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Abstract—In recent years, there have been significant devel-
opments in radio frequency (RF) sensor technology used in
human-computer interaction (HCI) applications, specifically in
areas like gesture recognition and more broadly, human activity
recognition. Although extensive research has been conducted
on these subjects, most experiments involve controlled settings
where participants are instructed on how to perform specific
movements. However, when such experiments are conducted
on sign language recognition they lack capturing dialectal and
background-related diversities. In this work, we explore the dif-
ferences in RF datasets acquired under controlled experimental
settings and in free form environments where users were not
constrained by the experimental instructions and limitations. We
show that directed (i.e., controlled) data acquisition approaches
result in over-optimistic performances which do not perform well
on naturally acquired data samples in a real-world use case. We
evaluate different approaches on generating synthetic samples
from directed dataset, but show that such methods do not offer
much benefit over collecting natural data. Therefore, we propose
an interactive data acquisition paradigm through gamification.
We show that the proposed approach enables the recognition
of American Sign Language (ASL) in real-world settings by
achieving 69% accuracy on 29 words.

Index Terms—Micro-Doppler spectrogram, American Sign
Language, RF sensors, deep neural networks, multi-modal

I. INTRODUCTION

In recent years, there have been significant advancements
in human-centered interactive technologies. While these de-
velopments make everyday life easier and more connected,
Deaf community has not been able to take advantage of the
speech recognition-based technologies. Ongoing studies on
Deaf-centric research employ various sensors including video
cameras [1], wearables [2], depth-augmented cameras (RGB-
D) [3] and radar [4], [5].

Radio-frequency (RF) sensor present distinct advantages
for sign language recognition (SLR) where other modalities
have drawbacks. They are non-contact devices which can
do ambient monitoring 24/7 without needing to be explicitly
turned on/off. Moreover, they can operate seamlessly in dark
and without being affected by people’s clothing or skin colors.
Also, they can measure physical variables in the scene such
as velocity, distance and angle without needing to rely on
certain estimation techniques used in video-based sensing

applications. These features make radars suitable sensors for
indoor applications.

However, as opposed to video-based applications, the
amount of publicly available RF datasets are very limited and
since there exists a wide range of RF sensors with different
waveforms and operation characteristics, most of the time,
the available datasets are not compatible with the sensor
researchers are working with. When it comes to SLR tasks,
more challenges are introduced. Cultural and background
related differences in signing, regional dialects and fluency
in signing are just to name a few. These diversities can result
in significant change in data distribution. A deployed, real-
world SLR system should be able to learn and adapt to these
changes.

Conventional way of collecting data in a lab environment
with strict experimental limitations and assumptions result
in biased data which do not take real-world conditions into
account and yield over-optimistic results. Similarly, collecting
sign language data in a lab environment from participants
whose primary language is not American sign language (ASL)
has many sociological and technical drawbacks. For instance,
not being aware of cultural nuances, having biased data for
certain region, signing only a particular version of a sign and
unnatural posture during signing can be listed as exemplary
issues. Considering wide range of variety and complexity in
sign language expressions, existing ASL datasets (in any sens-
ing modality) are also not comprehensive enough to represent
signing of different cultures, ethnicities and regional accents.

In this work, we both qualitatively and quantitatively show
the differences of directed data (acquired under controlled
experimental settings) and natural data (without experimen-
tal limitations or constraints). Several methods to overcome
this challenge are evaluated and benchmarked. Finally, we
introduce an interactive way of acquiring and recognizing
sign language via gamification. We developed a chess game
controlled with ASL where users can interact with the interface
without needing to an external operator. The proposed system
acquires multi-modal (video + RF) data, processes it, annotates
the data, runs the chess engine and makes prediction on user
data to move the pieces on the board.
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Fig. 1: Gameplay pictures of the ASL-controlled chess game.

