Check for
Updates

Byways: High-Performance, Isolated Network
Functions for Multi-Tenant Cloud Servers

Xinyu Han
The George Washington University
Washington, D.C., USA
kevin_han@gwu.edu

Gabriel Parmer
The George Washington University
Washington, D.C., USA
gparmer@gwu.edu

Abstract

Network functions (NFs) have become pervasive in data
centers as a means to monitor and transform traffic as it flows
between services. Softwarization of the network has further
added to the diversity of functions that can be deployed, yet
managing the performance, efficiency, tenant-customizability,
and security of these functions remains a major challenge.
We present Byways, an abstraction that provides facilitates to
safely deploy NFs alongside end-host VMs in a multi-tenant
cloud environment. Byways guarantee strict isolation be-
tween the host system, the network functions, and VM-based
cloud applications, while still maintaining high performance.
A Byway manages a specific set of services, and an associated
NF only processes flows associated with those services,
using per-byway resources (e.g., processing time). This
separation of end-host traffic across Byways provides strong
fault isolation — a failing NF does not impact other services.
Byways augment this isolation with per-Byway access rights
that restrict a NFs access (e.g., read, write, drop) to the flow,
limiting the impact of a faulty NF on even its own services.
We have implemented BywayOS, a p-kernel instantiation
of Byways, and evaluated its performance, efficiency, and
isolation properties compared to state of the art virtual
machine networking technologies. A Byway processing
memcached traffic through an isolated NF demonstrates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC 24, November 20-22, 2024, Redmond, WA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACMISBN 979-8-4007-1286-9/24/11.
https://doi.org/10.1145/3698038.3698547

811

Yuan Gao
The George Washington University
Washington, D.C., USA
ygaol@gwu.edu

Timothy Wood

The George Washington University
Washington, D.C., USA
timwood@gwu.edu

throughput and latency competitive with, and often better
than, Linux host performance (i.e., without a NF nor a VM),
and throughput 1.25x-6.43x higher than other host NF+VM
technologies, while offering stronger isolation and a trusted
computing base (TCB) more than 20x smaller.

CCS Concepts
« Networks — Cloud computing.
Keywords

Cloud computing, Network function, Multi-tenant, End host,
Resource isolation

ACM Reference Format:

Xinyu Han, Yuan Gao, Gabriel Parmer, and Timothy Wood. 2024.
Byways: High-Performance, Isolated Network Functions for Multi-
Tenant Cloud Servers. In ACM Symposium on Cloud Computing
(SoCC °24), November 20-22, 2024, Redmond, WA, USA. ACM, New
York, NY, USA, 19 pages. https://doi.org/10.1145/3698038.3698547

1 Introduction

Network Functions (NFs) are essential in the modern cloud
infrastructure. While these functions originated as a means
for network operators to provide services transparently to
clients and servers, there is a growing desire from both in-
frastructure providers and application owners to deploy their
own NFs [27, 63]. New deployment models like microservices
and serverless computing require a variety of network func-
tionality including proxies, network monitoring, and load
balancers. As a result, NFs are becoming more application
specific, and tenants within a cloud infrastructure desire ways
to dynamically manage the mapping of flows to their own
collection of network functions and end-host applications.
Middlebox NF processing (i.e., running on specialized
servers acting as a “bump in the wire”) has received a lot of
attention [42, 48, 49, 82], but these approaches can see signif-
icant performance overheads if deployed on top of existing
virtualization layers or in cloud environments where tenants
lack control to determine where functions are deployed. On

https://doi.org/10.1145/3698038.3698547
https://doi.org/10.1145/3698038.3698547
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3698038.3698547&domain=pdf&date_stamp=2024-11-20

SoCC 24, November 20-22, 2024, Redmond, WA, USA

vMB@J
(0T]

B:80,
B:443
[NIC |

Figure 1: Byways connect services hosted inside VMs to
the network. A Byway can be configured to direct traffic for
particular IP:port(s) pairs to a NF (e.g., A: 80 goes to NFj before
going to service Sp). Unmanaged traffic (e.g., A: * for s; —s3)
goes directly to the VM. NF access rights can be limited, e.g.,
NF, can observe traffic to S4, but cannot disrupt it.

the other hand, end-host NFs are pervasive: from firewalls,
programmable logic via eBPF [16], user-level processing [47],
and service and network virtualization [15, 68], to intrusion
detection and prevention [64]. End-host based NFs offer
application specific services [3, 24], and since they execute
on the host resources, accounting and billing can be more
easily charged to the tenants. Application-specific, end-host
NF processing can improve security [7], improves resource
utilization and decreases costs [26, 83], facilitates scalable
execution [26, 84], manages latency and application QoS
properties [3, 7, 83], and can aid in managing limited edge
resources [59] with low latency [61].

End-host NFs require system support for execution. This
involves either the NF’s execution within a tenant’s VM (e.g.,
with Linux iptables or NFQUEUE [47]), or in an environ-
ment tightly controlled by the cloud provider (e.g., with Open-
VSwitch [54] or VPP [4]). The existing solutions for both of
these options are problematic. When deployed in a tenant VM,
the NF and host OS must trust each other. When deployed
independent of a tenant VM, it is more challenging to spe-
cialize the NF, and the tenant must trust the NF to properly
process all its traffic. Both options are ill-suited for the fact
that NFs, like other trusted infrastructure, can fail or be compro-
mised [28, 72,73, 83] (in §2.1, see a small subset of NF CVEs).

End-host NF infrastructure is in a difficult design space.
It must provide NF execution that is (1) high-performance,
(2) strongly isolated from tenant failures, and (3) customizable
for individual tenants, applications, and services. Addition-
ally, tenants should suffer graceful degradation when NFs
fail. While a failure in a NF will impact the services whose
flows it is processing, it should not impact other services nor
tenants. In short, what is necessary is a strong multi-tenant
infrastructure for NF execution [3].

To address this challenge, this paper introduces the Byway
abstraction for multi-tenant NF execution. Byways enable
the strong isolation of NFs from tenant VMs, and vice-versa.
The Byway abstraction provides a devoted path for a VM’s
service’s network flows that are processed by a specific NF,
as illustrated in Figure 1. Byways are designed to minimize
the potential negative impact of a NF on its associated

812

Xinyu Han, Yuan Gao, Gabriel Parmer, and Timothy Wood

] Type \ NF Software \ CVE-* \
DoS | Snort, Envoy, Cilium, | 2023-{20270, 20083, 35945, 27496,
OVS, StrongSwan, | 41333, 6129, 5678, 25950, 0056},
OpenSSL, HAProxy 2022-{31045, 29178, 40617, 20751},
2021-{3905, 40114}, 2019-25076,
2018-{17204, 5388}, 2015-3991
Data Snort, Suricata, Cilium, | 2023-{34242, 45539, 0836, 25950},
leak | nDPIL HAProxy 2021-34749, 2020-{19678, 11939}
CFI Snort, Suricata, OVS, | 2023-{35853, 41913, 26463}, 2021-
viol. nDPI, Strongswan 34749, 2020-11939, 2016-2074
Priv. Envoy, eBPF, OpenSSL, | 2023-{27488, 39191}, 2022-25218,
Escala- | HAProxy 2020-35195
tion

Table 1: Network function security vulnerabilities.

service, and to tightly limit the impact of NF faults to only
that service. As such, Byways are service-specific and only
process their associated service’s flows, and enable restricted
access, limiting a NF’s ability to impact a service’s flows by
controlling NF’s access rights to the flows.

Byways contributions include enhancing NF isolation
across three dimensions, without sacrificing performance
nor legacy support:

e System Isolation: Byways enable a multi-tenant NF exe-
cution model that insulates NFs, VMs, and the host from
each other through a per-tenant, microkernel based virtual
machine monitor and efficient communication channels.
Traffic Isolation: the Byways abstraction restricts a NF
to process only a subset of a VM’s network flows with a
configurable set of capabilities following the principle of
least privilege (PoLP).

Temporal Isolation: The Byways scheduler separately,
and preemptively allocates time to network functions to
prevent timing attacks and denial of service attacks, while
accounting execution costs to the appropriate tenant.
Lastly, we detail BywayOS, a p-kernel based OS that
enables tenant VM execution, and implements the Byway
abstraction for NFs. While Byways could potentially be im-
plemented in other infrastructures, BywayOS demonstrates
that Byways can provide strong performance, while enjoying
a high-confidence implementation due to a small TCB. Our
evaluation demonstrates that BywayOS prevents a malicious
or errant NF from negatively impacting VM service outside of
those flows it is given access to. Our Byway communication
abstraction is highly optimized, and provides performance
better than solutions that offer no isolation — 25% higher mem-
cached throughput and 68% lower tail latency versus VPP [4].
Compared to running network functions in NFQUEUE [47]
with similar isolation properties, Byways achieve perfor-
mance 2.9x / 6.4x higher on nginx and memcached.

Byways: High-Performance, Isolated Network Functions for Multi-Tenant Cloud Servers

SoCC 24, November 20-22, 2024, Redmond, WA, USA

VM VM VM VM
VPP
App 4 NF App™ 0 NF App 4 | nfqueue VM BywayOS
QEMU QEMU|| [QEMU | | pppk QEMU NF App NF
------------------- ST T Ty CRRETr EETT VMM [DPDK
0—90 0—O 0| —————-- - -
Kernel / KVM Kernel / KVM Kernel / KVM uKernel
NIC NIC | NIC NIC |
\)\ \ \
(a) VM-based NF (b) VPP (c) NFQUEUE (d) BywayOS

Figure 2: Communication flow and packet copies (circles) for different approaches to host-based NF deployments. Shaded
areas represent the components which can become compromised due to a NF failure or exploit. BywayOS incurs two packet
copies on the receive path, but can avoid the DPDK copy on transmission, giving it similar overhead to VPP, but with stronger

isolation and a smaller TCB.

’ System

‘ NFs isolated from service VM ‘ Per-VM NFs ‘ Service-specific NFs ‘ Service availability ‘ Service confidentiality ‘ Legacy NFs ‘ High-perf ‘

NFs-in-VM

VPP [4]

MTS [72]

NFQUEUE [47]

Netbricks [49]

00000
0000
O|O| @000

Host eBPF [16]

O|0|@|0|O|0O
O @ e 000

’ BywayOS ‘ o ‘ o ‘ [)

@00 e e®e
0000 seO0

& |

| |

Table 2: Analysis of the isolation properties of NF systems. @: supports, O: does not support, and ©: partial support.

2 Host NF Background & Related Work

NFs are a core part of data-center infrastructure and are often
optimized to maintain line-rate performance. This perfor-
mance optimization often leaves isolation, reliability, and
security facilities lacking. For example: to enable zero-copy
processing, packets are often placed in shared memory, which
can lead to illicit access across domains [48, 82]; NFs might
be directly activated via function calls upon packet reception,
which can grant them direct access to packet memory even
when not necessary [4]; and even NFs executed using safe
languages [49] synchronously execute, which can delay
processing in other NFs due to bugs or malicious attacks.

2.1 CVE analysis

NFsand NF frameworks are complex and network-facing, thus
are susceptible to compromise. Table 1 presents a set of NF and
NF framework compromises. Illustrative examples follow.

e DoS.CVE-2023-20083, CVE-2018-0230, and CVE-2006-6931
lead to exhaustion of CPU, preventing system response.
Similarly, CVE-2022-20751, CVE-2021-40114, CVE-2023-
35945, CVE-2021-4204, and CVE-2021-3905 lead to system
memory exhaustion.

Privilege escalation. CVE-2020-11939 and CVE-2020-11939
show examples of arbitrary code execution through CFIvul-
nerabilities. CVE-2023-33869, CVE-2023-39191, and CVE-
2022-0500 demonstrate that such access can be leveraged

813

to get root privilege. Potentially all of the CFI violations
in Table 1 could similarly be extended to achieve privilege
escalation.

Data leakage. CVE-2023-25950, CVE-2021-34749, and CVE-
2023-34242 feature NFs leaking sensitive information to the
outside world as NFs are allowed to transmit-by-default,
and to transmit to any addresses.

