b) at the start of the kth epoch, we forget ev-
erything learned up until that time and subsequently use
the policy 7, over the course of that epoch. Thus,

[log (T+2)]

Ey[Regret(®,, T,0)| < > BBy, [Regret(7, 2% 0)|
k=1
|log(T+2)]

= kZ:} Ey[Regret(ﬁy’zk,Zk,O)]

[log (T+2)] _
< >, Cylog22*
k=1

< CyClog>T,

where the equality follows from the tower property and
where C is some absolute constant. O

Next, we establish a simple result related to the Gittins in-
dex policy that relates the finite horizon performance of the
policy to the (discounted) infinite horizon performance.

Lemma B.2. For any § € Y, and horizon T’ > 2, we have

Ey [Regret (nG’l"l/T', T, 6)] <4Ey [Regret (RG’l_l/T', Hrp, 9)],

where Hr is an independent Geometrically distributed random
variable with mean T’.

Proof. We have

Ey [Regret (rC-VT T, 9)]
= Ey[Regret (r&1-V/T', T, 6)] P(Hr >T') TT2

a-11)
P(Hp > T')
1-1/m)"
< (1-1/T") " Ey[Regret (n*'-/", Hr,, )]
< 4Ey [Regret (r®-VT', Hy, 0)],

<Ey [Regret (n®1-YT", Hr, 0) | Hy > T’]

where the first inequality follows from the fact that
Ey|Regret(n®!'~/",n,0)] is nondecreasing in n, and the
second inequality follows from the fact that regret is non-
negative. [

We can now proceed with the proof of the proposition.
First, because the Gittins policy with discount factor 1 —1/T”
is optimal for a geometrically distributed horizon with mean
T’, we must have forany y € )

Ey[Regret (nG’l_l/T/,HTr,G)] < Ey|Regret(fty,Hr, 0)]. (B.1)

However, we have

Ey[Regret (2, T, 0)] < Uog(ZTfZ)JEy[Em |Regret (112,24, 0|
k=1

[log (T+2)]
< >
k=1
[log (T+2)]
< > Ey[4Eyzkiz[Regret(ﬁy,sz,9)]]

k=1

[4E [Regret (nc'l’l/zk, Hy, 9)”

Yok_o

[log (T+2)]
=4 Z Ey[Regret (7ty, Hy, 6)]
k=1

[log (T+2)]

<4Cy Z E[logaszJ
=1
llog (T+2)]

<4c, > K,
k=1

where the first inequality follows simply from the defini-
tion of P, the second inequality follows from Lemma B.2,
the third inequality follows from the aforementioned opti-
mality of the Gittins policy (namely (B.1)), the first equality
follows from the tower property, the fourth inequality fol-
lows from Lemma B.1, and the fifth and final inequality is
simply Jensen’s inequality.

Appendix C. Properties of the OGI

This section gives proofs for a few properties of the OGI
that are used throughout the paper and particularly in the
proof of Theorem 1. It shall be useful, in what follows, to
define the continuation value for the Vittles’s retirement
problem (Whittle 1980) as

Vy(y,A) & sup E,

>0

7

a A
t=1 T

E V4 X,‘,t +y —

=1 I-y

so that the Gittins index is then the solution in A to
A/(1-y)=V,(y,A). In an analogous fashion, we define the
optimistic continuation value, for parameters K and A, to be

Z Vf71 Xi,t + VT RA,K(T/ yi,T—l) )

VK(y,A) £ sup E
b} y p Y = 1_)/

1<t<K

From this definition, it follows that the solution for A to
the equation A/(1-y)= V;f (y,A) is the OGL

Throughout this section, we will sometimes discuss the
value of the index at some particular time ¢ during the ex-
ecution of the algorithm, which depends on the statistic
gathered about the arm using information up to but strict-
ly not including time t. As such, we will define the number
of pulls of arm i up to time t — 1 as

Pi(t) £ Ni(t - 1),

where we recall N;(t) is the counter for the number of total
pulls up to and including t. From the P;(f) pulls of the
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arm, the total reward accumulated is defined as

Pi(t)

Si(t) £ Z Xi,s-
s=1

We begin by investigating the effect of the parameter A,
which gives the deterministic payoff in (3), on the contin-
uation value V)If(y, A) and use that to find out how close
an approximation vy (y) is to the Gittins index.

Fact 1. For any state y € Y, discount factor y and parame-
ter K, the function V;f(y,)\) is convex in A. Moreover, the
K
y

function V7 (y,A) is Lipschitz continuous in A with a Lip-

shitz constant of y/(1—y).