II. GESTURE-CONTROLLED CHESS GAME

Chess is a widely enjoyed strategic game which has drawn
attention from individuals across various age ranges and
backgrounds. It is compatible with our proposed interactive
data acquisition method since it inherently has moderate
pace, providing users ample time to contemplate and choose
their moves. Therefore, it mitigates the limitations associated
with real-time processing, providing sufficient time for local
storage, data transfer, signal processing, and model inference.
Additionally, the adaptable nature of chess enables the incor-
poration of extra features to capture intricate signing sequences
and gather user feedback through a compact pop-up window.
This capability empowers users to annotate their data during
the gameplay, reducing the need for extensive subsequent
quality control efforts.

When transitioning the data collection process into a gam-
ing environment, various considerations arise which are not
observed in controlled experiments. These include the need to
design the game to be enjoyable and to ensure that any addi-
tional workload for self-annotation is not overly burdensome
or disruptive to the extent that users become disinterested or
frustrated with the interface.

Furthermore, it is crucial to reduce computational overhead
associated with data processing as much as possible to prevent
undesired delays in the game, which could negatively impact
the user’s gaming experience. Additionally, the predictions
generated by the game control model should be sufficiently
accurate to minimize instances where users need to undo
their moves or feel like they are making mistakes or lack the
necessary skills to play the game effectively.

The developed interactive ASL-enabled chess game is de-
signed to collect data from both an FMCW radar and an
RGB camera simultaneously. In our preliminary pilot iteration,
the game control relies on predictions derived solely from
video data. To mitigate possible user frustration resulting from
misclassifications, we utilized a publicly accessible video-
based ASL dataset to train the initial game control model,

TABLE I: ASL signs utilized in the ASL-enabled chess game.

WATER YES BOOK SLEEP CAR HELLO

HOME READ TIME BETTER DRINK TOMORROW
SEE HOT BED WHY WHERE LIKE

PLEASE HAVE MORNING FINE GO NIGHT
CAN TABLE THERE FINISH HATE

a process elaborated on in the subsequent section.

A. Video ASL Dataset for Pilot Deployment

To develop our initial video-based control model, we uti-
lized Google’s Isolated Sign Language Recognition (GISLR)
dataset [6]. This dataset encompasses 250 fundamental
concepts/vocabulary-based signs, representing the initial signs
taught to infants in any language. The dataset comprises
approximately 100,000 videos, with around 400 samples per
class, featuring isolated sign expressions performed by 21
Deaf participants proficient in ASL. The corpus is constructed
using hand, pose and facial landmarks generated by the Medi-
aPipe Holistic pipeline, incorporating distinct models for each
component. In this study, a subset of 29 signs is employed,
corresponding to the maximum number of different positions
the most mobile chess piece, the Queen, can move. These signs
are selected from the GISLR dataset and are used to control
the movement of the game pieces. A list of signs utilized is
given in Table L.

B. Video Model for Pilot Study

The GISLR dataset was first provided in a hackathon
organized by Google on Kaggle. Hoyeol Sohn [7] claimed
the first place with a DNN model consisting of 1D-CNN
and Transformer sub-networks. The model uses padding and
truncation to handle varying-length input sequences. This
approach satisfied the required inference speed while enabling
usage of relatively larger models. For this study, we utilized
the proposed model by modifying the output layer to have 29
neurons for the words of interest.
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C. ChessSIGN Game Design and Play

The graphical user interface (GUI) of the developed Chess-
SIGN game comprised of two regions: chess board with
pieces on it and the top banner where instruction prompts and
interaction buttons are displayed. The game starts similar to a
conventional chess game by clicking on a piece to move. Upon
piece selection, all the possible moves for the selected piece
are highlighted and each highlighted square has a randomly
selected word among 29 signs written on it. Figure 1a shows
the textual prompts when a piece is selected. Users can click
on different pieces to explore where each piece can move.
This feature becomes especially useful for inexperienced users.
Once user decides where they want to move the piece, they
click on the green "CLICK HERE” button located on the top
right corner of the screen. This button starts a countdown from
3 to 0, and prompt a ’GO” command when the countdown
ended and starts the data recording for both camera and RF
sensor for 3 seconds. User articulates the sign during this time
frame and when the recording is ended, the acquired data
sample is passed into the prediction model. The prediction
model outputs the word with the highest probability, and the
piece gets moved to the position where that word is located.
After the move, a red "UNDO” button is displayed on the
top right corner of the screen as shown in Figure 1b. If the
prediction is correct, user selects another piece and continues
to play. Otherwise, they click on the "UNDO” button which
cancels the last move and pops-up a feedback window that
gives user option to choose the correct word they actually
signed from a drop-down menu. This feature enables users
to self-annotate their own data, eliminating the labor-intensive
labeling procedure after the data collection. The game history
is logged into a text file along with the mispredicted file names
to allow further offline analysis of the acquired data. The
recorded samples are also uploaded to a cloud platform via
its own application programming interface (API) in the back-
end for data storage and remote access purposes.