2.2 Host NF Solution Comparison

Here we describe current approaches for running network
functions, with a focus on deployments that allow NFs to
run safely on the same host as the applications sending or
receiving the traffic. Table 2 depicts various systems for
host NF execution discussed in further detail below. We
qualitatively assess: (1) if the NFs are isolated from potentially
disruptive actions by their service VMs, (2) if the system
supports unique NFs per-VM, (3) if NFs can be constrained
to process only traffic for specific services (e.g., based on port
number), (4) if VMs have guaranteed availability of packets
regardless of NF behavior (e.g., a crash), (5) if the platform can
provide confidentiality such that NFs are unable to exfiltrate
information that has been observed in a service’s traffic, (6) if
legacy NFs can be supported, and (7) if the NF infrastructure
ensures high performance networking.

VM-based NFs. The simplest deployment of network
functions is in virtual machines running alongside the

SoCC 24, November 20-22, 2024, Redmond, WA, USA

tenant’s own application VMs. While this keeps the NF
strongly isolated in its own virtual machine, it can incur a
high performance cost due to the large number of packet
copies incurred when traversing system boundaries. As
shown in Figure 2(a), a simple VM-based function that uses
the kernel networking stack will incur five copies for each
packet sent or received from the application VM (three within
the virtual machine monitor and two in and out of userspace
for the NF VM). This cost becomes untenable when running
low latency services, and there is no easy way to differentiate
traffic for different services or ensure the confidentiality or
availability of their traffic.

Software Switch-based NFs. High performance software
switches such as OpenVSwitch (OVS) [54], Vector Packet
Processing (VPP) [4], and Click [35, 43] provide efficient ways
to route packets to different virtual machines. They provide
core plugins that form a high-performance foundation for
the Container Network Interface (CNI) [9] used in container
orchestration environments such as Kubernetes [36]. We
focus on VPP as a representative technology that provides
an execution environment for NFs that efficiently operate
on batches of packets before they are delivered to VMs. VPP
executes NFs in user space with direct access to the NIC
using DPDK [32]. Those NFs can act as an intermediary for
network processing to a VM using vhost_user. As such,
VPP has direct access to the VM’s memory, thus can transfer
packets to and from the VM quickly, albeit with no fault
isolation. VPP’s structure is shown in Figure 2(b).

VPP’s direct NF access to both the NIC driver and to
the VM’s memory limits the reliability of NF execution:
(1) the lack of memory isolation makes NF-runtime, or VM
corruption trivial; (2) the execution of NFs synchronously (via
function call) means that a NF that uses an undue amount of
CPU time can break availability; and (3) because all network
traffic goes through the VPP runtime, VMs cannot enforce
a distinction between traffic which should be processed by
the NF and that which should be isolated from it.

The standard deployment of VPP means that there is
isolation between neither the NF and the VM, nor between
NFs run by different tenants since all are within a single
runtime with shared memory access across VMs. In order
to provide stronger isolation, the NIC hardware can present
multiple virtual networking devices using SR-IOV [65]. In
our evaluation we use this with VPP to enable a separate
VPP instance to run per-VM NFs specific to each tenant.
With this setup, each VM must trust their NFs in the hope
that there will be no bugs or compromises, but at least
there is spatial separation between the NFs for each VM.
Other NFV research platforms such as E2, ClickOS, and
OpenNetVM have comparable designs to VPP, leading to
similar performance and isolation properties [48, 82].

814

Xinyu Han, Yuan Gao, Gabriel Parmer, and Timothy Wood

MTS [72] seeks to improve isolation by deploying a copy of
OVS for each tenant. With this design, the routing infrastruc-
ture for each tenant is isolated, but MTS does not directly pro-
vide support for running network functions. Network func-
tions could be run within separate VMs and managed by the
tenant-specific OVS, to provide high customization of per-VM,
service specific NFs. However, NFs can still disrupt the data
flow to application VMs, and the system does not ensure high
performance of NFs, only of the OVS infrastructure. Addition-
ally, NF/VM coordination uses SR-IOV, thus the NF can trivally
be bypassed by not addressing its endpoint. Thus, we use VPP
as our key comparison for this class of NF infrastructures.
Netfilter Queue (NFQUEUE). An examplar of approaches
that aim to provide stronger isolation properties to VMs
by tightening the capabilities of the NF runtime is Linux’s
NFQUEUE, depicted in Figure 2(c). The kernel’s device
drivers are used to process network packets, and iptables
is used to flexibly route them either to a NFQUEUE, or to
the VM. Packets forwarded to NFQUEUE are enqueued to
a user-level process containing the NF logic. That NF can
operate on the packet, and forward the output to the VM.
Comparably, when the VM transmits a packet, the NFQUEUE
NF process interposes on the network transmission.

NFQUEUE performance is limited by the processing and
communication pathways from the host network stack to
the NF, and the NF to the VM. Context switching, mode
transitions, and IPC logic limit the overall throughput of
NF processing. While Linux IPC is often sufficient for many
tasks, per-packet IPC can be a bottleneck (at more than 2usec
an IPC [22]). Similar to VPP, each tenant VM’s traffic can
be processed by separate NFs, but unlike VPP, specific flows
can be directed to different NFs or bypass them entirely.
Thus, a partially trusted NF (because it is potentially faulty
or susceptible to compromise) can be limited to only process
on and impact a subset of a VM’s networking traffic. As such,
NFQUEUE offers capabilities for heightened isolation of the
VM from the NF, at the cost of performance.

memcached performance | NFQUEUE | VPP | BywayOS
Throughput (reqs/sec) 15.5K 79.9K | 107.8K
P99 Latency (ms) 5.5 2.9 0.75

Table 3: memcached performance with NF technologies.

To understand the performance of NFQUEUE, VPP, and
BywayOS, Table 3 displays peak memcached performance
results (details in §5). NFQUEUE’s heightened isolation
comes at the cost of performance, while VPP achieves better
performance at the cost of isolation. BywayOS’s design
enables both strong performance and strict isolation.
Language safety for NF execution. Middlebox infrastruc-
tures such as NetBricks [49] and SafeBricks [56] augment
kernel-bypass 1/0 using DPDK with NFs written in safe
languages. NFs are limited by the language to access only

Byways: High-Performance, Isolated Network Functions for Multi-Tenant Cloud Servers

packets and data-structures explicitly passed to the NF,
preventing some types of attacks. However, this approach
requires rewriting software in a safe language, which
limits legacy support. The performance strengths of direct
synchronous execution via function calls is also a potential
liability as a NF that does not return promptly could delay
servicing other packets either due to malicious attacks or
bugs. We seek to provide a solution that offers an easier path
to legacy support while also enabling the task preemption
that is needed to prevent this type of timing attack.

Extended Berkeley Packet Filter (¢eBPF) NFs. eBPF [16]
programs hook into Linux kernel execution paths, and are
executed in a sandbox environment. Network functions can
be built using XDP [30] hooks in the lower-levels of the Linux
networking stack to trigger computation on packets. The
eBPF sandbox in the kernel ensures type and memory safety
of programs, but cannot support legacy NFs and has a more
limited programming model than the languages typically
used for NF development.

Access to eBPF is generally restricted to trusted parties.
While the eBPF sandbox provides type and memory safety, it
exposes a large number of kernel-internal APIs, and it is not
available for unprivileged use such as by cloud tenants. Linux
capabilities for CAP_BPF are necessary to insert eBPF pro-
grams, and XDP [30] programs require both CAP_NET_ADMIN
and CAP_SYS_ADMIN. With these capabilities, a user can
generally configure network settings including firewalls,
and modify fundamental namespaces in networking and
the filesystem, changing the hostname, update resource
allocations (through rlimit), and many other functions
often associated with root privileges. An ongoing concern
is whether eBPF programs running in the same hardware
memory protection as the rest of the kernel, can leverage
speculative execution attacks such as Spectre [34] to leak
kernel data. As such, eBPF does not currently provide a so-
lution for running untrusted NFs. eBPF is often paired with a
user-level solution such as VPP (as in Calico [6]) to run legacy
NFs or code that otherwise isn’t a fit for the BPF sandbox.

Hardware-based Functions. Several cloud providers have
embraced deploying their network functions on specialized
hardware such as programmable SmartNICs [2, 19]. This very
strongly isolates network functions from the tenant VMs,
but the NIC platform is not available for tenants to utilize
for their own NFs. Recent work has sought ways to support
multi-tenancy on SmartNICs, but they still cannot be used
to deploy complex functions or ensure strong fault isolation.
SuperNIC [38] allows multi-tenant functions on a NIC, but
requires them to be deployed to FPGAs, vastly increasing the
difficulty of deploying legacy functions. FairNIC [27] allows
NFs to run on System-on-a-Chip based NICs, but its focus
is on ensuring performance fairness, and cannot provide any

815

SoCC 24, November 20-22, 2024, Redmond, WA, USA

form of security between functions. While S-NIC [83] offers
both NF memory and performance isolation on SmartNICs,
it neither considers fine-grained isolation properties, nor
provides service level solutions for VM tenants.

3 Byways Design

Byways are designed for a complicated multi-tenancy model
where different tenants execute (VMs and NFs) on the same
shared hardware. This is a critical model for cloud environ-
ments where, for example, Amazon uses virtualization tech-
niques such as Xen [11], KVM [39], or Firecracker [1, 2] to
provide secure isolation between tenant applications. Byways
extend this with a powerful NF execution model to provide
the complex and necessary network services required in the
modern cloud. Given that buggy or compromised NFs can
easily threaten the proper execution of a system (§2), it is
important to strongly constrain their access to service’s net-
working flows. We aim to decouple the NF software from
that of the cloud provider and the tenant, so that both can
safely interact with only partially trusted NFs. This enables an
app-store equivalent for NFs, rather than rely on centralized
deployment of NFs in middleboxes run by cloud operators.
The challenge with a multi-tenant NF infrastructure is that
there are explicit dependencies between tenant services and NFs
that process their traffic. As such, Byways aim to tightly control
the access rights for NFs according to their goals, thus limiting
the scope of impact of faulty, malicious, or compromised NFs
on VMs.
The design of Byways focuses around key properties:

e Per-service data channels (§3.1). Network functions inter-
pose on the traffic for only a restricted set of services within
a VM, as part of a channel from NIC to service. All traffic
flows destined for, or derived from, the service traverse
the channel. As such, a faulty NF in a Byway for an HT TP
server cannot impact traffic for ssh, even if in the same VM.
These channels are designed to efficiently and securely
shuttle packets between NIC driver, NF, VMM, and to the
service in the VM by ensuring that the packets sent into
the VM are correctly addressed to the service. Services
that don’t require NF processing are associated with an
“unmanaged” Byway. NFs only process and can impact data
for their associated services.

o Restricted NF data channel access rights (§3.2). Network
functions are granted only limited access to the Byway’s
data channel. NF’s ability to threaten the integrity, confi-
dentiality, and availability of channel data is intentionally
restricted. For example, a firewall might have permission to
drop a service’s incoming packets, but not to modify them
nor access outgoing packets. NFs can only impact service
flows as much as is necessary for NF goals (PoLP).

SoCC 24, November 20-22, 2024, Redmond, WA, USA

o Safe NF execution (§3.3). Each NF executes in a separate
memory protection domain, with minimal access to exter-
nal APIs, and with preemptively scheduled execution. As
such, NFs run in a tightly constrained, “share nothing”, ex-
ecution environment augmented only with access to data
channels. A NF that uses undue resources can be separately
throttled. NFs are tightly memory- and processing-restricted
to limit their ability to interfere with other NFs and VMs
beyond their data channels.

Given these properties, Byways result in a system structure
on the end-host that matches the structure of network
flows. Further, our design expands on these properties to
strengthen the security of the system. This includes two core
requirements:

o Service multi-tenancy through VMs (§3.4). Byways aim to be
implemented in a conventional, strong multi-tenant model
for different services that underlies the current cloud. This
typically requires VM-based isolation between tenants (e.g.,
Amazon Functions backed by Firecracker VMs [1]) as the
infrastructure must maintain isolation even when tenant’s
kernels are compromised. VMs are provided by minimal
VMMs that understand which NFs communicate through
which Byways, with which allowed ports. VMs provide
strong service tenant isolation, and VMM integration into
Byways is integral in maintaining the above properties.

o Minimal shared system services and trusted computing base
(TCB). The underlying system that provides the above prop-
erties must do so in a trustworthy manner. As such, our
design focuses on implementing Byways with a minimal
trusted computing base, and avoiding sharing services be-
tween tenants. The former increases confidence that sys-
tem compromises are avoided, and the latter mitigates the
scope of impact of compromises that do happen.

