Check for
Updates

Lightweight Automated Reasoning for Network

Architectures
Rahul Bothra Venkat Arun Brighten Godfrey
UIuC UT Austin UIUC and Broadcom
Akshay Narayan Ahmed Saeed
Brown University Georgia Tech
Abstract Keywords

Architecting a modern data center network is increasingly
complicated. Seeking the highest performance and support
for emerging workloads, network architects planning a build-
out must choose from a large selection of switching compo-
nents, NICs, network stacks, congestion control algorithms,
routing schemes, measurement systems, virtualization soft-
ware, centralized bandwidth allocators and security mech-
anisms, all from various vendors. Today, manual planning
by human experts is time-consuming at best, and can eas-
ily result in overlooked design choices or missed complex
inter-dependencies.

We propose a radical departure from typical whiteboard-
and-spreadsheet planning, and ask: is it possible to reason
automatically about possible network architectural designs?
Such an approach is nontrivial since formal reasoning about
even a single component (like routing systems) is difficult,
and we seek to understand how a variety of functional com-
ponents fit together. We explore the challenge through ex-
amples and propose an automated lightweight reasoning
framework that models architectural complexities at a broad,
but shallow, level of abstraction. Such a framework could
serve as a useful design tool for network architects, for care-
ful cross-team planning, and even to help vendors plan prod-
uct features and requirements.

CCS Concepts

« Networks — Network architectures; Network man-
agement.

This work is licensed under a Creative Commons Attribution International
4.0 License.

HotNets 24, November 18—19, 2024, Irvine, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1272-2/24/11
h’[tps://doi.org/lo.l145/3696348.3696865

237

Network Verification, Network Management

ACM Reference Format:

Rahul Bothra, Venkat Arun, Brighten Godfrey, Akshay Narayan,
and Ahmed Saeed. 2024. Lightweight Automated Reasoning for
Network Architectures. In The 23rd ACM Workshop on Hot Topics
in Networks (HotNets *24), November 18—19, 2024, Irvine, CA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3696348.
3696865

1 Introduction

The modern network architect faces a daunting task. They
must decide what combination of systems and hardware (we
refer to this combination as the network architecture) to de-
ploy to handle tasks such as bandwidth allocation, traffic
engineering, network virtualization, security, end-host net-
work processing, and more. This choice may depend on the
applications the architect wants to support, their hardware
inventory, or their software engineering needs.

In the past three decades, our vibrant community has pro-
vided many sophisticated and niche systems—using every-
thing from standard software to special-purpose hardware—
to fill these needs. For instance, an architect can achieve
bandwidth allocation goals with end-to-end congestion con-
trol, centralized allocators, traffic engineering, in-network
packet scheduling, and various combinations of these op-
tions. Architects can deploy firewalls, connection terminat-
ing proxies and load balancers at edge sites, near datacen-
ters, or inside servers; these features can be software-based
or use hardware accelerators. To process packets, end hosts
may use the OS network stack, kernel bypass libraries, or
hardware offloads. Each of these choices has different trade-
offs and places different constraints on the rest of the archi-
tecture. For instance, deploying a load balancer at an edge
site may make it easier to also deploy a firewall there since
resources are already provisioned. Likewise, some kernel by-
pass network stacks require applications to be modified or
be compatible.

The result of this new landscape is that network architects
must now not only make an increasing number of choices,
but also choose between an increasing number of options,

HotNets "24, November 18-19, 2024, Irvine, CA, USA

each with its own nuances. The sheer number of choices
and the complex interactions between those choices places
a large burden on the working memory of human network
architects. While hyperscaler organizations may be able to
dedicate human resources to the task of designing and main-
taining network designs, not all organizations that build com-
plex infrastructure are hyperscalers. Even for hyperscalers,
this reliance on fallible humans is likely to cause errors, just
as writing complex software in assembly is unsustainable;
indeed, hyperscaler organizations have already begun to use
computer assistance for keeping track of network hardware
inventory and configuration [25, 33]. We propose extending
this to consider which systems to deploy as well as what
hardware to deploy them on.

While the community invests significant effort into char-
acterizing individual systems by benchmarking their imple-
mentations and by simulating and mathematically analyz-
ing their models, there are no principled methods to decide
how to put them together into a complete architecture de-
sign. Consider an oracle that could model the interactions
between an architecture design’s component systems and
hardware. Architects could ask such an oracle whether a
candidate design (i.e, specific choices of hardware and soft-
ware) would meet their applications’ needs, or even ask the
oracle to synthesize a good design. Meanwhile, teams of
architects could use the oracle to ensure that their design
is cross-compatible with other teams’ architecture. Further,
system and hardware developers can use information the
oracle has to configure and develop their systems to better
serve the application. Creating such an oracle is difficult, but
we take a first step towards it in this paper and call for fur-
ther research to help navigate the network architecture de-
sign tradeoff space.

