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Understanding how mutations arise and spread through individuals and populations is
fundamental to evolutionary biology. Most organisms have a life cycle with unicellular
bottlenecks during reproduction. However, some organisms like plants, fungi, or colonial
animals can grow indefinitely, changing the manner in which mutations spread throughout
both the individual and the population. Furthermore, clonally reproducing organisms may
also achieve exceedingly long lifespans, making somatic mutation an important mechanism
of creating heritable variation for Darwinian evolution by natural selection. Yet, little is known
about intra-organism mutation rates and evolutionary trajectories in long-lived species. Here,
we study the Pando aspen clone, the largest known quaking aspen (Populus tremuloides)
clone founded by a single seedling and thought to be one of the oldest studied organisms.
Aspen reproduce vegetatively via new root-borne stems forming clonal patches, sometimes
spanning several hectares. To study the evolutionary history of the Pando clone, we collected
and sequenced over 500 samples from Pando and neighboring clones, as well as from various
tissue types within Pando, including leaves, roots, and bark. We applied a series of filters
to distinguish somatic mutations from the pool of both somatic and germline mutations,
incorporating a technical replicate sequencing approach to account for uncertainty in somatic
mutation detection. Despite root spreading being spatially constrained, we observed only a
modest positive correlation between genetic and spatial distance, suggesting the presence of
a mechanism preventing the accumulation and spread of mutations across units. Phylogenetic
models estimate the age of the clone to between ~16,000-80,000 years. This age is generally
corroborated by the near-continuous presence of aspen pollen in a lake sediment record
collected from Fish Lake near Pando. Overall, this work enhances understanding of mutation
accumulation and dispersal within and between ramets of long-lived, clonally-reproducing
organisms.

somatic mutations | clonal organisms | aspen | other keywords? 5 max

U nderstanding how mutations arise and spread through
a population is essential to understanding biological
evolution. The advent of high-throughput genome sequencing
has allowed us to study mutational dynamics in a vast array of
previously intractable non-model organisms (1), but nearly all
prior work has focused on how mutations spread among well-
individuated organisms (i.e., a life cycle that includes regular
genetic bottlenecks), ignoring the effects of within-organism
somatic mutations. This is a reasonable assumption for
animals, in which germ cells segregate early during ontogeny,
but many multicellular organisms (i.e., plants, fungi, red algae,
brown algae) do not have germline sequestration (2, 3).

Clonal reproduction offers many ecological advantages. In
addition to persisting over long timescales, horizontal growth
through root or mycelium expansion also facilitates large
spatial colonization. This effective use of clonal growth
in diverse environments is exemplified by seagrasses, with
genets spanning large areas of shallow waters despite local
fragmentation (4). Similarly, a 2500-year-old clone of the
fungus Armillaria gallica spread over 75 hectares of forest
floors, sustained by its ability to feed on dead wood (5).
Clonal proliferation through structures like stolons or rhizomes
enhances colonization, especially after disturbances, such
that many of these organisms have pioneering roles in their
ecosystems. For instance in P. tremuloides, the growth of
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new ramets is stimulated by nutrients and light availability in
areas recently damaged by fire (6, 7). Clonal propagation, as
opposed to sexual reproduction, might also offer evolutionary
advantages in challenging environments marked by pollinator
scarcity or conditions inhibiting seed germination. The survival
of the largest known clone of slow-growing rhizomatous sedge
Carex curvula in alpine terrain may indeed have endured
thanks to clonal recruitment (8). The persistence and
ecological dominance of these clonal organisms underscore the
evolutionary benefits of modular growth in ensuring survival
and success across diverse habitats.

Yet, because every cell division represents an opportunity
for DNA replication errors, clonal organisms also have greater
opportunities to accumulate mutations. Indeed, the number
of cell divisions separating the basal from the apical meristems
may lead to the buildup of somatic mutations, spreading to
derived tissues (9). While the emergence of somatic mutations
in animals can lead to lethal cellular proliferation (tumors),
it is noteworthy that the longest documented lifespans are
all clonal organisms. In seagrasses, such as Posidonea
australis (10), P. oceanica (11), Thalassia testudinum (4),
or Zostera marina L. (12), estimates suggest ages exceeding
6000 years. With indefinite growth, the longevity of the clone
is independent from the module life span, making it potentially
immortal. Furthermore, clonal reproduction implies that
somatic mutations can be passed down to their progeny,
making somatic mutation an important mechanism of creating
heritable variation for Darwinian evolution by natural selection.
Indefinite growth, long lifespans and clonal reproduction are
thus combined opportunities for mutation accumulation in
clonally long-lived organisms.

The genetic signal from somatic mutations in clonal
organisms can be harnessed to track within-plant architecture,
but also the evolutionary history of the organism (13). So
far, the study of the accumulation and spread of somatic
mutations has been limited to a few studies in plants and
fungi (4, 6, 14, 15), such that we still know little about the
evolutionary fates of intra-organism mutations in large and
long-lived perennials.