3.1 Byway Data Channels

Byways define the path that packet flows take to reach a
VM-based service. Figure 1 depicts Byways connecting var-
ious services to the network. It illustrates how Byways are
restricted to flows associated with a set of ports, allowing
packets properly associated with the allowed ports to reach
the NIC and the VM. The Byway to service s3 maintains a data
channel used by NF; which only processes flows associated
with HTTP and HTTPS. This might include, for example, NF;
including web server-specific intrusion prevention logic.
Each Byway identifies the VM, VMM, and NFs associated
with the packet processing path. Each of these is associated
with the Byway’s data channel which is a set of memory re-
gions used for packet communication, and for NF processing
of packets. These separate memory regions ensure that NFs
only access packets they are explicitly granted access to by
their Byway, and gives strong memory isolation between
different NFs and different VMs. While utilizing isolated

816

Xinyu Han, Yuan Gao, Gabriel Parmer, and Timothy Wood

memory regions requires some amount of packet copying,
our implementation minimizes the number of copies and
optimizes how they are done.

Byways make an important guarantee: All packets that
are added into a data channel (either from the VM, or from
the network) must be associated with the proper ip:port
pairs, and likewise for packets sent by the NF to the VM or
network. This important property ensures that NFs access
only permitted flows, and impact only the intended services
and network clients. While this means that NFs are trusted
to process on a service’s flows, they cannot impact a VM’s
network traffic beyond that.

3.2 Byway Access Control

A Byway provides access control restrictions to further
limit the operations that a NF can perform on its flows. This
decreases the impact a NF can have on its service and service
clients. It is an effective application of the PoLP to tailor NF
access rights to the required rights for it to achieve its goals.
These rights center around:

o A NF’s ability to receive data from the VM (rx-vm) and/or the
network (rx-net). Not all NFs require bi-directional access to
packets. A firewall might only need to process on and po-
tentially drop packets from the network, thus does not need
to receive from the VM. Thus receive access to packets in
either direction can be removed to prevent confidentiality
or availability issues for that direction of data-flow.

e A NF’s ability to transmit packets to VM (tx-vm) and/or to
network (tx-net). Similarly, transmission of packets can be
restricted, separately, to the VM or network. This can pre-
vent data leaks and DoS attacks by restricting a NF from
transmitting to the net, or by limiting it to transmit only to
specific addresses (A in tx-net(A)). A connection logging NF
might be unable to modify packets (see the next bullets),
and restricted to transmit only to a specific log host and
disallowed from transmitting to the VM.

A NF’s ability to transform/modify packets (xform). Byways
support access rights that allow a NF to transform pack-
ets (i.e., modify header/payload) either enroute to the VM
(xform-vm) or the network (xform-net). NFs implementing
an Intrusion Detection or Prevention Systems (IDS/IPS)
(e.g., snort) do not need to modify packets, thus lack xform.
Without xform, a NF cannot corrupt or maliciously modify
a Byway’s packets.

A NF’s ability to filter packets (filter). The filter-vm and filter-
net access rights allow the NF to drop packets before they
reach the VM or network. A firewall often requires this
right, while a connection logger should not have it. If a
function lacks both xform and filter rights, then it will only
be able to observe its Byway’s packets, thus guaranteeing
their delivery (thus availability) independent of NF logic.

Byways: High-Performance, Isolated Network Functions for Multi-Tenant Cloud Servers

o The ability to change VM status (vm-status). Some NFs are
able to alter the VM’s status in response to packet process-
ing, for example to reboot the associated VM after detecting
malicious behavior within it.

Each of these access dimensions are specified for individual

Byways. A security-centric discussion of these access rights

isin §3.5.

Case studies in NF PoLP. We provide examples of how
these access rights could be used to enforce the Principle of
Least Privilege for sample NFs. In the following, we leave off
-vm or -net if both are required.

Firewall (rx-net, tx-vm, filter-vm) Typical incoming firewall
functionality for a Byway to permit or drop packets, with-
out ability to update packet contents or see outgoing traffic.

Traffic Encryption (rx, tx, xform) Transparently encrypt
all traffic. Note that since the NF is isolated from the VM,
the encryption keys are inaccessible to it.

Virtual Networking (rx, tx-net(V), tx-vm, xform) Virtual
networking requires encapsulating packets with addi-
tional headers for the VM’s virtual network range, V. The
Byways access rights can enforce that packets leaving the
NF fall within the range.

Traffic Monitoring (tx, rx) Classify or analyze traffic
flowing in/out of the VM, but without the access right
to transform or filter traffic, guaranteeing that the VM’s
traffic is untouched.

Intrusion-Detection System (IDS) (rx, tx, vm-status)
IDS monitors traffic and determines it is indicative of a
compromise, in which case it can reboot/recover the VM.

Intrusion-Prevention System (IPS) (rx, tx, filter-vm) IPS
monitors network traffic, and if it detects a potential
compromise, it will drop the packet(s) before they reach
the service.

3.3 NFIsolation and Execution Environment

NFs run in isolated memory protection domains (provided
by hardware page-tables), thus only have access to their
restricted subset of system memory. NFs have “share nothing”
access to memory (excepting their Byway’s data channel),
with, by default, only the ability to expand their heap. This
is paired with a lack of access to any system APIs beyond
those involving heap allocation, and thread management
(e.g., awaiting the next packet). This inherently limits the
scope of erroneous or malicious computation’s impact.

NFs execute as threads that are preemptively scheduled
to ensure timely progress of NFs and VMs, separately. To
maximize performance, existing high-performance NF
systems have focused on synchronous (“run-to-completion”)
NF execution via function calls [4, 16, 48, 49], but such an
approach means that faulty or malicious NF logic can delay
other NFs or VMs, preventing performance isolation.

817

SoCC 24, November 20-22, 2024, Redmond, WA, USA

This combination of share nothing memory access, limited
accessible system API, and preemptively scheduled execution
provide strong by-default isolation. The aim is that a NF is
only able to impact its services in the associated Byway, and
is limited in its ability to do that through the Byway’s access
control (§3.2).

3.4 VM Execution Environment

To provide strong isolation for traditional (non-NF) tenants,
we use VMs. While containers are a popular developer
tool (and are often used inside of VMs), the inevitability of
kernel compromises that enable container escapes has led
to most cloud infrastructures using VMs for inter-tenant
isolation [1, 2]. Byway Virtual Machines are designed around
the ideas of Nova [66] and Firecracker [1]: (1) the Virtual
Machine Monitor (VMM) should be instantiated per-VM,
thus not constitute a cross-VM attack surface, and (2) the
VMM is implemented at user-level in a separate protection
domain and uses a thin interface to interact with hardware
virtualization acceleration logic in the kernel.

Per-VM VMMs mean that each VMM needs to track only
the Byways for its VM. The VMM is key in maintaining Byway
access control (§3.2): it implements the packet checking logic
to ensure that the address: port pairs of packets match the
Byway, and match the Byway’s access control rights.

3.5 Security Analysis

The design of the Byway abstraction provides a strong,
share-nothing NF isolation model by default. This is
augmented with access to Byway data channels, and includes
dimensions of data channel access control that enable NFs to
accomplish their goals, while minimizing their impact on the
associated service. We assume that NFs might be malicious
or potentially compromised, thus all of a NF’s accessible
resources (e.g., memory) and APIs comprise the system attack
surface. The share nothing, PoLP-centric Byway design
directly addresses the CVEs in §2.1 categorized as privilege
escalation. While a bug in the BywayOS mechanisms could
subvert these protections, we minimize the chance of this
by achieving a minimal TCB with simple, strong security
primitives (capability-based security, as we’ll discuss in §4.1).

DosS attacks (§2.1) based on allocating too much memory
are trivially addressed by per-NF quotas and restricted
means of allocating memory (through a single system API
function). Similarly, packet rates are limited with quotas
defined relative to the incoming packet rate. CPU processing
attacks — where a NF attempts to overuse processing time —
afflict run-to-completion runtimes where NF runtimes delay
other processing. In contrast, we study how the preemptive
NF execution in Byways, paired with progress-preserving
scheduling, prevents these issues in §5.4.

SoCC 24, November 20-22, 2024, Redmond, WA, USA

Finally, NFs are given access to Byway data channels which,
by design, enables them to directly impact their correspond-
ing service. Byway’s design mitigates the impact of faulty or
malicious NFs by (1) ensuring inter-Byway isolation so that a
faulty NF functionally impacts only the service(s) it is associ-
ated with, and (2) subsetting the access rights for the Byway
to those required to meet the NF’s goals. The latter is used
to ensure service flow confidentiality (no tx-net), integrity
(no xmit), and/or availability (no xform nor filter). While this
would not prevent all CVEs, it does enable tenants to make the
appropriate trade-offs — assigning specific rights - for their
goals. We evaluate (in §5.3) an IDS NF and an IPS NF with only
the ability to monitor and assess traffic, a firewall NF with
only the ability to drop incoming packets, and an encryption
NF with all permissions except the ability to filter packets.
Each is used in a Byway including only a HTTP service.

The Byway design does not address a number of additional
ways that a NF or a VM could unduly interfere with other ten-
ants. We do not address covert channels, nor attacks through
side-channels - for example, through the cache [25, 69], or
scheduling [8, 53]. Byway’s design is complementary to corre-
sponding solutions [25, 29, 41, 45] that are enabled by preemp-
tive NF execution, and use of hardware protection domains.

4 BywayOS Implementation

BywayOS is built as a set of components on the Composite y-
kernel [77], which is open-source and publicly accessible [71].
Composite is a component-based system, in which compo-
nents are similar to lightweight processes — implemented
using page-table-based memory protection, and capability-
tables [13, 62] — with capability-restricted communication
(IPC) connections. System policies are defined in user-level
components that interact through optimized IPC as motivated
by L4 [37]. Similar to Eros [62] and seL4 [13], Composite uses
a capability-based access control model that we leverage di-
rectly for Byway security. The Composite kernel is small
(around 7k lines of code), includes mechanisms while relying
on user-level components to define system policies (such as
scheduling [21, 51] and networking), and it focuses on strong
multi-core scalability by using no locking while synchroniz-
ing using only wait-free means [77].

In contrast to L4-style p-kernels, Composite uses thread
migration-based IPC [5, 20, 50], thus defines all synchroniza-
tion and scheduling policies at user-level [51, 52]. With thread
migration, when a client component uses IPC to invoke a
function in a server component, there is no thread switch
(though all memory context, including execution stacks, is
switched), thus execution is accounted to the same thread, and
IPC is tracked in the kernel, in per-thread invocation stacks.
IPC to invoke a server function (involving cross-page-table
coordination) is only allowed if the client owns a per-function
capability to enable the invocation. We leverage this in

818

Xinyu Han, Yuan Gao, Gabriel Parmer, and Timothy Wood

<
hared ket | - RW .
shared packet pool / 5
..... Encryption g %
c
- 3
4.1 2
o
.................................... (@)
o

= §4.2

IDS .
VMM -84.3 ||] [T >

Figure 3: Two NFs with varying access rights including
packet pool read or read/write, and the — variants denote dif-
ferent capabilities to functions to perform specific operations
(i.e., receive) discussed in §4.1. In this example, the traffic
monitoring/IDS NF has — capabilities that enable packet
reception and the ability to update VM status, but it has no ca-
pabilities to modify packets or send them. The encryption NF
has capabilities to receive, transmit, and transform/modify
packets. The data-plane including memory copies (solid
arrow) and DMA (dashed arrow) is in §4.2. The virtualization
and network components are detailed in §4.3 and §4.4.
BywayOS to ensure strictly constrained service access
control, and that all packet copy operations are performed in
Byway-specific threads, thus accounting the overhead to the
Byway. Figure 3 depicts the core components of BywayOS,
all implemented as user-level components in Composite.