We posit that, to reason about usefully large architecture
design questions, the modelling must be shallower. Since it
is quite difficult to entirely understand the behavior of even
one individual component, reasoning about components’ in-
teractions will be intractable without abstractions. We there-
fore propose the development of an automated lightweight
reasoning engine to encode known facts about deployable
systems, hardware components, and application workloads,
without encoding any information about their implementa-
tions.

Such an engine can serve as a machine- and human-read-
able compendium of knowledge gathered over years of work
by the community. Individual facts are often lost in natural-
language design documents; encoding them in a reasoning
system allows for surfacing them when they become rele-
vant. We envision that, once bootstrapped by a small team,
this compendium will receive contributions from the entire
community.

238

Bothra et. al.

In this position paper, we take a first step towards realiz-
ing this vision. First, in §2 we argue that network architec-
ture design is an error-prone task that would benefit from
computer aids. Second, in §3 we explore design options for
realizing a lightweight automated reasoning system, includ-
ing using large language models to automate knowledge
gathering. Third, in §5.1 we provide examples of how it is
possible to use lightweight automated reasoning to reason
about network architecture design problems.

2 Why lightweight automated reasoning?

We argue that current ad-hoc approaches no longer suffice
for modern network design problems, and further that ad-
hoc design is to blame for a class of network faults and
downtime.

2.1 Growing Search Space

Modern networks require complex functionalities satisfied
by multiple systems deployed together performing different
tasks (monitoring, serialization, firewalling, congestion con-
trol, transport stack). For each task, there are a large number
of systems that can perform it. For example, consider the
problem of bandwidth allocation. There are many systems
that divide available capacity between network participants
according to some sharing policy. Even just with datacenter
networks, systems’ details vary widely, from fully decentral-
ized congestion controllers such as Cubic [16], DCTCP [1]
and HPCC [22], to entirely centralized controllers like Fast-
pass [30] and BwE [20]. Operators specialize for specific
parts of the network at varying spatial and temporal scales,
and each deployed system plays a part in determining the ul-
timate bandwidth allocation an individual flow can achieve.

2.2 Subtle Interactions

Not only is the set of systems under consideration quite
large, but these systems also interact with each other in nu-
merous ways that are often subtle and hard to remember,
frustrating deployment efforts. We categorize these interac-
tions in the following broad ways:

Network requirements. Each deployed system increasin-
gly comes with a set of caveats—i.e., requirements for its
deployment environment that must hold for the system to
be useful. For example, to be useful, a delay-based conges-
tion control algorithm such as Swift or Vegas [3, 21] can-
not compete with a buffer-filling one unless it is deployed
as a “scavenger” transport. Even in that case, the architect
must ensure that the network queues are sufficiently deep
to avoid hurting the non-scavenger flows [36].

Since these requirements are subtle, and don’t raise an
explicit error when unmet, they often trickle down into pro-
duction systems. For example, it is well known that PFC

Lightweight Automated Reasoning for Network Architectures

requires an absence of cyclic buffer dependencies, and oth-
erwise can cause deadlock. In a real deployment scenario,
Microsoft reasoned that no cyclic buffer dependency should
exist in their deployment because of their datacenter’s rout-
ing configuration [14]. However, they missed that Ether-
net packet flooding was already in-place, which broke the
routing configuration’s invariant, causing deadlocks in their
production network. While a PFC expert might have antici-
pated this problem, such subtle interactions are difficult for
others to track. Thus, encoding the nuances and checking
them systematically is the best way to eliminate this class
of faults.

Cross-team interactions. Different teams work on deploy-
ing and testing systems at different layers of the data pro-
cessing stack, and a given layer often makes assumptions
about other layers’ behavior. Keeping track of these assump-
tions is challenging, especially since they cut across multiple
layers and teams. For example, a recent VMware incident
involved VMs achieving zero throughput, where the root
cause was a checksum error due to double encapsulation at
different layers in an overlay network [18]. While the infor-
mation about expected checksum and encapsulation tech-
niques was available in the documentation for each layer’s
component, to prevent this incident architects would have
had to cross-reference documentation between the layers.

Resource contention. For example, one form of interac-
tion is contention for resources (e.g. QoS classes, FPGA gates
and memory, CPU cores, etc). Most systems require some re-
sources for their deployment, taking away the coexistence
of many systems which contend for the same resource.

2.3 Case Study

We further stress the above points noted (and more) with a
case study of the rich trade-off space available for designing
a modern cloud network. Afterwards, in §3, we will discuss
how to model the architectural design decisions we describe
here.

In our example, the architect wants to deploy a machine
learning inference application. The architect wants the ap-
plication to serve requests with low latency, so they want
to use load balancing. To ensure network delays do not in-
terfere with the application’s low latency, the architect also
wants to monitor network queue lengths.