Here, we focus on one of the largest clonally-reproducing
organism, the Pando clone, a quaking aspen that is also
believed to be one of the oldest still-living organism. Quaking
aspen (Populus tremuloides) can reproduce vegetatively by ex-
panding roots from which new ramets grow. While individual
stem lifespan averages 110 years (16), clones can regenerate
themselves from the root stock such that the organism can
be far older than its parts. The Pando clone has gathered
particular attention for its size (42.6 hectares comprising
~47,000 individual stems) and was even nicknamed “Pando”
(Latin for “I spread”) for this reason (17, 18).

To explore the evolutionary history of the Pando clone,
we sequenced leaves, roots and bark samples at both large
and fine scales. After identifying the samples pertaining to
Pando, as opposed to the neighboring clones, we isolated
the somatic mutations within the clone. Only the somatic
mutations were considered, as germline mutations are present
in every ramet and will not inform spatial expansion and
genetic patterning. To increase confidence in the SNP-calling
of somatic mutations and account for missing mutations, we
used a technical replicate sequencing approach. Comparing
both large scale and finer scale datasets, we find that physically
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close ramets tend to be genetically more similar. Using
phylogenetic models, we estimate the age of the Pando clone to
range from ~16,000 to 80,000 years, making it one of the oldest
living organisms on Earth. In addition to shedding light on an
old and iconic organism, this work deepens our understanding
of the rate of accumulation and spread of somatic mutations
within long-lived perennials.

Results

Brief overview of the different datasets. To describe the evolu-
tionary history of the Pando clone, we generated three different
sets of data using different spatial scales and sequencing
strategies (Table 1). We generated a large scale dataset by
sampling leaves from the whole Pando stand, comprising the
neighboring non-Pando clones, on a 50-m grid (“large scale
dataset”, 184 samples, 22,888 SNPs, Supplementary Figure
A.2, left panel). To focus on a smaller spatial scale and
different tissue types, we gathered samples from two additional
subsections from within the Pando clone and sequenced root,
bark, leaves and branches (“fine scale dataset”, 101 samples,
15,925 SNPs with 3034 somatic mutations, Supplementary
Figure A.2, right panel). To avoid batch effects and possible
confounding effects of the two different spatial scales, the
large and fine scale datasets were analyzed separately (see
ordination plots in Supplementary Figure A.1).

Finally, to test our ability to accurately identify somatic
mutations, we re-sequenced 12 samples from the fine scale
dataset 8 times (same DNA extraction sequenced 8 times)
(“replicate dataset”, 80 samples with 101 somatic mutations).

Delineating the Pando clone. To isolate the Pando clone
samples from the neighboring clone samples in the large
scale dataset, we applied an ordination method and k-means
clustering on 22,888 single nucleotide variants comprising a
mixture of germline SNPs and somatic mutations (principal
component analysis, PCA, Figure 1A). Pando samples (89
out of 184 samples) formed a distinct cluster in PCA space
with spatial boundaries for Pando that were consistent with
previously defined clone boundaries based on morphological
differences (19), and microsatellite markers (17, 20) (Figure
1B). We thus verified the spatial extent, 42.6 ha, of Pando.

Identifying the somatic mutations. Germline mutations are
inherited and should be common to Pando as a whole. Somatic
mutations, however, are mutations that appeared after seed
formation and during the organism’s growth, potentially
making tractable the evolutionary history of the organism. To
describe the development of the Pando clone in time and space,
we thus focused on the somatic mutations in a large number
of samples. With a genome size of 480 Mbp (21), sequencing
whole genomes for hundreds of individuals was prohibitively
expensive. Furthermore, we only needed information from the
same subset of the genome for a high number of individuals.
Hence, we generated a reduced complexity library using
Genotyping-By-Sequencing (GBS) (22).

Somatic mutations have been extensively studied in the
context of cancer research (23), which are caused by post-
zygotic mutations. In such cases, one common approach to
identify somatic mutations in tumor cells is to compare the
genomes of a set of healthy cells (“normal”) and a set of
malignant cells (“tumor”). However, in our case, we did not
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Table 1. To study the evolutionary history of the Pando clone, we generated datasets at different spatial scales and using different sequencing
strategies. The large scale and fine scale datasets have the same initial number of mutations as the variant calling was done on both sets at
once.

Dataset name Number of samples Number of mutations (all/'somatic)
large scale 184 (Pando and neighboring clones) 22,888/-
89 (Pando only) 15,925/3942
fine scale 101 15,925/3034
replicate 80 4,607/101
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Fig. 1. Parsing out the Pando samples from the surrounding clone samples. (A) The projection of genotypes (22,888 variants) form three distinct clusters: two clusters with
negative PC1 values and one cluster with positive PC1 values. Points are labeled with a color proportional to their PC1 value. (B) Plotting the PC1 value into the sampling
space delineates the Pando cluster (positive PC1 values) from the surrounding clone clusters (negative PC1 values).
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have access to the “normal” set of samples, which would be
the initial “mother” tree of the Pando clone. Thus, to separate
somatic mutations from the pool of genetic variants, we created
a set of “normal” samples based on the variants found in the
neighboring clones and in 100 P. tremuloides samples from
the USA’s Intermountain region (Colorado, Wyoming, Nevada,
Idaho). We removed variants that were found in both the
Pando clone samples and this comparative dataset, with the
reasoning that common mutations may be germline in origin,
or highly mutable sites. Secondly, to minimize the effects of
sequencing errors, we removed mutations that were found in
only one sample.