Proof. Fix an arbitrary state y and discount factor y € (0,1).
Our proof is by induction on the parameter K. For K = 1, re-
call from Section 3 that
Vi, A) = X1 +%Ey[max (A, R(yi0))]-

Thus, the function is convex because it is an expectation
over a convex piecewise linear function of random varia-
bles X;1 and R(yio). To prove Lipschitz continuity, it’s
enough to note that for any A;,A; € R, that

V340 = Vg A2l = 17 B tmax (h, R(yio) = ma (22, Rigio)l

Now we prove the inductive step. For any K > 1, assume
that V&-1(y, 1) is convex and Lipshitz continuous. By writ-
ing the Bellman equation,

VA, A) = E,[Xi1] + 7Ey [max (A, VE (1, /\))],

we again notice an expectation over a maximum of convex
functions in A. This form for V/If(y,)\) implies that it is also
convex in A. Finally, to prove Lipschitz continuity, we will
use the fact that the pointwise maximum of two Lipschitz
functions, having respective constants L; and L, is also
Lipshitz with a constant of max(Li,L,). Because of this, by
fixing A1,A; € R, we have that

|V5(y/A1) - V{f(y/AZN
=y |Eylmax (A1, Vi (yi1,41)) = max (Az, Vi~ (i1, A2))]

2
V
< —
Sy A1 = Aal,
4
<+t —
Sy A1 = Aal,
where the second-to-last inequality follows from the induc-
tion hypothesis that V' (y;1,1)) is Lipschitz continuous in

A with a constant of /(1 —-y) and also from the fact that
the identity function for A (within the maximum expres-
sion) is trivially Lipschitz continuous. O

Lemma C.1. Suppose that arm rewards are bounded. That is,
there exists a constant B € R, such that X;; € [0,B] for every
arm i and time t. Further assume that X;, is not almost surely
equal to B.

<

Let X, be the OGI of arm i at time t and let 1) be a sca-
lar, then the following equivalence holds:

O < = {0 =y )V} Wip,m) <1},

where y;p,y is the sufficient statistic for estimating the ith
arm’s parameter 0; at time ¢.

Proof. Fix any state y and discount factor y. At A = 0, we
have

1-»Vy,020

because VX(0,y) is the expectation of a sum of non-negative
terms. Also, in the other extreme case when A = B, the func-
tion in question evaluates to
X _ B B
VE(y, B) = Ey[Xi1] a5 ST
Therefore, (1 - ]/)Vg(y,B) <B.

Next we prove that Vﬁ(y, A) is monotonically increasing
in A. To show this, pick any A’ <A” and let 7*(A") and
(") denote the two optimal stopping times under
A, A", respectively. It then follows, from R, .(.) being an
increasing function of A on every sample path, that

[7(\) R, (T P )
’ _ o Ry (T, Yoo (1) -1
V;f(}/,/\):Ey ny 1Xi,t+yT(A)%,
| =1 —
& O Rur (Tt
A D IRTab TRl >M}
=1 y
<& o R (T s
<E| >y 4y )W}’
| =1 y
= V{f(y’Ar/)

Let’s put together these observations:
o The inequality (1-y)V}(y,A) = AatA =0.

o The inequality (1-y)V}(y,A) <AatA=B

e The function (1 - y)V{f(y,)\) is monotonically increasing
in A.

Figure C.1. (Color online) Visualization of Lemma C.1’s
Proof for an Instance of the Problem with a Beta Prior Corre-
sponding to the Pair y = (4,5), a Discount Factor of y = 0.95,
and K=2
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These together with Fact 1 show that the univariate
function (1-y)V&(y,A)- A is continuous and decreasing
in A. Moreover, this function is non-negative for any A <
vgf(y) (because vgf(y) is the root of the function) and is also
negative for A > ovX(y). This proves the result in question.
Figure C.1 also prévides a visualization. O

C.1. Proof of Lemma 2

Proof. Let K < M be two look-ahead parameters used in the
definition of OGI. We will show that ng(y,/\) < vaw(y,/\)
where we recall the definitions of these functions from the
beginning of Appendix C.

We begin with a fundamental step. Let 7, and 7, be any
predictable stopping times (i.e., F;.i-measurable random
times) such that 7; precedes 7, almost surely, that is,
T1 < T. Recall that the expected reward of the ith arm satis-
fies E[X;;|6;] = u(6;) for all t. Let 0; € ® denote a realiza-
tion of the random variable 6; and let {(0;) be a real-valued,
measurable function of ;. In this case, we have that

[Z Y7IX, +WC(6)‘

t=11+1

66+E

Zytl

t=11+1

1

= u(0)E Vy‘@ 9}6(6)
max ({(0:), u(0; )
[)/ ] 1-y

Thus, we conclude, because éf was arbitrary, that almost
surely,

max (C(0y), #(6:))

o) =2

[Z Ay, +yTZC( z)‘

t=11+1

(C.1)

Let 7 be a stopping time that achieves the supremum in
(y, A) and define the predictable stopping time 7y2
K/\ 7*. Consider the (conditional) cumulative rewards in the
definition of Vﬁ‘,/[ (v), from time 7§ + 1 onward, given the suffi-

yiﬁ;—l}-

We upper bound this random variable as follows. First,
we note that, at any time s and for any statistic § € ), the
following statement holds:

cient statistic observed at time 7. That is,

-
Z yHX“ + )/T R)\,M(T*/yiﬂ*—l)/(l - )/)

t=1y+1

P(R(y) <r)= VreR, (C2)

P(u(0:) <rlyis =17),
meaning that the posterior distribution of the arm’s ex-
pected reward R(y;s) is the same as p(6;) conditioned on
having observed statistic {/ about the arm. This holds by
definition of the random variable R(y). Because of this

observation, we have that the following inequality holds
almost surely,

= Ram(T, Vi)

7

-y
=y (1 =y P ARG gy A
1-y 1
— ]I(T* — M)VM max (AIR(%',M—I)) + IL(T* <M)y’[* A ,
1- 1-y
©y (* = M)yM E[max (A, R(yim-1)) | Yip1]

