
4758 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 5, MAY 2024

Multi-Agent Path Planning for Level Set Estimation
Using B-Splines and Differential Flatness

Grant Stagg and Cameron K. Peterson

Abstract—In this letter, we present a decentralized multi-agent
path planning algorithm for level set estimation (LSE) and envi-
ronmental monitoring missions. The planned paths are param-
eterized using B-splines and optimized using a novel objective
function designed for LSE path planning that accounts for the
exploration/exploitation trade-off while allowing the use of a
gradient-based optimizer. We use the differential flatness property
of the unicycle model to formulate constraints for our path opti-
mization that ensure planned paths are kinematically feasible. We
also employ a block coordinate ascent (BCA) algorithm that enables
multi-agent coordination in exploring the environment. Finally, we
present simulation and hardware results validating our approach.

Index Terms—Autonomous agents, environment monitoring and
management, path planning for multiple mobile robots or agents.

I. INTRODUCTION

MULTI-AGENT systems (MAS) are capable of rapidly
exploring and modeling large-scale environments. Co-

operating teams of unmanned aerial systems (UASs) or un-
manned ground vehicles (UGVs) can explore areas that are
too dangerous for human exploration, such as chemical spills
or nuclear radiation sites. One particularly interesting use of
MAS is environmental monitoring, which involves equipping
autonomous agents with sensors to measure phenomena of inter-
est such as radiation, chemical spill concentrations, or harmful
algae blooms. Agents in the MAS are tasked with creating a
global model of the phenomena. This requires each agent to
share information with other agents and make informed deci-
sions on where to travel.

During environmental monitoring missions, it is often
important to classify the operational area into high- or
low-concentration regions. For example, given a radiation or
chemical spill, identifying regions that contain dangerously
high concentration levels is important for safety. For other
phenomena, areas of high concentration could be of special
interest, such as areas that contain high concentrations of

Manuscript received 28 November 2023; accepted 15 March 2024. Date of
publication 3 April 2024; date of current version 11 April 2024. This letter
was recommended for publication by Associate Editor G. Pereira and Editor
M. A. Hsieh upon evaluation of the reviewers’ comments. This work was
supported in part by the Center for Autonomous Air Mobility and Sensing
(CAAMS) and in part by the National Science Foundation Industry/University
Cooperative Research Center (I/UCRC) under NSF Award IIP-2139551 along
with significant contributions from CAAMS industry members. (Corresponding
author: Cameron K. Peterson.)

The authors are with the Department of Electrical and Computer Engineering,
Brigham Young University, Provo, UT 84602 USA (e-mail: ggs24@byu.edu;
cammy.peterson@byu.edu).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2024.3384763, provided by the authors.

Digital Object Identifier 10.1109/LRA.2024.3384763

harmful algal blooms. The problem of classifying regions into
high and low sets is known as level set estimation (LSE) [1].
To perform LSE with MAS, autonomous agents need to
plan paths to measurement locations that allow all regions
of the operational area to be rapidly classified into high- and
low-concentration sets. Past research in LSE and path planning
has informed the development of our path planner.

Path planning can be divided into two categories, discrete [1],
[2] and continuous [3], [4]. Discrete path planners generate a
set of waypoints, whereas continuous path planners parame-
terize trajectories using continuous functions. The researchers
in [2] presented a discrete path planner for LSE that formulated
the path planning as an orienteering problem and solved for
a discrete set of points for the agents to visit. However, this
discrete path planner did not account for kinematically feasible
trajectories between waypoints.

Continuous-based approaches plan trajectories for agents to
follow instead of discrete sampling locations. In [3] a contin-
uous path planner used B-splines to parameterize paths and
mutual information as an objective function. Boundary and path
length constraints were incorporated into the objective function
as penalties. The paths were optimized using an evolution-
ary algorithm. However, this path planner did not account for
kinematic feasibility constraints. Furthermore, their objective
function was not differentiable and could not be used with a
more efficient gradient-based optimizer that allows for hard
constraints. This approach was extended in [4] to account for
the exploration/exploitation trade-off.

Past research in multi-agent coordination for informative path
planning includes dividing the environment into Voronoi cells
and assigning each agent its own cell [5], [6]. Agents seek to
learn the underlying field while simultaneously traveling to the
local maximum of the field within their cell. LSE path planning
does not seek to find the maximum of the underlying field, it
seeks to classify the area into high and low sets. Voronoi parti-
tioning could lead to agents being assigned to areas where the
field value is far from the threshold and where not as many mea-
surements are needed. Instead of using Voronoi partitioning, we
use block coordinate ascent (BCA) for multi-agent coordination.

In this letter, we extend past researcher’s work by planning
continuous paths while enforcing kinematic feasibility con-
straints using differential flatness. We use B-splines to param-
eterize paths and employ a novel objective function for LSE
(described in Section IV). Our objective function accounts for
the exploration/exploitation trade-off by rewarding paths that
explore new areas, but also penalizing paths that stray from the
boundaries between low- and high-concentration regions. The
function is designed to be differentiable, which allows it to be
optimized using a gradient-based algorithm.

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 25,2025 at 17:24:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0006-9899-8551
https://orcid.org/0000-0002-6155-765X
mailto:ggs24@byu.edu
mailto:cammy.peterson@byu.edu
https://doi.org/10.1109/LRA.2024.3384763

STAGG AND PETERSON: MULTI-AGENT PATH PLANNING FOR LEVEL SET ESTIMATION USING B-SPLINES AND DIFFERENTIAL FLATNESS 4759

The cooperative path optimization is achieved using BCA,
which we believe is the first time BCA has been used in B-spline
path optimization for multi-agent systems. In BCA we iteratively
optimize a single agent’s path while assuming all other agents’
paths are constant [7]. Individual agents can then update their
paths without relying on a centralized processor. Previous re-
search used Gaussian process regression (GPR) to form LSE [1].
However, GPR scales poorly and is not suited to decentralized
cooperation. We use a decentralized implementation of a sparse
GPR algorithm (DSGPR) [8] to account for the complexities of
cooperative environmental modeling. In summary, our letter’s
contributions include:

1) A path planning algorithm that uses differential flatness to
plan kinematically feasible informative paths for LSE.