The ChessSIGN game inherently preserves all the function-
alities and rules of a regular chess game. It’s main difference
lies in the way game is controlled and other added function-
alities like operating sensors, collecting data and running the
prediction model. These automated capabilities eliminates the
need for an operator to be present at the gaming area and an
annotator to manually watch and label the ground truth classes.

D. Acquired ASL Datasets

1) Directed RF ASL Dataset: This dataset is acquired in
2022, in a laboratory environment under controlled settings
where participants were instructed to sign a particular version
of the sign by prompting them the sign on a monitor. Partici-
pants were seated on a chair facing towards co-located radar
and the monitor. The RF sensor was placed approximately
0.9m above the ground and 1.5m away from the participants.
Upon watching the exemplary video, they signed the same
articulation of the word. Both hands were placed on a resting
position on the knees before the recording started and retracted
back to the original position when the signing is finished.

Natural Directed Natural Directed Natural

Directed

PLEASE

Fig. 2: uD spectrograms of directed and natural ASL samples
for the signs PLEASE (left), LIKE (center) and HOT (right).

This way, it is ensured that all the participants articulated
the same version of the sign and the cultural or background-
related variances are minimized. 19 Deaf/HoH participants
from Gallaudet University (the only university in the U.S.
whose primary language of instruction is ASL and tailored
for Deaf/HoH students) and 4 participants from The University
of Alabama attended the study. While 21 of the participants
were Deaf, two of them are Child-of-Deaf-Adults (CODAS)
who were fluent ASL signers. Studies in both locations were
conducted under the same experimental settings with the same
operators. 110 signs from ASL-Lex database [{8], including
verbs, nouns and adjectives were selected based on their
kinematic variability and usage frequency. Around 40 samples
per class are acquired which adds up to 4,455 samples in total.

2) Multi-Modal Interactive ASL Dataset: This dataset is
acquired during the gameplay of ChessSIGN game in 2023.
The participants were seated in front of the RF sensor and the
laptop in which game was running as shown in Figure 1d. An
RGB camera was also utilized to capture the signing videos.
Both sensors were triggered simultaneously for synchronized
data capture via the game. In total, 23 Deaf participants
have attended the study at Gallaudet University. Note that
the participants attended to this study are different than those
participated in the directed ASL study. Around 37 samples
per class were collected for 29 signs which added up to 1,078
samples, in total.

E. RF Sensor and Data Pre-Processing

In this work, Texas Instrument’s AWR2243BOOST radar
evaluation module coupled with DCA1000EVM data capture
card are used for raw data acquisition. The RF sensor is
a frequency-modulated-continuous-wave (FMCW) multiple-
input-multiple-output (MIMO) radar operating at 77 GHz with
a maximum of 4 GHz bandwidth.

Moving targets in radar field-of-view (FoV) cause frequency
shift in the received signal. The micro motions generated by
arm strokes and finger movements result in micro-Doppler
(uD) [9] shifts in the received signal. Time-frequency analysis
of the received signal reveals the unique pD pattern of each
sign and motion. This transformation is called D spectrogram
and can be computed as the square modulus of the Short-Time
Fourier Transform (STFT) of the input signal. In this work,
D spectrograms are generated with sliding windows of length
256 pulses with the overlapping region of 200 pulses.
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TABLE II: Statistical comparison of velocities of directed and
natural signing.

