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Rigorous analysis of diversity-dependence—the hypothesis that the rate of
proliferation of new species is inversely related to standing diversity—
requires consideration of the ecology of the organisms in question.
Differences between infaunal marine bivalves (living entirely within the
sediment) and epifaunal forms (living partially or completely above
the sediment–water interface) predict that these major ecological groups
should have different diversity dynamics: epifaunal species may compete
more intensely for space and be more susceptible to predation and physical
disturbance. By comparing detrended standing diversity with rates of
diversification, origination, and extinction in this exceptional fossil record,
we find that epifaunal bivalves experienced significant, negative diversity-
dependence in origination and net diversification, whereas infaunal forms
show little appreciable relationship between diversity and evolutionary
rates. This macroevolutionary contrast is robust to the time span over
which dynamics are analysed, whether mass-extinction rebounds are
included in the analysis, the treatment of stratigraphic ranges that are not
maximally resolved, and the details of detrending. We also find that
diversity-dependence persists over hundreds of millions of years, even
though diversity itself rises nearly exponentially, belying the notion that
diversity-dependence must imply equilibrial diversity dynamics.
1. Introduction
(a) Diversity-dependent diversification in the history of life
Whether the rate of proliferation of new species depends on standing diversity
remains a fundamental, largely unanswered question in ecology, evolutionary
biology and palaeontology [1]. The fossil record of marine life often shows
rates of diversification to be negatively correlated with diversity [1–7]. Periods
of relatively high diversity in the oceans saw suppressed diversification rates
compared to times when there were fewer taxa, as in the immediate aftermaths
of mass extinctions. Despite abundant palaeontological evidence for diversity-
dependence, this crucial issue remains contentious [1,8,9]. Long-term dynamics
over tens to hundreds of millions of years are mostly understood from analyses
of the global biota and a few major clades, and while the patterns are strong
[2,7,10], the broad taxonomic scope of most analyses often encompasses ecolo-
gically disparate taxa that are unlikely to interact. Thoroughly testing potential
drivers requires an analytical design that explicitly incorporates ecological
differences among lineages and larger clades [5], focuses on species that have
the potential to interact ecologically, draws data from clades with a robust
and temporally well-resolved fossil record, and covers the long spans of time
relevant to macroevolutionary dynamics. Marine bivalves satisfy these desider-
ata. Moreover, compared to analyses of only living taxa, long-term
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palaeontological time series can better delimit the roles of
speciation and extinction [6,7,11,12].

(b) Potential role for ecology in bivalve diversification
Competition for available space has been widely documented
in living marine species [13,14] and has been argued to under-
pin diversity dynamics at the macroevolutionary scale in
certain habitats [4,15–17]. Using the fossil record of marine
bivalves, a model system for studying macroevolution
through the Phanerozoic [3,18–20], we test for differences in
the diversity-dependence of evolutionary rates in two princi-
pal life modes: infaunal forms, those living enclosed within a
substratum, and epifaunal forms, operationally defined here
to include those living entirely atop, attached to, or partly
within the substratum [21–26].

Epifauna experience greater exposure to predation and
substratum disturbance than infauna, both from physical pro-
cesses (wave energy) and churning of sediments by other
animals (bioturbation), the latter having substantially
increased through the Phanerozoic [27–29]. Predation and
bioturbation can limit the relative amounts of habitat avail-
able to epifauna, restricting those taxa to spatially limited
refugia, hardgrounds or undisturbed soft sediment [27,30].
Thus, we would expect epifauna to show stronger negative
diversity-dependence than infauna. Given the wide avail-
ability of infaunal habitats across continental shelves
through time, we expect weaker diversity-dependence in
the evolutionary rates of infauna, although, on ecological
scales, certain infaunal bivalves show density-dependent
migration or repositioning in response to crowding from
other bivalve taxa [31,32]. Finally, we test whether the two
ecological groups may conceivably interact as a coupled
system; bioturbation by infauna might exclude epifauna
from potential habitat [27,28,33], raising the possibility that
elevated diversity and abundance of infauna negatively
impact the evolutionary rates of the epifauna. At the same
time, epifauna could potentially affect infauna by increasing
the volume of coarse skeletal material in the sediment,
thereby inhibiting infaunal burrowing [34,35].
2. Material and methods
(a) Data
We analyse diversity dynamics using a database of 3365 fossil
marine bivalve genera, compiled from a compendium of first
and last stratigraphic occurrences [36] that has been heavily
vetted and substantially expanded using the primary literature
and museum collections over more than 20 years [18–20,23,37–
39]. Genera were classified as infaunal (N = 2098) and epifaunal
(N = 1267) using aspects of their functional morphology and
phylogenetic affinity [21,22,24–26] (electronic supplementary
material, tables S1,S2).