2) A novel objective function for LSE path optimization that
accounts for the exploration/exploitation trade-off and is
differentiable.

3) A decentralized multi-agent LSE path planner imple-
mented with a block coordinate ascent algorithm.

This letter proceeds as follows. A problem statement is shown
in Section II. Background information on DSGPR and LSE
is provided in Section III. We present our path optimization
algorithm in Section IV. Section V contains simulation and
hardware results to validate our path planner and conclusions
are given in Section VII.

II. PROBLEM STATEMENT

Consider a group of Na agents operating in an environment
D ⊂ R2. There exists an unknown scalar field f(x):D "→R that
represents the environmental phenomena of interest. We assume
we have a set of test pointsX∗ = (x∗1, . . . ,x∗N∗) evenly spaced
acrossD, and a threshold h. We wish to classify the points in X∗
into high- and low- concentration sets H = {x ∈ X∗|f(x) >
h} and L = {x ∈ X∗|f(x) ≤ h}. As agents traverse the envi-
ronment they receive measurements of the underlying field cor-
rupted with Gaussian noise, zi = f(xi) + η, η ∼ N (0,σ2

n). We
assume agents have no prior information about the environment.
The goal of a LSE path planner is to plan paths to the measure-
ment locations that best help classify points into H and L.

We also assume agent kinematics are represented with a 2D
unicycle model, which has been used to model autonomous
vehicles [9]. The agents are constrained to a 2D plane with state
variables [x, y, θ](, where x is the distance East of the origin,
y is the distance North of the origin and θ is the heading of the
agent measured counterclockwise from the East axis. Agents
obey non-holonomic constraints and only travel in the direction
of their heading yielding kinematics of




ẋ(t)

ẏ(t)

θ̇(t)



 =




v(t) cos θ(t)

v(t) sin θ(t)

u(t)



 , (1)

where v(t) is the speed of the agent at time t and u(t) is the turn
rate. Both v(t) and u(t) are inputs to the system.

The goal of our path planning algorithm is to plan paths
pj(t) ∈ D, j ∈ (1, . . . , NA), for multiple agents to best classify
the test points using the LSE algorithm. We plan continuous
paths parameterized with B-splines and use constraints on ve-
locity, turn rate and curvature to ensure that planned paths are
kinematically feasible.

III. BACKGROUND

In this section, we present essential background information
to our path-planning algorithm. This includes a discussion of the
DSGPR algorithm developed in [8], and LSE [1], which was the
starting point for our path-planning algorithm.

A. Decentralized Sparse Gaussian Process Regression
(DSGPR)

In our work, a level set estimator uses DSGPR to create a
model of f(x). DSGPR provides a mean and variance value
for the model. The goal of DSGPR is to estimate an underlying
function f(x) at test points X∗ using noisy measurements taken
at locations X = (x1, . . . ,xNz), where Nz is the number of
measurements, and z = (z1, . . . , zNz) is a vector of measure-
ments.

GPR uses a kernel function κ(xi,xj) to create a prior distri-
bution between the test points and measurements. The original
GPR algorithm scales poorly with the number of data points,
so the authors in [10] introduced sparse Gaussian process re-
gression (SGPR). SGPR uses inducing points to summarize
the measured points. Using the kernel function, a Gaussian
distribution for the inducing points Xu = (xu1, . . . ,xuNu) is
defined with mean

m = σn
−2KuuΣKufz (2)

and covariance

Λ = KuuΣKuu, (3)

where Σ = (Kuu + σn
−2KufKfu)−1, Kuf = [κ(xui,xj)]

xui∈Xu,xj∈X , Kfu = K(uf , Kuu = [κ(xui,xuj)]xui,xuj∈Xu
,

and Nu is the number of inducing points. Subscripts u and
f denote inducing points and measurement. Thus, Kuu is the
kernel function between the inducing points and themselves and
Kuf is the kernel function between the inducing points and the
measurements.

In DSGPR, agents use a clustering algorithm to compute
their set of inducing points (X

j
u). They then calculate their

local inducing point distributions from (2) and (3) resulting in
a mean mj and covariance Λj for j ∈ [1, . . . , Na], where Na

is the number of agents. Each agent transmits its local distri-
bution to neighboring agents using efficient message-passing
heuristics. After the local models are transmitted, each agent
combines all local models to compute a global model. The mean
values of the local inducing point distributions are stacked in
the vector M = [m1(,m2(,. . . ,mNa

(
](, and Λ is a block

diagonal matrix of Λi (the covariance of the local inducing
points distributions). The locations of all agents’ inducing points
are combined intoXU = (X

1
u, X

2
u, . . . , X

Na

u). TheU subscript
denotes the combined list of inducing points. The mean and
covariance of the global model are given by

µ(X∗) = K∗UK
−1
UU

M, (4)

and

cov(X∗) = K∗UK
−1
UU

ΛK−1
UU

KU∗ +K∗∗−K∗UK
−1
UU

KU∗,

(5)

Authorized licensed use limited to: Brigham Young University. Downloaded on April 25,2025 at 17:24:34 UTC from IEEE Xplore. Restrictions apply.