4.1 NFisolation and Access Control

NF access to packets is controlled using carefully exposed
(and capability-limited) system APIs. A NF must have a
capability to IPC to a specific function in the VMM and
network component, thus disallowing access to packets
operations, by default. Each of the access rights described
in §3.2 correspond to a set of such capabilities.
e Each of vm-status, tx, and rx correspond directly to
capabilities to call functions in the VMM and network
component to adjust VM status, or send/receive packets.
e The ability to change packets (xform) is implemented as
a capability to a function that maps in the shared memory
packet pool with read-write permissions in the page-tables.
NFs without the ability to change packets can only access
a function that provides read-only mappings.
o A NFis able to filter packets if it can deallocate them before
they are passed onward. This is enabled by providing ac-
cess to shared memory reference counters (similar to those
in FBufs [12]), or capabilities to functions to modify them.
Importantly, all access to operations on packets in a Byway
is gated through capabilities. When a Byway is configured to
operate on a service for a VM, the appropriate rights are cho-
sen, and capabilities are statically allocated to the NF. Figure 3
depicts these various capabilities (as »— variants) and access
rights (read-write (RW) and read-only (RO) packet memory).

§3.2 describes multiple ways to configure these access
rights for various NFs. While the ability to receive, transform,

Byways: High-Performance, Isolated Network Functions for Multi-Tenant Cloud Servers

and transmit packets (e.g., required by encryption and virtual
networking), or update VM status (e.g., required by the IDS)
is straightforward, we will additionally detail access rights
for guaranteed packet delivery. For example, the IDS and
traffic monitor NFs observe packets, but otherwise cannot
interrupt the flow of unmodified packets to and from the VM.

Guaranteed packet delivery requires that a NF does not
have capabilities to transmit packets (to avoid double delivery
of packets and replay attacks), that it cannot modify packets as
it does not have capabilities to read-write packet memory, that
it cannot filter packets, and that the system both send packet
data redundantly to the NF’s Byway, and to the unmanaged
Byway. We optimize this path to avoid copying the packet
separately into each Byway. Instead, we enable a single packet
to safely exist in multiple Byways using reference counts
(not directly available to the NF), thus only deallocating the
packet when it is no longer referenced by either Byway.
Scheduling. An important part of NF access control is
limiting its ability to over-consume core processing time.
BywayOS uses a preemptive scheduling policy customized
to limit the impact of overly-active NFs on VMs. We use
simple round-robin scheduling when NFs complete their
computations before the end of a quantum. However, if they
become CPU-bound, and might threaten VM throughput,
they are scheduled using proportional share (one time unit,
for every five of the VM) until they complete execution. We
add this policy to the user-level scheduling component of
Composite. While simple, this effectively protects VM’s CPU
shares. More complex policies could be used to minimize
tail latency [31, 33], provide proportional progress [67],
strict execution bounds [80], or provide strong latency
guarantees [61] alongside rate limits [74].

4.2 BywayOS Data-Plane

Figure 4 depicts the control and data flow of BywayOS.
While there are three Byways, we focus on Sy’s blue Byway.
BywayOS uses DPDK effectively as a device driver library to
receive packets. The Byway-specific code in the networking
component then demultiplexes the flow to its corresponding
Byway (). NF, is activated, and invokes (via protected
IPC) the network component (via the circular “capability”
that enables rx-net), and copies the packet(s) into Byway’s
data channel memory (). The NF processes the pending
packets using preemptive, separately scheduled CPU
time (denoted by the clock). To transmit the packet to the
service, the NF performs protected IPC through the transmit
capability (enabling tx-vm) which triggers execution in the
VMM (). The VMM validates that the transmitted packet
has appropriate headers for its Byway, and copies it directly
(viavirtio-net) into the VM’s memory ().

819

SoCC 24, November 20-22, 2024, Redmond, WA, USA

VMM, VMMg

&

@

Multiplexer/DeMultiplexer

%

Net Multiplexer/DeMultiplexer
Component
[oPDK |
INIC (9 &) |

Figure 4: The steps that packets take along the receive (R1-R4)
and transmit paths (T1-T4) in BywayOS. To simplify the image,
we omit depicting the VM that the services execute inside.
On the transmit side, a service sends packets via its OS
(recall, the OS and VM aren’t depicted here), which transmits
the packets using virtio-net and traps into the VMM (@).
The BywayOS VMM demultiplexes packets sent from the VM
into its Byway, and activates the corresponding NF. When the
NF’s thread executes, it makes a protected IPC call (using the
capability associated with rx-vm) into the VMM, and copies the
service’s packet(s) into its Byway’s data channel (@) The NF
thread returns from the IPC to the NF’s protection domain, pro-
cesses on the packets (using the NF’s CPU allocation). When
done, to transmit the packet, it performs protected IPC to the
network component if it has the corresponding capability for
tx-net (
the packet directly from Byway data channel memory (after

@). The network component leverages DPDK to send

carefully avoiding attacks — see later in this section) ()
Both of transmit and receive traverse all of the net
component, NF, VMM, and VM, yet packet reception requires
two copies, and transmission only once. Protected IPC is an
optimized path in the underlying p-kernel and takes only
around 0.3pusec. Frequent thread switches and coordination
are mitigated with batching. The rest of this section elaborates
on the implementation with details.
Goals. Key goals of the Byways data-plane implementation
are to: (1) minimize the costs of packet copying, and decrease
the number of necessary copies, (2) ensure that per-packet
overheads (e.g., copying) are properly accounted to the
Byway’s execution, and (3) mitigate the overhead of running
many NFs and VMs via time-bounded batching.
Per-packet overheads and accounting. A core security
requirement of Byways is that the memory regions used for

SoCC 24, November 20-22, 2024, Redmond, WA, USA

each VM, NF, and the network component are disjoint. This
requires that packets are copied into these isolated memory

pools (in , , and @) Thus, to ensure these copies pro-

ceed as efficiently as possible, We measure multiple memcpy
implementations, and selected an implementation based on
vector registers and instructions. While kernel code avoids
using floating point and vector instructions (to prevent the
expensive save and restore operations), our user-level logic
is not limited in this way and uses vector registers as normal.

A second optimization we perform is that the same slots
in memory are re-used by default when allocating packets
into Byway memory pools. This optimizes for the case that
the cache-lines for recently processed packets are as close
to L1 cache as possible.

Though we aim for high efficiency, copying memory still
imposes overheads. Where packet copies must be done,
we ensure they are performed using the CPU processing
resources of the corresponding NF. Thus, our aim in the
network component is to quickly demultiplex [70] packets
into Byway-specific packets to identify the NF thread. While
we don’t use DPDK for this, we do use efficient hash-tables to
demultiplex packets into their specific Byways, and wait-free
queues to track the Byway’s packets. Thus, upon packet
), the NF thread is quickly identified, and the
packet is enqueued (though not yet copied).

Only when the NF’s thread is executed, does it IPC to the
network component, dequeue the packet, and copy it into the
pool, making it available for processing within the NF ().
Note that thread migration-based IPC enables our goals:
when a NF thread uses IPC to invoke the “receive” function
in the network component, the thread safely executes logic
in the network component and copies the packets — thus all
copy costs are charged to the appropriate NF thread, thus
mitigating DoS flood attacks. Only when the IPC returns
back to the NF is the thread’s access restricted again to that
of the NF protection domain.

reception (

Eliding packet copies. A straightforward implementation
of packet reception from the network might copy the packet
(upon networking component demultiplexing) into a Byway
memory pool, from the memory pool into VMM memory,
and then (through virtio’s virtual direct memory access
(DMA)) into the VM. Similar for transmission from the VM:
copy from VM into the VMM, then into the memory pool for
the NF to process, then into the network component. These
paths are similar to those in NFQUEUE. To maintain strong
isolation between VM and NF (and to strongly isolate the
network component and VMM from the tenant’s code), we
don’t avoid all copies, but we do reduce the number where
possible as outlined above.

To avoid copying packets redundantly within the VMM,
we enable the VMM to directly copy between Byway memory

820

Xinyu Han, Yuan Gao, Gabriel Parmer, and Timothy Wood

pool and VM (as shown by the solid arrows in Figure 3 and in
@ in Figure 4). As the VMM has direct access to the Byway’s
memory pools used by the NF, it transfers packets directly be-
tween VM-memory as directed by virtio-net, and the mem-
ory pool. While this entails a copy, it avoids doing so through
temporary bounce-buffers in the VMM. While this is con-
ceptually straightforward, it risks a subtle Time-Of-Check to
Time-Of-Use (TOCTOU) [78] attack. These copies can proceed
concurrently with VM execution, which means that between
when the VMM checks packet header information to identify
the proper Byway, and when it is copied, the VM (or NF) could
maliciously update the headers making them no longer appro-
priate for that Byway. To avoid this, the packet headers must
be validated and carefully transferred (not directly copied) to
ensure that they adhere to the Byway-specific access control.

As outlined above, we also optimize the network compo-
nent’s transmission of NF packets. As the network component
has access to Byway memory pools, it is able to DMA the
packet directly from the NF memory pool (), completely
avoiding the copy (as shown by the dashed arrow in Figure 3).
While this avoids a copy, it is also susceptible to TOCTOU
attacks. Unlike the VMM that can carefully transfer packets
while validating packet header contents, the NIC cannot
check that a packet being DMAed conforms to a Byway’s
IP/port. To solve this, the network component can copy the
headers into its isolated memory, but not the packet contents.
It splits the DMA up into two separate transactions using NIC
gather-DMA. This enables the network component to validate
that the packet is properly addressed from the Byway, while
zero-copying the packet data from the NF. While causing
multiple PCI transactions can cause significant overhead [58],
we leave finding a break-even point between copying packets
and using multiple PCI transactions as future work.
Time-bounded batching and scheduling. NFs and
VMs can share the same core, and compete for computing
resources. As the NF is on the critical path for network
processing, it rarely makes sense to preempt it with interrupts
for additional network packets. Similarly, if the VM is busy
processing network communication, there is similarly little
benefit for preempting it to enqueue more packets. Further,
the more that Byways can batch process packets at each level
(in the network component, NF, VMM, and VM), the less the
per-packet overhead. Thus we take an aggressive stance and
do not use network interrupts. Instead, we use frequent timer
interrupts — every 200us — to ensure preemptive execution,
along with yielding of the CPU (in the VMM on VM idle, and
in the NF and network component between batches) to avoid
polling overheads.

This naturally pipelines the processing of packets in
the various stages of Byway processing enabling high
performance. Importantly, it also effectively bounds delays

Byways: High-Performance, Isolated Network Functions for Multi-Tenant Cloud Servers

in network processing. While the timer delay can be tuned,
or could be dynamic, we found that the 200us design point
results in a strong throughput and latency (see §5.2).

VMM <+network Byway. The unmanaged Byway for each
VM handles all services that aren’t explicitly associated with
another Byway, avoiding any NF processing. When the VM
transmits packets via the unmanaged Byway, they are still
copied (by VMM) into shared memory pools for the Byway,
and transmitted by the network component (and similar for
packet reception). The unmanaged Byway could be optimized
to avoid these copies by copying (DMAing) directly out of (in
to) VM buffers by integrating the network component’s logic
with the virtio-netlogic in the VMM. Instead we err toward
simplicity by not intertwining liveness and notification
mechanisms of two already complex components.

4.3 Virtual Machine Support

We extend Composite to enable hardware virtualization
support through Intel’s VT-x [76], and implement a VMM
to oversee and control VM execution (shown in Figure 3). A
user-level VMM component interacts with kernel support
for the hardware acceleration. To support Byways, the VMM
includes: (1) virtio-net support to transmit and receive
packets using the virtual networking interface commonly
supported by OSes, (2) Byway routing for packets transmitted
from the VM which associates a service with a queue of
packets to transmit and the semaphore used to activate the
NF thread, and (3) VM APIC/timer and idle traps that enable
yielding from the VM to other NFs/VMs.