(b) Analysis of diversity dynamics
Estimates of richness and taxonomic rates of evolution used the
standard ‘boundary-crosser’ methods for stratigraphic range
data [40]. To minimize edge effects [40,41] and the impact of
sparse Cambrian and earliest Ordovician data, we analyse data
from the Ordovician Floian Stage through the Miocene Epoch
(electronic supplementary material, text; electronic supplemen-
tary material, table S1). This approach tacitly assumes that
palaeontological completeness is high enough to treat observed
first and last appearances as proxies for times of origination
and extinction. Many methods exist for estimating rates with
incomplete sampling [7,41,42], but the high fidelity of the bivalve
record and the similar preservation potential of the two ecologi-
cal groups obviate the need for complex approaches. In the
spatial and temporal parts of the geological record analysed
here, using methods in [43–47], we estimate that over 90% of
bivalve genera are sampled at least once during their lifetimes,
and, on average, over 90% of their original durations are rep-
resented by their preserved stratigraphic ranges (electronic
supplementary material, table S3). These exceptionally high com-
pleteness estimates, even compared with those from an early
version of this database [48], exceed estimates with data from
the Paleobiology Database [49] (electronic supplementary
material, table S3). High completeness reflects both the intrinsic
preservability of bivalve molluscs [50] and the continued
growth and vetting of the database, and it gives us confidence
in inferring evolutionary dynamics.

Our approach to testing for diversity-dependent diversifica-
tion follows recent studies [6,7,51] that compare standing
diversity at the start of a time interval to rates of origination,
extinction, and net diversification (origination minus extinction)
in the ensuing part of that interval. To reflect the multiplicative
nature of diversification, richness is expressed logarithmically.
To avoid the assumption of a constant carrying capacity or a par-
ticular model of diversification [2,4,52,53], we detrend all time
series, via LOWESS regression with a smoothing span f = 0.5,
and measure the rank-order correlations between residuals of
diversity and taxonomic rates relative to long-term trends
(figures 1 and 2, electronic supplementary material, S1, S2;
table 1). The hypothesis of diversity-dependence predicts a nega-
tive correlation between diversity residuals and diversification-
rate residuals. Given the general statistical phenomenon of
regression to the mean, diversity and diversification rate tend
be negatively correlated even if rates are independent of diversity
[54,55]. We therefore use a randomization procedure [6,7] to
determine whether observed correlations are stronger than
would be expected for a diversity-independent process.

All analyses were carried out in R version 4.3.0 [56].
3. Results and discussion
(a) Contrasting diversification dynamics
Class Bivalvia has diversified over the past 500 million years
in a roughly exponential pattern [3] (figure 1). Both the
infauna and epifauna followed this upward diversification
trajectory, although infauna outpaced the epifauna starting
in the Jurassic, ultimately becoming three times as rich by
the Miocene (figure 1a,b; electronic supplementary material,
table S2). Each group shows high temporal variation in diver-
sification rate, but the average over the Phanerozoic barely
exceeds nil in either group (figure 1c,d), a nice illustration
of the compounding effect of even a slightly positive
diversification rate over hundreds of millions of years.

Mass extinctions depleted diversity in both groups,
disproportionately affecting infauna at the end-Permian and
epifauna at the end-Cretaceous, but both groups re-diversi-
fied after these and other events [3] (figure 1a,b). Analysing
and interpreting each fluctuation in these diversity curves is
beside our main objective, but certain patterns observed
here align with prior knowledge of bivalve diversification.
For example, the relatively high standing diversity of the
epifauna in the Late Cretaceous reflects the exceptional diver-
sification of the tropical-platform rudists and the reclining
gryphaeids and inoceramids.
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Across the study interval, infaunal and epifaunal genera,
and bivalves as a whole, show that extinction rates do not
increase with diversity (figure 2i–l; table 1), consistent with
previous analyses [7,57,58]. These distinct ecological groups,
however, show different dynamics in their rates of origination
and net diversification. Infaunal genera have experienced
relatively weak, and statistically insignificant, diversity-
dependence in origination rate and net diversification rate
(figure 2a,b,e,f; table 1). Epifauna, by contrast, show stronger
and statistically significant diversity-dependence in both their
origination and net diversification rates (figure 2c,d,g,h;
table 1). Rather than rebounding only from major mass
extinctions, origination and net diversification of the epifauna
were both enhanced when diversity was reduced and
suppressed when diversity increased.