4760 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 5, MAY 2024

where K∗U = [κ(x∗i,xuj)]x∗i∈X∗,xuj∈XU
, KUU =

[κ(xui,xuj)]xui,xuj∈XU
, and KU∗ = K(∗U .

Unlike the original LSE algorithm that uses a computationally
expensive, centralized algorithm, we use DSGPR, which allows
for real-time decentralized estimation.

B. Level Set Estimation (LSE)

We build on the algorithm presented by [1] to create our
multi-agent LSE path planner. The goal of LSE is to create
a map of high- and low-concentration regions using measure-
ments of the environment. As measurements are taken they are
incorporated into a GPR estimate for the underlying field value
at test points x∗i ∈ X∗. This results in a mean value µtc(x∗i)
and a variance value σtc(x∗i) for each test point x∗i at time
tc. The subscript tc emphasizes that the mean and covariance
are time-dependent and will change as new measurements are
included in the estimate.

Using the mean and covariance values, a confidence interval
is constructed for each test point representing a range of values
within which the true value of the underlying function is likely to
fall. This range is given by Qtc(x∗i) = µtc(x∗i)± βσtc(x∗i),
where β determines the width of the confidence interval. Us-
ing this interval, each x∗i ∈ X∗ can be classified into the
high-concentration set Htc ⊆ X∗ or the low-concentration set
Ltc ⊆ X∗. If the region Qtc(x∗i) is entirely above a predefined
threshold h, then x∗i is classified into Htc . Similarly, if the
entire region lies below h, x∗i is classified into Ltc . The authors
in [1] introduced an accuracy parameter ε that relaxes the bounds,
resulting in the following

Htc = {x∗i ∈ X∗|min(Qtc(x∗i)) + ε > h} (6a)

Ltc = {x∗i ∈ X∗|max(Qtc(x∗i))− ε ≤ h}. (6b)

Points that do not meet either criterion are said to be unclassified
and added to Utc ⊆ X∗: Utc = X∗/(Htc ∪ Ltc).

IV. PATH OPTIMIZATION

The goal of our path planner is similar to that of other LSE path
planners; however, we plan continuous paths with kinematic
feasibility constraints. To achieve this goal, we present a novel
path optimization algorithm that uses the property of differ-
ential flatness to generate paths that are kinematically feasible
(Section IV-A) and B-splines to parameterize those paths (Sec-
tion IV-B). We then use a gradient-based optimization algorithm
to select B-spline control points to maximize our objective
function while complying with constraints (Section IV-C). A
receding horizon (RH) scheme is employed in combination with
a block coordinate ascent (BCA) algorithm to re-plan paths when
new information is available and enable multi-agent cooperation
(Section IV-E).

A. Differentially Flat Model

We use the property of differential flatness to provide con-
straints that ensure planned paths are kinematically feasible [11].
A system is differentially flat if all the states and inputs can be
expressed as a function of the same flat output and its derivatives.
In the case of the unicycle model, we choose the flat output space
to be the 2D plane. We can define a trajectory on the plane as

p(t) = [x(t), y(t)](. The unicycle model has been shown to be
differentially flat in [12]. As such, our inputs v(t) and u(t) can
be written as a function ofp(t) and its derivatives. In these terms,
the velocity is

v(t) = ||ṗ(t)||2, (7)

and the turn rate u(t) is

u(t) =
ṗ(t)× p̈(t)

||ṗ(t)||22
. (8)

We can compute the curvature of the trajectory as

κ(t) =
u(t)

v(t)
. (9)

Using the property of differential flatness allows us to opti-
mize agents’ paths in the flat output space (x, y) instead of the
full state space. We can also put constraints on the turn rate,
velocity and curvature in terms of the path p(t), planned in the
flat output space as we will see in Section IV-C.

B. B-Splines

B-splines are used to define agent paths in the flat output
space. B-splines are piecewise polynomial functions defined by
a list of control points C = (c1, c2, . . . , cNc) and a set of knot
points tk = (t1, t2, . . . , tNk), where there are Nc control points
andNk knot points. For the 2D path ci = [cxi , c

y
i]
(and ti ∈ R+.

The B-spline can be written as a weighted sum of basis functions
with the control points as weights,

p(t) =
Nc∑

i=1

Bi,k(t)ci, (10)

where k is the order of the b-spline and the basis functions Bi,k

are defined using the Cox-de Boor recursive formula shown
in [13]. We choose to use k = 3 because this creates a spline
that has two smooth derivatives.

For our path planning application, we use clamped B-splines.
This means the firstk + 1 and lastk + 1knot points are identical:
tk = (t1, . . . , t1, t2, . . . , tNk , . . . , tNk), where Nk is now the
number of distinct knot points. This ensures that the initial and
final positions of the path are the first and last control points. The
rest of the knot points are spaced out evenly between the first
and last knot points. Using clamped B-splines allows us to easily
plan paths starting at the agent’s current position by setting the
first control point to that location.

To ensure that the velocity is continuous we set the initial
velocity of the path to the current velocity of the agent. We do this
by first noting that the derivative of the B-spline curve is another
B-spline of order k − 1 given by, ṗ(t) =

∑Nc−1
i=1 Bi,k−1(t)bi,

where bi = (ci+1 − ci)k/(ti+k − ti).
Because we are using clamped B-splines we know the curve

passes through the first control point. This holds for the deriva-
tive, meaning that ṗ(t1) = b1. Let vtc be the current velocity
of the agent and θtc be the current heading of the agent. Using
the definition of b1 we can solve for the x and y components of
c2 as

c2 =
vtc(tk+2 − t2)

k

[
cos (θtc)

sin (θtc)

]
+ c1. (11)

Authorized licensed use limited to: Brigham Young University. Downloaded on April 25,2025 at 17:24:34 UTC from IEEE Xplore. Restrictions apply.