4.4 Network Driver Component

We use DPDK [32] running in the user-level network compo-
nent as the driver to communicate with the NIC. We attempt to
minimize modifications to core DPDK code, treat it as a naive
device driver, and build Byway-specific logic and demultiplex-
ing on top. DPDK is layered in BywayOS so that it could be
replaced with verified [55] or simpler drivers [14]. We focus on
the early demultiplexing of packets to Byways [70] to immedi-
ately confine all processing of those packets to their Byways.

The network component includes a separate thread for
receiving packets. After DPDK receive queues are emptied,
it yields to other (VM and/or NF) execution, thus effectively
sharing the core. The network component’s path for receiving
from NIC queues is optimized for only that purpose. Given
the narrow objectives of the NIC receiving logic, we execute
it only on a single core. Similar to the VMM, the network
component’s receive path associates each packet with a
Byway, enqueues it into a Byway queue, and activates the
associated (VMM/NF) thread.

As discussed in §4.2, the copying of packets is performed
by the NF/VMM threads when they IPC to receive packets.

821

SoCC 24, November 20-22, 2024, Redmond, WA, USA

The NF/VMM threads that use IPC to transmit packets
directly program transmit NIC queues on the thread’s core.

5 BywayOS Evaluation

Experimental setup. The testbed of all the evaluationsis two
dual-socket Dell R740 servers with Intel(R) Xeon(R) Platinum
8160 CPUs running at 2.10GHz with 128GB RAM. Hyper-
threading and turbo-boosting are disabled and we use only one
socket for experiments to reduce result variability. The two
systems are directly connected by two Intel E810 100G NICs
without going through a switch. One of the systems is used
as the server side running BywayOS or vanilla Ubuntu server
20.04 LTS, the other one which also runs the same Ubuntu
server 20.04 LTS is used as the client to generate load. All the
virtual machines in either BywayOS or Ubuntu host run the
same Linux kernel 5.15.107 with a busybox user level envi-
ronment equipped with memcached version 1.6.15, and nginx
version 1.19. We use QEMU emulator version 4.2.1, VPP 22.02,
nDPI 4.6, and the Linux kernel NIC ICE driver version 1.7.16.

Each VM is allocated one vCPU and 300MB RAM. The
client benchmarking tools, we use are: the closed-loop
memtier_benchmark [44] for all the memcached results; we
use two client threads for each VM with the other settings
being default (including a data size of 32B, and a get:set ratio
10:1); and the version of wrk2 [79] that allows open-loop
testing [23] for the nginx http server results. BywayOS uses
DPDK v21.11 with necessary modifications in order to run
it in BywayOS. We only rely on DPDK’s functionality for
packet reception and transmission, thus most of the library
is not leveraged.

The systems we compare are:

Bare-metal Linux (labeled “process-baseline”) which
executes the services (memcached or nginx) directly as a
process. This is a baseline with no NFand no multi-tenancy.

NFQUEUE enables NFs to execute in processes, interposed
on traffic to VMs. We study both NoOp NF in which we
use only a NF with pass-through (no-operation) logic
to assess system overhead, and practical NFs. We use
libnetfilter-queuel 1.0.5.

VPP which enables NFs to have direct access to both the
network (through DPDK), and the VM’s memory. NFs
execute as function calls from in the VPP runtime process
— we use SR-IOV to enable a separate VPP runtime per VM.
We use VPP 22.02 due to incompatibility between newer
versions and our NIC.

BywayOS with both no NF (NoNF) Byways and with
per-service NoOp NF Byways. These enable strong and
configurable isolation between VMs and between NFs.
We also evaluated various other systems, but found they

had worse performance and isolation properties:

SoCC 24, November 20-22, 2024, Redmond, WA, USA

== Process-Baseline == NFQUEUE-NoOp

=== \/PP-NoOp

Xinyu Han, Yuan Gao, Gabriel Parmer, and Timothy Wood

BywayOS-NoNF

== BywayOS-NoOp

A~ O ©

N

Throughput
(100k regs/sec)

50 12
S
2430 < g
© & g’g 6
;VZO S v
g 10 £a 3
07" 2 4 8 16 32 64128256 0

Concurrent Connections

(a) Latency

1 2 4 8 16 32 64128256
Concurrent Connections

(b) Throughput

o

1 2 3 4 5 6 7 8
#Cores

(c) Scalability

Figure 5: memcached Performance

Containers. We found that containers set up to use host
networking (i.e., where all services share a port namespace)
perform slightly lower than Linux processes (within 5%, in
general), and that containers using host bridging (requiring
packet encapsulation [85]) express performance between
60% - 70% of Linux processes. Given the weaker isolation
properties compared to VMs due to the shared kernel, we
omit these results. Note that VPP is a common plugin in
Kubernetes’ [36] CNI[9] layer, for example through Calico [6].
While we don’t compare against container infrastructures,
we do compare against key systems that underlie them and
to bare-metal Linux that out-performs them.

VMs. We evaluate VMs without NFs using virtio-net [75]

for network communication (both virtio-host and
virtio-user). These approaches could enable QEMU-based
NFs, but they achieve less than 40% the throughput of Linux
processes. We don’t evaluate these further as VPP provides
network performance that is stronger than both virtio
approaches, while providing an infrastructure for NF execution.
eBPF. XDP [30] hooks for eBPF programs enabling process-
ing on packets as soon as the networking device driver is done
with them. As eBPF programs require enhanced trust (§2.2)
(i.e., essentially root) and don’t supportlegacy code, we don’t
focus on them. A conventional means of safely processing on
packets in user-level is to use eBPF to pass packets via queues
(via netlink [46]) to user-level programs (i.e., NFs) for pro-
cessing. As these approaches are structurally identical to, and
have comparable performance to NFQUEUE, we evaluate it.

Service mesh infrastructures. We also evaluated service
mesh technologies including Envoy [15]. We found their
performance to be consistently less than NFQUEUE. As they
share many of the same isolation properties, we restrict our
evaluation to NFQUEUE.

5.1 Performance

To study the network service performance of the systems, we
measure throughput and latency separately for memcached
and nginx. We focus first on a single core, with all services
(NFs, VMs, and system services) sharing a single core. Then we
will consider scalability of the systems on multiple cores with

822

multiple VMs and NFs. We evaluate all of the systems, and in-
clude both settings that use NFs, and those that don’t provide
NFs - namely, the process-baseline, and a direct network By-
way. All systems that use NFs use NoOp NFs that simply pass
the packet onward without processing. As such, these results
focus on the system overheads for the different approaches.

memcached performance. Figure 5 (a) and (b) depict the
memcached results for throughput and 99th percentile latency
with an increasing concurrency of requests. At their highest
throughput, the bare-metal Linux memcached process can
perform up to 79.9K TPS with close to 1.5ms p99 latency;
similarly, the VPP system achieves comparable throughput
with 2.9ms p99 latency; NFQUEUE has significant overhead,
and can only achieve 15.5K TPS and a 5.5ms p99 latency; and
BywayOS with a NoOp NF achieves 99.7K TPS with 0.93ms,
and around 107.8K TPS with 0.75ms with no NF. At lower
concurrency levels (less than eight concurrent connections),
the BywayOS systems have lower throughput than Linux
processes, likely due to differences in batching. Similarly, at
concurrency of 32, VPP drastically increases in throughput.

Figure 5(c) shows the scalability of the system with an
increasing number of cores. We run one VM and NF per core,
thus also scale the tenants. Each tenant VM gets requests
from its own client workload generator with concurrency
64. At eight cores, the Linux process approach achieves 638K
TPS with a 3.43ms p99 latency, VPP achieves 563K TPS with
11.64ms p99 latency, NFQUEUE achieves 169K TPS with
13.58ms p99 latency, and the BywayOS approaches achieve
709K TPS with 2.32ms p99 latency.

Discussion. Of the approaches that include NF processing,
BywayOS maintains the highest throughput, with the lowest
P99 latency at all concurrency levels. Even compared against
bare-metal Linux processes with no NFs, the throughput of
BywayOS is competitive for lower concurrency levels, and
stronger for higher levels. This is quite surprising: both sys-
tems are running full Linux networking stacks in the VMs,
that should have similar performance, but BywayOS also
has the overheads of the VMM, NF, and DPDK. This is due
to the periodic polling and more efficient batched network
processing component that avoids the overhead of frequent

Byways: High-Performance, Isolated Network Functions for Multi-Tenant Cloud Servers

=%= Process-Baseline == NFQUEUE-NoOp

1.0 I
oy I T 4 I
c < 1
L= | 25 1
31{10 5 8= H
2 :]
a 1 a 0 *

0.0 0 500 1000 1500

Goodput (10k reqgs/sec)
(a) 1KB Page Size

Goodput (regs/sec)

(b) 1MB Page Size

==g=\/PP-NoOp

Goodput

SoCC 24, November 20-22, 2024, Redmond, WA, USA

BywayOS-NoNF == BywayOS-NoOp

Figure 6: nginx Performance: Goodput and Latency (a, b), Scalability (c, d)

interrupts seen in the Linux baseline. This also results in more
packets processed per-virtual interrupt in the VM.

Both BywayOS and VPP see a higher increase in through-
put with larger concurrency compared to the process baseline.
This is because they both take advantage of batching,
which performs better with larger sets of active packets
for processing. Byways still performs strongly at lower
concurrencies due to its strictly time-bounded batching.

NFQUEUE has low throughput as the frequent Linux IPC
to the NF through the host’s networking stack imposes sig-
nificant overhead — both in control costs, and data-copying.
However, NFQUEUE does provide the VM with much
stronger isolation from NFs than VPP, so this gives a proxy
for the costs of NF isolation in existing systems. Overall,
BywayOS provides the strongest isolation, with 6.4x and
1.25x the throughput of NFQUEUE and VPP on a single core,
and reduces tail latency by 68% to 83%.
nginx performance. We evaluate a web service provided by
nginx to understand how the systems react under open-loop
workloads (i.e., where requests can outpace systems’ ability
to reply), and varying payload sizes. Figure 6a and Figure 6b
depict the p99 latency and goodput response for each system
with an increasing workload request rate with a tenant
executing on a single core while serving a 1KB and 1MB web-
page. As the workload increases, each system maintains low
latency until the system saturates, and the latency “spikes”.

For 1KB page sizes, the host Linux nginx HTTP server
saturates at 32.2K TPS. NFQUEUE and VPP with NoOp NF
achieve a goodput of 16.7K TPS and 37.3K TPS, respectively.
BywayOS is able to achieve a goodput of 49K and 48.7K TPS
with no NF and with a NoOp NF, respectively. Atlower request
rates where the systems have spare processing capacity (6K
req/sec), BywayOS with NoOp NF has p99 latency of 0.31ms,
compared to 24.29ms for NFQUEUE and 3.56ms for VPP.

Similarly, for IMB page sizes, the Linux process system
saturates at 1709 TPS, while NFQUEUE and VPP achieve
41 TPS and 473 TPS. BywayOS achieves 717 and 683 TPS,
with no NF and a NoOp NF, respectively. At lower request
rates where the systems have spare processing capacity
(10 req/sec), BywayOS with NoOp NF has p99 latency of
132.35ms, VPP has 368.89ms, and NFQUEUE has 2370ms.

823

56 _6 e —
g5 95 - >
G4 ‘5’&4 /’ =
* S
2 2 v
zo 0923 4 5 6 7 8
#Cores #Cores
(c) 1KB Page Size (d) 1IMB Page Size
== P99 Latency =@= Goodput
25 10
20 8 S
> ~ Q
@) O e e
g 15 ————ei6 3%
O o g
— o =
o 10 4 Sy
)] o
[a —
5 s 2 =
075 i g8 12 16 20°

Scheduling Quantum (ms)

Figure 7: nginx (1KB Page Size) performance under various
scheduling quantum

Figure 6¢ and Figure 6d show the maximum throughput
of each system with an increasing number of cores and ten-
ants for 1KB and 1MB webpages. For 1KB page sizes, all sys-
tems scale linearly. At eight cores, BywayOS with NoOp NFs
achieve 558K goodput while VPP and NFQUEUE achieve 260K
and 117K, respectively. All systems scale linearly for IMB pay-
loads with the exception of the Linux process approach which
levels off at five cores. At eight cores, BywayOS with NoOp NF
achieves 4.7K requests, which is slightly lower than the host
Linux at 5.4K, while NFQUEUE and VPP achieve 0.3K and 2.7K.

