
Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

Available online 13 April 2024
0045-7825/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Multi-scale time-stepping of Partial Differential Equations with
transformers
AmirPouya Hemmasian a, Amir Barati Farimani a,b,ω
a Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, USA
bMachine Learning Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, USA

A R T I C L E I N F O

Keywords:
Machine learning
Transformers
Numerical time-stepping
Partial differential equations

A B S T R A C T

Developing fast surrogates for Partial Differential Equations (PDEs) will accelerate design and
optimization in almost all scientific and engineering applications. Neural networks have been
receiving ever-increasing attention and demonstrated remarkable success in computational
modeling of PDEs, however; their prediction accuracy is not at the level of full deployment.
In this work, we utilize the transformer architecture, the backbone of numerous state-of-the-
art AI models, to learn the dynamics of physical systems as the mixing of spatial patterns
learned by a convolutional autoencoder. Moreover, we incorporate the idea of multi-scale
hierarchical time-stepping to increase the prediction speed and decrease accumulated error
over time. Our model achieves similar or better results in predicting the time-evolution of
Navier–Stokes equations compared to the powerful Fourier Neural Operator (FNO) and two
transformer-based neural operators OFormer and Galerkin Transformer. The code and data are
available on https://github.com/BaratiLab/MST_PDE.

1. Introduction

Partial Differential Equations (PDEs) govern the dynamics of continuous physical systems in science and engineering. To solve
them numerically, functions are represented as finite sets of numbers, typically through methods like finite difference/element/
volume or spectral methods. While these methods offer stability and accuracy, they can be computationally intensive, especially
for complex systems. In recent years, Machine Learning and Deep Learning have emerged as alternative approaches for scientific
computation and PDE modeling due to their remarkable achievements in various fields [1–3].

The art of deep learning is to design or utilize the network architecture best suited for the data or the task at hand. Convolutional
Neural Networks (CNNs) have been utilized for modal analysis and model reduction of physical systems, as well as PDE solving [4–
7]. While CNNs have been shown to have adequate sample efficiency and accuracy, they are limited to data represented on an
equispaced mesh. Recurrent Neural Networks (RNNs) are another class of networks that are usually used to model dynamic systems
and time-dependent differential equations [8–10]. Despite the success of RNNs in many applications, there are challenges with
training that limit their utilization in some problems.

The key component of this work is a novel architecture that has been achieving remarkable success in numerous applications,
and that is the transformer architecture [11–14]. The transformer was first introduced as a mechanism for learning from a global
context without suffering from the shortcomings of sequential models like RNNs. We will briefly review the common data-driven
frameworks in PDE modeling, followed by a more focused elaboration on the applications of the transformer architecture in the
context of PDE modeling.

ω Corresponding author.
E-mail address: barati@cmu.edu (A. Barati Farimani).

https://doi.org/10.1016/j.cma.2024.116983
Received 4 December 2023; Received in revised form 3 April 2024; Accepted 4 April 2024

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
https://github.com/BaratiLab/MST_PDE
mailto:barati@cmu.edu
https://doi.org/10.1016/j.cma.2024.116983
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2024.116983&domain=pdf
https://doi.org/10.1016/j.cma.2024.116983
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

2

A. Hemmasian and A. Barati Farimani

For the sake of generality and consistency throughout the paper, we assume a PDE of the form shown in Eq. (1) where
𝛚 = [𝜔1, 𝜔2,… , 𝜔

𝜀
]𝜗 ε R𝜀 represents a 𝜀-dimensional spatial domain and 𝜛 ε R represents time.

𝜚
𝜛
= 𝜍(𝛚, 𝜚, 𝜚

𝜔1 , 𝜚𝜔2 ,… , 𝜚
𝜔1𝜔1 , 𝜚𝜔1𝜔2 , 𝜚𝜔2𝜔2 ,…) (1)

Reduced-order models. The Reduced-Order Modeling (ROM) framework is based on the separation of variables space and
time [1] and is a classic method to obtain low-cost surrogate models of PDEs, especially fluid flows. A ROM assumes a solution
form shown in Eq. (2) where ⋛ is the inner product and 𝜑,𝛻 ε R𝜕 are the temporal and spatial components respectively. The spatial
component 𝛻 consists of basis functions 𝛻

ℵ
, also known as spatial modes, that are chosen to preserve the most spatial information

and variance of the system and manifest as dominant patterns. Eventually, the temporal component 𝜑(𝜛) is obtained using analytical,
numerical, or data-driven algorithms. In data-driven ROMs, sample solution functions are represented in a discretized temporal and
spatial domain. Proper Orthogonal Decomposition is a classic algorithm to obtain the spatial component from the eigenvectors of
the data matrix [15,16]. Different machine learning algorithms and deep learning architectures can be utilized to model either the
spatial or the temporal component of the ROM [5,8–10,17–19].

𝜚(𝛚, 𝜛) = 𝜑(𝜛) ⋛ 𝛻(𝛚) =
𝜕⌋
ℵ=1

𝜑
ℵ
(𝜛)𝛻

ℵ
(𝛚) (2)

Latent space time-stepping. This framework is a generalized version of ROM where the spatial information is not simply
compressed into a few modes or bases, but possibly a richer representation learned by a neural network [20–23]. It usually consists
of three main components namely the encoder, decoder, and dynamical model, denoted as ℶ ,ℷ,ℸ

⊳𝜛 respectively such that ⊲
𝜛
= ℶ (0

𝜛
),

ℷ(⊲
𝜛
) = 10

𝜛
and ⊲

𝜛+⊳𝜛 = ℸ
⊳𝜛(⊲

𝜛
). Here, 0

𝜛
, 20

𝜛
, and ⊲

𝜛
are the state, reconstructed state, and latent/encoded state of the system at time 𝜛

respectively, and ⊲
𝜛
is a generalization of 𝜑(𝜛) in ROMs.

Direct time-stepping. If ℶ and ℷ from the previous framework are identity functions, only a dynamical model is to be learned
to simulate the time evolution of the system in its original representation. Since the state representation is maintained, the choice
of architecture suited for the problem at hand may be more transparent, i.e. using CNNs for regular meshes and GNNs for irregular
meshes [24–30]. These methods usually can achieve high accuracy and learn the fine changes and patterns as well due to their
working with the original representation rather than a latent or reduced one, but they come with a high computational cost for
both training and testing compared to the previous frameworks.

Solution function approximation. Another recently popular approach is to approximate the solution function by a parame-
terized function of a certain form like a neural network such that 𝜚(𝛚, 𝜛) ϑ 3

4
(𝛚, 𝜛). The model parameters can then be obtained

by minimizing the approximation error consisting of data-driven loss and physics-informed loss, giving them the name physics-
informed neural networks (PINN) [31–34]. These models are completely mesh-agnostic and can even approximate the solution
function solely from the physics-informed loss without any sampled simulation data [35]. However, a new model has to be trained
for each instance of the PDE with new parameters and initial and boundary conditions, and the calculation of high-order derivatives
in high-dimensional domains can be prohibitive.