-y
+ (" < M)y™ %

E[max (A, u(0:) | yim-1]
-y

D =My

+1(t" < M)y© %,

(ﬁ) E[y max (A, u(0,)) | Yie— ]
1-y

7

where (+) and (++) both use the fact that for any ¢, T <t is
measurable with respect to the o-algebra generated by y;;—1,
namely F;_;. Equation (1) follows from (C.2). Therefore, im-
mediately using the previous inequality and conditioning on
the event ™ > K, we have that

z «R T*/ i7" —
El >0 7 Xty 7“4(1_? 2

™ >K, ym;—l],

t=Ti+1
i B (A H(G )
<E V[ 1Xx‘, +E) L T*>K,yi,7"71 7
PR Iy “
_E 3 Xy o B HOD 5 Ky, (C3)
t=Ty+1
. X a M‘ Ky (€4
K 1-y
< E|y %(?),A) > K, yi,z;—ljr €5
_ - )/ *> K, Vi _1], (Co6)
TI;R,, (T*/ i,’(’*)
“E % > K, y"““j’ (C7)

where (C.3) and (C.4) use the tower property, and (C.5)
follows from the bound in (C.1) because 7} <7*, almost
surely. Equation (C.6) follows from Statement (C.2) and
that the event 7" > K is Fg_j-measurable (we can decide
whether to pull arm i or retire based on information up to
and including time K — 1). Finally Equation (C.7) is de-
rived by substituting in the definition of R,k (as given in
Section 3) and noting that 7j =K under the previous
conditioning.

We now condition on the complement of the previous
event we considered, namely, 7* < K. Under that event, t*
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occurred early enough before time K + 1 and thus 7 = 7*.
Therefore, it follows from this observation that

i VI X+ 9" Ram (T, Yize-1)

E
t=tp+1 1-y

T <K, yf,T*Kl]

(. A *
= El'y 1= T < K, yi,’r;—l

" Ryx(Tx, Yije-1)

<Ely -y

T* < K, :l/,‘,T;<1:|, (CS)

where (C.8) is obtained by noting that R)«(7,y) > A for
any choice of 7,K and y. Thus, by the law of total expecta-
tion and (C.7) and (C.8), we establish that

c - T*R T*/ i, T —
E Z Vt 1Xi,t+V M Yir1
t=1p+1 4

o Rak(Te Yiz-1)
1-y

We are ready to complete our main argument in this proof

by using the previous bound and breaking up the Vf,/l (v, A)

into rewards from times before 7} and after (and bounding
the latter terms). More precisely, we obtain that

<Ey

Yixy -1 ] . (C9)

VQA(% /\) = E.‘/

ol _ T*R T, Vi —
S X +y Ram(T, Y1) 1), (C.10)
=1 1-y

Ty T SIRTIN
=E, Z;/'_IXu + Z ’}/'l_lXi,z" + )/T* R—/"M(lT Yixe-) ,
=1 =t +1 e

Tx P .
=By 20y X+ E| 30 v T X +71’M ym;—l”,
t=1 =41 -y
(C.11)
T;< ) R, T*, gk
<E[>)y1xX, +E ),TKM yi,‘f;<1“/ (C12)
=1 -y
& . Rax(Th Y -
=E,[ Dy Xy, +),TKM , (C.13)
=1 1-y
<sup E, Zy“lx,-,t + yTM ’
1<t<K =1 1-y
=V, (C.14)

where Equations (C.11) and (C.13) use the tower property,
and (C.12) is immediately derived by using the bound of
(C.9). Finally, an almost identical proof can be given to
show that V;f (y,A) > V,(y,A) where the lower bound is the
continuation value used to compute the Gittins index.

We have shown that for any A and y, that ng (y,A) is non-
increasing in K and that V,,(y, ) is a lower bound to this se-
quence. We make use of these facts to now prove that v;f ()
is also nonincreasing in K. To this end, let us suppose for
contradiction that there exist two integers K; <K, and
3t (y) <032 (y). From Lemma C.1 we know that

ViR, oy () > o5 () /(1 =) = Vy(y, 05 (1), (C15)

which contradicts the claim just shown. Therefore, v?(y)
must also be a nonincreasing sequence in K. The same ar-
gument can be used to further show that 05 y) =2 v,(y).

We now turn our attention to proving the convergence
property stated in the lemma. The first step will be to
prove that for all y € Y and A € Ry, that

lim Vi, A) = V) (y, A). (C.16)

Indeed, we upper bound the optimistic continuation value
for a fixed parameter M as follows:

VI, A)
= 13;15\4 E, tz;lyt—lxu 4 1)/1/\)/ N yTRA,AlA(_T;/yf,r—l) _ 1Vi/\y}
< sTLgl) E, tz;]yt‘lxi,, + 17/1};/}
Ram(T Y1) YA
 sup B T
=V,(y,A)+ 12154 Ey[;ﬂ [R/\/M(l’l',_ y; 1) — )\]]
< Vy(y, 1)+ VE, W}
=V, A) +VE, W
< Vil ) +ME, w}
= Vy(y, 1) +MEy lf(_eiy)l ' (C.17)

where Equation (C.17) follows from the definition of the
random variable R(.) and the law of iterated expectation.
Now because 0 <y <1 and Ey[|,u(6,-)|] < oo, the right-hand
side above converges to V,(y,A). Finally, notice that
Vy(y,)\) >V, (y,A), and from this, Equation (C.16) follows.