TABLE III: Performance comparison of different training
methods and datasets.
(Note that no natural signing data are used in the training

Data Avg. Max.  Var. of Max. Avg. Min.  Var. of Min.
Type Velocity Velocity Velocity Velocity phase of Exp. 5).
Directed  2.58 m/s 1.06 m/s)> 246 m/s  0.89 (m/s)? Exp.  Training  Testing . Acc.
Natural ~ 2.61 m/s 159 m/s)? 228 m/s  1.03 (m/s)? ID Data Data  Modality Model %
1 GISLR ~ GISLR  Video D-CNN+ )5
Transformer
Natural . 1D-CNN +
III. DIRECTED VERSUS NATURAL DATA 2 GISLR ASL Video o ctormer Y82
In this section, we compare the RF ASL datasets acquired Directed Directed 2D-CNN +
; ; i i i 3 ASL ASL RE MLP 68.9
under controlled experimental settings (i.e., directed) which . K
. onal ¢ collecting d d duri h 4  PhGANDIr  Directed RE 2D-CNN + 9
is conventional way of collecting data and during the game ASL) ASL MLP
play with natural interactions. We first address the issue of 5 PhGAN(DIr.  Natural RF 2D-CNN+ ¢
differences between two approaches and qualitatively show ASL) ASL MLP ]

how directed experiments fail to represent the nuances of
natural signing. Next, we show how lack of capturing these
features deteriorate the training procedure and cause over-
optimistic results for real world applications.

A. uD Spectrogram Comparison

Figure 2 shows pD signatures of directed and natural
samples for the signs PLEASE, LIKE and HOT. As can be
seen from the figure, there exist significant differences for the
same signs, and these differences are not slight changes in
time span or Doppler bandwidth, but rather major changes
in number of arm strokes, negative and positive Doppler
peaks. By watching the corresponding camera videos for uD
spectrograms, differences in the way participants sign can be
observed. For instance, for the word PLEASE, the participant
in natural signing moves her arm towards her chest in two
steps with a short pause in-between instead of one movement.
This creates two consecutive negative peaks at the beginning
of the sign instead of one. Also, the peaks at the beginning
and ending of the signing caused by the major arm movements
towards and away from the chest have lower peaks than the
directed case. For the word LIKE, the participant in natural
settings study shakes her hand after the signing is finished
which causes jittering effect at the lower Doppler frequencies.
Finally, for the word HOT, the participant in natural settings
repeat the sign twice resulting in two positive Doppler peaks.
This case was seen in several other signs as well where the
participants sign the word multiple times perhaps with the
purpose of “convincing” the system to the articulated sign.
Considering most of the users are and will be unfamiliar with
working principles of radar, these unexpected abnormalities or
dialect-related diversities should be handled by the system to
provide a satisfactory user experience.

B. Comparison of Velocities

Evaluation of velocity profiles of directed and natural
ASL samples can give information regarding diversity of
the datasets. Table II presents average maximum and mean
velocities along with their variances for directed and natural
datasets. From these results, it can be inferred that although the
two datasets have almost identical average maximum velocity,
the variance of natural samples are significantly higher than

the directed ones (i.e., 1.59 (m/s)? vs. 1.06 (m/s)?). Similarly,
in minimum velocities, natural samples have a greater variance
(1.03 (m/s)?) than the directed samples (0.89 (m/s)?).

C. Impact on Model Training

The difference in data distribution of directed and natural
signing samples are more stressed when a prediction model is
trained on directed data and tested on natural samples. It is
found that the distribution difference of the datasets collected
with two different approaches are so high that the model
trained with directed data is not able to recognize natural
signing at all. This phenomenon is observed for both camera
and radar data.