Neural operators. While previous frameworks treat the discretized representation of functions as members of Euclidean spaces,
neural operators conserve their identity and properties as functions, enabling them to work with arbitrary discretizations. Based
on the universal operator approximation theorem for neural networks [36], Deep Operator Networks (DeepONets) realized the
practical application of neural networks in operator learning [37]. Another class of neural operators uses an analogous architecture
to fully connected networks by approximating nonlinear operators with a composite of several layers of kernel integral operators
and nonlinear activation functions. The kernel can be approximated with a neural network [38], the column space of attention
weights in a transformer [39,40], wavelet bases [41], or Fourier bases [42–44].

Transformer and PDE simulation. Following the groundbreaking success of the transformer model since its introduction [11–
14,45], researchers have utilized its architecture and the attention mechanism to model and predict physical systems [46] in
frameworks such as ROM [47,48] and neural operators [39,40,49–56]. As pointed out by the aforementioned works, the attention
mechanism can be viewed as a discretized approximation of a kernel integral operator, making it a suitable tool in operator learning.
However, the computational cost can be hindering for high-resolution meshes. The problem of long input sequences and the high
computational cost of the attention mechanism has been the focus of many works and is usually mitigated by modifying the attention
mechanism to have linear or quasi-linear cost in terms of the input length [57–61].

In the context of solving PDEs, Cao [39] introduced the Galerkin Transformer which omits the softmax function in the attention
and changes the order of calculations to have a linear cost in the input length, but the cost is still prohibitive in high-dimensional
and high-resolution problems. Li et al. [55] applied the attention separately across different axes, reducing the total cost. Unlike such
works that focus on modifying the algorithm and mechanism of the attention, ROMER [48] approaches this issue from a different
perspective, investigating how compressing the data representation itself can be a path to an efficient and accurate model based
on attention. This work provides this framework with essential enhancements that enable it to achieve remarkable performance,
similar or superior to state-of-the-art models like neural operators. The introduced improvements consist of finite backpropagation
in time, multi-scale time-stepping, and a more intuitive positional encoding for the transformer architecture, which will be explained
in detail.

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

3

A. Hemmasian and A. Barati Farimani

Fig. 1. (a) The convolutional autoencoder at the stem of our model. (b) The attention mechanism of our model with disentangled incorporation of positional
information and feature values. (c) The transformer model consisting of 𝜍 transformer layers. The feed-forward network is implemented using 1 ϖ 1 convolution
layers to apply an identical fully connected network to all elements.

2. Methodology

This section explains the architecture of our model step by step. First, the convolutional autoencoder (CAE) learns a coarse-
meshed feature representation of the system called the encoding. Next, the attention mechanism which is the backbone of the
transformer architecture is introduced and its connection to the kernel integral operator is elucidated. After that, the multi-head
self-attention layer and the transformer architecture are presented which are used to learn the dynamics in the encoding space.
Finally, details and strategies for the training process are provided.

2.1. Convolutional autoencoder

We leverage the locality and multiscale nature of the spatial patterns commonly observed in physical systems like fluid flows and
reduce the spatial dimension of the state representation using a CAE. A fully convolutional network learns a feature representation
that conserves the order of patterns while compressing the spatial dimensions. Since the attention mechanism has a quadratic cost
in input length, this greatly reduces the cost for the following components of the model based on attention.

Another important motivation to put the CAE at the stem of our model is to process information and learn features in the spatial
dimensions first, rather than doing so in the temporal dimension. We believe this to be more intuitive considering the nature of a
typical time-dependent PDE of the form in Eq. (1). This makes it more similar to classic numerical algorithms since they usually
estimate spatial gradients and the right hand of this equation using discretized approximations first, then use them to predict the
values at the next time-step. Likewise, our model first learns spatial features and patterns from a single time frame and models the
dynamics as exchanges among them.

The CAE consists of the encoder and the decoder, which can be viewed analogously to the lifting and projecting layer (ℶ and ℷ) at
the beginning and end of neural operators like FNO [42]. While in neural operators these layers usually operate on a concatenation of
consecutive snapshots and learn temporal features only, our model works with a single snapshot in time and learns spatial features.
Without the loss of generality, we present the data pipeline for a 2D spatial domain and denote the state and the encoded state as
0 ε R𝜍𝜔ϖ𝜍5 and ⊲ ε R6𝜔ϖ65ϖ𝜀3 respectively. The dynamics are then to be learned in the ⊲-space by the attention mechanism and the
transformer model, which are explained next.

A simple visualization of the CAE and its functionality is provided in Fig. 1a. The detailed architecture is similar to [48], each
consisting of 4 encoder or decoder blocks respectively. An encoder block is composed of a convolution layer, an average pooling
layer, and a nonlinear activation function. A decoder block is composed of a linear upsampling layer, a convolution layer, and a
nonlinear activation function. Leaky ReLU is the choice for the activation function since it does not have a saturation region that
causes gradient vanishing, excluding the final block of both models which do not have an activation function. All convolution layers
use kernel size 3, and both pooling and upsampling layers use a scale of 2.

2.2. The attention mechanism

In order to pass the encoded state ⊲ to the attention mechanism, it is reshaped as a set of 6 = 6
𝜔
6
5
feature vectors denoted

as 3
7
ε R𝜀3 where 7 = 0, 1, 2,… , 6 ϱ 1. We also define a corresponding set of vectors containing positional information about the

location of 3
7
vectors as 8

7
ε R𝜀8 . A simple choice for 8 would be 8 = [𝜔, 5] ε R2 containing the index or value in 𝜔 and 5 axis. A

general formulation of the attention mechanism is presented in Eq. (3).

⊳3
7
ς=

6ϱ1⌋
9=0

.(8
7
, 8

9
, 3

7
, 3

9
), (3

9
), φ7 ε {0, 1,… , 6 ϱ 1} (3)

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

4

A. Hemmasian and A. Barati Farimani

Here, . ς R2(𝜀8+𝜀3)  R is the attention weight function, , ς R𝜀3  R𝜀3 is called the value function, and ⊳3
7
is the incremental

change of 3
7
. This formula can be viewed as a discretized version of a kernel integral operator 𝜕

4
used in neural operators like

FNO [42], as shown in Eq. (4).