Even this straightforward example contains a nuanced
web of interactions between the application’s component
systems, the hardware resources it uses, and the architect’s
goals. The architect can consider component systems for
one of at least five roles: a network virtualization approach

239

HotNets "24, November 18-19, 2024, Irvine, CA, USA

(e.g., OVS [31], Andromeda [5], or a hardware-offloaded ap-
proach [8]), a network stack (e.g., Linux, Snap [23], NetChan-
nel [4]), a congestion control algorithm (e.g., Timely [24],

Swift [21], Annulus [32], BFC [12]), a load balancing algo-
rithm (e.g., ECMP, VLB, packet spraying), and a network

monitoring system with the capability for queue-length mon-
itoring (e.g., Simon [11], Sonata [15], Marple [26]). The archi-
tect could additionally consider other component systems

(e.g., caches, etc), but even the five we enumerate interact

in nuanced ways. The architect must also consider the hard-
ware they will deploy systems and their processing logic

on, from the number of CPUs to the types of switches (pro-
grammable vs fixed-function) and types of NICs (fixed-func-
tion, FPGA SmartNIC, or CPU SmartNIC).

Suppose the architect initially chooses the simplest choi-
ces: they use OVS for virtualization, the Linux networking
stack (with its default Cubic algorithm for congestion con-
trol), ECMP for load balancing, and they forgo network mon-
itoring. They might deploy these systems on fixed-function
standard hardware. This solution, while easy to understand,
is unlikely to meet the architect’s goal of low latency. Thus,
the architect must pursue more complicated solutions. The
architect might observe that ECMP load balancing can lead
to load imbalance, and consider using packet spraying in-
stead. Simultaneously, the architect could deploy one of the
queue length monitoring systems mentioned above, or us-
ing a kernel-bypass network stack option.

Each of these choices requires the architect to satisfy some
dependencies to deploy it. For example, packet spraying re-
quires larger reorder buffers at NICs. Using Annulus for con-
gestion control will improve tail latency, but requires switch-
es to support QCN notifications. Particular switch models
may support QCN, but offer lower performance when such
features are used in conjunction with virtualization features.
Deploying Simon for monitoring latencies requires Smart-
NICs, but if the architect deploys these SmartNICs, then the
marginal cost of deploying other systems using SmartNICs
decreases since the systems can share SmartNIC resources.
Using NetChannel [4] as the networking stack can support
high throughput, but this is only relevant at NIC speeds
above 40 Gbit/s; Shenango [28] offers low latencies but less
process isolation. None of these facts is particularly compli-
cated to reason about in isolation, but they rapidly become
overwhelming to remember all at once in the context of a
particular application and hardware landscape. As described
above, changing one aspect of design can have a ripple ef-
fect influencing the choices made at every other part of the
design. Fortunately, keeping track of a large volume of de-
tails is a task computers excel at, as long as we design the
right representation. This is the design task we turn to next.

HotNets "24, November 18-19, 2024, Irvine, CA, USA

7
Throughput Network load ,/
Red Isolation < 40 Gbps 4
’
Blue | Application 4
Modification Y
Solid | Points to l Demikernel l
Arrow |lower system t_/
Dashed | Both are)
Line equal P |}
|
Network load \K@ : If (Pony enabled)
>= 40 Gbps | > If (TCP enabled)

! NetChannel

Figure 1: Visualization of a fraction of the partial or-
dering for network Stacks.

Linux E=----=C

3 Design
3.1 At what level should we encode information?

Our approach hinges on a key observation: architects can
check a large number of system properties by focusing on
a few crucial details. For instance, the selection between
HPCC [22] and Timely or Swift [21, 24] for datacenter con-
gestion control depends, partially, on the fact that HPCC
needs INT-enabled switches [22], while Timely and Swift
depend on a specific QoS level for acknowledgements and
NIC timestamps [21, 24]. This style of reasoning is easy to
mimic with a rule-based lightweight reasoning engine. The
engine does not need to know what the systems do; it just
needs to know how the systems depend on other systems
and hardware. Of course, encoding all the hardware compo-
nents ever designed or all software systems ever developed
would be an impossible task. Thus, while any useful reason-
ing engine should provide correct solutions, it must also ac-
cept that not all information can be encoded.

Rules-of-thumb. This encoding can thus act as a computer-
readable repository of knowledge gained from deployment

experience, implementation benchmarks, simulations and

mathematical analyses. For instance, consider how one might
encode preferences between six different choices for the net-
work stack along three different dimensions: throughput, la-
tency, and application modification. Examining research pa-
pers introducing each of the systems, we can easily extract

the partial ordering shown in Figure 1. The ordering repre-
sents rules of thumb, encoding the relative preference con-
ditional on simple constraints. For instance, Linux is usually

sufficiently performant at low link rates (say < 40 Gbps) [23,

28], and while Snap [23] performs better when using Pony,

using Pony requires application modification.

240

Bothra et. al.