STAGG AND PETERSON: MULTI-AGENT PATH PLANNING FOR LEVEL SET ESTIMATION USING B-SPLINES AND DIFFERENTIAL FLATNESS 4761

From (11), we can see that the second control point of the agent’s
path is constrained by its current velocity. With the agent’s path
defined in the flat output space, we are now ready to optimize
the control points.

C. Path Optimization

Our optimization objective is to determine a path that allows
the LSE algorithm to rapidly classify the boundary space into
high- and low-concentration regions. To do this we use a novel
objective function for LSE.

Our objective function rewards paths in areas where more
accurate DSGPR predictions are needed and is differentiable for
use with an efficient gradient-based optimizer. LSE creates con-
fidence regions using the mean µtc(x∗i) and variance σtc(x∗i)
for each x∗i ∈ X∗. The closer the mean value is to the threshold
h the more certain the estimation needs to be at that location
to properly classify the region. This gives rise to a two-part
objective function. On one hand, the path planner should favor
regions with high uncertainty. However, the path planner also
needs to tend towards regions where the mean value is close
to the threshold. To achieve this balance, we use the following
utility function, for a single point x:

Γ(x) = ασtc(x)− (1− α)(h− µtc(x))
2, (12)

with tuning parameter α ∈ [0, 1]. Other works have combined
the mean and variance of GPR as an objective function such
as [4] and [5]. However, ours differs from these because instead
of seeking to find the maximum value of f(x), we seek to
quickly classifyH andL. Other LSE path planners use a measure
called ambuiguity as an objective function [1], [2] or mutual
information excluding uninteresting points (points outside of
H) [3]. However, these objective functions are not differentiable
and we were unable to use numerical derivative approximations
to achieve convergence in our experiments.

Our utility function rewards exploring regions of high uncer-
tainty, but also applies a quadratic penalty to sampling points
whose mean value is far from the threshold h. This incentivizes
the paths in regions where the mean is closer to h, while also
allowing exploration. The tuning parameter α quantifies the
trade-off between the exploration of new areas and the exploita-
tion of areas where the mean value is close toh. A value ofα = 1
indicates that only uncertainty is considered without penalty, and
a value ofα = 0 indicates that only the mean value is considered.

Using this utility function, the single-agent path planning
problem is defined as

Copt = argmaxC

Nm∑

i=1

Γ(p(tc + i∆tf)) (13a)

subject to c1 = ptc ,p(ts) ∈ D, vlb ≤ v(ts) ≤ vub (13b)

ulb ≤ u(ts) ≤ uub,−κub ≤ κ(ts) ≤ κub (13c)

c2 =
vtc(tk+2 − t2)

k

[
cos (θtc)

sin (θtc)

]
+ c1 (13d)

where ts=(tc, tc +∆ts, t1 + 2∆ts, . . . , tc +Ns∆ts), Ns is the
number of discrete samples for the constraints, tc is the
current time, ∆ts = Tp/Ns, Tp is how many seconds into
the future the path is optimized over, ∆tf is the sensor

sampling period, Nm = Tp/∆tf is the number of measure-
ments that would be taken if the path were followed, and
ptc is the current position of the agent. The knot points of
the spline are tk=(tc, . . . , tc, tc + j∆tk . . . , tc + Tp, . . . , tc +
Tp), j ∈ (1, 2, . . . , Nk), where ∆tk = Tp/Nk is the time spac-
ing of the non-repeated knot points. This ensures the spline
is defined on the time-interval [tc, tc + Tp]. Sampling the con-
tinuous constraints at ts creates Ns evenly spaced samples on
[tc, tc + Tp] where ∆ts is the time difference between samples.

The objective function is the sum of the utility (12) of future
measurements. We find future measurements by sampling the
B-spline trajectory at the sensor sampling frequency. The utility
of each future measurement is calculated and summed as shown
in (13a).

We choose to sample the continuous constraint functions
(13b)–(13c) to create discrete constraints. Since we enforce the
constraints at discrete time steps, it is possible to have constraint
violations in between sampled points. However, the likelihood
of this is low and can be reduced by choosing a large value for
Ns. Our path planning problem has six constraints. The equality
constraints ensure the starting position and initial velocity of the
path are set to the current position and velocity of the agent.
The next constraints ensure kinematic feasibility. The velocity
constraint guarantees that the agent’s velocity will not exceed
the max speed vub, or dip below the minimum speed vlb. These
bounds are determined based on the capabilities of the agent. For
a fixed-wing UAS, this can be used to ensure the commanded
speed is below the agents’ maximum speed and is above the stall
speed. For our work, we assume vlb > 0, the vehicles can only
travel forward. The turn rate constraint, ensures the trajectory
does not require unfeasible turn rates. The curvature constraint
ensures that agents are not commanded to perform unfeasible
sharp turns.

To perform the optimization, we use an interior point,
gradient-based, nonlinear optimizer called IPOPT [14]. With
gradient-based optimizers, all constraints and the objective func-
tion must be differentiable. Observations of (7), (8), (9), (10),
and (13a) show that they are differentiable with respect to
the B-spline control points. These Jacobians are shown in the
following section.

Because future measurements affect the value of the objective
function, it is important to re-plan paths when new measure-
ments are available. We use an RH scheme to accomplish this.
First, a path is planned Tp seconds into the future by optimizing
(13). The first Tc seconds of the path are executed. The path is
then re-planned using information from the new measurements.