(𝜕
4
(𝜑)<)(𝜔) ς= ∱

ℸ

.
4
(𝜔, 1𝜔, 𝜑(𝜔), 𝜑(1𝜔))<(1𝜔)𝜀 1𝜔, φ𝜔 ε ℸ (4)

Here, .
4

ς R2(𝜀𝜔+𝜀𝜑)  R𝜀<ϖ𝜀< is a parameterized kernel function and < is the input to the operator. There are interesting
correspondences between the two formulations; 𝜔, 1𝜔, <(1𝜔) are analogous to 8

7
, 8

9
, 3

9
in Eq. (3) respectively. The spatial variable is

denoted as 𝜔 in Eq. (4) which can be of any number of dimensions, while we denote it as 8 for position to avoid confusion with the
first spatial dimension. In Eq. (4), 𝜑 is the model’s input which can be initial or boundary conditions or the parameters of the PDE,
and it does not have an exact counterpart in Eq. (3). The initial condition is, however, of the same shape and nature as the output
of each layer and can be treated as the input to the operator itself.

The original attention [11] and ROMER [48] assume . of the form shown in Eq. (5), where ℷ,𝜕 are linear functions named
query and key, and ⋛ is the dot product. The value function , is also linear and takes 3 + 8 as input instead of 3 . Basically, the
positional information is incorporated into the model by being added to the input vectors at the beginning. This can be problematic
since it limits the shape of the positional feature to be the same as the main features and also deviates the values of the feature
vectors for the upcoming calculations later in the model.

.(8
7
, 8

9
, 3

7
, 3

9
) = ℷ(3

7
+ 8

7
) ⋛𝜕(3

9
+ 8

9
) (5)

our model assumes a different form shown in Eq. (6) where ℏ ς R2𝜀8  R is the positional encoder modeled by a fully connected
network. This formulation disentangles the effect of positional and feature information and conserves the actual value of the input
vectors for further calculations. A graphic representation of this attention mechanism is illustrated in Fig. 1b.

.(8
7
, 8

9
, 3

7
, 3

9
) = ℏ(8

7
, 8

9
)(ℷ(3

7
) ⋛𝜕(3

9
)) (6)

A desirable and intuitive property for the positional encoder is to be a function of the relative location of 8
9
to 8

7
, leading us

to choose the formulation shown in Eq. (7). This also makes the overall model conserve the property of translation invariance, an
important and helpful inductive bias for physical systems and PDE solution operators. More arguments can also be included that
conserve this property based on the design of 8.

ℏ(8
7
, 8

9
) = ℏ(8

9
ϱ 8

7
, ⌈8

7
ϱ 8

9
⌈) (7)

2.3. Transformer

The architecture chosen to model the dynamics in the encoding space is based on the classic transformer architecture [11]
excluding normalization layers. The architecture of the transformer is shown in Fig. 1c. The multi-head attention is simply a set of
independent attention mechanisms that have their output concatenated together, each called an attention head. Each head learns
distinct ℷ,𝜕 ,, ,ℏ which helps the expressive ability of the model as opposed to learning one positional encoder ℏ which may limit
the ability to capture a diverse range of dynamics in the spatial domain. For example, one head can focus on close-range dynamics
and one can learn longer-range dynamics, where ℏ assigns bigger weights to closer and further values respectively. The attention
mechanism models the interaction of the feature vectors in space, the fully connected layers model the dynamics of individual
elements over time, and the residual connection is meant to model time-stepping and incremental change of the system in each
time-step.

A detailed breakdown of the procedure happening in a transformer layer is provided in algorithm 1. Note that the for loops are
implemented in a parallelized manner using tensor-based operations. We chose to explain the procedure using for loops to make it
easier and clearer to understand what happens between each pair of vectors in each head, and how they come together.

2.4. Assembly and training

The whole model consists of an autoencoder and several transformers, each meant to model the dynamics at a specific time scale.
This was inspired by the work of Liu et al. [62] which took a similar approach but with low-order non-linear models and proved
the concept using fully connected neural networks. We denote the encoder and decoder as ℶ ,ℷ and the model that propagates the
encoded state to the future for ⊳𝜛 time-steps as ℸ⊳𝜛. This work uses up to four different dynamical models with ⊳𝜛 = {1, 2, 4, 8}.

The loss function used to train all models is the normalized Root Mean Squared Error (nRMSE) defined in Eq. (8), where 1⊲ and
⊲ represent the model’s output and the ground truth for a certain sample respectively. This loss provides a measure of error not
affected by the magnitude or resolution of data, making it a popular choice to evaluate PDE solvers [42]. The total loss is obtained by
averaging the loss over all of the samples (trajectories) in each dataset. We use the Adam optimization algorithm [63] to minimize

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

5

A. Hemmasian and A. Barati Farimani

Algorithm 1 The forward pass of a transformer layer in Fig. 1c.
Inputs: Spatially flattened encoding ⊲

𝜛
= {3

7
⌈7 ε {0, 1, ..., 6 ϱ 1}} and the corresponding positional features {8

7
⌈7 ε 0, 1, ..., 6 ϱ 1}

1: for > = 1, 2, ...,⋆ (heads) do
2: for 7 = 0, 1, ..., 6 ϱ 1 do
3: for 9 = 0, 1, ..., 6 ϱ 1 do
4: ≨

79
= ℷ

>(3
7
) ⋛𝜕>(3

9
)

5: end for
6: .

79
= 𝐴

≨79

⌉6ϱ1
9=0 𝐴

≨79
(softmax)

7: .
79
 ℏ

>(8
7
, 8

9
).

79
(multiply by positional encoding)

8: 𝜀3
>

7
= ⌉6ϱ1

9=0 .79,
>(3

9
)

9: end for
10: end for
11: for 7 = 0, 1, ..., 6 ϱ 1 do
12: 𝜀3

7
= 𝐵𝐶6𝐷𝜑𝜛(𝜀3 1

7
, 𝜀3

2
7
, ...𝜀3

⋆

7
)𝐸

8𝐹𝐶9
(linear projection)

13: 3
7
 3

7
+ 𝜀3

7

14: 3
7
 3

7
+ 𝐺𝐺𝜍(3

7
)

15: end for

the loss with the initial learning rate 0.001 and a learning rate scheduler that reduces the learning rate by a factor of 0.2 where the
learning curve reaches a plateau, with a patience factor of 5.

6𝐻𝐼𝐽𝐾(1⊲, ⊲) =
{{{ 1⊲ ϱ ⊲

{{{2
{{{⊲

{{{2
(8)

First, the autoencoder is trained to extract spatial features and dominant patterns. The loss function for the autoencoder is defined
by setting ⊲ = 0 and 1⊲ = ℷ(ℶ (0)) in Eq. (8). After training, the encoder and decoder are used to move to and from the encoding
space, in which the dynamics are to be learned by the transformer models.

The calculation of the loss function for the dynamical models is shown in algorithm 2. An important training strategy of this
work is using rollout in training, also known as backpropagation through time. Models in similar applications usually use a full
rollout (𝐻 = 𝜗 ϱ1) which prevents parallelized training across time hence increasing training time, and introduces a risk of gradient
explosion or vanishing as well. Unlike the original applications of many recurrent models like natural language processing (NLP),
a physical system has the Markov property, meaning that its future is dependent only on the present and not the past provided a
sufficient state representation. Therefore, a full rollout may cost too much compared to its advantage. By using a finite-time rollout,
our model can benefit from the advantages while still being able to parallelize the training over time with much less risk of gradient
explosion or vanishing.