With an inherent per-base pair error rate of approximately
0.31% for Illumina reads (24), focusing on rare (somatic)
mutations increases the risks of missing true mutations, and on
picking false mutations. To assess our ability to consistently
recover somatic mutations, we sequenced the same sample
several times (12 samples sequenced 8 times each, from the
same DNA extraction). After applying basic quality filtering
(see Methods for more details), we kept the mutation as somatic
if it was found in at least two replicates of a sample, and at
most 80% of the samples (Figure 2A). This decision for the
80% filter was based on the rationale that variants occurring
in more than 80% of the ramets are likely germline mutations,
shared across all trees but not necessarily detected in each one.
These filters left us with a set of 101 mutations present in less
than 40% of the samples, as there were no mutations between
40% and the 80% cutoff (Figure 2B). When a mutation is
found in two replicates per sample, it is on average found
in 3.5 replicates total (i.e., 44% of the replicates), which is
significantly higher than by chance (randomization test, null
expectation = 0.37 with 1000 permutations, P < 0.001, Figure
2C). The replication of mutations did not vary as a function
of coverage (Supplementary Figure A.4). While these analyses
confirm the detection of somatic mutations, they suggest that
some mutations are still being missed. We revisit this issue
when estimating the age of Pando (see Age of the Pando clone
section).

Having established our ability to recover rare mutations,
we proceeded to identify somatic mutations in the rest of the
Pando datasets, which include both the large-scale dataset
(with only the Pando samples) and the fine-scale dataset (Table
1). We applied the same set of filters that were applied to the
replicate dataset to filter out the germline mutations.

Patterns of spatial genetic structure for somatic mutations -
large scale. We identified 3942 putative somatic mutations
from the 89 Pando ramet samples (large scale dataset, Table
1). On average, samples shared 26.8% somatic mutations
(range = 583 to 1679). Due to clonal reproduction and spatial
restriction in dispersal (roots from one tree can expand up
to 15m (25)), we expected to observe a non-random spatial
distribution of somatic mutations (26). More specifically,
we expected ramets that are close in space to share more
mutations than ramets that are further apart from each
other. However, there was only a marginally detectable
correlation between the proportion of shared variants and
the physical distance between pairs of ramets (Figure 3A,
Pearson correlation coefficient = —0.02, [CI] = [—0.05,0.00],
Figure 3B, null expectation = -0.001 with 1000 permutations
of the somatic mutation set, P < 0.001). We uncovered further
spatial structure when focusing on spatial distribution of each
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somatic mutation. The mean distance between all samples
sharing a mutation, averaged over all mutations, is smaller
than expected by chance (Figure 3C&D, mean distance for
groups sharing a somatic mutations is 264.28 m, as compared
to the mean distance (null expectation) of 279.93 m for a
randomized dataset with 500 permutations of the sample
coordinates, P < 0.002). Given that a single root can extend
up to 15 m in space (25), and our grid sampling had a minimum
distance of 50 m, we hypothesized that we might be missing
spatial signals at finer scales. Additionally, focusing solely on
leaves could overlook somatic mutation signals, as clonal aspen
expand through their roots (Figure 4). To better understand
the spread of somatic mutations within and between ramets
and tissue types, we conducted our analyses at a finer spatial
scale by comparing samples from sub-sections of the clone and
from different tissues within ramets.

Patterns of spatial genetic structure for somatic mutations -
fine scale. To detect fine-scale spatial structure and differences
between tissue types, we focused on a smaller spatial scale,
sampling ramets 1-15 m apart in a circular scheme at
two locations within the Pando clone (~120 m apart, see
Supplementary Figures A.2 and A.3), as well as tissues within
ramets (roots, shoots, branches, and leaves).

Overall, we found significant evidence of genetic structure,
with genetic differences increasing with spatial distance (Figure
5A, Pearson correlation coefficient = -0.1, [CI] = [-0.12, -0.07],
null expectation = 0.00 with 500 permutations, P = 0.006).
The signal was especially strong for leaves (Pearson correlation
coefficient —0.44, [CI] = [-0.49, —0.38]), with more somatic
mutations shared between spatially close leaves compared to
random (P < 0.001). The roots also shared significantly
more mutations than expected under a null distribution
(Pearson correlation coefficient —0.11, [CI] = [0.18,—0.03],
P = 0.026 when compared to null distribution). This signal
was not observed in the branches and the shoots (Pearson
correlation coefficient —0.06, [CI] = [—0.24,0.11] for branches
and —0.05, [CI] = [-0.37,0.28] for shoots).