D. Jacobians

We choose to use gradient-based optimization because it is
often more efficient than gradient-free methods. Furthermore,
gradient-free methods do not allow hard constraints (constraints
must be added as penalties on the objective) [15]. To use a
gradient-based optimizer the gradient of the objective function
and Jacobians of the constraints are needed.

To compute the gradient and Jacobians we note the B-spline
equation can be rearranged to a matrix representation given
by p(t) = Φ(t)C, where Φ(t) is a matrix that encapsulates
the B-spline basis functions and C = [c1 c2 . . . cNc](are the
control points. More information on how to calculate Φ(t) is

Authorized licensed use limited to: Brigham Young University. Downloaded on April 25,2025 at 17:24:34 UTC from IEEE Xplore. Restrictions apply.

4762 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 5, MAY 2024

given in [16]. From this we see that the derivative of a B-spline
with respect to its control points is Φ(t).

To complete our optimization, we need the gradient of our
objective function (13a) with respect to the B-spine control
points (the optimization variables). We start by moving the
derivative inside the summation resulting in ∂F (p(t))/∂C =∑Nm

i=1 ∂Γ(p(tc + i∆tf))/∂C. The derivative of the utility func-
tion for a single point i is given by

∂

∂C
Γ(p(tc + i∆tf)) = α

∂

∂C
σtc(p(tc + i∆tf))

+ 2(1− α)(h− µtc(p(tc + i∆tf)))
∂

∂C
µtc(p(tc + i∆tf)).

(14)

The derivative of the DSGPR output µtc(p(tc + i∆tf)) and
σtc(p(tc + i∆tf)) should also be computed. First, we compute
the derivative of the mean value of DSGPR (given in (4)) with
respect to the B-spline control points. The only value of (4) that
varies with the control points is K∗U . This is because as we
change the B-spline we change the locations of the test points,
which are evenly spaced along the B-spline, and this alters
where we evaluate the DSGPR. The single test point that we are
evaluating for the objective function at isx∗i = (p(tc + i∆tf)).
This results in

∂

∂C
µtc(p(tc + i∆tf)) =

∂

∂C
[K∗U]K

−1
UU

M, (15)

with
∂

∂C
K∗U =

[
∂
∂C [κ (p(tc + i∆tf),xuk)]

]

xuk
∈X

U

. (16)

Next, we need the derivative of the kernel function;

∂

∂C
[κ (p(tc + i∆tf),xuk)]

=
∂

∂p(tc + i∆tf)
[κ (p (tc + i∆tf) ,xuk)]

∂

∂C

× [p (tc + i∆tf)] . (17)

The kernel function needs to be differentiable with respect to its
inputs for the gradient to exist. The derivative of p(tc + i∆tf)
in (17) is given by Φ(tc + i∆tf).

The derivative of σtc(p(tc + i∆tf)) is similarly given by

∂

∂C
[σtc(p(tc + i∆tf))] = 2

∂

∂C
[K∗U]K

−1
UU

ΛK−1
UU

KU∗

− 2
∂

∂C
[K∗U]K

−1
UU

KU∗, (18)

where ∂
∂C [K∗U] is given by (16). The position constraint Jaco-

bian in (13b) is given by Φ(ts). The velocity constraint Jacobian
can be found by differentiating (13b) with respect to C resulting
in

∂v(ts)

∂C
=

ṗ(ts)Φ̇(ts)(

||ṗ(ts)||2
. (19)

Similarly, the turn rate constraint Jacobian is given by (20).
Finally, the Jacobian of the curvature constraint can be found
using the quotient rule and (19) and (20) shown at the bottom
of this page. We use the gradient of our objective function
and the Jacobians of our constraints to efficiently execute our
optimization algorithm.

E. Block Coordinate Ascent

The simplest approach to enable multi-agent path planning is
to combine all the agents’ trajectories into a single optimization
problem. However, this increases the number of optimization
design variables and constraints, making path planning pro-
hibitively expensive. Combining agents’ trajectories also re-
quires a centralized processing unit with a reliable connection
to all agents to perform the optimization. These communication
constraints limit the size of the operational area and make path
planning sensitive to communication failures. In this work, we
provide a decentralized solution that improves performance and
robustness.

We use BCA to achieve decentralized path planning. BCA
iteratively maximizes a function by holding portions of the op-
timization variables constant while optimizing others [7]. BCA
has been used to create decentralized multi-agent path planners
in [17], [18]. In both, BCA was used to plan discrete paths,
either by optimizing paths to discrete locations or by discretizing
the trajectory into waypoints. Neither work addresses LSE path
planning and to our knowledge, this is the first time BCA has
been used to plan continuous trajectories parameterized with
B-splines for multi-agent path planning.

We apply BCA by holding all other agents’ paths constant
while a single agent’s path is optimized. After an agent optimizes
its path, it transmits information to connected agents about
its path, including “virtual” local models (m̃j , Λ̃j , X̃j

u) that
incorporate agent j’s past measurements and potential future
measurements along their planned path. Using this information,
the next agent plans its path and then transmits its path informa-
tion. This process is repeated, looping through all agents until a
convergence criterion is met.

Algorithm 1 outlines how we use BCA for multi-agent B-
spline path planning for LSE. As part of DSGPR each agent
stores a list of inducing points locations, mean values, and
covariances it has received from other agents. These lists are
X

j

U , M
j
, and Λ

j
for the jth agent. To store virtual path infor-

mation agents will need another group of lists for the virtual
inducing point locations, virtual mean values, and virtual co-
variances. For the jth agent we will denote these as X̃j

U
, M̃ j ,

and Λ̃j . As an input, our algorithm takes the actual and virtual
lists as well as the current state and velocity of the agent. Note
that because our algorithm and DSGPR are decentralized, each
agent only needs its own lists, including the stored virtual lists
of other agents, to perform path planning. The algorithm outputs
a new path for each agent. This algorithm is triggered whenever
any agent needs to re-plan its path (tje > Tc).