Since it is impossible to encode all possible facts, rules-of-
thumb will be incomplete. For instance, there is no arrow be-
tween Shenango [28] and Demikernel [39] comparing their
isolation properties because we couldn’t find a comparison
in the literature. Indeed, it is impractical to compare every
possible pair of systems. Nevertheless, our proposed engine
can help architects make more a informed decision regard-
ing whether they should perform an measurement to ac-
quire additional information: it is only needed if the answer
changes the final design. For instance, if the architect has
a sharp deployment deadline, then using a research system
like Shenango is infeasible irrespective of its performance
characteristics. This is where it is important to also enable ar-
chitects to encode their subjective and organization-specific
rules. Reasoning about subjective preferences captures the
fact that everybody has a different opinion on which is the
“best” algorithm or architecture (e.g., the debate on ECN vs
delay in datacenter CCAs [40]).

Granularity. Since encoding rules-of-thumb requires the
architect’s effort, it is not practical to expect them to en-
code minutiae about each potential system they wish to con-
sider. Rather, we envision that architects will encode rules-
of-thumb incrementally, in a breadth-first manner; i.e., ar-
chitects should start with a minimal set of coarse rules neces-
sary to describe a system before attempting to encode facts
at finer levels of granularity (if necessary). While we show
in §4 that it may be possible to auto-encode hardware com-
ponents and software systems using language models, the
architect cannot trust the model’s output; instead, we en-
vision breadth-first granularity refinement as a strategy to
limit the architect’s effort in verifying the models’ output.

Occasionally, it is possible to make an accurate quanti-
tative statement without having to run a benchmark every
time. For example, hardware properties such as the amount
of memory, number of ports/queues and various bandwidth
measures are easy to accurately characterize. Further, it is
common practice to characterize the fraction of CPUs and
FPGAs used by individual programs. There are even stan-
dardized scaling factors used between different CPU models
used in the Linux kernel [38]. On the other hand, because
of the highly non-convex optimization space for packet pro-
cessing pipelines, any description of which subset of P4 pro-
grams will fit into a given switch will grow super-linearly
(even exponentially!) in the number of programs [9, 10]. One
measure of the success of whether this endeavor is whether
the length of specification should grow linearly with the
number of systems, hardware and workloads included. If
not, writing all rules will become very difficult. Therefore,
our proposed system will not reason about which P4 pro-
grams can fit into switches, except using the type of crude
approximations human designers use.

Lightweight Automated Reasoning for Network Architectures

3.2 What should not be encoded?

The example above is one instance of what the reasoning
engine cannot reason about. While it is theoretically pos-
sible to encode this information, it is not practically scal-
able to reason about it for the goals that we want to achieve.
There are two such categories of facts that we believe are
not practical or worthwhile to encode. First, encoding per-
formance numbers is not practical, since they can vary with
even small configuration changes, which are beyond the scope
of what the engine can capture. Instead, encoding perfor-
mance as a partial ordering like Figure 1 captures enough
information to allow the engine to produce useful outputs.
Second, encoding temporal behavior or even the entire al-
gorithm of a software system is again a complex task, and is
best left to more dedicated formal reasoning systems. This
reasoning engine should only capture the rules-of-thumb in-
formation of a system without attempting to encode the en-
tire underlying system itself.

3.3 Who does the encoding?

Who writes these rules-of-thumb? There are too many sys-
tems and hardware for any one person to understand all

their nuances. However, for any given system there will

be one or more experts who do know its implementation

details, deployment caveats, and resulting performance im-
pact. A lightweight reasoning framework provides them with
an API to document their system’s characteristics. To an in-
dividual system expert, documenting their system’s charac-
teristics is not only straightforward but also independently

useful for the same reason documenting code is useful: as

a point of future reference.! In writing the rules-of-thumb

for this paper, we consulted several experts. After bootstrap-
ping with an initial knowledge-base, we hope community ef-
forts will expand both the quality and quantity of the library

of knowledge. We additionally explore in §4 whether LLMs

can help with automatically encoding knowledge about sys-
tems and hardware.

3.4 How do we reason about these rules?

The rules-of-thumb need to be encoded into a logical frame-
work. To this end, we consider leveraging extensive work
into rule-based systems [19, 37], SMT solvers [2, 6], and the-
orem provers [7, 34]. We identify a key tradeoff that will
inform this choice of which system of logic we should use.
A lot of reasoning can be done with finitely many variables,
and the query can be expressed as an existentially quantified
formula, for example: “Does there exist a choice of systems
such that the following properties and constraints on cost,
deployability, etc. are met?”. This is a decidable question that
a SAT/SMT solver can answer. The power of such solvers to

! Anecdotally, our personal experience indicates that knowing the imple-
mentation details of a system does not mean one will remember them later.

241

HotNets "24, November 18-19, 2024, Irvine, CA, USA

explore combinatorial search spaces will be critical in navi-
gating the intricate design spaces described in section 2.3.