Similarly, a variant-level approach showed that the number
of shared somatic mutations per pair of samples decreased
with spatial distance (Figure 5B, mean distance for groups
sharing a somatic mutations is 46.33 m, as compared to the
mean distance (null expectation) of 55.31 m for a randomized
dataset with 500 permutations, P = 0.002). The leaves showed
the strongest spatial structure signal using this metric (Figure
5B and Supplementary Figure A.5), while other tissue types
did not differ from the null expectation. The absence of signal
in the shoots and branches may be partly explained by the
significantly higher number of mutations recovered in leaves
compared to other tissues (Supplementary Figure A.8).

Age of the Pando clone. We took a phylogenetic approach to
infer the Pando clone age with our set of somatic mutations.
Specifically, we reconstructed the phylogenetic history of the
Pando samples with BEAST2 with the large-scale dataset
(3957 mutations and 102 samples). We used a variable
population size coalescent model, which reconstructs the past
population dynamics based on a contemporary set of sequence
data (Coalescent Bayesian Skyline model in BEAST2 (27)).
Because the somatic mutations are rare, they can be harder
to detect using Illumina technology when the read depth is
not exceptionally high (mean read depth is 14x). To estimate
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Fig. 2. Replication power for somatic mutations. (A) To filter for somatic mutations, we kept the mutations that were found in at least two samples per replicate group, and at
most 80% of the samples (see methods for details on the filters). We identified 101 somatic mutations, (B) found in less than 40% of the individuals. (C) If a mutation is present

in two samples in a group, it is found on average in 44% of the samples total.

the proportion of missed mutations, we compared the set
of somatic mutations obtained in the replicate dataset (101
mutations, Figure 2), to the set of somatic mutations obtained
in the same samples in the main dataset, where each of samples
was sequenced only once (3957 mutations). Only ~6%, 6
mutations out of 101 were replicated. Coverage partially
explained this lack of replication: in general, mutations that
were found in the replicate dataset had higher depth than
mutations the mutations found in the fine scale dataset (41.5x
versus 11.6x), however, some of the somatic mutations that
were found in both datasets had a depth as low as 6x for the
fine scale dataset (Supplementary Figure A.7). It is important
to note that the mutations were called independently in these
two datasets. Given that variant calling is influenced by sample
composition, this independent variant call may underestimate
the mutation replication rate.

To take into account the effect of large amount of missing
mutations on the phylogenetic tree height and thus the Pando
clone age, we empirically estimated the relationship between
the proportion of missing mutations and the phylogenetic tree
height (Figure 6A). To do so, we randomly removed mutations
and simulated the phylogeny in BEAST (black dots, Figure
6A). We obtained a linear relationship between the proportion
of missing mutations and the phylogenetic tree height, which
we extrapolated to take into account false negatives or positives
(i.e. mutations that we either missed, or called but are not
real). This scaled tree height was converted to years based
on the published estimation of somatic mutation rate in P.
tremuloides (28) using the following equation:

Pineau etal.

Tns 3
age(years) = —= % —
npp [
with T being the scaled phylogenetic tree height, ns the total
number of mutations, ngpp, the total number of base pairs
sequenced, p the leaf somatic mutation rate (1.33 10710 per
base per haploid genome per year (28)), taking into account
that the Pando clone is triploid (20, 29) (see Methods for
details).