∂u(ts)

∂C
=

||ṗ(ts)||22(Φ̇(ts)× p̈(ts) + ṗ(ts)× Φ̈(ts))− 2(ṗ(ts)× p̈(ts))ṗ(ts)Φ̇(ts)(

||ṗ(ts)||42
(20)

Authorized licensed use limited to: Brigham Young University. Downloaded on April 25,2025 at 17:24:34 UTC from IEEE Xplore. Restrictions apply.

STAGG AND PETERSON: MULTI-AGENT PATH PLANNING FOR LEVEL SET ESTIMATION USING B-SPLINES AND DIFFERENTIAL FLATNESS 4763

Algorithm 1: BCA for B-Spline LSE Path Planning.

1: Input: X
j

U ,M
j
,Λ

j
, X̃j

U
, M̃ j , Λ̃j , [xj

1, y
j
1, θ

j
1], v

j
1,

∀j ∈ [1, . . . , Na]
2: Output: pj(t) ∀j ∈ [1, . . . , Na]
3: for i ∈ [1, . . . , NB] do
4: for j ∈ [1, . . . , Na] do
5: if tje > Tc then
6: pj(t) =

optimizePath(pj
tc , v

j
tc , θ

j
tcX̃

j

U
, M̃ j , Λ̃j)

{Eq. (13)}
7: X̃j =

(pj(tc),pj(tc +∆tf), . . . ,pj(tc +Nm∆tf))

8: z̃j = µtc(X̃
j) {Eq. 4}

9: X̃j
u =

(pj(tc),pj(tc +∆tv), . . . ,pj(tc +Nv∆tv))

10: X̃j
c = X̃j ∪X

j
, X̃j

uc = X̃j
u ∪X

j
u, z̃

j
c =

[z̃j(, zj(](

11: m̃j
c, Λ̃

j
c = virtualLocalModel(X̃j

c , z̃
j
c, X̃

j
uc)

{Eqs. (2), (3)}
12: transmit(m̃j

c, Λ̃
j
c, X̃

j
uc)

13: if ||pj
tc − pq

tc ||2 ≤ rc ∀q ∈ [1, . . . , Na] then
14: update m̃j

c, Λ̃
j
c, X̃

j
uc in Λ̃i, M̃ i, X̃i

U
15: end if
16: tje ← 0
17: end if
18: end for
19: end for

The outer loop on line 3 shows the BCA iterations. We choose
to use a fixed number of BCA iterationsNB ; however, this could
be replaced with different convergence criteria. For every BCA
iteration, we iterate through all agents and check if tje (the time
elapsed since the jth agent re-planned its path) is greater than Tc

(the RH re-plan horizon). If the path needs to be re-planned the
B-spline control points are found using a non-linear optimizer
to solve (13) (line 6). The mean and covariance in the objective
function are computed using DSGPR (4) and (5) and the agent’s
current lists of virtual information X̃j

U
, M̃ j , Λ̃j . If an agent has

not yet received a virtual model of another agent it uses the actual
model, from X

j

U ,M
j
,Λ

j
.

Then, virtual local models m̃j
c and Λ̃j

c are created in lines 7–
11. First, we sample pj(t) at a frequency of 1/∆tf to simulate
future measurement locations X̃j in line 7. The virtual mea-
surements z̃j are computed as the output of the global model
of DSGPR at the virtual measurement locations, z̃j = µtc(X̃

j)
from (4). Virtual inducing points are found by sampling the
planned trajectory at a frequency of 1/∆tv , where∆tv = Tp/Nv

and Nv is the number of virtual inducing points The virtual
inducing points and measurements are then combined with the
agent’s actual measurements and inducing points in line 10.
The agent computes the mean and covariance (m̃j

c, Λ̃
j
c) of the

combined virtual local models using (2) and (3). The mean,
covariance, and inducing point locations of the agent’s virtual
model are then transmitted to all agents within communication
range rc in line 12. Every agent that receives the virtual local
models updates their lists of virtual models (line 14).

TABLE I
B-SPLINE PATH OPTIMIZATION PARAMETERS

V. SIMULATION RESULTS

In this section, we evaluate the performance of our LSE path
planning algorithm. We provide a baseline comparison with a
complete coverage “lawnmower” path and a greedy planner.
The “lawnmower” path planner divides the boundary space into
rectangular cells and each agent performs a sweeping pattern in
the cell. The greedy path planner selects the highest reward point
according to the utility function given by (12) and travels towards
it. For multiple agents, each subsequent agent selects the next
highest reward point, provided it is a pre-defined distance away
from all prior selected reward points. Specifically, the greedy
algorithm is implemented as follows. To start all points in D are
added toW (the current points for consideration). The first agent
selects the highest reward point in W as its current waypoint
(wp1). All points within a distancedof the waypoint are removed
from W and the next agent selects the highest reward point in
the new W . When the jth agent reaches a waypoint the points
within a distance d of its current waypoint are added back to
W for consideration. Then the highest reward point in W is
selected. This process is repeated until the mission is over.

To simulate a field with multiple disjoint high- and low-
concentration regions, we randomly place six Gaussian func-
tions in the boundary space with randomly chosen covariances
and positions. Gaussian zero-mean noise is added to each mea-
surement to simulate sensor noise. We perform 100 Monte Carlo
(MC) runs where the location and covariance of the Gaussian
functions are randomly changed for each run. Agent dynamics
are simulated by numerically integrating (1). The parameters
used for DSGPR, LSE, and our path planner are listed in Table I.