To finish the proof, we consider the sequence of fixed
points of the equations A = V(y,A), {v}(y)}. Because this
sequence is monotone (established in the first part of this
proof) and bounded, we know that this sequence, has a
limit; 0X(y) — 0,(y).

It remains to show that 9,(y) = V,(y,0,(y)). For this, it
suffices to show that vﬁ(y) — V,(y,9,(y)), which we estab-
lish as follows:

[05() = Vi (0,0, )] = [VE(y, 05 () = V3,8, (),
< Vi, o5 ) = Vi, 0, W)
+ V3, 0, (1) = Vo (y, 0, )] -
=:by

We already proved (C.16) and therefore know that by — 0
as k — oo. As for the a; sequence, we have

0 = [VE(, o5 () - VE(w,0,0)]
<[o§(y) = 0, W)l
-0, (C.18)
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where (C.18) follows from the Lipschitz continuity of
ng(y) in its second argument as shown in Fact 1. There-
fore, vl{f(y) — V,(y,9,(y)), which completes the proof. O

The next lemma will be the final property of the func-
tion Vif that we prove. This will subsequently be used in
the proof of Lemma 3.

Lemma C.2. Let i be any arm. For any look-ahead parameter
KeZ,, discount factor vy and any constant 1, we have

E|VEim| = VEG,m),

where we recall that y;, is the summary statistic corresponding
to the posterior obtained from pulling arm i once.

Proof. For any i € ), let (i) be the (predictable) optimal
stopping time for the problem (involving computing VX
whose initial state is y;o = . With this notation in hand,
we conclude that

i1) T(yu)R ( )
S— Y KTyt'r in1)—1
[Vy(y,l,q)] [ i Z y 1X,q+ (in)-

(C.19)
() YUOR, k(T Yy (y)l)”

Z .yslel_/s +

>E
s=1 l—)/

>E,|E

Yi2

(C.20)
= E
s=1 1- Y
= Vi),

where (C.19) and (C.21) both follow from the tower property,
and (C.20) is because of the suboptimality of the stopping
rule 7°(y) when the actual starting state is y;;. Intuitively,
we lose out revenue by throwing away information about
the arm. 0O

W *(y)Rl 1 Yi, 7 (y)—
> 1K+ LRk Eie1) ”j, (c21)

Appendix D. Results for the Frequentist

Regret Bound
This section contains proofs of results required to show
Theorem 1. It is helpful to go over the definitions and
some general properties of the OGI given in Appendix C
when reading this.
D.1. Definitions and Binomial
Distributions
We list notation and facts related to Beta and Binomial
distributions, which are used through this section.

Properties  of

Definition D.1. The function F5 »(.) is the CDF of the Bi-
nomial distribution with parameters n and p, and F’ pl-) 18
the CDF of the Beta distribution with parameters a and b.

Lemma D.1. Let a and b be positive integers and y € [0,1],
Ff,b(y) =1- a+b lj(‘Z )
Proof. The proof is found in Agrawal and Goyal (2012). O

Lemma D.2. The median of a Binomial(n, p) distribution is
either [np] or |np].

Proof. A proof of this fact can be found in Jogdeo and Sa-
muels (1968). O

Corollary D.1 (Corollary of Fact 10). Let n be a positive
integer and p € (0,1). For any non-negative integer s < np,

Fo () <1/2.

Lemma D.3. Let n be a positive integer and p € [0,1]. Then
for any ke{0,...,n},

(1=p)Fu_y, (k) <Fo (k) < Fi_y (k).

Proof. To prove F? (k) <FB, p(k), we let X3,...,X, beii.d.
samples from a Bernoulh(p) distribution. We then have

n-1

> Xi<k

i=1

F; (k) =P <P

n
> Xi<k
i=1

Fo_1, (k).

Now to prove (1-p)FE_ 1p(K) <FB (k), it is enough to ob-

serve that FB (k) pFB_ 1p(k 1)+(1-p)FB_ 1p(k). a

D.1.1. Ratio of Binomial CDFs.

Lemma D.4. Let 0<g<p<1. Let n be a positive integer
such that %P > (n+1)* and let k be a nonnegative integer
such that k < nq. It then follows that

FS (K)/ES (k) > 219,

Proof. From the method of types (Cover and Thomas
2012), we have for any r € (0,1) and j < nr,

e—nd(j/n r)

(1+n) <Fur

b, () < (n+ 1770/, (D.1)

Because k < ng < np, by applying (D.1) to both the numer-
ator and denominator, we get

FB (k) ey /) dkin)

FE(K) ™ (n+ 1)ferdnp — (n4+1)

Examining the exponent, we find
Koo T4 (1=K} 10 121
d(k/n,p) —d(k/n,q) = log ) +( n)log =y
q 1-q
>glog ~+(1-¢g)lo ,
qilog p q)1og 1-p
=d(q,p),

where the bound holds because the expression is decreas-
ing in k, and k < nq. Therefore,