Algorithm 2 Calculation of the loss function of ℸ⊳𝜛 for a sample trajectory of length 𝜗 , using a trained encoder ℶ and training
rollout 𝐻
1: for 𝜛 = 0, 1,… , 𝜗 ϱ 𝐻⊳𝜛 do
2: 𝐿𝐶00 = 0
3: ⊲

𝜛
= ℶ (0

𝜛
)

4: 1⊲
𝜛
= ⊲

𝜛

5: for 𝐹 = 1, 2,… ,𝐻 do
6: ⊲

𝜛+𝐹⊳𝜛 = ℶ
}
0
𝜛+𝐹⊳𝜛

⦃
7: 1⊲

𝜛+𝐹⊳𝜛 = ℸ
⊳𝜛
}
1⊲
𝜛+(𝐹ϱ1)⊳𝜛

⦃
8: 𝐿𝐶00  𝐿𝐶00 + 6𝐻𝐼𝐽𝐾

}
1⊲
𝜛+𝐹⊳𝜛, ⊲𝜛+𝐹⊳𝜛

⦃
9: end for
10: 𝐿𝐶00  𝐿𝐶00 ÷ 𝐻

11: end for

We also use transfer learning to ease the training for the dynamical models. The dynamics for a large time-step are expected to
be more complex and difficult than for small time-steps. Therefore, we use the trained dynamical models for better initialization
of the next models to train for larger time-steps. For example, ℸ2 is initialized by the trained weights of ℸ1, ℸ4 by the trained ℸ

2,
and ℸ

8 by ℸ
4. The overall framework is summarized in Fig. 2.

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

6

A. Hemmasian and A. Barati Farimani

Fig. 2. Our strategy of using the transformer for time-stepping (bottom row) compared to the default strategy (top row). By reducing the spatial dimension and
moving to the latent space, the cost of a forward pass is greatly decreased. Then by using multi-scale time-stepping, we also decrease the number of required
forward passes to reach a certain time. Each transformer models the mixing of coarsened features in the space (shown below ℸ

4) for a specific time step.

3. Experiments and discussion

In order to assess the capability of our model, we train it on two challenging tasks used to evaluate powerful and novel PDE
solvers like neural operators. We choose 2D incompressible Navier–Stokes (NS) with three different Reynolds numbers, and a low-
Reynolds 2D Kolmogorov Flow (KF), both provided publicly by Li et al. in [42]. The performance of the model on these datasets is
considered a reliable metric for its general capabilities because of their multi-dimensional spatial domain and nonlinearity, and they
are usually presented as the last challenge to such models in the literature after 1D and/or linear datasets. Since the computational
cost is more of a concern in multi-dimensional domains, we evaluate our model on these datasets to highlight the benefits of our
framework.

According to [42], the NS datasets were generated by solving the 2D Navier–Stokes equations for a viscous incompressible flow
in vorticity form on the unit torus with periodic boundary conditions:

𝑀
𝜛
𝑁(𝜔, 𝜛) + 𝜚(𝜔, 𝜛) ⋛ ∇𝑁(𝜔, 𝜛) = 𝑂⊳𝑁(𝜔, 𝜛) + 3 (𝜔), 𝜔 ε (0, 1)2, 𝜛 ε (0, 𝜗]

∇ ⋛ 𝜚(𝜔, 𝜛) = 0, 𝜔 ε (0, 1)2, 𝜛 ε (0, 𝜗]
𝑁(𝜔, 0) = 𝑁0(𝜔), 𝜔 ε (0, 1)2.

Here 𝜚 is the velocity field, 𝑁 = ∇ ϖ 𝜚 is the vorticity, 𝑁0 is the initial vorticity, 𝑂 is the viscosity coefficient, and 3 is the forcing
function. The equation was solved using the stream-function formulation with a pseudospectral method, the time-stepping was done
using the Crank–Nicolson scheme with a time-step of 1𝐴ϱ4, and the solution was recorded every 𝜛 = 1 time units. The simulations
used a 256 ϖ 256 spatial grid and the results were recorded in a 64 ϖ 64 grid.

Each sample in the dataset was obtained by solving the equation over the spatiotemporal domain for a random initial condition
taken from a distribution denoted as 𝑃. The distribution of the initial conditions and the forcing term used are defined below. The
distribution 𝑃 is of a Gaussian Random Field, where the covariance is defined using the Matérn-like covariance operator based on
the notation used in [64].

𝑃 = 𝜍(0, 73∂2(ϱ⊳ + 49𝑄)ϱ2.5)
3 (𝜔) = 0.1(076(2𝑅(𝜔1 + 𝜔2)) + 𝐷𝐶0(2𝑅(𝜔1 + 𝜔2)))

Each of the NS datasets was obtained by solving the equations with a different viscosity among 𝑂 ε {1𝐴ϱ3, 1𝐴ϱ4, 1𝐴ϱ5} and contains
1000 training samples and 200 test samples. The KF dataset consists of 160 training samples and 40 test samples.

We start with the NS datasets and compare the performance of our model with TF-Net, the powerful FNO, and two transformer-
based neural operators. The transformer we use for all dynamical models on NS datasets has 4 layers and 8 heads, and each
component of the models is trained for 100 epochs with a batch size of 64. The results are shown in Table 1. Since the competing
models take 10 time-steps as their input, the reported results in their works are measured on the predicted remaining time-steps
(excluding the first 10 time-steps). Therefore, we start the evaluation of the model from the 10th time-step as well, although our
model only takes a single time-step as input. Symbols 𝜗 and 𝜗

8𝐹𝐴𝜀
represent the total time horizon of each dataset and the time

window predicted by the models respectively. The reported error is normalized RMSE on the final 3D output containing the 2D
state over the predicted time window, which is of shape 𝜍

𝜔
ϖ𝜍

5
ϖ 𝜗

8𝐹𝐴𝜀
. It is observed that our model performs almost as well as

FNO on NS1, and outperforms all models on NS2 and NS3 with an impressive margin considering the turbulence and relatively small
dataset size. This is despite the fact that our model uses finite training rollout and a single time-step as input while the competing
models used 10 time-steps and full training rollout. A visual comparison for each dataset is shown in Fig. 4.