First, it should be noted that the model performance can
be evaluated in two different ways: “in-game” accuracy and
offline accuracy on 29 signs. In-game accuracy refers to the
accuracy experienced by the user during the course of game
where only certain number of signs are presented to the user
and the model predicts the most likely one. For instance, a
Knight can move up to eight different positions at once. This
limits the number of classes the model makes prediction on.
After the game is concluded, an offline prediction can be
made on 29 classes and the true performance can be obtained.
Therefore, in-game accuracy results are typically higher than
the offline prediction results.

1) Video-Based Model: The initial video-based model
trained with GISLR dataset yielded 92.3% accuracy on the
testing portion of the dataset. However, during actual chess
game play, the in-game accuracy experienced by the users
was only 76.62%. Moreover, after the study ended, when the
acquired data is tested on 29 signs it was only 48.24% which
is significantly lower than the testing accuracy attained on the
GISLR dataset. This results demonstrates the limitations of
available datasets acquired in controlled experimental settings
when they are deployed for a real-world application. They do
not well-represent the nuances and features of sign languages
emerge in natural use cases.

It is observed that more kinetic signs have higher confusions
like HOT, FINISH, FINE, HELLO, GO and HAVE. One possible
reason for these signs to have more confusion could be that
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Fig. 3: uD signatures of the PhGAN-synthesized directed and natural samples, and benchmarking of transformed samples
generated by CycleGAN, Pix2Pix, CycleGAN-Env and Pix2Pix-Env models.

while video is very effective in capturing spatial variance, it
is not as effective in capturing depth and temporal variance.
This drawback can be be compensated by RF sensors which
are more capable of capturing dynamics of signing instead of
shapes.

2) Radar-Based Model: A similar phenomenon is observed
in the radar prediction model. Radar prediction model consists
of 4 2D convolutional neural network (CNN) blocks followed
by 2 multi-layer perceptrons (MLPs). The radar model trained
with directed real data samples yielded 68.9% accuracy on
directed testing samples. It should be noted that there is a
significant difference in number of real samples of video and
radar data per class (i.e., 40 vs 400). In a prior work, physics-
aware generative adversarial network (PhGAN) [10] method is
found to be very effective in augmenting the training data by
generating kinematically accurate synthetic samples. Hence,
in this work, PhGAN model is used to increase the number
of directed samples, and 500 synthetic samples are generated.
Inclusion of PhGAN-synthesized spectrograms in the training
stage boosted the accuracy of the RF model on directed dataset
to 100%.

Although this result looks great, this model completely fails
to recognize natural ASL signing when tested on the data
acquired during the chess game play, yielding only 9.56%
accuracy for 29 signs. This result is much worse than the
performance drop observed in the video which dropped from
92.3% to 48.2%. There can be several reasons why radar is
more affected when compared the video. First, even though
the number of training samples were increased for RF data
through PhGAN method, the video model was trained with
significantly higher number of real samples when compared to
the radar model. Secondly, there are major differences in the
way directed ASL and natural ASL signs are articulated which
can potentially change the kinematic and temporal progression
while spatial similarities are still preserved. Since radar is
more sensitive to radial and temporal changes rather than target
shapes or spatial features, its performance is more dramatically
affected.

IV. INTERACTIVE LEARNING OF NATURAL ASL

The results presented in the previous section show the
challenges in recognizing natural ASL and highlights the need
of training models with naturally collected data. The proposed

interactive system enables this in a sustainable, enjoyable
manner. However, the question of how to best train the RF
model is yet to be answered. This section tackles this problem
and compares different approaches.

A. Domain Transfer from Directed to Natural ASL

One way of mitigating the difference between directed
and natural ASL data could be to utilize domain adaptation
techniques. They can be used to bridge the gap between the
two distributions. Instead of training the network with directed
samples, they can be transformed to natural-like samples and
could be used for training afterwards. In this study, in addition
to using PhGAN for sythetic data generation from small
amount of natural samples, we assess the efficacy of two
domain adaptation methods from directed data: CycleGAN
[11] and Pix2Pix (P2P) [12]. In this study, these networks
are basically trained to map the given directed ASL sample to
more natural-like ASL samples. Architectural details of these
methods are omitted for brevity.