B (B endap) e
Y _
FE,D) " (n+1)* (n+1)*

4P > phdap). (D.2)

The final lower bound in (D.2) follows from the assump-
tiononn. O
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D.2. Proof of Lemma 3

Proof. The proof hinges on showing that for any K,
which is the number of look-ahead steps used to compute
the OGI, that

1
P(of, <n) = O(W)’ (D.3)

where /1, >0 is some constant that depends on 7. After
showing the previous statement, the result would follow
because of convergence of the series 332 P(vf, <7). The
first step will be to show that for any K>1 and any C>0
that there exists /1 > 0, such that

1
P(a=roVEmnnom <n+0/)=Ouliy)

where Vft is the continuation value defined in Appendix

C, and O, ; means that the constant in front the big-Oh de-
pends on both C and 7. After showing the previous claim,
Lemma C.1 would imply Equation (D.3) because we know
from that result that

P(Uft < 77) = [P((l =YV e, ) < 77),

1
= O(t1+h,7 )'

for some /i, > 0. The second equation is just a special case
of (D.4) when C = 0.

Ultimately, showing Equation (D.4), and thus proving
the lemma, is an induction over the parameter K, and we
begin with the base case, which requires some work using
properties of the Beta and Binomial distributions.

Proof of the Base Case. Let us fix (>0. We prove
that when the algorithm uses a look-ahead parameter of
K =1, that there exists a positive constant /1, such that

1
P((1=y)V}, W) <0+ C/t) = Omi(m) (D.5)

First, we define 6:=(61-7)/2 and 1 :=n+06. In other
words, 6 is half the distance between n and 0;; 1’ is the
point half-way. Recall that P;(t) refers to the counting pro-
cess for the number of pulls of arm i up to but not includ-
ing time t and that S;(f) is the corresponding total reward
(or number of successes from all the Bernoulli trials).
Showing this base case consists of showing two claims:

Claim 1: {(1 =V}, W ) <+ C/t} c {Ff?l(tm y(51(0) < Cg}l}

Let V; ~ Beta(S1(t) + 1,P1(f) — S1(t) + 1) be the agent’s pos-
terior on the expected reward from the optimal arm (notice
that yy p, 5 = (S1(£) + 1, P1(t) — S1(#) + 1) in this case). Using the
simplified equation for the continuation value when K =1,
namely le,f (see Equation (4)),

A=)V} ((S1(8) + 1, P1(t) = S1(H) + 1), 1)
=E[Vi]+7E[n-V)7],

we find that
C
{(1 =YV, anio, ) <0+ ;}f

- (el -vol<n+3),

~la-1eln-vrl<el-vi+S @9
feto-sr1-e-v< -1
- {E Vi—n)*] < 15[(’7 V] +%}

{E[(Vt '] < CH}, D7)

where (D.6) follows from the definition of y;, and (D.7) is
because of Vi, n both lying in the interval [0,1]. We ap-
proximate the conditional expectation in (D.7) with the fol-
lowing bound:

E[(Vi=n)"] =E[(Vi = pL(V: 2 )]
=E[(Vi=n)1(n+06>V;21)|
+E[(Vi—n1(Vi 21 +0)]
> E[(Vi=m1(V; 2 n+0)]

=06(1- FS1(t)+1 Pit)-s,0+1 (1))
= OFp, (1,1 (S1(1)), (D.8)

where the final equality is because of Fact 9. The claim
then follows from the above bound and (D.7). We proceed
with the second part of the base case’s proof.
Claim 2: P(F}, ., (S1() <) =
Let us fix the sequence f; £ —w =O(logt). We
og (1-17')
then have by a straightforward decomposition that

=i | for some 1, > 0.
Ofis)

( B ren (51(6) < CLl)

1

= ]P)(Fllzl(t)ﬂ p(S1(t) <——— C , P1(t) >ﬂ)

+ P(FPl(t)+1 n (Sl (t)) < 7, P](t) Sft) (D9)

Then notice that for the second term in the right-hand
side of (D.9), we have the following bound:

(FPl(t)-H  (S1(1)) < Pl(f) <ft)
P(Fl’l(t)+1 y(0) <—— i 1 , P1(t) <ft)
= IP’((l U A L p < ﬁ)

= 0. (D.10)
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Now we use the following fact to correspondingly bound
the left term on the right-hand side of (D.9). Define the
function

F;f,(u) =inf{x: Fgrp(x) > u},

which is the inverse CDF. Then it is known that if
U ~ Uniform(0,1), then F,8 (U) Binomial(n,p). Further-

more, the event Fﬁrp(Fn,p(U)) > U occurs with a probability

of one because of the definition of the inverse CDF.

Now let us only consider large t, in particular ¢t >M =
M(601,17), where

1. The constant M is such that ¢/70/m/2 > (fi; +1)* (we
need this condition when we use Lemma D.4).

2. We have that M > a C;])

3. We have that [fy]>0 and Fj (¥7n')>1/4 for all
t' > [fum]. There is a large enough integer for this because
Ffey (fin') = 3ast — co.