The NS1 dataset has a low Reynolds number and a long time horizon, making the primary challenge the error accumulation over
time rather than complex and chaotic dynamics in the immediate future. Our model achieves an average test error of 0.88% using
multi-scale time-stepping with 4 dynamical models and a training rollout of 2 for each. Compared to a full rollout, the parallelization

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

7

A. Hemmasian and A. Barati Farimani

Fig. 3. Multi-scale time-stepping and rollout effect on NS datasets. Each bar group represents a different type of attention mechanism from Table 2 denoted by
M. Models of the same color use the same number of time scales denoted by their label (1S, 2S, 3S, 4S), in which different rollouts of 𝐻 = 1, 2, 4, 8 are shown
from left to right (except for 𝐻 = 8 excluded from NS1). The black error bars represent the variation across three random seeds that each model was trained
with. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Benchmarks on 2D Navier–Stokes data provided by Li et al. [42]. Results reported by the papers FNO [42] and OFormer [40].
Data NS1 NS2 NS3 #param(M)
𝑂 1𝐴ϱ3 1𝐴ϱ4 1𝐴ϱ5 –
𝜗 (𝜗

8𝐹𝐴𝜀
) 50 (40) 30 (20) 20 (10) –

TF-Net [65] 2.25% 22.53% 22.68% 7.45
FNO-3D [42] 0.86% 19.18% 18.93% 6.56
FNO-2D [42] 1.28% 15.59% 15.56% 0.41
GT [39] 0.94% 13.99% 13.40% 1.56
OFormer [40] 1.04% 17.55% 17.05% 1.85
Ours 0.88% 10.43% 12.48% 1.02

of training across time can be almost fully maintained, making it possible to speed up the training up to 10 times faster, since we
also train four models. Moreover, the cost of the forward pass to predict the state at 𝜛 = 49 for example can be reduced up to 8 times
since only 5 forward passes of ℸ8 are needed instead of 40 forward passes. The lesson here is that when the dynamics are simple
enough, modeling large time-steps and a smaller training rollout can be a suitable strategy to achieve high accuracy with shorter
and easier training.

The situation is different for NS2 and NS3 since they have more complex dynamics and shorter time horizons. The primary
contributor to the prediction error here is the complex dynamics even in the immediate future. This is the reason FNO-3d, which
outputs all future time-steps in a single forward pass, does not outperform FNO-2d as it does on NS1. The great performance of our
model on these datasets implicates the remarkable potential of the architecture of its architecture and the enhancements introduced
in this work to model complex spatiotemporal dynamics while having the Markov property.

To validate the advantage of our model in terms of computational efficiency, we compare the training and testing time of
our model compared to the competing autoregressive models FNO-2d [42], Galerkin Transformer (GT) [39] and OFormer [40] as
shown in Table 3. The training time is spent on forward and backward passes, while the testing time is spent only on the forward
pass. All models are set to take one time-step as input and give one-step prediction as output. The training is done using a full
rollout to leverage the benefits of time-stepping in the latent space. The model hyperparameters for the competing models are taken

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

8

A. Hemmasian and A. Barati Farimani

Table 2
Explored options for attention and positional encoder.
Name Positional encoding Insertion method

M0 None None
M1 FFN(cartesian grid) Additive to input
M2 FFN(periodic features) Additive to input
M3 FFN(periodic features) Additive before softmax
M4 FFN(periodic features) Multiplicative after softmax

Fig. 4. Comparison of the model’s predictions with the ground truth for a sample test trajectory, starting from 𝜛 = 9 (10th time-step) going forward. The value
at the center is plotted on the right column for each dataset. The error increases with the more turbulent datasets and over time.

Table 3
Time spent to process a batch of 8 samples, each being a trajectory of 11 time-steps and 64 ϖ 64 snapshots. A full training
rollout of 10 is used.
Model Train (s) Test (s)

FNO-2d 0.0821 ± 0.0013 0.0289 ± 0.0008
GT 0.2518 ± 0.0022 0.1027 ± 0.0012
OFormer 0.4319 ± 0.0058 0.1084 ± 0.0004
Our autoencoder 0.0045 ± 0.0003 0.0011 ± 0.0001
Our model 0.0707 ± 0.0017 0.0351 ± 0.0010

from [40]. The advantage is mainly because the encoding in our model is of spatial resolution 4 ϖ 4 while others maintain the
original resolution of 64 ϖ 64. All runs were conducted on one NVIDIA GeForce RTX 2080 Ti GPU. The cost is separately reported
for our autoencoder and dynamical model. One can estimate the total time by summing the two, although the contribution of the
autoencoder is relatively small.

In order to find the best choice for the number of time scales and the training rollout, as well as to verify the improvement of the
model due to our proposed modifications, we experiment with 5 different types of attention mechanisms (Table 2) with different
settings for multi-scale time-stepping and training rollout. Each model is trained with three different random seeds, and the average
and standard deviation of the test error for each configuration are shown in Fig. 3. It is observed that M3 and M4 outperform the
other options as expected because of the way they incorporate positional information without disturbing the actual input values for

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

9

A. Hemmasian and A. Barati Farimani

Fig. 5. The evolution of error over time for different datasets and training settings. For more turbulent datasets, the transformer fails to capture the large
time-step dynamics while the iterative use of smaller time-steps is successful.

downstream calculations. The importance of including positional information and periodic positional features is also noticeable by
looking at M0, M1, and M2.

Looking at the effect of the training rollout, it can be observed that low 𝐻 causes high uncertainty and variation based on the
random seed. This means that even a finite rollout can be of great help to guide the training towards the global optima rather than
a random local optima with poor performance when used autoregressively. However, if 𝐻 is too high considering the complexity of
the system, the model may not succeed in simultaneously modeling the immediate future and a more distant future well, leading to
an increase in the error for larger rollouts in NS2 and NS3. By finding the right balance, the responsibility of learning the dynamics
of different time scales is divided across different models and lets them focus on different tasks.

Fig. 5 illustrates the error of M4 over time with different settings and provides a better insight into the effect of training rollout
and multi-scale time-stepping and their balance. The NS1 is a laminar flow, therefore predicting the future even for 8 time-steps
with a single model is possible. However, NS2 and NS3 show a different behavior as using a smaller time-step and a finite training
rollout shows better performance over directly predicting larger time-steps into the future. The increase of error for the models
using 4 time-scales (including ℸ

8) is due to the failure of ℸ8 to do as well as other models taking smaller but more steps.
Moving on from the NS dataset, the results for the Kolmogorov Flow were not as successful but led to interesting observations.