Discussion. For 1KB webpages, BywayOS is able to achieve
significantly higher goodput than the other approaches — with
NoOP NF performance increasing by 1.3x and 2.9x compared
to VPP and NFQUEUE, and even outperforming the process
baseline (with no NF) by 1.5x. The open-loop workload gener-
ates high concurrencies that benefit from our system’s time-
limited batching. Similarly VPP’s batching enables it to out-
perform the Linux process approach in some cases. However,
BywayOS also provides low latency-reducing p99 latency at
low load by 78x and 11x compared to NFQUEUE and VPP. For
1MB payloads, the additional packet copies of all approaches
that support NFs slow them down relative to the Linux pro-
cess baseline. Of the approaches that support NFs, BywayOS
demonstrates more than 16.6x and 1.4x higher goodput on a
single core than NFQUEUE and VPP. Further, at eight cores
(past when the Linux baseline hits a scaling bottleneck), By-
wayOS with a NoOp NF demonstrates goodput within 13% of
Linux with no NF.

SoCC 24, November 20-22, 2024, Redmond, WA, USA

. Goodput (reqs/sec) Performance
Page Size .
Optimized Emulated | Degradation (%)
Cpo e | NFQUEUE
pying Copying
1KB 75,611 63,258 16%
1MB 667 479 28%

Table 4: nginx performance under varying memory copy
strategies.

5.2 BywayOS Performance Properties

In this section, we study factors contributing to the BywayOS
performance. To more easily reason about the performance
properties in BywayOS, we keep the evaluation setup simple
and share a single core between a NF and VM. We use the
same nginx web server setup as §5.1 with a NoOp NF.
Time-bounded batching and scheduling impact. We first
evaluate how the time-bounded scheduling impacts perfor-
mance in BywayOS. Figure 7 shows the nginx p99 latency and
goodput serving 1KB web pages under a saturated open-loop
workload with an increasing scheduling quantum value. Small
quantum values more closely emulate the overheads of fre-
quent interrupts, while larger values decrease context switch
overheads, but can impair low-latency communication. When
the quantum is significantly smaller than 300us, the perfor-
mance degrades — with large p99 latency and low throughput.
For example, at 50us, nginx maintains a goodput of 18K TPS
and a corresponding p99 latency of 23.82s, while at 300us, ng-
inx achieves a goodput of 80K TPS and 2.75s p99 latency, out-
performing the 50us setup by 4.4x in terms of goodput and by
8.6x in terms of p99 latency. With quantum larger than 300us,
nginx performance gradually decreases. At 20000us, the sys-
tem achieves a goodput of 59K TPS and 9.88s p99 latency,
whichis a decrease of 26% in goodput, and 259% for p99 latency
from 300us. We use a quantum of 200y as we find it provides
strong performance across all applications and scenarios.

Data copies optimization impact. We then study how
BywayOS’s data-copy optimizations impact system perfor-
mance. Table 4 compares the nginx goodput with a saturating
workload between the default setting of BywayOS with
optimized data copying, and with 3 copies on the receiving
path and 3 copies on the transmitting path which emulates
the NFQUEUE data copying overhead. For 1KB web pages,
the additional copies cause a 16% overhead, while for 1IMB
web pages, the overhead increases to 28%.

Discussion. Both the time-bounded scheduling optimiza-
tions and eliding packet copies contribute to the performance
gains in BywayOS. Context switching that is too frequent
(i.e., with too small a quantum) causes significant overheads.
In contrast, with a large quantum, performance decreases
due to longer TCP handshakes and ack latencies, but is com-
parably less impacted due to yielding within the VMM, NF,
and network components when there is no work to be done.
The evaluation also shows the necessity of eliding data copies

824

Xinyu Han, Yuan Gao, Gabriel Parmer, and Timothy Wood

I NFQUEUE . VPP I BywayOS

> 40 _10
= 9
§ 20 .25
g 2 391
0@ 5 3¢9,
reen B | | N
g =)
< 0 0
Cal S N X0 Q\ \\ N\ x0
RS SO © 5%
ol® ol®
NF Types NF Types
(a) nginx Latency (b) nginx Goodput

Figure 8: NF Overheads

which cause both direct costs due to the copy operation, and
indirect costs as caches are increasingly used for copy buffers.
Even for workloads with small packet sizes, extra data copies
still cause a 16% slowdown, which increases to 28% for larger
packets.

5.3 Network Function Execution

We evaluate the systems that support executing NFs with
various network functions that vary in terms of required
permissions and per-packet execution overheads. We focus
on existing, legacy NFs and port the following to VPP,
NFQUEUE, and BywayOS. We port the following from
Open NetVM (ONVM) [82]: (1) a string matching payload
scan to detect and prevent specific attacks (payload_scan
in ONVM). (2) firewall processing to control port and
IP access (firewall in ONVM), (3) AES encryption and
decryption of traffic (aes_decript/aes_encrypt in ONVM),
and (4) nDPI [10] (version 4.6), a heavyweight library for
deep packet inspection. Figure 8 depicts nginx workloads
with these NFs interposed on the service processing path.
Figure 8a depicts the latency of HTTP requests at a request
rate of 1K/second (before system saturation), and Figure 8b
shows the maximum goodput for each NF.

Discussion. Consistent with previous results, NFQUEUE
achieves less throughput than the competing approaches.
However, its latency is often comparable to, or less than, VPP.
This is due to VPP’s batching that leads to higher throughput,
but increased packet latency as they are handled in chunks,
delaying driver interactions with the NIC. BywayOS provides
significantly higher throughput and lower latency for all NFs.

5.4 VM and NF Isolation Properties

In this section, we assess the impact of malicious or faulty
NFs on the VMs for which they process packets. Many attacks
are avoided by design due to NFs executing in a separate pro-
tection domain, with separate data channels, and restricted
access control. However, as discussed in §3.5, DoS attacks
(§2.1) — especially those on the CPU - require dynamic sched-
uling policies constrain their impact, thus we focus on their

Byways: High-Performance, Isolated Network Functions for Multi-Tenant Cloud Servers

—t=\/PP

== NFQUEUE

== BywayOS

=
N

Throughput
(10k reqgs/sec)

o w o v

PRI

5 10
Time (s)

Figure 9: Guaranteed packet delivery to memcached service.
The Byway continues to deliver packets despite NF failure
via path 1.

[}
o

VMg

Throughput
(10k reqgs/sec)

O N b O O

Time (s)

Figure 10: memcached throughput when there is a failure in
nginx’s NF. With inter-Byway isolation, memcached and its NF
maintain throughput.

evaluation. Figure 9 and Figure 10 report the throughput for
memcached over time. They show a timeline with a system
executing normally up until the fifth second. At that point the
NF triggers a malicious behavior by going into an infinite loop.

Figure 9 shows a system with a single memcached Byway
with a service with guaranteed packet delivery (i.e., for an
IDS). As such, when the NF fails, BywayOS maintains high
throughput, while VPP and NFQUEUE suffer complete
service degradation. Even with a failing NF in BywayOS, due
to the inability of the NF to modify packets and the guaranteed
delivery policy, the service carries on. The slight service
degradation experienced is due to processing contention on
the core, but the service maintains high throughput due to
BywayOS’s preemptive, proportional-share scheduling.

Figure 10 demonstrates that even for NFs that require
the ability to modify and filter packets, services on separate
Byways maintain strong isolation. Here, a Byway for nginx
has a NF that fails, and we only report the throughput for
a separate memcached Byway. As VPP NFs execute within
the same context as DPDK, this prevents all future network
processing. NFQUEUE, on the other hand enables separating
out services using iptables, so it maintains service for
memcached, actually increasing throughput for memcached
as nginx no longer contends for CPU time. BywayOS ensures
memcached service continuity, similarly increasing its
throughput as nginx core contention is removed. While both
NFQUEUE and BywayOS maintain memcached availability,
Byways do so with over 4x the throughput.

825

SoCC 24, November 20-22, 2024, Redmond, WA, USA

VM + NFQUEUE [VM + VPP | BywayOS
QEMU: 5.13M BywayOS
VMM Firecracker: 51.7K VMM: 9K
Network Devi Linux Ice DPDK: DPDK*: 122K
ehwork Device NIC: 106K 133K BywayOS: 1.3K
Kernel/ Kernel*: 7.8K
Li K 1: 2.77M
System Services mux ferne Scheduler*: 1.9K
. . . BywayOS driver:
Virtualization Driver | KVM: 45K
0.9K
[Total (LoC) [2.97M [299M [142.9K(20.9K)]

Table 5: The Trusted Computing Base (TCB) of each system
for NF execution. We report Lines of Code (LoC) as measured
with tokei. The VMMs for NFQUEUE and VPP can be either
QEMU or Firecracker, so both lines are included, but the total
assumes Firecracker. Total LoC for BywayOS is “with DPDK
(without DPDK)”.

5.5 Complexity and Trusted Computing Base (TCB)

Table 5 depicts the various software packages that are part
of the TCB of each NF system. NFQUEUE and VPP depend on
the VMM (QEMU [57] or Firecracker [17]), the kernel KVM
driver, and the rest of the Linux kernel. VPP additionally
depends on DPDK for direct NIC access. The table reports the
Lines of Code (LoC) of each package as reported by tokei.

For DPDK, we exclude drivers for other devices, libraries
not used, example code and test code. For the Linux kernel,
we focus on code in the x86-64 architecture, and exclude most
device code, drivers, and file systems not used on our system.
For QEMU, we focus on x86-64 architecture code and exclude
other platform code and test code. Recall that for VPP, the
NF itself has complete access to the VM as well (§5.4), so the
NF is part of the VM’s TCB.

For BywayOS, software that we use mostly unchanged is
marked with *: DPDK is minimally modified (reported on the
BywayOS line), the core Composite kernel is unchanged, and
the scheduler is modified to add preemptive, proportionate
scheduling. For DPDK, we remove the virtual networking
(virtio and vhost) code, as it isn’t used in BywayOS. All other
reported lines are Byway-specific code.

Discussion. While Lines of Code are not a perfect metric for
measuring software, they do convey some information about
software complexity and attack surface. BywayOS reduces the
total lines of code in the trusted computing base by a factor of
20x compared to either VPP or NFQUEUE. Not only is the TCB
for providing VM and NF isolation small in BywayOS, itis built
on the Composite p-kernel, which further isolates various
aspects of the system from each other (i.e., the scheduler and
DPDK are in separate protection domains in user-level), and
BywayOS carefully uses capabilities to tightly focus NF access
on only the desired access rights.

Vigor [81] found that only 3.5% of DPDK’s code is typically
executed for common NFs, and only 18% of an Intel NIC driver.
This implies that the actual TCB is effectively smaller for

SoCC 24, November 20-22, 2024, Redmond, WA, USA

simple uses of DPDK, or could be much smaller for verified
NICs. We could significantly shrink BywayOS TCB by using
the ixy driver which is less than 1K LoC [14], or verified
networking device drivers [55]. Table 5 includes BywayOS’s
TCB without DPDK, 20.9K LoC, to serve as a basis for this,
a 142X reduction in TCB compared to VPP/NFQUEUE, while
offering stronger isolation properties.

6 BywayOS Generality and Limitations

Generality of Byways. While our contributions in this paper
mainly focus on: (1) introducing the Byways abstraction for
running untrusted NFs in a multi-tenant environment on the
cloud, and (2) providing a existence-proof (the BywayOS) of
the Byways abstraction, demonstrating that it can both have
strong isolation properties and high performance, we believe
it is also possible to adapt Byways into existing systems.