To measure how well each path planner performs we use the
f1 score as was previously done in [1] and [2]. The f1 score
puts more weight on correctly classifying the high-concentration
region than the low-concentration region and is

f1 =
Tp

Tp +
1
2 (Fp + Fn)

, (21)

whereTp is the number of true positives (the number of correctly
labeled points in Ht), Fp is the number of false positives (the
number of points that should be classified into Lt but are either
classified in Ht or Ut) and Fn is the number of false negatives

Authorized licensed use limited to: Brigham Young University. Downloaded on April 25,2025 at 17:24:34 UTC from IEEE Xplore. Restrictions apply.

4764 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 5, MAY 2024

Fig. 1. B-spline path planner for runs with two and four agents. This plot shows
the average f1 score versus iteration for 100 Monte Carlo runs. The 1-sigma
bounds are also shown in a lighter shading. Our path planner is shown in red for
2 agents and cyan for 4 agents. The greedy and lawnmower path planners are
also shown for both 2 and 4 agents.

(the number of points that should be classified in Ht but were
actually classified into Lt or Ut).

Fig. 1 shows the mean f1 score and its 1− σ bound versus
the iteration for our path planner, the greedy, and “lawnmower”
path planners for both two and four agents. Our path planner
outperforms the greedy and complete coverage planner given
the same number of agents. After the first few measurements
are taken the average f1 score of our path planner exceeds the
greedy and “lawnmower” planners. This is because our path
planner adapts its path based on incoming measurements and
tends towards regions where more accurate estimates of the field
are needed. Towards the end, when complete coverage is starting
to occur, the complete coverage “lawnmower” path planner starts
to catch up. As expected the four agent run increases the f1
score faster because more measurements are being incorporated
at each iteration.

The staircase-like steps shown in Fig. 1 are an artifact of the
DSGPR algorithm, which uses a clustering algorithm to select
the number and location of inducing points for the SGPR. When
clustering occurs, accuracy improves. The clustering algorithm
is spatially dependent triggering clustering when new areas
are explored. During the initial iterations the whole boundary
space is unexplored so re-clustering will occur at approximately
the same iterations through all Monte Carlo runs. When more
of the boundary space has been explored, re-clustering will
not occur at the same iterations across the MC runs and the
staircase-like steps are averaged out.

It took on average 1.47 seconds to perform the optimization in
(13). This means that if there are Nau agents’ paths that need to
be updated (all agents where tje > Tc), then the complete BCA
optimization will take 1.47NauNB seconds. We implemented
all algorithms in un-optimized Python code and believe run-
times will improve when using a higher-performance language.
If paths are planned asynchronously, making sure only a small
number of agents’ paths need to be re-planned at a given iter-
ation, our current optimization time is reasonable for real-time
path planning.

We now illustrate the effect of the tuning parameter on the
performance of our path planner. Fig. 2 shows a plot of the
cumulative f1 score averaged across 100 MC runs for different
tuning parameter values ranging from α ∈ [0, 1]. Low values

Fig. 2. Cumulative f1 score is shown averaged across 100 MC runs while
varying the α tuning parameter. The left plot shows all 50 iterations and the
right plot shows the last 15 iterations where there is more variation.

of α (i.e. α ≤ 0.5) perform poorly because they are unable to
explore the environment and are omitted from the figure. The
plot shows that all α values perform similarly through the initial
iterations. At around 30 iterations the performance becomes
noticeably different. The cumulative f1 score increases with
increasing α values before peaking at a value of α = 0.9 and
then decreasing withα = 1.0. This shows that a value ofα = 0.9
offers the best balance between exploration and exploitation of
the boundary space. The idealα value depends on the magnitude
of the data being measured, the uncertainty of the measurements,
and how fast the field changes spatially, which can vary for
different applications.

VI. HARDWARE RESULTS

We conducted hardware tests to validate our path planner
using two TurtleBot robots, which is a type of unicycle robot
that operates on the Robot Operating System (ROS). To model
the TurtleBot’s dynamics, we used (1). We use the TurtleBots
to classify light and dark regions within an operating area. In
our experiments, each TurtleBot was equipped with a BH1750
sensor, which measures light intensity in lux. To create distinct
regions of high and low light intensity, we started with an
unlit room and hung a flashlight pointing straight down. To
navigate the paths generated by our algorithm, we implemented
the controller presented in [19].

For our test we let each robot take 50 measurements at a
sampling frequency of 1Hz. We had a look ahead time Tp = 20
seconds and a re-plan time of 5 seconds. The boundary space was
a4× 4meter region. The DSGPR length scale was set toλ = 10.
The kinematic constraints were set to ulb/uub = ±1.0 rad/sec,
vlb = 0.1 m/sec, vub = 0.25 m/sec, and kub = 6.5 rad/m. The
rest of the parameters remained the same the simulation tests.
Fig. 3 shows the paths and measurement locations of each agent
as well as the estimated high- and low-intensity regions. To show
that our path planner was able to generate feasible paths, Fig. 4
shows the velocity v(t), turn rate u(t), and curvature k(t) of
the planned trajectories. From this plot, we can see that our
path planner complied with the kinematic feasibility constraints.
A video of our hardware results can be found at https://www.
youtube.com/watch?v=7jVc9QdYnJs.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 25,2025 at 17:24:34 UTC from IEEE Xplore. Restrictions apply.

https://www.youtube.com/watch%7B?%7Dv=7jVc9QdYnJs
https://www.youtube.com/watch%7B?%7Dv=7jVc9QdYnJs

STAGG AND PETERSON: MULTI-AGENT PATH PLANNING FOR LEVEL SET ESTIMATION USING B-SPLINES AND DIFFERENTIAL FLATNESS 4765

Fig. 3. Final LSE classifications are shown for two agents who took 100
measurements (green marks). The paths are light blue (Agent 0) and orange
(Agent 1). The sets are red (high), blue (low), and white (unclassified).