Suppose that t > M. It then follows that the event that

C+1

{100 < =0

, S1(t) = P1(t)1’, P1(t) >ﬂ}

has measure zero because of the assumptions made on M.
Therefore, if t > M, we have

]P(Fgl(t)ﬂ 7 (S1(1)) el 1 , Pi(t) >ft),

= ]P)(Fllgl(t),q'(sl(t)) < %ﬂ’l)(st’ Pl (t) >ft)/ (Dll)
= Bl $10) < s 5100 < PaO, Pr() > ),

Fp, 0 (S1(D) L+l
Pl(t) o, (S1(1) (11— )6t

IP’(F COYACHON=

Sl(t) < Pl(t)n/r Pl(t) >f[)/

1
< ]P)(Fpl(t) 0, (S1(£)eM®P < %’W’ Py(t) >ﬁ)’
C+1
< IP’(F B0, (S1(1))efP < <@t (D.12)
_ eP(C+1)
[P(Fgl (t),61 (FP|(t) o, (1) < m , (D.13)

eFP(C+1)
= IP(U <a- et )
_efP(C+1)
CA=n)ot

1
= Oq/c(m), (D.14)

where D =d(n’,01) >0 and ¢, = ~log }(1-1’) > 0 are cons-
tant. The bound (D.11) holds because of Fact 11. Bound (D.12)

follows from an application of Lemma D.4 and the fact that
t> M. Equation (D.13) follows from S (t) ~ Binomial(P(t), 01)
and the inverse sampling technique. By combining bounds
(D.14), (D.10), and (D.9), we finally obtain the result for the
base case by taking 1, = Dc;y .

Proof of the Inductive Step. Now, suppose that for
K—-1>1 and any (>0, the following induction hypothe-
sis holds

1
P((l—yt)V (ylpl<f>,n)<n+c) Oné(tnh,,)

for some h,7 > 0. We prove the same result for the next in-
teger K. Observe that when t is large enough, using the
Bellman equation for VX, we have

C
]P’((l ~ 7V Wi, M) <0+ ?),
= P((l —VDE[Xv e

+VfE[maX(77,(1 - Vt)VK Yyiemen ) | va Pl(t)] <n+ C)

(D.15)

((1 )E[(l yt)V (y1p1(t)+1,’7)|y1P1(t)]<’7+)

IA

IP’( 1- )(1 7OVy 1(y1,Pl(t),q)<q+%), (D.16)

i)

¢
B{(1 =y )VE g0 1) <n+i+—),

|
|

1
= On,c(—t1+h,,)f (D.17)

< P((l - Vt) (}/1 Py, 1) <

IN

+1
1=-y)V l(yl,P1 ®,M) <N+ CT),

where the final inequality holds when ¢ is large enough
because n <1, Equation (D.15) results from an expansion
of Bellman’s equation, and Bound (D.16) follows from
Lemma C.2. Finally, Equation (D.17) follows from the in-
duction hypothesis. O

D.3. Proof of Lemma 4

Proof. See the main proof of Theorem 1 to recall the defi-
nition of constants 7, 13, and their relationship with 6,
and 0,. As an abbreviation, we let L = L(T). Moreover, be-
cause for any arm i v, <ol <... <o}, (Lemma 2), it will
be sufficient to consider thls proof only for v},, which we
also will abbreviate as vy; £ ZJZt Similarly, we will abbre-
viate the notation for the OGI policy as 7°° and suppress

the parameter K.
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First, by the law of total probability and the definition
of P;(f) in Appendix C, we find that

T
ZP(UQ/} > 7]3, Nz(f — 1) > L, T(tOG = 2)
t=1

M=

Ploas> 1y Pa() 2 L, S2(8) < [Pa(t) ), 706 =2)

t

I
—_

+

Mﬂ

P02, > 1y, Pa(t) 2 L, Sa(0) = [Pa(t), ), € =2)
t

Il
SN

Mﬂ

< D P(v2s 215, Pa(t) 2 L, Sa(f) < [P2(t)n,))

t

1l
—

T

+ P(n?c =2, 5,(t) = |Pa(t)n, J), (D.18)
=1

where S,(t) is also defined in Appendix C as the total re-

ward from the second arm observed up to time ¢ — 1. Let

Vi ~ Beta(Sy(t) + 1, Po(f) — So(t) + 1) denote the agent’s pos-

terior on the second arm at time ¢, then

T
D P2 215, Pa(t) 2 L, Sa(t) < [Pa(t)n; ])

t=1

T
ZP( [Vl +7.E[(n; = V'] = 15, Pa(t) = L, Sa(t) < LPz(t)qu)
-

t

ZT: M <t, Py(t) > L, Sy(t) < [P2(t)n, ]|, (D.19)
t=1 [(Vf 3) ]

where the first equality follows from Lemma C.1 and the
simplified form of the continuation value (defined in Ap-
pendix C) when K = 1. The following result lets us bound
(D.19).

Lemma D.5. Let 0 <x <y < 1. For any nonnegative integers
s and k with s < kx|, it holds that

E[y=V)"]_ (v =x)exp (kd(x, )
E[(V y)] 2 !

where V ~Beta(s +1,k—s+1).

Proof. See Appendix D.3.1. O

Therefore, from Equation (D.19) and Lemma D.5, we

1/
find that whenever T > (’hz'h) - T*(e,0),

T
D P(v2s 213, Pa(t) 2 L, Sa(t) < [Pa(t), ])

t=1

((’73 1;)exp {PZ(t)d(Thr’h)} <2t, P(t) > L)

IA

VRN

P((n3 = 1my)exp {Ld(n;,m3)} < 2t)

Il
_

M=

B((1 = )T <2t)
=0. (D.20)

All that is left is to bound the second term in (D.18), and
to do so, we apply the following lemma whose proof is in
Appendix D.3.2.