We calculated three different estimates of the Pando clone
age based on three different assumptions (Figure 6B). First,
if the mutations we detected are all true positives and we
did not miss any somatic mutations in the proportion of the
genome we sequenced, we do not have to apply any correction
to the phylogeny height conversion and the Pando clone would
be about 34,000 years old (assumption 1, sd = 1007 years).
Second, if we take into account that we only detected 6% of the
somatic mutations present in the samples and use the linear
relationship (Figure 6A) to account for false negatives, then
the clone would on average be 81,000 years old (assumption
2, sd = 1922 years). Finally, if only 6% of the mutations we
detect are true positives, the Pando clone would be 16,402
years old (assumption 3, sd = 7 years). The population
dynamics reconstruction suggest a slow and steady increase
during the first half of Pando’s life, followed by a steadier
population size (Figure 6C). The unit of effective population
size here can be thought of in terms of cellular lineages giving
rise to new tissues (as compared to individuals when working
with germline mutations). Despite its thousands of years of
history, the phylogeny of the Pando clone samples suggests only
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Fig. 3. Detecting spatial genetic structure at large scale. (A) We use the set of 3942 somatic mutations identified in the Pando clone samples to test for spatial genetic structure.
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Focusing on the sample-level, we observe that the number of shared variants between pairs of samples decreases with the physical distance between samples pairs (Pearson
correlation coefficient between number of variants and spatial distance is —0.02, [CI] = [—0.05, 0.00]), which is significantly different from a randomized distribution
(P < 0.001) (B). (C & D) Focusing on the variant-level, we find that the mean distance within a group of samples sharing the variant is significantly less than expected by
chance (mean distance for data is 264.28 m and mean distance for randomized dataset is 279.93 m, P < 0.001).
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Fig. 4. Conceptual model of somatic mutation inheritance between ramets within an aspen clone. When a mutation arises, we expect it to propagate down to the new tissues as
the clone continues to grow. New mutations are symbolized with the lightning bolt. The mutation identity is marked as a colored star and the dark marks corresponds to where
samples could be collected from the clone.
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Fig. 5. Detecting spatial genetic structure at the finer scale. We use the set of 3034 somatic mutations detected in the finer scale dataset to test for smaller-scale and within
tissues spatial genetic structure. (A) Focusing at the sample-level, we observe an overall significantly negative correlation between genetic and physical distance (thick lines,
Pearson correlation coefficient = —0.097, [CI] = [—0.12, 0.07]), driven mostly by the leaves and the roots (compared to null distributions, P < 0.001 and P = 0.026,
respectively). (B) Focusing on the variant-level, we find that the mean distance within a group of samples sharing the variant (thick line, mean distance for the data is 46.33 m) is
significantly less than expected by chance when considering all tissue types together (mean distance for the null distribution is 55.31 m, P < 0.001), signal that is mostly driven
by the leaves (mean distance for leaves only is 39.28 m, as compared to 53.36 m expected under the null distribution, see Supplementary Figure A.6 for means and p-values).
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Fig. 6. The Pando clone is at least 16,000 years old. (A) We use the relationship between the proportion of missing mutations from a simulated dataset and the phylogenetic
tree height to take into account the somatic mutations that we might be missing in the Pando clone (linear regression y = 0.10 + 0.11x, P < 2.2e — 16, R? = 0.92). (B)
With this correction, we calculate the Pando clone age based on three different assumptions: (1) if the mutations we detect are all real, the Pando clone would be about 34 000
years old (4 sd = 1007 years); (2) if we are missing 94% of the mutations, then the clone would on average be 81,000 years old (4 sd = 1922 years); (3) finally, if only 6% of
the mutations we detect are real somatic mutations, the Pando clone would be 16,402 years old (4 sd = 7 years). (C) The Bayesian skyline plot suggests a steady population
increase followed by a plateau. Note that this example was scaled for assumption 1 (all the mutations that we detect are real somatic mutations). (D) Despite thousands of
years of evolutionary history, the Pando clone shows minimal phylogenetic structure (points colored according to PC1 score). (E) Pollen records from the Fish Lake show
Populus was consistently present during the last 15,000 years, and generally well-represented over the last 60,000 years.

minimal structure (Figure 6D). The same analysis of the fine
scale dataset suggests results of a similar scale, that is, an age
for Pando between ~10,000 and 100,000 years (Supplementary
Figure A.9). Interestingly, pollen records from the Fish Lake
support a continuous presence of Populus during the last 15,000
years, potentially up to 60,000 years ago, which generally
coincides with our age estimates for Pando (Figure 6E).

Discussion

We explored the evolutionary and developmental history
of a long-lived, clonally reproducing tree, confirming that
the Pando clone consists of a single genet spanning 42.6
hectares. We based our estimate of the age of the Pando clone
on the accumulation of somatic mutations, acknowledging
uncertainties due to rare mutation calls by exploring three
different scenarios (Figure 6). Our most conservative estimate,
based on the percentage of mutations we are confident in
recovering, suggests the clone is at least 16 000 years old. A

8 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

second scenario, using all detected mutations without further
filtering, places the clone’s age at approximately 34 000
years. Lastly, our least conservative estimate, which includes
potential undetected somatic mutations, suggests the Pando
clone could be as old as 81 000 years. Regardless of the
scenario, these estimates highlight the remarkable longevity of
the Pando clone, which has likely persisted for more than ten
thousand years, making it one of the oldest living organisms
on Earth.

The last glaciation event models that this region of North
America at low altitudes was not covered in ice (30, 31). With
an altitude of 2700 m however, the specific area where the
Pando clone is in the Fish Lake plateau could have been caught
in mountain glaciers. Boulder exposure ages in the Fish Lake
plateau suggests a local last glacial maximum of 21,100 years
(32). However, the Fish Lake Plateau glaciers reconstructed
from models have altitudes ranging from 2950 to 3190 m,
thus higher in elevation than the Pando area, suggesting that
vegetation survived through the glacial period, specifically at
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Pando’s present location. This interpretation is supported by
subfossil pollen analyzed from a lake sediment core collected
nearby Fish Lake (Figure 6E, upper panel). This data show
that Populus pollen has been present continuously in the Fish
Lake catchment for the last 15,000 years but has been generally
present over the last 60,000 years.

When reflecting on the Pando clone’s expansive territorial
dominance and enduring resilience, its triploid nature may
have played a crucial role in its success (33). Polyploid
organisms, like Pando, often exhibit advantages such as en-
hanced adaptability and competitive ability, traits commonly
associated with the success of invasive species. Although
polyploidy can be energetically costly, it is frequently linked to
rapid territorial expansion (34). Prior work shown a positive
correlation between polyploidy and plant invasiveness, along
with a reduced risk of endangerment (35). In Pando’s case,
polyploidy may have contributed to its capacity to thrive in
changing environments and secure its long-lived dominance.
However, unlike many polyploid species that spread via sexual
reproduction, odd-numbered ploidies have typically very low
fertility, making clonal evolution even more critical to Pando’s
persistence (36). This highlights the importance of somatic
mutation and within-organism evolution in shaping the genetic
diversity and resilience of this ancient clone.