In addition to vanilla CycleGAN and Pix2Pix models,
we developed a modified versions of these models (i.e.,
CycleGAN-Env and Pix2Pix-Env) where a physics-based loss
term is included to generate kinematically more accurate
samples. These versions extract the upper and lower envelopes
of the uD spectrograms using the percentile technique [13].
The introduced physics-aware loss, Ly, is computed as the
mean-square error (MSE) between the envelopes of the target
and the generated pD spectrograms. Then, the total loss of the
GANSs, Lgan, can be written as

Lcan(G, Dy, D,N) =E,[log(Dn(n))]
+ Eaflog(1 - Dy (G(d)))] + Mogn, (1)

where G is the generator, D is the discriminator for natural
domain, D and N are directed and natural domain samples and
A is the weighting factor for L,,. The first and the second
terms represent the discriminator and the generator losses,
respectively.

Figure 3 shows a sample spectrogram for visual compar-
ison of PhGAN-synthesize directed and natural uD spectro-
grams, and the transformed samples generated by CycleGAN,
Pix2Pix, CycleGAN-Env and Pix2Pix-Env methods. It can be
qualitatively observed that vanilla CycleGAN does a better
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TABLE 1IV: Final classification results of VGG-16 for RF data
of natural ASL.

CycleGAN

Method | PhGAN  CycleGAN .. PP P2P-Env
with Env.

Acc. (%) | 69.14 62.04 6235 6173 60.49

job in resembling directed sample to the natural one when
compared to Pix2Pix. Although CycleGAN produced the first
and the last peaks very well, middle peaks are not well-
represented. CycleGAN-Env, on the other hand, seems to
be able to successfully create those peaks with a strong
signal strength. This shows the efficacy of the introduced
physics-aware loss term in the data model training stage. A
similar phenomenon can be observed when Pix2Pix output
is compared with Pix2Pix-Env. While vanilla Pix2Pix is not
able to reproduce most of the peaks, Pix2Pix-Env is able to
replicate periodic peaks with high signal strength.

B. Fine Tuning with Synthetic Natural ASL

The small amount of real natural data can be used to gener-
ate a large amount of synthetic samples. As more samples are
produced using domain adaptation or synthetic data generation
techniques, deeper models can be trained. In this study, we
utilize 16-layer CNN architecture of VGG-16 [14] pre-trained
with ImageNet database [15] weights. While such pre-trained
networks are unaware of high level RF data features, they are
well-trained on common primitive features such as edges, lines
and corners. Fine tuning them with the RF data enables them to
learn high level RF data features as well - making them more
powerful when compared to shallow networks. In order to
make a fair comparison amongst different methods, we chose
VGG-16 as the benchmarking network and trained different
versions of it using each method. 30% of the natural signing
data was always spared for testing and the remaining 70% was
used to drive different methods to generate synthetic samples.
Table IV presents the accuracy results obtained using those
methods. It can be observed that PhnGAN-synthesized natural
samples yield the best accuracy of 69.14% which is around
7-8% better when compared to domain adaptation techniques.
This results show that data adaptation methods from directed
ASL under-performed when compared to simply synthesizing
data from natural ASL.

V. CONCLUSION

In this work, we propose an ASL-enabled interactive chess
game, ChessSIGN, as a new way of acquiring natural multi-
modal (video + RF) data. We show that the traditional way of
collecting data under controlled experimental settings result in
biased data which do not well-represent linguistic and dialectal
properties of natural signing. Therefore prediction models
trained with such datasets yield over-optimistic results and
fail to recognize natural data when deployed in a real-world
environment without experimental limitations/assumptions.

Efficacy of different domain adaptation techniques to trans-
form directed data to more natural-like data is also evaluated

and found to be under-performing when compared to acquisi-
tion of real natural data. Therefore, this work underscores the
importance of acquiring natural data in an interactive manner.
The proposed system achieves 69% accuracy for 29 signs even
with a small amount of real data. Inclusion of other sensing
modalities to the system is yet to be explored.
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