Il
—

Lemma D.6. There exist positive constants C = C(62,1,) and
x’ > 0 such that

1
1 o4 62) "

T
SUB(Sa(8) = [Pty ), m0C

t=1

Combining Lemma D.6, (D.20), (D.18), and (D.19) shows
the claim. O

:2)sK+

D.3.1. Proof of Lemma D.5.

Proof. We upper bound the denominator as follows. Giv-
en that s <|kx|, we have s <kx—1. Let B(a, b) denote the
Beta function for parameters a,b > 0, that is

1
B(a,b) 2 / F10 =1 g,
0
which is used in the definition of the Beta CDF. We can

derive an upper bound on the denominator in the follow-
ing way. Namely, we have

1
[(V y) ] m/ (t—]/)ts(l—t)kfsdf,
y

_ 1 1s+1 k—s
_m/yt (1= dt—yP(V > y),

_ B(s+2,k-s+1) 1
T B(s+1,j-s+1)\B(s+2,k—s+1)

1
/ FRA -1 dE—yP(V > y),
Y

_s+1

= E D) - BV 2 ), (D21)
S + 1

= k 2 k+2 y(s + 1)

<FB (kx),

<exp{-kd(x,y)}, (D.22)

where we use Fact 9 and the definition of the Beta CDF to
establish Equation (D.21). The final bound in (D.22) is the
result of the Chernoff-Hoeffding theorem and Fact 11. Let
0:=y—x, and note that s <kx = s <|(k+1)x] because of s
being integer, whence

Ely-V)']=E[y-VL(V=y)
=E[(y-WViy-o<V<y)
+E[(y-V)I(V <y-0)],
>E[(y-V)L(V<y-9)],

> 0E[1(V <y -9)], (D.23)
=6P(V <x),

=5(1-FE.9), (D24)
>6/2, (D.25)

where Equation (D.24) relies on Fact 9. Bound (D.25) is justi-
fied from Fact 10 and s < | (k + 1)x]. Thus, using the inequal-
ities for both the numerator and denominator, we obtain the
desired bound. O
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D.3.2. Proof of Lemma D.6.

Proof. The steps in this proof follow a similar one in
Agrawal and Goyal (2013), but we show them for com-
pleteness. We bound the number of times the suboptimal
arm’s mean is overestimated. Let 7, be the time step in
which the suboptimal arm is sampled for the ¢ th time.
Because for any x, lirnanx,L"—iJ =1, we can let N be a large

n.
L€U1J

>y =
& x

enough integer so that if {>N, then 1,
(62 +1,)/ 2> 0,. In that case,

T
SB(52(0) > Pa(ty ), <06 =2)
t=1

T 71

<E[D] 3] 1520 = [Pa(O, ) =2)

(=1 t=1¢

T

T —1
=E 21(52(’[[) >|(0- 1)7]1J) Z ﬂ(ntOG _ 2)}
t=1¢

=1

-1
=E| D> 1(S2(te1) > L&hJ)}
=0

7-1
<N+ Z P(Sz(’fml) >l

(=N+1

T-1
SN+ D7 P(Sa(trs1) = £X')
£=N+1

<N+ Zexp (—td(x’,6,))
=1
1

=N+ 7w (D.26)

o)

Figure E.1. (Color online) Frequentist Regret

where (D.26) follows from the Chernoff-Hoeffding theorem
and the fact that S>(741) is drawn from a Binomial(P,(¢ + 1),
6,) = Binomial(¢, 6,) distribution. O

Appendix E. Further Experimental Results

E.1. Bayes UCB Experiment

This experiment is motivated by Kaufmann et al. (2012a),
and in it, we simulate the Bernoulli bandit problem with
T = 500 and two arms. Because we are interested in mea-
suring expected regret over the prior, we draw the arms’
mean rewards at random from the uniform distribution.
There are 5,000 independent trials, and we show the re-
sults in Figure E.1. OGI offers notable performance im-
provements over both Thompson sampling and IDS for
this modest horizon.

E.2. Additional Benchmark Algorithms

In this section, we simulate a few additional algorithms to
understand the importance of the varying discount factor,
and to try out a different approximation of the Gittins index.
We also simulate the greedy policy to see the inherent value
of exploration in our benchmark problems. Specifically, the
algorithms we experiment with are as follows:

e OGI with a one-step lookahead and a fixed discount fac-
tor of y, which we will refer to throughout as FOGI(1/
(1-7)). The quantity 1/(1 —y) can be interpreted as a rough
horizon over which this policy is optimal.

e OGI in which the Gittins index approximation equals the
closed-form expression given in Brezzi and Lai (2002). We
will refer to this policy as BL-OGL

= 0OGI
s = IDS
== Thompson
----- Bayes UCB
4 —eo— KL-UCB

.
o
.......
“ant
arss
sen”
PEY
s
Y

0 100 200

Note. The OGI policy is configured with K =1 and a = 100.