To explore isolation by distance in clonally reproducing
organisms, we sequenced leaves across a 50-m grid covering
the entire Pando area as well as leaves, branches, shoots and
roots at a finer scale, with samples collected 1-15 m apart in
two locations within the clone. Our findings reveal spatial
genetic structure within the clone, with samples sharing more
mutations when geographically closer (Figure 3 & 5). While we
were able to detect this spatial signal at fine scale in the leaves
and roots, it was weaker at larger scales than expected and
usually observed in clonal organisms (26, 37, 38). Although we
can clearly distinguish Pando samples from neighboring clones
(Figure 1) and detect some internal structure within Pando
(Figures 3&5, the relatively low number of shared mutations
between closely related tissues (roots, shoots and branches,
Figure 5) suggests an intriguing underlying dynamic.

Research on within-clone mutation diversity shows that
members of the same clonal population are rarely genetically
identical, but rapidly accumulate mutations that are not
shared by all individuals (12). Similar observations were
made in strawberries where mutations present in mother
plants were absent in daughter plants propagated via stolons
(13). Somatic mutations occurring in local tissues are not
always passed down to the next generation of cells. As
roots grow, the meristematic island that will give rise to
new ramets gets pushed by waves of cells, protecting the
stem cells from mutation accumulation (39). This aligns with
the low number of somatic SNPs detected between two oak
leaf genomes sampled from the same individual (17 out of
314 865 putative SNPs in 236-yo oak tree (15)). Despite
prolonged lifespan and exposure to significant environmental
changes, plants seem to have evolved mechanisms protecting
the meristems from accumulating mutations. When sequencing
entire tissues, we might be observing the localized buildup of
somatic mutations rather than the cell lineages contributing
to organismal evolution, which would explain the relatively
weak spatial genetic structure.

Pineau etal.

Our results suggest differing rates of somatic mutations be-
tween tissues that contribute to the progeny versus those that
do not, and between annual and perennial tissues. We found
that leaves accumulate more mutations than bark (branches
and shoots), and roots. This aligns with findings from other
studies, where longer-lived organs show lower mutation rates
compared to more short-lived structures (leaves versus petals)
(13). Similarly, in peach trees, mutation accumulation in
branches—tissues involved in sexual reproduction—was lower
than in roots (13), suggesting a history of selection minimizing
mutation accumulation in reproductive tissues.

This work provides novel insights into the evolutionary
history of one of Earth’s oldest and largest known organisms,
the quaking aspen clone Pando. By analyzing somatic
mutations across different spatial scales and tissue types, we
estimate the clone’s age to be at least 16,000 years old, with
potential upper estimates reaching 80,000 years. Our findings
reveal a weaker than expected spatial genetic structure within
the clone, suggesting localized mutation build-up rather than
consistent dispersal along tissue lineages. This work advances
our comprehension of intra-organism evolution in clonal plants
and suggests potential mechanisms for maintaining genetic
integrity in indefinitely growing organisms. The observed
differences in mutation accumulation between tissue types
provide insight into how plants may evolve to preserve the
genetic fidelity of meristems fueling indefinite growth. These
findings have broader implications for our understanding of
adaptive strategies in long-lived perennials and the evolution-
ary dynamics of clonal organisms in changing environments.

Methods

Sampling. The Pando clone (Populus tremuloides) is located
in the Fishlake National Forest, Utah, USA (38°31'N,
111°45’W), and ranges in altitude from 2700-2790 m. The
sampling area consists of two distinct subsections dominated
by aspen containing both Pando and surrounding clones.
The large scale dataset containing the Pando clone and the
surrounding clones was obtained by collecting leaves based
on a 50-m grid in June 2006 and November 2007, sampling
from both a smaller (younger) and a taller (older) tree at
each location (see (17) for more details). To test for the finer
scale within clone genetic structure, leaves, roots, bark from
the trunk and branches of additional stems were sampled in
June 2022. Two sampling sites within the Pando clone were
chosen for this additional sampling, one situated in an area
that was clear-cut 30 years ago and the other one in an older
area (Supplementary Figures A.2 and A.3). 100 additional
leaf samples were collected from P.tremuloides in the USA’s
Intermountain region (Colorado, Wyoming, Nevada, Idaho)
to generate the 'panel of normals’ (see “Identifying somatic
mutations” section). Leaves were kept in paper coin envelope
and placed in desiccant. Root and bark samples were placed
in polyethylene bags and kept at cool temperatures before
long term storage at -20°C.