Competing models like FNO and GT also face similar limitations, so our model does not seem to have an advantage in this case.
Although the final loss for both the autoencoder and the dynamical models were similar to NS3, our model failed to learn rapid
changes accurately. However, it seems to perform well in the slow-changing regimes as shown in Fig. 6. Upon closer investigation,
this turned out to be because of the data distribution. Since the training is done across time, starting from arbitrary time-steps and
predicting a finite number of future steps, it overfits the majority of the data which consists of a slow-changing and almost steady
flow. Fig. 8 provides some insight into the distribution of the data. The great imbalance of the distribution of the KF dataset is a
suspected factor that makes the model overfit to the slow-changing regime which makes up most of the data. This is not the case
for NS1 and NS2 (top row) which seem to have a more symmetric distribution. Although the NS3 dataset is also asymmetric, the
KF dataset has a longer tail that consists of data until 1.0 on the horizontal axis and even a few points above 1.0, which are greatly
underrepresented in the dataset. In the case of predicting time-series, such an error is enough to sabotage the prediction even if the
model has learned most of the data since a large error for a short time is enough to diverge the remainder of the predicted trajectory
from the ground truth. Still, the energy spectrum of the model’s predictions mostly matches the ground truth except for the high

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

10

A. Hemmasian and A. Barati Farimani

Fig. 6. The model overfitting to the slow-changing regime in the Kolmogorov Flow and not learning the fast transient dynamics. Top: A rollout of ℸ1 for 40
time-steps, starting from 𝜛0 = 0 (fast change). Bottom: A rollout of ℸ1 for 40 time-steps, starting from 𝜛0 = 50 (slow change).

frequencies as shown in Fig. 7. Since our model uses a coarsened spatial encoding, it fails to model the high frequencies accurately
as expected.

Finally, we would like to point out an interesting observation about the performance of the model over an extensive amount of
time. As shown in Fig. 9, the model’s output seems to stay stable for a very long time. Although the predictions are probably not
physically accurate, stability of the output is a desirable property that models like Galerkin Transformer lack since they omitted
the softmax operation [39], which may cause problems even in the available time-window in the data. The time horizon of the NS
datasets is not enough to compare the long-term performance of the model to the ground truth. However, in the KF dataset as well
as the NS datasets, the predictions seem to contain the patterns present in the data and not show unstable behavior. This can be
further leveraged and investigated in future work both theoretically and empirically.

4. Conclusion and future work

This work illustrated the potential of the transformer architecture to develop models to solve time-dependent PDEs that are
efficient, accurate, and have the Markov property. By introducing effective enhancements to the transformer architecture and the
training process, similar or better performance was observed compared to powerful models such as the Fourier Neural Operator or
other transformer-based neural operators. By using a finite-horizon rollout in training, multi-scale time-stepping, and a new way
to include positional information into the attention mechanism, our model was able to model the solution of 2D Navier–Stokes
equations in turbulent regimes with a small training dataset, and fast training and testing. However, the model failed to learn the
rapid dynamics in the Kolmogorov dataset and overfitted to the slow-changing dynamics. However, the model exhibits an interesting
behavior when used for a long time and seems to converge to a certain regime of solutions instead of getting unstable like some
traditional numerical methods. A possible line of future research is to investigate how we can improve the accuracy and reliability
of these predictions using corrective models or iterative methods, which would not be possible with an unbounded and unstable
prediction to begin with.

Despite the accuracy and efficiency of this framework, it comes with its limitations which are to be addressed in future work.
For example, if the resolution of the state representation is too high, the convolutional autoencoder needs many layers to reduce the
dimensions to be computationally tractable for the transformer in the dynamical model. This can cause difficulties in training and
decrease training and inference speed. If the data is not represented on an equispaced grid, the convolutional autoencoder cannot

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

11

A. Hemmasian and A. Barati Farimani

Fig. 7. Comparison of the average energy spectrum of the KF dataset on the validation dataset. We can see a noticeable mismatch for the fast-changing regime
(timesteps 0–50) that is not present in the slow-changing regime (50–100) where we use the model after the flow has already entered the slow regime. The
mismatch is still visible when we run the model over the combined time window (0–100).

Fig. 8. A brief quantitative analysis of the distribution of the datasets. One suspected reason behind the poor performance of the model on the KF dataset other
than its inherent complexity is the skewed distribution of the data and the probable overfitting of the model to the dominant part of the distribution. On the
other hand, NS1 and NS2 seem to have a relatively symmetric distribution. NS3 has a skewed distribution but is still closer to a uniform distribution than KF.

be applied anymore. Another potent line of future research is making this scheme applicable to different geometries and boundary
conditions. Since other forms of boundary conditions can be considered external influences, a new component is needed to encode
them. Regarding general geometries, both reducing the spatial representation and handling of the boundary conditions need new
components since the convolutional layers cannot process them. One can also achieve such goals by incorporating these ML-based

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

12

A. Hemmasian and A. Barati Farimani

Fig. 9. The performance of the model over an extended time period. Interestingly, the model does not exhibit any signs of instability, although the results may
not be physically correct. Blank fields represent missing ground truth data.

models as a part of classic numerical methods that are more capable of handling these generalizations by design [66]. Another
quality that our model lacks compared to the competing models is being applicable to arbitrary resolutions. Since the convolutional
autoencoder is designed and trained for a specific input resolution, it needs to be replaced or modified if one wants to make this
framework applicable to arbitrary input resolutions like neural operators.

This framework also introduces several hyperparameters such as the number of time-scales and time-step sizes to use, as well
as the balance between the spatial dimensions and the number of channels of the encoding. In future work, coming up with a
systematic and quick way of finding the best choice of training rollout or the number of time scales can be a promising venue for
subsequent studies. Moreover, a theoretical investigation of the model and its weights and the connection between the dynamical
models of different time scales may be able to provide new intuition and insight into the attention mechanism and its capabilities
in modeling dynamic systems. The modifications introduced in this work can be utilized on any model trying to learn the solution
of time-dependent PDEs, as well as models based on the transformer architecture. The model also has the potential to be equipped
with additional tools to handle and incorporate time-variant forcing terms, which can be of high interest in many applications
such as model-predictive control of fluid flows and therefore a promising venue for future research. We hope this work encourages
researchers to move toward finding the best ways of incorporating the amazing transformer architecture in scientific computation
applications.

CRediT authorship contribution statement

AmirPouya Hemmasian: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology,
Conceptualization. Amir Barati Farimani: Writing – review & editing, Supervision, Resources, Funding acquisition, Conceptualiza-
tion.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The code and data will be publicly available.

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

13

A. Hemmasian and A. Barati Farimani

Acknowledgment

This work was supported by the National Science Foundation, United States under Grant No. 1953222.

References

[1] S.L. Brunton, J.N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, 2019.
[2] M. Frank, D. Drikakis, V. Charissis, Machine-learning methods for computational science and engineering, Computation 8 (1) (2020) 15.
[3] S. Cuomo, V.S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, F. Piccialli, Scientific machine learning through physics–informed neural networks: Where we

are and what’s next, J. Sci. Comput. 92 (3) (2022) 88.
[4] S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, S. Kaushik, Prediction of aerodynamic flow fields using convolutional neural networks, Comput. Mech. 64

(2) (2019) 525–545, http://dx.doi.org/10.1007/s00466-019-01740-0.
[5] K. Lee, K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys. 404 (2020)

108973.
[6] K. Fukami, T. Nakamura, K. Fukagata, Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data,

Phys. Fluids 32 (9) (2020) 095110.
[7] H. Gao, L. Sun, J.-X. Wang, PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs

on irregular domain, J. Comput. Phys. 428 (2021) 110079.
[8] A.T. Mohan, D.V. Gaitonde, A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks, 2018,

arXiv preprint arXiv:1804.09269.
[9] K. Hasegawa, K. Fukami, T. Murata, K. Fukagata, CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder

at different Reynolds numbers, Fluid Dyn. Res. 52 (6) (2020) 065501.
[10] R. Maulik, B. Lusch, P. Balaprakash, Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional

autoencoders, Phys. Fluids 33 (3) (2021) 037106.
[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, !. Kaiser, I. Polosukhin, Attention is all you need, in: I. Guyon, U.V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), in: Advances in Neural Information Processing Systems, vol. 30, Curran Associates,
Inc., 2017.