Patterns of diversity-dependence in origination and net
diversification rates for both life modes are largely insensitive
to variations in analytical protocol (electronic supplementary
material, table S4). Starting the study interval after the initial
major pulse of diversification in the Early Ordovician, or,
even more extreme, after the entire Ordovician radiation,
did not impact the observed diversity-dependence in evol-
utionary rates. Likewise, results persist, albeit somewhat
muted, if the immediate aftermaths of major mass extinctions
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are excluded. Results were also robust to details of detrend-
ing diversity and evolutionary rates, and to the exclusion of
genera lacking finely resolved (mainly substage) first and
last appearances (e.g. last appearance as ‘Maastrichtian’
instead of ‘Upper Maastrichtian’) (electronic supplemen-
tary material, tables S1, S2). Simulations that randomly
assign genera to two groups show that the difference in
diversity-dependence between these randomized groups
rarely exceeds the observed infaunal–epifaunal difference
(3% of randomizations for origination; 1% for net diversi-
fication) (electronic supplementary material, figure S3).
Thus, stronger diversity-dependence in epifauna versus
infauna is a robust feature that is unlikely to have arisen by
chance, and we therefore conclude that the difference
in their diversity dynamics is meaningful and potentially
interpretable biologically.

Evolutionary rates of the two groups within the same
time interval are strongly and positively correlated (table 2),
consistent with their similar, roughly exponential, diversifica-
tion histories (figure 1a–d). The correlation is not perfect,
however, and the residual variation must account for the
observed difference in diversity dynamics between the two
groups. Comparing rates with a temporal lag, diversification
rate in either group fails to predict the rate in the other group
in the following time interval, contrary to what we would
expect if one group were suppressing diversification in the
other. This limited analysis suggests that there is no prima
facie evidence for negative interaction between the two
groups at this temporal scale.
(b) Diversification despite diversity-dependence
Negative diversity-dependence in bivalve evolution despite
their steady Phanerozoic diversification suggests that feed-
backs have operated throughout their history, without
setting a ceiling on their total diversity. This result supports
the view that diversity-dependence can operate in a macroe-
volutionary system even when the overall trajectory of that
system is positive rather than asymptotic [3,7,53]. It also
stands in contrast to most modelling of macroevolutionary
systems, whether based on palaeobiological data or evol-
utionary trees of living species, that assumes systems are
near a fixed carrying capacity for much of their history
[2,11,52,59]. One long-standing hypothesis is that background
and mass extinction intervene before a theoretical accommo-
dation limit is reached [60,61]; in addition, increased nutrient
inputs through the Phanerozoic may have raised diversity
limits on the long term [62,63].

The overall bivalve pattern in diversity-dependence is pri-
marily driven by one life mode, the epifauna, as predicted. By
contrast, the short-term ecological interactions among infau-
nal bivalves [31,32] do not manifest at macroevolutionary
scales. As observed in other systems [7,60,61,64–67], negative
diversity-dependence operates via origination, not extinction.



Table 1. Spearman rank-order correlations (rs) between diversity residuals and rate residuals.

ecological group

diversification origination extinction

rs pa rs pa rs pa

infauna + epifauna −0.379 0.043 −0.348 0.031 0.016 0.926

infauna −0.314 0.227 −0.260 0.218 0.097 0.734

epifauna −0.443 0.004 −0.407 0.004 0.117 0.662
aNominal one-tailed p-value is the proportion of randomizations that yield a correlation more extreme than the observed value.