Sequencing. The 296 leaf samples from the Pando and
surrounding clones, and the 45 root samples, 45 leaves and
27 bark samples from trunk and branches were prepared
for GBS sequencing. Woody tissues were powdered using a
pester and mortal and further lysed using Tissue Lyzer 11
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(TissueLyser 11, Qiagen). Genomic DNA was extracted using
the DNeasy Plant Pro Kit (Cat. No. 69204, Qiagen). To
generate a reduced complexity DNA library, the genome was
digested using Msel and EcoR1 enzymes. The fragments were
labelled and prepared for sequencing using oligonucleotides
consisting of Illumina adaptors and unique 8-10 base pair (bp)
sequences. The fragments were amplified and size-selected
to only keep fragments between 300 and 400 bp-long, before
sequencing (Genotyping-By-Sequencing, see (40) for more
details). The samples were sequenced at the University of
Texas Genomic Sequencing and Analysis Facility (Austin, TX,
USA). Library preparation and sequencing were done in three
batches, with 367 samples sequenced with an Illumina HiSeq
4000 (1 x 100 base pair reads) in 2018, 126 and 96 samples
sequenced on a NovaSeq (1 x 100 base pair reads) in 2022
and 2024, respectively (one lane each). Total number of reads
was 1 027 955 624.

Genome alignment and variant calling. We used the mem
algorithm from bwa (default options, version 0.7.17-r1188,
(41)) to align the reads to the published reference genome for P.
tremuloides (21). We used samtools to compress, sort and index
the alignments (Version: 1.16 (41)). We called the variants
using samtools mpileup algorithm (Version: 1.16). The large-
scale and fine-scale datasets were pooled for variant calling,
and the replicate and ’panel of normals’ datasets were kept
separate. We kept mapped reads with a quality >30, skipped
bases with base quality >30 and ignored insertion—deletion
polymorphisms. At this step, we also separated from the poled
vcf the fine-scale and large-scale samples. We then filtered
our set of SNPs by keeping the sites for which we had data
(mapped reads) in at least 60% of individuals, a mean coverage
per sample of at least 4%, and at least one read supporting
the non-reference allele. We also removed SNPs failing the
base quality rank-sum test (P < 0.005), mapping-quality rank-
sum test (P < 0.005), and the read position rank-sum test
(P < 0.01).

To minimize confounding batch effects, we additionally
removed the variants that had a notable difference in coverage
between the fine-scale and large-scale datasets. Indeed, differ-
ences during the GBS size selection step between batches could
lead to differences in the representation of some fragments. To
counter this, we removed SNPs with a difference in coverage
between the two datasets, that was more than half the mean
coverage of the datasets combined (the mean coverage was
14x per individual per variant). At this step, we were left
with 22,888 variants.

In order to differentiate between the samples pertaining
to the Pando clone and the surrounding clones, we obtained
Bayesian estimates of genotypes. We specifically computed
the posterior mean genotype as a point estimate based on the
genotype likelihood from beftools and a binomial prior based
on the allele frequency estimates from the vcf file. We used
principal component analysis (PCA) to ordinate the samples;
this was performed on the matrix of centered but not scaled
genotype estimates. We did not scale as the variance was
similar between samples. The PCA clustered the samples,
separating the Pando clone samples, from the surrounding
clone samples (Figure 1). We used k-means clustering (R
kmeans function, with K=2) to label the different clusters of
samples and further split the variant file into two files: the

10 — www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

Pando variant file and the surrounding clones variant file,
with 9 424 and 20 178 SNPs, respectively.

Identifying somatic mutations. To filter out the germline
mutations and only be left with the somatic mutations, we first
compared each dataset (replicates, fine scale and large scale)
with the surrounding clones set of variants and a ‘panel of
normals’ and only kept the variants unique to dataset of focus.
The ‘panel of normals’ (42) is composed of 100 samples of P.
tremuloides from Utah neighboring states (Idaho, Wyoming,
Colorado, Nevada) that were collected and sequenced with
the large scale dataset in 2008. Next, we labeled samples
as homozygotes or heterozygotes for every variant detected
by comparing their probability of being heterozygote to the
threshold value (.95). To remove variants that may have been
present in the mother seed of the organism, we removed the
SNPs that were found in 80% or more of the samples. We also
removed the variants that were only found in one sample, as
they could be either rare variants, or sequencing errors. We
filtered out individuals with a mean coverage of <4x for all
variants. We then performed a spatial structure analysis on
the filtered sets of somatic mutations.

Spatial analyses. To detect spatial structure in the dataset, we
applied the same set of analyses on two different datasets: (1)
a large scale, and (2) a finer scale dataset. We first compared
the proportion of shared variants per pair of samples to their
physical distance (number of shared mutations between a
pair of samples, divided by the mean number of mutations
for the same pair of samples). We then compared the mean
distance between groups of samples sharing a mutation. We
used Vincenty ellipsoid method (distVincentyEllipsoid function
in R) to calculate the shortest spatial distance between two
samples. For each analysis, we compared the empirical values
to values obtained from a randomized dataset to assess the
significance of the results. To generate null distributions,
we randomized either the genotypes or the pair of spatial
coordinates, (latitude and longitude) and ran the same analysis
as ran on the non-permuted data (500 or 1000 permutations).