[12] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, 2018, http://dx.doi.org/
10.48550/ARXIV.1810.04805, URL: https://arxiv.org/abs/1810.04805.

[13] K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. "ídek, A. Bridgland, A. Cowie, C. Meyer, A. Laydon, S. Velankar, G. Kleywegt, A. Bateman,
R. Evans, A. Pritzel, M. Figurnov, O. Ronneberger, R. Bates, S. Kohl, D. Hassabis, Highly accurate protein structure prediction for the human proteome,
Nature 596 (2021) 1–9, http://dx.doi.org/10.1038/s41586-021-03828-1.

[14] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby,
An image is worth 16x16 words: Transformers for image recognition at scale, in: International Conference on Learning Representations, 2021, URL:
https://openreview.net/forum?id=YicbFdNTTy.

[15] G. Berkooz, P. Holmes, J.L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech. 25 (1) (1993)
539–575.

[16] J.S. Anttonen, P.I. King, P.S. Beran, POD-based reduced-order models with deforming grids, Math. Comput. Modelling 38 (1–2) (2003) 41–62.
[17] T. Murata, K. Fukami, K. Fukagata, Nonlinear mode decomposition with convolutional neural networks for fluid dynamics, J. Fluid Mech. 882 (2020)

A13.
[18] J.S. Hesthaven, S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys. 363 (2018) 55–78.
[19] S.L. Brunton, B.R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev. Fluid Mech. 52 (2020) 477–508.
[20] S. Wiewel, M. Becher, N. Thuerey, Latent space physics: Towards learning the temporal evolution of fluid flow, in: Computer Graphics Forum, vol. 38,

Wiley Online Library, 2019, pp. 71–82.
[21] V. Shankar, G. Portwood, A. Mohan, P. Mitra, C. Rackauckas, L. Wilson, D. Schmidt, V. Viswanathan, Learning non-linear spatio-temporal dynamics with

convolutional neural ODEs, in: Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), 2020.
[22] K. Lee, K.T. Carlberg, Deep conservation: A latent-dynamics model for exact satisfaction of physical conservation laws, in: Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 35, 2021, pp. 277–285.
[23] Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks, Eur. J. Appl. Math. 32 (3) (2021) 421–435.
[24] J.K. Gupta, J. Brandstetter, Towards multi-spatiotemporal-scale generalized PDE modeling, 2022, arXiv:2209.15616.
[25] S. JANNY, A. Bénéteau, M. Nadri, J. Digne, N. THOME, C. Wolf, EAGLE: Large-scale learning of turbulent fluid dynamics with mesh transformers, in: The

Eleventh International Conference on Learning Representations, 2023, URL: https://openreview.net/forum?id=mfIX4QpsARJ.
[26] Z. Li, A.B. Farimani, Graph neural network-accelerated Lagrangian fluid simulation, Comput. Graph. 103 (2022) 201–211, http://dx.doi.org/10.1016/j.

cag.2022.02.004.
[27] P. Pant, R. Doshi, P. Bahl, A. Barati Farimani, Deep learning for reduced order modelling and efficient temporal evolution of fluid simulations, Phys.

Fluids 33 (10) (2021) 107101, http://dx.doi.org/10.1063/5.0062546, arXiv:https://doi.org/10.1063/5.0062546.
[28] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, P.W. Battaglia, Learning mesh-based simulation with graph networks, 2021, arXiv:2010.03409.
[29] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, P.W. Battaglia, Learning to simulate complex physics with graph networks, 2020,

arXiv:2002.09405.
[30] F.D.A. Belbute-Peres, T. Economon, Z. Kolter, Combining differentiable PDE solvers and graph neural networks for fluid flow prediction, in: International

Conference on Machine Learning, PMLR, 2020, pp. 2402–2411.
[31] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[32] G. Karniadakis, Y. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, 2021, pp. 1–19, http://dx.doi.org/10.1038/s42254-

021-00314-5.
[33] S. Cai, Z. Mao, Z. Wang, M. Yin, G.E. Karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: A review, Acta Mech. Sin. 37 (12)

(2021) 1727–1738.
[34] G. Pang, L. Lu, G.E. Karniadakis, FPINNs: Fractional physics-informed neural networks, SIAM J. Sci. Comput. 41 (4) (2019) A2603–A2626.
[35] L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data, Comput.

Methods Appl. Mech. Eng. 361 (2020) 112732.
[36] T. Chen, H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical

systems, IEEE Trans. Neural Netw. 6 (4) (1995) 911–917, http://dx.doi.org/10.1109/72.392253.

http://refhub.elsevier.com/S0045-7825(24)00239-1/sb1
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb2
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb3
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb3
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb3
http://dx.doi.org/10.1007/s00466-019-01740-0
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb5
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb5
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb5
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb6
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb6
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb6
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb7
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb7
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb7
http://arxiv.org/abs/1804.09269
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb9
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb9
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb9
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb10
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb10
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb10
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb11
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb11
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb11
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb11
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb11
http://dx.doi.org/10.48550/ARXIV.1810.04805
http://dx.doi.org/10.48550/ARXIV.1810.04805
http://dx.doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
http://dx.doi.org/10.1038/s41586-021-03828-1
https://openreview.net/forum?id=YicbFdNTTy
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb15
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb15
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb15
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb16
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb17
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb17
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb17
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb18
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb19
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb20
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb20
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb20
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb21
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb21
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb21
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb22
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb22
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb22
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb23
http://arxiv.org/abs/2209.15616
https://openreview.net/forum?id=mfIX4QpsARJ
http://dx.doi.org/10.1016/j.cag.2022.02.004
http://dx.doi.org/10.1016/j.cag.2022.02.004
http://dx.doi.org/10.1016/j.cag.2022.02.004
http://dx.doi.org/10.1063/5.0062546
https://doi.org/10.1063/5.0062546
http://arxiv.org/abs/2010.03409
http://arxiv.org/abs/2002.09405
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb30
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb30
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb30
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb31
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb31
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb31
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1038/s42254-021-00314-5
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb33
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb33
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb33
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb34
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb35
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb35
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb35
http://dx.doi.org/10.1109/72.392253

Computer Methods in Applied Mechanics and Engineering 426 (2024) 116983

14

A. Hemmasian and A. Barati Farimani

[37] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators,
Nat. Mach. Intell. 3 (3) (2021) 218–229, http://dx.doi.org/10.1038/s42256-021-00302-5.