Fig. 4. Velocity, turn rate, and curvature for Agent 0 (blue) and Agent 1
(orange), with constraint bounds shown in red. These results show that the path
planner generates kinematically feasible paths.

VII. CONCLUSION

In this letter, we presented a multi-agent informative path
planner for level set estimation. We use B-splines to param-
eterize paths and optimize the paths based on a novel objec-
tive function for LSE. We use differential flatness to generate
constraints that ensure kinematically feasible paths are planned.
Decentralized multi-agent path planning is facilitated through
the use of DSGPR and BCA optimization. We validated our
method through simulation and hardware tests. We also show
that our path planner provides kinematically feasible paths in
hardware that allow agents to rapidly classify the operating area
into into high- and low-concentrations sets using LSE. Future
work includes implementing obstacle and inter-agent avoidance
as well as extending our algorithm to work with more com-
munication topologies. We anticipate that obstacle avoidance

and inter-agent avoidance constraints could be implemented by
removing obstacles from the region D and excluding the area
around agents’ paths from D during the optimization of other
agents’ paths.

REFERENCES

[1] A. Gotovos, N. Casati, G. Hitz, and A. Krause, “Active learning for
level set estimation,” in Proc. 23rd Int. Joint Conf. Artif. Intell., 2013,
pp. 1344–1350.

[2] L. Bottarelli, M. Bicego, J. Blum, and A. Farinelli, “Orienteering-based
informative path planning for environmental monitoring,” Eng. Appl. Artif.
Intell., vol. 77, pp. 46–58, 2019.

[3] G. Hitz, E. Galceran, M.-È. Garneau, F. Pomerleau, and R. Siegwart,
“Adaptive continuous-space informative path planning for online envi-
ronmental monitoring,” J. Field Robot., vol. 34, no. 8, pp. 1427–1449,
2017.

[4] Y. Brouwer, A. Vale, and R. Ventura, “Informative path planner with
exploration–exploitation trade-off for radiological surveys in non-convex
scenarios,” Robot. Auton. Syst., vol. 136, 2021, Art. no. 103691.

[5] W. Luo, C. Nam, G. Kantor, and K. Sycara, “Distributed environ-
mental modeling and adaptive sampling for multi-robot sensor cover-
age,” in Proc. 18th Int. Conf. Auton. Agents MultiAgent Syst., 2019,
pp. 1488–1496.

[6] Y. Shi et al., “Adaptive informative sampling with environment partitioning
for heterogeneous multi-robot systems,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2020, pp. 11718–11723.

[7] S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol. 151,
no. 1, pp. 3–34, 2015.

[8] T. Norton, G. Stagg, D. Ward, and C. K. Peterson, “Decentralized
sparse gaussian process regression with event-triggered adaptive inducing
points,” J. Intell. Robotic Syst., vol. 108, Aug. 2023, Art. no. 72.

[9] P. Panyakeow and M. Mesbahi, “Deconfliction algorithms for a pair of
constant speed unmanned aerial vehicles,” IEEE Trans. Aerosp. Electron.
Syst., vol. 50, no. 1, pp. 456–476, Jan. 2014.

[10] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[11] C. P. Tang, P. T. Miller, V. N. Krovi, J.-C. Ryu, and S. K. Agrawal,
“Differential-flatness-based planning and control of a wheeled mobile
manipulator–theory and experiment,” IEEE/ASME Trans. Mechatron.,
vol. 16, no. 4, pp. 768–773, Aug. 2011.

[12] D. Buccieri, D. Perritaz, P. Mullhaupt, Z.-P. Jiang, and D. Bon-
vin, “Velocity-scheduling control for a unicycle mobile robot: Theory
and experiments,” IEEE Trans. Robot., vol. 25, no. 2, pp. 451–458,
Apr. 2009.

[13] M. G. Cox, “The numerical evaluation of b-splines,” IMA J. Appl. Math.,
vol. 10, no. 2, pp. 134–149, 1972.

[14] A. Wächter and L. T. Biegler, “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,” Math.
Program., vol. 106, no. 1, pp. 25–57, 2006.

[15] J. R. Martins and A. Ning, Engineering Design Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2021.

[16] K. Qin, “General matrix representations for B-splines,” in Proc. IEEE 6th
Pacific Conf. Comput. Graph. Appl., 1998, pp. 37–43.

[17] W. Shi et al., “Multi-drone 3-D trajectory planning and scheduling in
drone-assisted radio access networks,” IEEE Trans. Veh. Technol., vol. 68,
no. 8, pp. 8145–8158, Aug. 2019.

[18] C. K. Peterson, D. W. Casbeer, S. G. Manyam, and S. Rasmussen,
“Persistent intelligence, surveillance, and reconnaissance using multiple
autonomous vehicles with asynchronous route updates,” IEEE Robot.
Automat. Lett., vol. 5, no. 4, pp. 5550–5557, Oct. 2020.

[19] C. Guo, Z. Sun, Y. Chen, Y. Xie, S. Li, and H. Qian, “Trajectory tracking
of unicycle-type robots with constraints,” in Proc. IEEE Int. Conf. Robot.
Biomimetics, 2018, pp. 1700–1705.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 25,2025 at 17:24:34 UTC from IEEE Xplore. Restrictions apply.