However, there are some properties that cannot easily be
expressed in decidable logic. Consider for instance, the rule
for checking whether a design using PFC has cyclic buffer
dependencies. As noted before, Microsoft unexpectedly en-
countered this due to ARP flooding in spite of using up-
down routing in a Clos topology [14]. If the engine only
had a description of the routing behaviors for each proto-
col, it could in principle, have discovered this bug automat-
ically. However this requires a type of higher order reason-
ing that is challenging to automate, resulting in undecidable
problems if one is not careful in how we encode the prob-
lem. On the other hand, an expert might have anticipated
this problem with ARP, and could have encoded a require-
ment that PFC cannot be used with any flooding algorithms.
This rule is simple to check with predicate logic. Navigating
this tradeoff is space for future work. Our preliminary ex-
perience indicates that simple predicate logic can already
encode enough rules that it might provide sufficient value
without having to venture in undecidable territory.

Finally, we consider whether it is necessary for the rea-
soning engine to embed “common sense” rules that are al-
ready intuitive to human users. For example, it is obvious to
any human architect that all servers must use some operat-
ing system, but without encoding this fact the reasoning en-
gine could return incoherent results. However, rule-based
reasoning typically requires encoding very large libraries
of “common-sense” rules, and this could potentially intro-
duce potential encoding and reasoning overhead. While we
believe further study is needed to determine the impact of
“common-sense” rules, we believe that because (i) our rea-
soning domain is relatively constrained to just system and
hardware deployments, and (ii) the users are experts who
possess an intuitive understanding of the “common-sense”
rules already, this potential limitation of rule-based reason-
ing will not have a large impact.

We provide some initial examples of using a SAT solver
as the reasoning engine in §5.1.

4 Can We Auto-Generate Encodings?

A primary challenge in applying lightweight automated rea-
soning is the need to encode various hardware and system
instances as deployment candidates. This information is cur-
rently distributed amongst natural-language design docu-
ments, hardware datasheets, published papers, and the minds
of individual architects, and network operators. These need
to be encoded in a more formal and structured way. We ex-
pect to be able to crowd-source many of these encodings
after a small team seeds an initial database of encodings.

HotNets "24, November 18-19, 2024, Irvine, CA, USA

1
2 "Model Name": "Cisco Catalyst 9500-40X",

3 "Port Bandwidth": "1@ Gbps",

4 "Max Power Consumption": "950W",

5 "Ports": "40x 10 Gigabit Ethernet SFP+",

6 "Memory": "16 GB",

7 "P4 Supported?": "No",

8 "# P4 Stages": "N/A",

9 "ECN supported?": "Yes",

"MAC Address Table Size": "64,000 entries",

12 3}

Listing 1: Excerpted auto-generated encoding for a
Cisco Catalyst 9500-40X router.

While humans must lead the charge on this effort, we ex-
plore whether it is possible to obtain help from LLMs to gen-
erate system and hardware encodings. We note prior work
towards a similar goal in the context of hardware compo-
nents [17]. However, network systems, especially software,
are described in a much more heterogeneous document for-
mats (e.g., papers).

In this section, we ask whether (i) LLMs can automati-
cally extract accurate system and hardware encodings from
source documents; (ii) LLMs can check candidate encodings
against source material for errors; and (iii) finally, whether
LLMs can themselves perform lightweight reasoning. In our
analysis, we use GPT-40 by OpenAl [27], but we see similar
results with other models [35], [29].

4.1 Extracting System Encodings

We find that LLMs perform well when extracting hardware
specifications. We described the fields to be filled for swi-
tches, servers, and NICs, etc. We provided the spec sheet
from the vendor and the LLM extracted the fields with 100%
accuracy (unless it was missing in the spec itself). The highly
structured and specific nature of the spec sheets was a cru-
cial factor in this. Listing 1 shows part of the output for the
Cisco Catalyst 9500-40X switch.

Encoding systems was a trickier affair than this. We started
by providing the LLMs some sample encodings describing
Systems like Shenango, Sonata, and Simon. We then asked it
to create similar encodings capturing all requirements and
nuances for Timely, and a few other systems. LLMs were
able to identify the hardware requirements of systems, but
occasionally missed nuances about how much of a resource
is needed, or under what conditions can a system not be
deployed. For example, LLMs failed to encode that Annu-
lus [32] is required only when there is competing WAN and
DC traffic. In particular, many research papers are written
to be largely positive about the systems they propose. There-
fore, it was more productive to ask the LLM to find require-
ments without which the mechanisms paper cannot work.
Sometimes a sequence of prompts were necessary to answer

242

Bothra et. al.

all questions. Thus, while LLMs can help, for the time being,
human supervision is necessary to describe system designs.