Coalescent model using BEAST. We used the software package
BEAST (version 2.7.5) to estimate the height of the phyloge-
netic tree for the Pando samples based on the accumulated
somatic mutations; this was done on a coalescent Bayesian
skyline model for effective population size (27, 43, 44). We
chose the GTR nucleotide-substitution model to account for
unequal substitutions rates between bases (45). The nexus file
was obtained by concatenating the set of somatic SNPs with
binary coding of the presence of the homozygote genotype
with one of the base pair (for example, “A”), a heterozygote
with another base pair (for example, “T”) and a missing site
(no variant calling information for that site) with an “N”. The
chains were run for 72107 states. To estimate the age of the
tree, we converted the phylogeny height to years a posteriori
following this calculation:

Tns 3

age(years) = —= x —

npp W
with T being the phylogenetic tree height as given by
BEAST, ng the total number of mutations, ngp, the total

number of base pairs sequenced, p the leaf somatic mutation
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rate (1.33 * 107 per base per haploid genome per year (28)),

taking into account that the Pando clone is triploid (20, 29).

The total number of base pairs sequenced (129,194,577)
was estimated using angsd (46), and reduced following the
proportion of base pairs that we filtered out based on coverage

(48%).

Accounting for missing mutations. We compared the number
of common mutations between the replicate dataset set of
somatic mutations, and mutations from the 12 samples of the
finer scale, from which the replicate samples were derived. 6
mutations (out of 101) were common between both datasets,
implying that we are missing 96% of the somatic mutations.
To take this into account as well as how the phylogenetic
tree height might be affected with missing mutations, we
calculated the relationship between the number of missing
mutations and the phylogeny height. To do so, we randomly
removed an increasing percentage of mutations, simulated the
phylogeny in BEAST and found a linear relationship between
the proportion of missing mutations and the phylogenetic tree
height. We used this regression to estimate the Pando clone
age.
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Pollen analysis. Pollen analysis followed standard acid diges-
tion procedures (47). Pollen residues were classified and
tabulated using light microscopy at 40x until a minimum
of 300 terrestrial grains were counted. Pollen identification
was assisted by relevant keys and literature (e.g., Kapp et al.
2000 (48)). We assume that the Populus pollen type, which is
generally not diagnostic to species-level assignment, reflects
quaking aspen in this environmental setting.
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Fig. A.1. Principal Coordinate Analysis (PCoA) on the large scale and finer scale datasets, colored by dataset, tree ID and tissue type.
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Fig. A.2. Localities for large scale (left) and fine scale (right) sampling. Coordinates are given in Supplementary Table 1.

Site #2

Lightly sampled tree

X Roots: 3 samples along one root, two roots
Shoot: 3 samples along the shoot
Branch: 3 samples along the branch, two branches

X Leaves: 3 samples from the same branch, two branches

Fig. A.3. Sampling strategy for the fine scale dataset. Leaf, bark, branch and root samples from two localities within the Pando stand were collected. In site #1, located in a
recently clear cut area, two ramets were heavily sampled (leaf, bark, branch and root samples), and five surrounding ramets were lightly sampled (leaf and root samples). In
site #2, one ramet was heavily sampled and three surrounding ramets were lightly sampled).
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Fig. A.4. The mean read depth per SNP for the mutations that were found in more than 2 sample per replicate group was not different from the mean read depth of the
mutations that were not found in more than 2 samples per group (two-sided Student’s test, t = 0.69, P = 0.51). Error bars indicate standard error. Replicate group 7 only
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Fig. A.5. Distributions of mean correlations between the spatial distance between pairs of samples, and the number of mutations they have in common, sorted by tissue type.
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Fig. A.6. Distributions of mean distance between samples sharing one mutation in the fine scale dataset, sorted by tissue type. Mean distance for leaves is 39.28 m, mean

distance for roots is 51.36 m, mean distance for shoots is 46.12 m, mean distance for branches is 46.69 m.
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of mutations as compared to root and branches, but not shoot (ANOVA, F3 97 = 16.55, P = 9.22¢~? followed by Tukey HSD with P < 0.0001 for root and branch).
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Fig. A.9. The Pando clone is more than 100 000 years old based on the fine scale dataset. (A) We use the relationship between the proportion of missing mutations from a
simulated dataset and the phylogenetic tree height to take into account the somatic mutations that we are missing in the Pando clone fine scale dataset (linear regression
y = 0.10 + 0.16z, P < 2.2e — 16, R% = 0.82). (B) With this correction, we calculate the Pando clone age based on three different assumptions: (1) if the mutations we
detect are all real, the Pando clone would be about 32 423 years old (4 sd = 2154 years); (2) if we are missing 94% of the mutations, then the clone would on average be
100375 years old (£ sd = 5882 years); (3) finally, if only 6% of the mutations we detect are real somatic mutations, the Pando clone would be 12145 years old (4 sd = 21
years). (C) Despite thousands of years of evolutionary history, the Pando clone shows minimal phylogenetic structure (points colored according to PC1 score).
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