300 400
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Table E.1. Comparison Against Some of OGI’s Simpler Variants in the Gaussian Setup

BL-OGI Greedy OGI(1) FOGI(T) FOGI(T/10) FOGI(10T)
Mean 58.54 167.16 49.19 49.61 60.72 59.09
Standard error 2.14 9.74 1.61 1.90 4.25 1.47
25% 45.83 102.75 17.49 39.28 34.85 50.94
50% 56.87 156.63 41.72 47.29 52.19 57.84
75% 67.67 216.77 73.24 60.04 87.63 67.59
Table E.2. Comparison Against Some of OGI’s Simpler Variants in the Bernoulli Setup

BL-OGI Greedy OGI(1) FOGI(T) FOGI(T/10) FOGI(10T)
Mean 23.50 56.32 18.12 16.52 18.69 20.14
Standard error 0.63 2.36 0.65 0.62 0.82 0.58
25% 18.74 37.61 6.26 12.36 12.70 16.36
50% 22.50 55.16 15.08 15.55 17.14 19.43
75% 28.18 74.64 27.63 19.72 23.29 23.62

e The greedy policy, which plays the arm in argmax;
Ey, 0 [Xit]. Effectively it is equivalent to FOGI(1) and
completely disregards the value of future exploration. We
will simply call this policy Greedy in our tables and plots.

Recall that the Gittins index policy is optimal for a geomet-
rically distributed horizon with mean T. Because FOGI(T) is
precisely an approximation for that policy, we would expect
it to perform well in our experiments when the horizon is T
(although it really should be geometrically distributed).

We reuse the two main experimental setups from Section
5: the Gaussian bandit with 10 independent arms and the

E.3. Additional Tables for Section 5

Table E.3. Optimistic and Exact Gittins Indices When y =
0.9 for Different Beta-Bernoulli Parameters

Bernoulli equivalent. Notice from Table E.1, in the Gaussian
setup, that there is value in knowing the true horizon T
because FOGI(T) is the dominant policy.® We also see
that either over- or underestimating the horizon leads to
worse performance as demonstrated by the regret from
FOGI(T/10), FOGI(10T), and Greedy. Interestingly, we also
see that BL-OGI shows larger regret than OGI (Table 1), sug-
gesting that there is perhaps value in using our optimistic
approximation for this particular problem. The comparison
against FOGI, BL-OGI, and Greedy in the Bernoulli case,
presented in Table E.2, tells a similar story as in Table E.1.

Table E.4. Optimistic and Exact Gittins Indices When y =
0.95 for Different Beta-Bernoulli Parameters

a B 0GI(1) OGI(3) OGI(5) Gittins ~ « B 0GI(1) OGI(3) OGI(5) Gittins
1 1 0.760 0.721 0.712 0.703 1.0 1.0 0.817 0.784 0.774 0.761
1 2 0.571 0.522 0.511 0.500 1.0 2.0 0.637 0.590 0577 0.560
1 3 0.452 0.401 0.389 0.380 1.0 3.0 0514 0.463 0.449 0433
1 4 0.374 0321 0.312 0.302 1.0 40 0.430 0.376 0.364 0.348
2 1 0.853 0.818 0.809 0.800 2.0 1.0 0.890 0.860 0.851 0.838
2 2 0.702 0.657 0.646 0.635 2.0 2.0 0.752 0.710 0.698 0.681
2 3 0.591 0.543 0.530 0516 2.0 3.0 0.643 0.596 0.581 0.562
2 4 0.508 0.458 0.445 0.434 2.0 40 0.558 0.509 0.494 0475
3 1 0.893 0.864 0.855 0.845 3.0 1.0 0.921 0.896 0.887 0.874
3 2 0.771 0.729 0.719 0.707 3.0 2.0 0.811 0.773 0.762 0.744
3 3 0.671 0.626 0.613 0.601 3.0 3.0 0.715 0.672 0.658 0.639
3 4 0.592 0.545 0.532 0518 3.0 40 0.637 0.591 0.575 0.556
4 1 0916 0.890 0.882 0.872 40 1.0 0.938 0916 0.908 0.895
4 2 0.813 0.776 0.765 0.754 40 2.0 0.847 0.812 0.801 0.784
4 3 0.724 0.682 0.670 0.658 4.0 3.0 0.763 0722 0.709 0.690
4 4 0.651 0.607 0.593 0.581 4.0 40 0.691 0.648 0.633 0.613
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Endnotes

"To capture the possibility of a randomized policy, F; must also
contain the realization of a random variable describing the random-
ization, but we ignore this here for notational brevity.

2 Intuitively, we solve a degenerate stopping problem, where one is
forced to stop at time 1. Such a problem involves no recourse deci-
sions (or learning), and nature immediately reveals the true mean
reward after pulling the arm once. This is why the index is especial-
ly easy to compute when K = 1.

% We use the termination condition in proposition 2.2.1 of Bertsekas
(2011). That is, we iterate the value iteration operator k times so that
Cx — cx (as in proposition 2.2.1) is at most some predetermined fixed
tolerance.

4 See https: // github.com/gutin/FastGittins.

% This entails a minor abuse of our definition of a policy: fty,r is not
specified for t > T.

€ Knowing the horizon T, in the context of this paper, should be
viewed as a form of cheating because we are interested in anytime
policies.
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