4.2 Checking Existing Encodings

Second, and perhaps more realistically, LLMs can check rules
humans write for 1) completeness and 2) objectivity. While
querying LLMs to generate encodings for systems, we found
that it does a better job in finding faults in the sample en-
codings that we wrote by hand. For example, it identified
that we missed checking whether the NIC supports inter-
rupt polling, which is a requirement for Shenango. Inter-
estingly, LLMs could not always check for the correctness
of a condition (especially if it’s loaded with numbers), but
they did a better job of checking for the existence of a con-
dition. For example, it does raise an alarm if we encode the
wrong number of P4 stages to deploy Sonata. Checking can
also improve objectivity. Both humans and the literature are
often biased and LLMs can help ensure objectivity. Every-
body wants to believe their favorite design is best. In con-
trast, LLMs can read a broad range of sources (papers, blog
posts, bug reports, datasheets etc.) and present any conflict-
ing claim to humans who can thus make a more informed
and unbiased decision. LLMs’ ability to scan non-primary
sources like blog posts and mailing lists will prove to be a
valuable asset.

The final design of the reasoning engine must separate
the objective properties that are easy for people to agree on
(e.g. Shenango dedicates a core for spin polling) and con-
troversial, subjective, questions (e.g. which congestion con-
trol algorithm is best in a given setting). Controversial ques-
tions can then be annotated by LLMs and humans with links
to sources that disagree with what is encoded. In our pre-
liminary investigation, the controversial questions were all
about comparisons between systems, while it was easier to
objectively encode details about inter-dependencies between
systems and hardware.

5 Discussion

5.1 Prototype of the reasoning layer

We attempted to build a shim layer over SAT solvers as an
early version of the proposed reasoning layer. We encoded
over fifty systems, spread across Network Stacks, Conges-
tion Control, Network Monitoring, Firewalls, Virtual Swi-
tches, Load Balancers, and Transport Protocols. In addition,
we encode about 200 hardware specs of servers, switches,
NICs, etc, from publicly available information. The encod-
ings follow the design decisions discussed in §3.

As an example, Listing 2 shows a simplified version of
how we encoded the Simon [11] monitoring system. Line 2
describes the objectives the system can achieve. Lines 3-5 de-
scribe the hardware constraints and the resources required

Lightweight Automated Reasoning for Network Architectures

SIMON = System(
solves = [capture_delays, detect_queue_length],
constraints = And(
NICs.have("NIC_TIMESTAMPS"),
computes. cores_needed (CPU_FACTOR*num_flows)))

Ordering(SIMON, monitoring, better_than = PINGMESH)
Ordering (PINGMESH, deployment_ease, better_than = SIMON)

[I - NN, RSO SR N

Listing 2: System description of SIMON.

inference_app = Workload(
properties = [dc_flows, short_flows, high_priority],
deployed_at = racks[0:3],
peak_cores = 2800, peak_bandwidth = 30)

inference_app.set_performance_bound(
objective = load_balancing,
better_than = PacketSpray)

T - Y B N T R N

10 Optimize(latency > Hardware cost > monitoring)

Listing 3: Description of the ML inference workload in
a sample encoding.

to deploy the system. Lines 7-8 compare Simon with other
monitoring systems as a partial ordering.

On top of these encodings, we described the case study
discussed in §2.3. Listing 3 shows a trimmed version of how
we encoded the ML inference application from an architect’s
POV. Lines 2-4 describe where the application is deployed,
what kind of properties does it have, and how many resources
does it use. Lines 6 through 10 describe the performance
objectives and constraints that the architect attempts to en-
force.

We used this encoding to verify how the system deploy-
ment changes as we add more workloads with different prop-
erties. We formulate the following queries to mimic some
realistic situations,

e ['want to support more applications, butI can’t change
my servers since that requires time and human effort.

o I have already deployed Sonata, and I don’t want to
change it unless there are huge performance benefits
or cost savings.

e Given my current workloads, is it worthwhile to de-
ploy CXL memory pooling?

The output of the reasoning layer mimics the outcomes dis-
cussed in §2.3.0ur ability to encode these questions into sim-
ple queries motivates the promise of our reasoning frame-
work as an effective tool for designing architectures.

5.2 LLMs as a reasoning engine

We also explore whether LLMs can also be used here to rea-
son about these rules they helped generate. After describ-
ing the case study in §2.3 in natural language, we posed the
questions discussed in §5.1 to the LLM. While it accurately

243

HotNets "24, November 18-19, 2024, Irvine, CA, USA

determined straightforward requirements such as the min-
imum number of cores needed to deploy all the workloads
and systems, it failed to return correct results when faced
with nuances such as comparing the performance of Snap
and Demikernel in a given context, or deploying P4-friendly
systems when forced to use programmable switches. With
advancement in LLM intelligence, we presume that they will
get better at reasoning about these nuances. But they are
currently falling short of giving meaningful results.