Table 2. Cross-correlations of net diversification rate.

analysis
product–moment
correlation p-value

infaunal versus epifaunal,

lag 0

0.84 < 0.001

infaunal leading

epifaunal, lag 1

0.014 0.89

epifaunal leading

infaunal, lag 1

−0.016 0.88
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However, diversity-dependent control of diversification by
damping or promoting origination has been difficult to
explain [10,57]. The most frequent hypothesis involves vari-
ations in the survival of incipient species [57,68–70]. Such
incipient species typically have small population sizes and
narrow geographical ranges, so that temporal variation in
biotic and abiotic pressures can alter the probability of estab-
lishment as discrete taxa detectable in the fossil record
[70,71]. This effect may be strongest among epifauna given
their more limited habitat space and greater exposure to
physical and biotic disturbances, pressures that would be
intensified or relaxed under times of positive or negative
diversity excursions, respectively. Although predation inten-
sity has increased over the past 500 million years [30], this
trend does not dominate our results; rather, negative diver-
sity-dependence is evident throughout the Phanerozoic
(figure 2, electronic supplementary material, figure S2).

The ecological difference we find in diversity-dependence
is unlikely simply to reflect clade-specific differences, because
infaunal versus epifaunal life mode transcends clade mem-
bership (electronic supplementary material, table S2). The
primitive life mode for Cambrian bivalves remains uncertain
[72], but no matter how that controversy is resolved, the two
modes of life are polyphyletic within and among taxonomic
orders; nine of the 25 bivalve orders contain both infaunal
and epifaunal taxa, signifying at least nine transitions.
Thus, epifaunality is likely a deterministic factor in diversity
dynamics, given its multiple, independent derivations across
distantly related clades and their broad variety of life
histories and basic body plans.

Throughout their evolutionary history, bivalve diversifi-
cation has entailed both functional novelty and continued
subdivision of those functions [73,74]. However, epifauna
have attained less functional variety than have the infauna
[23], which may help to explain both the lower standing
diversity of the group today and the stronger diversity-
dependence in its origination rate throughout the
Phanerozoic. Thus, for epifauna, short-term runs above
the long-term diversity trend might reflect the rare acqui-
sition of new functions and their subdivision, briefly
allowing relatively unimpeded diversification that is later
damped by negative feedbacks. The infauna may show a
steadier establishment of new functions and minor differen-
tiation within them, thereby reducing the kind of
interference that would impose significant diversity depen-
dence. Alternatively, enhanced origination owing to abiotic
factors such as continental flooding and greater provinciality
[75–77], might promote the evolution of new functions,
which themselves persist when the promoting conditions
fade. Testing these scenarios would require determining
whether excursions above the long-term diversity trend
were mostly initiated by the evolution of entirely new func-
tions; whether taxonomic diversification, by sheer numbers,
itself promoted the evolution of new functions; or whether
diversification reflected a proliferation of lineages by finer
subdivision of existing functions [78]. Considering the enor-
mous population sizes of many bivalve species, it seems
unlikely that such subdivision of niches has reached the
theoretical limit set by the smallest sustainable biomass
within each species [79]. High-dimensional functional
groups of genera (i.e. combinations of motility, tiering, attach-
ment, and feeding) have not been comprehensively assigned
to all genera at sufficient temporal resolution [23,73,74]; thus,
we cannot yet fully analyse the evolutionary sequence of
niche subdivision and the effects of niche packing on diver-
sity dynamics [80].
(c) Coda
Diversity-dependence on macroevolutionary scales remains
a difficult but engaging problem, and the stakes are high
for determining proximate and ultimate causes given the
environmental and climatic turmoil now challenging
today’s biodiversity [81]. Fossil data have long shown that
diversification dynamics in response to episodes of major
environmental and climatic change can yield accelerated
rebounds in biodiversity following catastrophic losses
during mass extinctions. Although these rebounds eventually
slow down [3,67], diversity continues to rise, posing the fun-
damental question of how geologically short-term diversity-
dependence within a biological group can be reconciled
with its long-term diversity accumulation. This phenomenon
is not fully understood, but it is now clearer that a complete
theory must involve enhanced diversification at times of
reduced diversity; suppressed diversification at times of
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higher diversity; the asymmetry between origination and
extinction; the ability of diversity to ‘overshoot’ the long-
term trend; and the reasons for the long-term trend itself.
Partitioning a major clade into two ecologically defined
groups of potentially interacting lineages, we find diversity-
dependence in just one, identifying a new set of testable
hypotheses for the factors underlying the striking result
that diversity-dependence can operate even as the clade
and its two ecological groups continue to diversify.
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