[38] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: Graph kernel network for partial differential
equations, 2020, arXiv:2003.03485.

[39] S. Cao, Choose a transformer: Fourier or galerkin, Adv. Neural Inf. Process. Syst. 34 (2021) 24924–24940.
[40] Z. Li, K. Meidani, A.B. Farimani, Transformer for partial differential equations operator learning, Trans. Mach. Learn. Res. (2023) URL: https:

//openreview.net/forum?id=EPPqt3uERT.
[41] G. Gupta, X. Xiao, P. Bogdan, Multiwavelet-based operator learning for differential equations, 2021, arXiv:2109.13459.
[42] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential

equations, 2020, arXiv preprint arXiv:2010.08895.
[43] G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, S.M. Benson, U-FNO—An enhanced Fourier neural operator-based deep-learning model for multiphase

flow, Adv. Water Resour. 163 (2022) 104180.
[44] A. Tran, A. Mathews, L. Xie, C.S. Ong, Factorized Fourier neural operators, 2023, arXiv:2111.13802.
[45] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-end object detection with transformers, 2020, arXiv:2005.12872.
[46] N. Geneva, N. Zabaras, Transformers for modeling physical systems, Neural Netw. 146 (2022) 272–289.
[47] A. Solera-Rico, C.S. Vila, M. Gómez, Y. Wang, A. Almashjary, S. Dawson, R. Vinuesa, 𝑆-Variational autoencoders and transformers for reduced-order

modeling of fluid flows, 2023, arXiv preprint arXiv:2304.03571.
[48] A. Hemmasian, A. Barati Farimani, Reduced-order modeling of fluid flows with transformers, Phys. Fluids 35 (5) (2023).
[49] R. Guo, S. Cao, L. Chen, Transformer meets boundary value inverse problems, 2022, arXiv preprint arXiv:2209.14977.
[50] Z. Hao, C. Ying, Z. Wang, H. Su, Y. Dong, S. Liu, Z. Cheng, J. Zhu, J. Song, GNOT: A general neural operator transformer for operator learning, 2023,

arXiv preprint arXiv:2302.14376.
[51] O. Ovadia, A. Kahana, P. Stinis, E. Turkel, G.E. Karniadakis, ViTO: Vision transformer-operator, 2023, arXiv preprint arXiv:2303.08891.
[52] G. Kissas, J. Seidman, L.F. Guilhoto, V.M. Preciado, G.J. Pappas, P. Perdikaris, Learning operators with coupled attention, 2022, arXiv:2201.01032.
[53] X. Liu, B. Xu, L. Zhang, HT-Net: Hierarchical transformer based operator learning model for multiscale PDEs, 2022, arXiv preprint arXiv:2210.10890.
[54] T. Nguyen, M. Pham, T. Nguyen, K. Nguyen, S. Osher, N. Ho, Fourierformer: Transformer meets generalized fourier integral theorem, Adv. Neural Inf.

Process. Syst. 35 (2022) 29319–29335.
[55] Z. Li, D. Shu, A.B. Farimani, Scalable transformer for PDE surrogate modeling, 2023, arXiv preprint arXiv:2305.17560.
[56] X. Han, H. Gao, T. Pfaff, J.-X. Wang, L.-P. Liu, Predicting physics in mesh-reduced space with temporal attention, 2022, arXiv preprint arXiv:2201.09113.
[57] J.W. Rae, A. Potapenko, S.M. Jayakumar, T.P. Lillicrap, Compressive transformers for long-range sequence modelling, 2019, arXiv preprint arXiv:

1911.05507.
[58] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula, Q. Wang, L. Yang, A. Ahmed, Big bird: Transformers for

longer sequences, 2021, arXiv:2007.14062.
[59] I. Beltagy, M.E. Peters, A. Cohan, Longformer: The long-document transformer, 2020, arXiv:2004.05150.
[60] N. Kitaev, L. Kaiser, A. Levskaya, Reformer: The efficient transformer, in: International Conference on Learning Representations, 2020, URL: https:

//openreview.net/forum?id=rkgNKkHtvB.
[61] Z. Shen, M. Zhang, H. Zhao, S. Yi, H. Li, Efficient attention: Attention with linear complexities, 2020, arXiv:1812.01243.
[62] Y. Liu, J.N. Kutz, S.L. Brunton, Hierarchical deep learning of multiscale differential equation time-steppers, Phil. Trans. R. Soc. A 380 (2229) (2022)

20210200.
[63] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, http://dx.doi.org/10.48550/ARXIV.1412.6980, URL: https://arxiv.org/abs/1412.

6980.
[64] N.H. Nelsen, A.M. Stuart, The random feature model for input-output maps between banach spaces, SIAM J. Sci. Comput. 43 (5) (2021) A3212–A3243.
[65] R. Wang, K. Kashinath, M. Mustafa, A. Albert, R. Yu, Towards physics-informed deep learning for turbulent flow prediction, in: Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20, Association for Computing Machinery, New York, NY, USA,
2020, pp. 1457–1466, http://dx.doi.org/10.1145/3394486.3403198.

[66] V. Shankar, R. Maulik, V. Viswanathan, Differentiable turbulence II, 2023, arXiv preprint arXiv:2307.13533.

http://dx.doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/2003.03485
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb39
https://openreview.net/forum?id=EPPqt3uERT
https://openreview.net/forum?id=EPPqt3uERT
https://openreview.net/forum?id=EPPqt3uERT
http://arxiv.org/abs/2109.13459
http://arxiv.org/abs/2010.08895
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb43
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb43
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb43
http://arxiv.org/abs/2111.13802
http://arxiv.org/abs/2005.12872
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb46
http://arxiv.org/abs/2304.03571
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb48
http://arxiv.org/abs/2209.14977
http://arxiv.org/abs/2302.14376
http://arxiv.org/abs/2303.08891
http://arxiv.org/abs/2201.01032
http://arxiv.org/abs/2210.10890
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb54
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb54
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb54
http://arxiv.org/abs/2305.17560
http://arxiv.org/abs/2201.09113
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/2007.14062
http://arxiv.org/abs/2004.05150
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
http://arxiv.org/abs/1812.01243
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb62
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb62
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb62
http://dx.doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0045-7825(24)00239-1/sb64
http://dx.doi.org/10.1145/3394486.3403198
http://arxiv.org/abs/2307.13533

	Multi-scale time-stepping of Partial Differential Equations with transformers
	Introduction
	Methodology
	Convolutional autoencoder
	The attention mechanism
	Transformer
	Assembly and training

	Experiments and discussion
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