6 Future work

Proof modularity. In formal reasoning systems such as
proof assistants (e.g., Coq [34], Lean [7]), modifying a sys-
tem’s encoding over time to reflect its evolution can involve
a significant amount of work. Instead, we believe that our
lightweight reasoning system will support modular reason-
ing. Since we don’t assign semantics to any individual prop-
erty, it is possible for a new system (or a new version of
an old system) to update the properties it provides. It is thus
useful to study whether systems can modularly encode their
properties in this way, and how the reasoning engine should
model interactions between various systems as encodings
evolve.

Explainability. It is likely that an architect’s inputs to a
lightweight reasoning system will be under-specified, leav-
ing both the possibility for multiple viable solutions or none
at all. If there are no viable solutions, the reasoning frame-
work should tell the architect which of their requirements
are in conflict. Further, a future version of the reasoning sys-
tem should identify a minimal-effort ordering for the archi-
tect to provide to make the solution unique. It will also be
important for the reasoning system to identify equivalence
clas-ses of system deployments, rather than simply return-
ing an arbitrary but compliant solution, as is often accept-
able in program synthesis literature [13].

7 Conclusion

As network architectures become more complex, architects
will increasingly rely on automated reasoning to check their
decisions and raise warnings about their deployments. In
this paper, we show the value of automated reasoning and
take first step towards this line of research by designing a
way of encoding facts about systems at a level that is simple
enough to be broad, yet still allow reasoning engines to give
useful and surprising outputs.

Acknowledgements

We thank the reviewers for their feedback. We acknowledge
support from NSF grants CNS-2403026 and CNS-2212103.
Rahul thanks his parents for their sacrifices and support.

HotNets "24, November 18-19, 2024, Irvine, CA, USA

References

[1] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra

[10

[11

[12

(14

—

[t

—

—

—_

=

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Mu-
rari Sridharan. 2010. Data Center TCP (DCTCP). In SIGCOMM.
Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Notzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A
Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems, Dana Fisman and Grigore
Rosu (Eds.). Springer International Publishing, Cham, 415-442.
Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994.
TCP Vegas: New Techniques for Congestion Detection and Avoidance.
In SIGCOMM.

Qizhe Cai, Midhul Vuppalapati, Jaechyun Hwang, Christos Kozyrakis,
and Rachit Agarwal. 2022. Towards ps Tail Latency and Terabit Eth-
ernet: Disaggregating the Host Network Stack. In SSIGCOMM. https:
//doi.org/10.1145/3544216.3544230

Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, An-
shuman Gupta, Brian Fahs, Dima Rubinstein, Enrique Candromeda
Zermeno, Erik Rubow, James Alexander Docauer, Jesse Alpert, Jing
Ai, Jon Olson, Kevin DeCabooter, Marc de Kruijf, Nan Hua, Nathan
Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan, Sub-
baiah Venkata, Yossi Richter, Uday Naik, and Amin Vahdat. 2018. An-
dromeda: Performance, Isolation, and Velocity at Scale in Cloud Net-
work Virtualization. In NSDL

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: an efficient
SMT solver (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidel-
berg, 337-340.

Leonardo Mendonca de Moura, Soonho Kong, Jeremy Avigad, Floris
van Doorn, and Jakob von Raumer. 2015. The Lean Theorem Prover
(System Description). In CADE. https://doi.org/10.1007/978-3-319-
21401-6_26

Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host Sdn
in the Public Cloud. In NSDL

Xiangyu Gao, Taegyun Kim, Michael D Wong, Divya Raghunathan,
Aatish Kishan Varma, Pravein Govindan Kannan, Anirudh Sivaraman,
Srinivas Narayana, and Aarti Gupta. 2020. Switch code generation us-
ing program synthesis. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applica-
tions, technologies, architectures, and protocols for computer communi-
cation. 44-61.

Xiangyu Gao, Divya Raghunathan, Ruijie Fang, Tao Wang, Xiaotong
Zhu, Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta. 2023.
CaT: A Solver-Aided Compiler for Packet-Processing Pipelines. In Pro-
ceedings of the 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 3. 72—
88.

Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel
Rosenblum, and Amin Vahdat. 2019. SIMON: A Simple and Scalable
Method for Sensing, Inference and Measurement in Data Center Net-
works. In NSDL

Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mo-
hammad Alizadeh, and Thomas E. Anderson. 2022. Backpressure Flow
Control. In NSDL

Sumit Gulwani. 2016. Programming by Examples - and its applica-
tions in Data Wrangling. In Dependable Software Systems Engineering,
Javier Esparza, Orna Grumberg, and Salomon Sickert (Eds.). Vol. 45.
Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. 2016. RDMA over commodity eth-
ernet at scale. In Proceedings of the 2016 ACM SIGCOMM Conference.

244

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Bothra et. al.