Most of the Byways’ design and implementation tech-
niques are applicable in other systems. For example, its
intelligent scheduling can be either added into the Linux kernel
or integrated with newer user-level scheduling extension ar-
chitectures like the ghOSt [31]; the copying optimizations are
possible by optimizing the packet processing path of the VMM
(e.g., QEMU) and the Linux kernel; the Byway-aware network
drivers and VMMs could be added into a fast path of the Linux
kernel (e.g., with XDP [30]) and integrated into existing
VMMs; the Byway-specific constrained packet access rights
might be implemented with shared memory regions and
appropriate kernel extensions to provide appropriate access
control; and the constrained NF execution environment through
capabilities can be emulated using system-call limiting
techniques with SELinux [40] extensions or seccomp [60].

Some other abstractions are not easy to emulate. By-
wayOS’s accounting of copies to NFs, and fast IPC are
challenging to replace in existing monolithic systems.
However, batching might mitigate the impacts of expensive
IPC. Certainly, a small TCB can only be achieved with a
smaller system such as BywayOS.

In short, we believe that many of Byways abstractions can
be added into existing systems, leveraging existing mecha-
nisms, thus generalizing the Byways beyond BywayOS.
Limitations and future work. The current BywayOS
implementation supports only one NF per Byway. For more
complex NF scenarios that require complex NF switching,
chaining and composition, BywayOS can be extended with
complementary solutions. First, BywayOS’ switching mech-
anisms in the network component and VMMs is simple, but
can be expanded to scalable and complex logic as in OVS [54]
and VFP [18]. Second, compositions of various NFs can be
compiled together into a single BywayOS NF component —
for example, connected via switching logic from OVS [54],
VEP [18], or via programmatic composition as in Click [35, 43].
This solution does not isolate NFs within composition from

826

Xinyu Han, Yuan Gao, Gabriel Parmer, and Timothy Wood

each other, which is common in most NF infrastructures. This
enables compositions of logical NFs to be implemented as a
Byway NF, while still providing strong isolation between the
NF compositions. Third, we can extend Byways to include
chains of isolated NFs as separate BywayOS components. To
maintain strong isolation, this requires additional inter-NF
copies that will impact performance. However, EdgeOS [59]
and EdgeRT [61] demonstrate that chains of isolated NFs
rely on copying while still achieving higher than expected
throughput. We believe that BywayOS is a strong foundation
to be extended into these more general directions.

7 Conclusions

This paper presents Byways, a new abstraction for multi-
tenant hosts to safely execute NFs efficiently. Byways bind
aNF to a set of services, and prevent the NF from impacting
other services, even in the same VM. Byways are configured
with access privileges such that their NFs are only be able
to perform operations on traffic that are appropriate for the
NF’s functionality. This tightly limits how NFs can impact
their VMs and services, constraining the negative side-effects
of errant or malicious NFs.

We implement Byways in BywayOS and demonstrate a
20X reduction in the number of lines of code contained within
its trusted computing base compared to existing approaches.
Despite this strong isolation, Byways achieve high perfor-
mance. A memcached service in a Byway VM can achieve
throughputs and p99 latencies often better than memcached
executing in Linux without virtualization, and more than 4x
higher throughput than NFQUEUE that comes closest to pro-
viding strong NF isolation. For small webpages served with
nginx, Byways achieves nearly 3x higher throughput than
NFQUEUE, and is 30% faster than VPP, which offers little fault
isolation. For eight VM/NF pairs running large webpages that
stress copying overheads, Byways can achieve throughput
within 13% of a native system with no network functions, and
1.7x to 15x better than NFs running in VPP and NFQUEUE.

Byways demonstrate that even in a VM infrastructure, per-
service paths serve as a useful first-class abstraction for iso-
lation and resource management. BywayOS demonstrates
that strong isolation does not have to come at the cost of
performance and can be mitigated with specialized and tar-
geted aggressive optimization. Correspondingly, we believe
that Byways can serve as the foundation for a new cloud
infrastructure enabled by multi-tenant NFs.
Acknowledgements. We’d like to thank our shepherd and reviewers for
their time and effort that significantly improved this paper, and Samy Bahra
for his generous support. This work is supported by NSF CPS 1837382 and
ONR N000142212084. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not

necessarily reflect the views of these agencies.

Byways: High-Performance, Isolated Network Functions for Multi-Tenant Cloud Servers

References

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

—

—_

=

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.
In 17th USENIX Symposium on Networked Systems Design and
Implementation, NSDI.

Amazon Web Services. 2024. The Security Design of the AWS Nitro
System - AWS Whitepaper. AWS Whitepaper (Feb. 2024). https:
//docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-
aws-nitro-system/security-design-of-aws-nitro-system.pdf

Hitesh Ballani, Paolo Costa, Christos Gkantsidis, Matthew P.
Grosvenor, Thomas Karagiannis, Lazaros Koromilas, and Greg
O’Shea. 2015. Enabling End-Host Network Functions. ACM SIG-
COMM Computer Communication Review 45, 4 (Aug. 2015), 493-507.
https://doi.org/10.1145/2829988.2787493

David Barach, Leonardo Linguaglossa, Damjan Marion, Pierre Pfister,
Salvatore Pontarelli, and Dario Rossi. 2018. High-Speed Software Data
Plane via Vectorized Packet Processing. IEEE Communications Magazine
56,12 (Dec.2018),97-103. https://doi.org/10.1109/MCOM.2018.1800069
Conference Name: IEEE Communications Magazine.

[5] J. Bruno, J. Brustoloni, E. Gabber, A. Silberschatz, and C. Small.

— =

(11]

[

12

—

1999. Pebble: A component-based operating system for embedded
applications. In Proc. USENLX Workshop on Embedded Systems. 55-65.
Calico: Cloud Native CNI Implementation, https://github.com/
projectcalico/.

Hyunseok Chang, Murali Kodialam, T. V. Lakshman, Sarit Mukher-
jee, Jacobus Van der Merwe, and Zirak Zaheer. 2023. MAGNet:
Machine Learning Guided Application-Aware Networking for Data
Centers. IEEE Transactions on Cloud Computing 11,1 (2023), 291-307.
https://doi.org/10.1109/TCC.2021.3087447

Chien-Ying Chen, Sibin Mohan, Rodolfo Pellizzoni, Rakesh B. Bobba,
and Negar Kiyavash. 2019. A Novel Side-Channel in Real-Time
Schedulers. In 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS).

Container Network Interface (CNI): https://www.cni.dev/.

Luca Deri, Maurizio Martinelli, Tomasz Bujlow, and Alfredo
Cardigliano. 2014. nDPIL: Open-source high-speed deep packet
inspection. 2014 International Wireless Communications
and Mobile Computing Conference (IWCMC) (2014), 617-622.
https://api.semanticscholar.org/CorpusID:383106

B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, L. Pratt, A. Warfield,
P.Barham, and R. Neugebauer. 2003. Xen and the Art of Virtualization.
In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP).

Peter Druschel and Larry L. Peterson. 1993. Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility. In Symposium on Operating Systems
Principles. 189-202.

Kevin Elphinstone and Gernot Heiser. 2013. From L3 to seL4 what have
we learnt in 20 years of L4 microkernels?. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP). 133-150.
Paul Emmerich, Maximilian Pudelko, Simon Bauer, Stefan Huber,
Thomas Zwickl, and Georg Carle. 2019. User Space Network Dri-
vers. In ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS).

envoy. https://www.envoyproxy.io/.

extended Berkeley Packet Filter (eBPF). https://ebpf.io/.

Firecracker 2019. Firecracker: https://firecracker-microvm.github.io/.
Daniel Firestone. 2017. VFP: a virtual switch platform for host sdn
in the public cloud. In Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation (Boston, MA, USA)
(NSDI'17). USENIX Association, USA, 315-328.

827

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

SoCC 24, November 20-22, 2024, Redmond, WA, USA

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
AlirezaDabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian
Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh Chatur-
mohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin
Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre,
Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, An-
shuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra
Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accelerated
Networking: SmartNICs in the Public Cloud. In 15¢th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). 51-66.
https://www.usenix.org/conference/nsdi18/presentation/firestone
Bryan Ford and Jay Lepreau. 1994. Evolving Mach 3.0 to a migrating
thread model. In Proceedings of the Winter 1994 USENIX Technical
Conference and Exhibition.

Phani Kishore Gadepalli, Runyu Pan, and Gabriel Parmer. 2020. Slite:
OS Support for Near Zero-Cost, Configurable Scheduling. In 2020
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 160-173.

Phani Kishore Gadepalli, Gregor Peach, Gabriel Parmer, Joseph Espy,
and Zach Day. 2019. Chaos: a System for Criticality-Aware, Multi-core
Coordination. In 25th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS).

Yu Gan, Yangi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud & Edge Systems.
In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19). Association for Computing Machinery, New
York, NY, USA, 3-18. https://doi.org/10.1145/3297858.3304013

Rahil Gandotra and Levi Perigo. 2020. NFEH: An SDN Framework
for Containerized Network Function-enabled End Hosts. In 2020 29th
International Conference on Computer Communications and Networks
(ICCCN). 1-6. https://doi.org/10.1109/ICCCN49398.2020.9209701
Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. 2019. Time
Protection: The Missing OS Abstraction. In Proceedings of the Fourteenth
EuroSys Conference (EuroSys ’19).

David Goltzsche, Signe Riisch, Manuel Nieke, Sébastien Vaucher,
Nico Weichbrodt, Valerio Schiavoni, Pierre-Louis Aublin, Paolo Cosa,
Christof Fetzer, Pascal Felber, Peter Pietzuch, and Ridiger Kapitza.
2018. EndBox: Scalable Middlebox Functions Using Client-Side
Trusted Execution. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 386-397.
https://doi.org/10.1109/DSN.2018.00048

Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C. Snoeren.
2020. SmartNIC Performance Isolation with FairNIC: Programmable
Networking for the Cloud. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication
(SIGCOMM °20). Association for Computing Machinery, New York, NY,
USA, 681-693. https://doi.org/10.1145/3387514.3405895

Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono,
Anang D. Satria, Jeffry Adityatama, and Kurnia J. Eliazar. 2016. Why
Does the Cloud Stop Computing? Lessons from Hundreds of Service Out-
ages. In Proceedings of the Seventh ACM Symposium on Cloud Computing
(Santa Clara, CA, USA) (SoCC ’16). Association for Computing Machin-
ery,New York,NY, USA, 1-16. https://doi.org/10.1145/2987550.2987583
Amir H. Hashemi, David R. Kaeli, and Brad Calder. 1997. Efficient
Procedure Mapping Using Cache Line Coloring. In Proceedings of the

https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://doi.org/10.1145/2829988.2787493
https://doi.org/10.1109/MCOM.2018.1800069
https://github.com/projectcalico/
https://github.com/projectcalico/
https://doi.org/10.1109/TCC.2021.3087447
https://www.cni.dev/
https://api.semanticscholar.org/CorpusID:383106
https://www.envoyproxy.io/
https://ebpf.io/
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1109/ICCCN49398.2020.9209701
https://doi.org/10.1109/DSN.2018.00048
https://doi.org/10.1145/3387514.3405895
https://doi.org/10.1145/2987550.2987583

SoCC 24, November 20-22, 2024, Redmond, WA, USA

(30

[t

(31

—

(32

—
w
w

[t i}

[34

=

(35

[

—
w
O

—

(40

[t

(41

—

(42

—

[43

—_

(44

=

(45]

[46]

ACM SIGPLAN 1997 Conference on Programming Language Design and
Implementation.
Toke Hoiland-Jergensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. 2018.
The express data path: Fast programmable packet processing in the
operating system kernel. In Proceedings of the 14th international
conference on emerging networking experiments and technologies. 54-66.
Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse,
Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and
Christos Kozyrakis. 2021. ghOSt: Fast & Flexible User-Space Delegation
of Linux Scheduling. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles. 588—604.
Intel Data Plane Development Kit (DPDK). http://dpdk.org/.
Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Maziéres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for uSecond-Scale Tail Latency. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation
(NSDI).
Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In 40th IEEE Symposium on Security
and Privacy (S&P’19).
Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. 2000. The click modular router. ~ACM
Transactions on Computer Systems 18, 3 (Aug. 2000), 263-297.
https://doi.org/10.1145/354871.354874
Kubernetes: https://kubernetes.io.
J. Liedtke. 1995. On Micro-Kernel Construction. In Proceedings of the
15th ACM Symposium on Operating System Principles. ACM.
Will Lin, Yizhou Shan, Ryan Kosta, Arvind Krishnamurthy, and
Yiying Zhang. 2024. SuperNIC: An FPGA-Based, Cloud-Oriented
SmartNIC. In Proceedings of the 2024 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA °24). Asso-
ciation for Computing Machinery, New York, NY, USA, 130-141.
https://doi.org/10.1145/3626202.3637564
Linux KVM: http://www.linux-kvm.org, retrieved 9/16/12.
Peter Loscocco and Stephen Smalley. 2001. Integrating Flexible Support
for Security Policies into the Linux Operating System. In Proceedings of
the FREENIX Track: 2001 USENIX Annual Technical Conference. USENIX
Association, Berkeley, CA, USA, 29-42.
Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco
Caccamo, and Rodolfo Pellizzoni. 2013. Real-time Cache Management
Framework for Multi-core Architectures. In 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS).
Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Mi-
chio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art
of Network Function Virtualization. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation (NSDI).
Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS
and the Art of Network Function Virtualization. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14). USENIX Association, Seattle, WA, 459-473. https://www.usenix.
org/conference/nsdil4/technical-sessions/presentation/martins
memtier_benchmark: https://github.com/RedisLabs/memtier_
benchmark.
Mitra Nasri, Thidapat (Tam) Chantem, Gedare Bloom, and Ryan M.
Gerdes. 2019. On the Pitfalls and Vulnerabilities of Schedule Random-
ization against Schedule-Based Attacks. In Proceedings of the Twenty
Fifth IEEE Real-Time Technology and Applications Symposium (RTAS ’19).
Netlink: netlink 7 man page.