202-215.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-Driven Streaming
Network Telemetry. In SIGCOMM. https://doi.org/10.1145/3230543.
3230555

Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-
Friendly High-Speed TCP Variant. SIGOPS Oper. Syst. Rev. 42, 5 (jul
2008), 64-74. https://doi.org/10.1145/1400097.1400105

Luke Hsiao, Sen Wu, Nicholas Chiang, Christopher Ré, and Philip
Levis. 2019. Automating the generation of hardware component
knowledge bases. In LCTES (LCTES 2019). https://doi.org/10.1145/
3316482.3326344

VMWare Inc. 2023. VMware Container Networking with Antrea 1.7.0
Release Notes. https://docs.vmware.com/en/VMware-Container-
Networking-with- Antrea/1.7.0/rn/vmware-container-networking-
with-antrea-170-release-notes.pdf

Grigoris Karvounarakis. 2009. Datalog. Springer US, Boston, MA,
751-754. https://doi.org/10.1007/978-0-387-39940-9_968

Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil
Kasinadhuni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai,
Bjorn Carlin, Mihai Amarandei-Stavila, Mathieu Robin, Aspi Sigan-
poria, Stephen Stuart, and Amin Vahdat. 2015. BwE: Flexible, Hier-
archical Bandwidth Allocation for WAN Distributed Computing. In
SIGCOMM. https://doi.org/10.1145/2785956.2787478

Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Was-
sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,
Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vah-
dat. 2020. Swift: Delay is Simple and Effective for Congestion Control
in the Datacenter. In SIGCOMM.

Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng,
Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-
izadeh, and Minlan Yu. 2019. HPCC: High Precision Congestion Con-
trol. In SIGCOMM.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to
Host Networking. In SOSP. https://doi.org/10.1145/3341301.3359657
Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily R. Blem,
Hassan M. G. Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang,
David Wetherall, and David Zats. 2015. TIMELY: RTT-based Conges-
tion Control for the Datacenter. In SIGCOMM.

Jeffrey C. Mogul, Drago Goricanec, Martin Pool, Anees Shaikh, Dou-
glas Turk, Bikash Koley, and Xiaoxue Zhao. 2020. Experiences with
Modeling Network Topologies at Multiple Levels of Abstraction . In
NSDL

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. 2017. Language-Directed Hardware Design for
Network Performance Monitoring. In SSGCOMM. https://doi.org/10.
1145/3098822.3098829

OpenAlL 2024. How can I access GPT-4, GPT-4 Turbo and GPT-
40? https://help.openai.com/en/articles/7102672-how-can-i-access-
gpt-4-gpt-4-turbo-and-gpt-40

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-sensitive Datacenter Workloads. In NSDIL

Perplexity AL 2024. Perplexity. https://www.perplexity.ai. Al search
and chat tool.

Lightweight Automated Reasoning for Network Architectures

(30]

(31

—

[32

—

(33]

(34
(35

=

(36

—

(37]

(38

[t

(39

[

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. 2014. Fastpass: A Centralized "Zero-Queue” Datacen-
ter Network. In SIGCOMM. https://doi.org/10.1145/2619239.2626309
Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin
Shelar, Keith Amidon, and Martin Casado. 2015. The Design and Im-
plementation of Open VSwitch. In NSDL

Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan,
Mostafa H. Ammar, Ellen W. Zegura, Keon Jang, Mohammad Al-
izadeh, Abdul Kabbani, and Amin Vahdat. 2020. Annulus: A Dual Con-
gestion Control Loop for Datacenter and WAN Traffic Aggregates. In
SIGCOMM. https://doi.org/10.1145/3387514.3405899

Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY. Wong, and Hongyi
Zeng. 2016. Robotron: Top-down Network Management at Facebook
Scale. In SIGCOMM.

Coq Team. [n.d.]. The Coq Proof Assistant. https://coq.inria.fr/.
Gemini Team. 2024. Gemini: A Family of Highly Capable Multimodal
Models. arXiv:2312.11805 [cs.CL] https://arxiv.org/abs/2312.11805
Michael Welzl and David Ros. 2011. RFC 6297: A Survey of Lower-
than-Best-Effort Transport Protocols. (2011). https://www.rfc-editor.
org/rfc/rfc6297

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjorn Lager.
2012. SWI-Prolog. Theory and Practice of Logic Programming 12, 1-2
(2012), 67-96.

Rafael J. Wysocki. 2017. Capacity Aware Scheduling in the Linux
Kernel. https://www.kernel.org/doc/html/latest/scheduler/sched-
capacity.html

Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob
Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Korn-
feld Simpson, Sujay Jayakar, Pedro Henrique Penna, Max Demoulin,
Piali Choudhury, and Anirudh Badam. 2021. The Demikernel Data-
path OS Architecture for Microsecond-Scale Datacenter Systems. In
SOSP. https://doi.org/10.1145/3477132.3483569

Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. 2016.
ECN or Delay: Lessons Learnt from Analysis of DCQCN and TIMELY.
In Proceedings of the 12th International on Conference on emerging Net-
working EXperiments and Technologies. 313-327.

245

HotNets "24, November 18-19, 2024, Irvine, CA, USA