828

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

Xinyu Han, Yuan Gao, Gabriel Parmer, and Timothy Wood

NFQUEUE: https://netfilter.org/projects/libnetfilter_queue/doxygen/
html/index.html.

Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A
Framework for NFV Applications. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP).

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy,
and Scott Shenker. 2016. NetBricks: Taking the V out of NFV. In
Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation (OSDI).

Gabriel Parmer. 2010. The case for thread migration: Predictable IPC in
a customizable and reliable OS. In Proceedings of the Workshop on Oper-
ating Systems Platforms for Embedded Real-Time applications (OSPERT).
Gabriel Parmer and Richard West. 2008. Predictable Interrupt
Management and Scheduling in the Composite Component-based
System. In Proceedings of the IEEE International Real-Time Systems
Symposium (RTSS).

Gabriel Parmer and Richard West. 2011. HiRes: A System for Predictable
Hierarchical Resource Management. In Proceedings of the 17th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
Rodolfo Pellizzoni, Neda Paryab, Man-Ki Yoon, Stanley Bak, Sibin
Mohan, and Rakesh B. Bobba. 2015. A generalized model for preventing
information leakage in hard real-time systems. 2015 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS) (2015).
Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
Keith Amidon, and Martin Casado. 2015. The Design and Implemen-
tation of Open vSwitch. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15). 117-130. https://www.
usenix.org/conference/nsdil5/technical-sessions/presentation/pfaff
Solal Pirelli and George Candea. 2020. A simpler and faster NIC
driver model for network functions. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation (OSDI).
Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia
Ratnasamy. 2018. SafeBricks: Shielding Network Func-
tions in the Cloud. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18). 201-216.
https://www.usenix.org/conference/nsdi18/presentation/poddar
QEMU. https://www.qemu.org/.

Deepti Raghavan, Shreya Ravi, Gina Yuan, Pratiksha Thaker, Sanjari
Srivastava, Micah Murray, Pedro Henrique Penna, Amy Ousterhout,
Philip Levis, Matei Zaharia, and Irene Zhang. 2023. Cornflakes: Zero-
Copy Serialization for Microsecond-Scale Networking. In Proceedings
of the 29th Symposium on Operating Systems Principles (SOSP).

Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao, Riley Kennedy,
Gabriel Parmer, Timothy Wood, and Alain Tchana. 2020. Fine-Grained
Isolation for Scalable, Dynamic, Multi-tenant Edge Clouds. In
Proceedings of the USENLX Annual Technical Conference (USENIX ATC).
Seccomp BPF. https://www.kernel.org/doc/html/latest/userspace-
api/seccomp_filter.html.

Wenyuan Shao, Bite Ye, Huachuan Wang, Gabriel Parmer, and Yuxin
Ren. 2022. Edge-RT: OS Support for Controlled Latency in the Multi-
Tenant, Real-Time Edge. In IEEE Real-Time Systems Symposium (RTSS).
Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. 1999.
EROS: a fast capability system. In Symposium on Operating Systems
Principles. 170-185. citeseer.ist.psu.edu/shapiro99eros.html

Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. 2012. Making Middleboxes Someone else’s
Problem: Network Processing As a Cloud Service. In Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SSIGCOMM °12). ACM,
New York, NY, USA, 13-24. https://doi.org/10.1145/2342356.2342359

http://dpdk.org/
https://doi.org/10.1145/354871.354874
https://kubernetes.io
https://doi.org/10.1145/3626202.3637564
http://www.linux-kvm.org
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://netfilter.org/projects/libnetfilter_queue/doxygen/html/index.html
https://netfilter.org/projects/libnetfilter_queue/doxygen/html/index.html
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi18/presentation/poddar
https://www.qemu.org/
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
citeseer.ist.psu.edu/shapiro99eros.html
https://doi.org/10.1145/2342356.2342359

Byways: High-Performance, Isolated Network Functions for Multi-Tenant Cloud Servers SoCC 24, November 20-22, 2024, Redmond, WA, USA

[64] snort. https://www.snort.org/.

[65] SR-IOV: PCI-SIG SR-IOV Primer: An Introduction to SR-IOV
Technology. 321211-002, Revision 2.5.

Udo Steinberg and Bernhard Kauer. 2010. NOVA: a microhypervisor-
based secure virtualization architecture. In Proceedings of the 5th
European conference on Computer systems (Paris, France) (EuroSys '10).
209-222.

Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K. Baruah,
Johannes E. Gehrke, and C. Greg Plaxton. 1996. A Proportional Share
Resource Allocation Algorithm for Real-Time, Time-Shared Systems.
In Real-Time Systems Symposium. IEEE.

strongswan. https://strongswan.org/.

Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and
Mary Lou Soffa. 2011. The impact of memory subsystem resource
sharing on datacenter applications. In Proceedings of the 38th annual
international symposium on Computer architecture (San Jose, California,
USA) (ISCA °11). 283-294.

David Tennenhouse. 1989. Layered Multiplexing Considered Harmful.
In Protocols for High-Speed Networks. North Holland, Amsterdam,
143-148.

[71] The Composite Component-Based System source: https:
//github.com/gparmer/composite.

Kashyap Thimmaraju, Saad Hermak, Gabor Rétvari, and Stefan
Schmid. 2019. MTS: bringing multi-tenancy to virtual networking. In
Proceedings of the 2019 USENIX Conference on Usenix Annual Technical
Conference (Renton, WA, USA) (USENIX ATC °19). USENIX Association,
USA, 521-536.

Kashyap Thimmaraju, Gabor Rétvari, and Stefan Schmid. 2018. Virtual
Network Isolation: Are We There Yet?. In Proceedings of the 2018
Workshop on Security in Softwarized Networks: Prospects and Challenges
(Budapest, Hungary) (SecSoN ’18). Association for Computing Machin-
ery, New York, NY, USA, 1-7. https://doi.org/10.1145/3229616.3229618
Manohar Vanga, Arpan Gujarati, and Bjérn B. Brandenburg. 2018.
Tableau: a high-throughput and predictable VM scheduler for high-
density workloads. In Proceedings of the Thirteenth EuroSys Conference.
Virtual I/O Device (VIRTIO) Version 1.3, Committee Specification
Draft 01, Referenced from 06 October 2023, https://docs.oasis-
open.org/virtio/virtio/v1.3/virtio-v1.3.html.

VTx: Intel Systems Programming Guide, Volume 3C, chapter 24, Order
Number: 325384-083US, Updated March 2024.

Qi Wang, Yuxin Ren, Matt Scaperoth, and Gabriel Parmer. 2015. Speck:
A Kernel for Scalable Predictability. In Proceedings of the 21st IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
Robert N. M. Watson. 2007. Exploiting Concurrency Vulnerabilities
in System Call Wrappers. In First USENIX Workshop on Offensive
Technologies (WOOT 07).

wrk2. https://github.com/delimitrou/DeathStarBench/tree/master/
wrk2.

Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. 2011.
RT-Xen: Towards Real-time Hypervisor Scheduling in Xen. In
Proceedings of the Ninth ACM International Conference on Embedded
Software (EMSOFT ’11).

Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis
Pedrosa, Katerina Argyraki, and George Candea. 2019. Verifying soft-
ware network functions with no verification expertise. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles (SOSP).
Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato,
Gregoire Todeschi, K.K. Ramakrishnan, and Timothy Wood. 2016.
OpenNetVM: A Platform for High Performance Network Service
Chains. In Proceedings of the 2016 ACM SIGCOMM Workshop on Hot
Topics in Middleboxes and Network Function Virtualization. http:
//faculty.cs.gwu.edu/timwood/papers/16-HotMiddlebox-onvm.pdf

(66

=

(67

—

—_
[=)}
o0

=

(69

—

[70

=

(72

—

(73

=

[74

=

(75

[

(76

=

(77

—

(78

—

[79

-

(80

=

(81

—

(82

—

829

[83]

[84]

[85]

Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu. 2024.
SmartNIC Security Isolation in the Cloud with S-NIC. In Proceedings
of the Nineteenth European Conference on Computer Systems (Athens,
Greece) (EuroSys °24). Association for Computing Machinery, New
York, NY, USA, 851-869. https://doi.org/10.1145/3627703.3650071
Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang,
Xuan Kelvin Zou, XiongChun Duan, Peng He, Arvind Krishnamurthy,
Matthew Lentz, Danyang Zhuo, and Ratul Mahajan. 2023. Dissecting
Overheads of Service Mesh Sidecars. In Proceedings of the 2023 ACM
Symposium on Cloud Computing (Santa Cruz, CA, USA) (SoCC °23).
Association for Computing Machinery, New York, NY, USA, 142-157.
https://doi.org/10.1145/3620678.3624652

Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Honggiang Harry Liu,
Matthew Rockett, Arvind Krishnamurthy, and Thomas Anderson.
2019. Slim: OS Kernel Support for a Low-Overhead Container Overlay
Network. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI).

https://www.snort.org/
https://strongswan.org/
https://github.com/gparmer/composite
https://github.com/gparmer/composite
https://doi.org/10.1145/3229616.3229618
https://docs.oasis-open.org/virtio/virtio/v1.3/virtio-v1.3.html
https://docs.oasis-open.org/virtio/virtio/v1.3/virtio-v1.3.html
https://github.com/delimitrou/DeathStarBench/tree/master/wrk2
https://github.com/delimitrou/DeathStarBench/tree/master/wrk2
http://faculty.cs.gwu.edu/ timwood/papers/16-HotMiddlebox-onvm.pdf
http://faculty.cs.gwu.edu/ timwood/papers/16-HotMiddlebox-onvm.pdf
https://doi.org/10.1145/3627703.3650071
https://doi.org/10.1145/3620678.3624652

	Abstract
	1 Introduction
	2 Host NF Background & Related Work
	2.1 CVE analysis
	2.2 Host NF Solution Comparison

	3 Byways Design
	3.1 Byway Data Channels
	3.2 Byway Access Control
	3.3 NF Isolation and Execution Environment
	3.4 VM Execution Environment
	3.5 Security Analysis

	4 BywayOS Implementation
	4.1 NF isolation and Access Control
	4.2 BywayOS Data-Plane
	4.3 Virtual Machine Support
	4.4 Network Driver Component

	5 BywayOS Evaluation
	5.1 Performance
	5.2 BywayOS Performance Properties
	5.3 Network Function Execution
	5.4 VM and NF Isolation Properties
	5.5 Complexity and Trusted Computing Base (TCB)

	6 BywayOS Generality and Limitations
	7 Conclusions
	References

