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Abstract: Unmanned aerial vehicles (UAVs) can collaborate as teams to accomplish diverse mission
objectives, such as target search and tracking. This paper introduces a method that leverages
accumulated target-density information over the course of a UAV mission to adapt path-planning
rewards, guiding UAVs toward areas with a higher likelihood of target presence. The target density is
modeled using a Gaussian process, which is iteratively updated as the UAVs search the environment.
Unlike conventional search algorithms that prioritize unexplored regions, this approach incentivizes
revisiting target-rich areas. The target-density information is shared across UAVs using decentralized
consensus filters, enabling cooperative path selection that balances the exploration of uncertain
regions with the exploitation of known high-density areas. The framework presented in this paper
provides an adaptive cooperative search method that can quickly develop an understanding of the
region’s target-dense areas, helping UAVs refine their search. Through Monte Carlo simulations,
we demonstrate this method in both a 2D grid region and road networks, showing up to a 26%
improvement in target density estimates.

Keywords: unmanned aerial vehicles; search and tracking; Gaussian process regression; mission planning

1. Introduction
The demand for unmanned aerial vehicles (UAVs) continues to grow due to their

wide range of practical applications and advantageous qualities. UAVs offer numerous
operational benefits [1–6], are typically more cost-effective than manned alternatives,
and protect pilots by keeping them out of dangerous situations [7]. Deploying multiple
UAVs in a coordinated manner can significantly enhance their collective efficiency and
impact, such as allowing them to gather information more quickly and comprehensively
within a given area.

Patrolling, search, and surveillance operations face considerable challenges when there
are not enough UAVs to cover the entire area simultaneously. In these situations, UAVs
must coordinate their trajectories to maximize area coverage as efficiently as possible. While
previous research has focused on developing cooperative search algorithms, it has often
overlooked the impact of uneven target distributions in unknown environments. When
targets are distributed unevenly across a region, it becomes crucial to adapt the search
strategy accordingly. In areas with low target densities, the likelihood of finding valuable
information is minimal, and thus, frequent visits to these regions would lead to an inefficient
use of resources. Conversely, regions with a higher concentration of targets offer greater
potential for discovery, and UAVs should prioritize these areas to maximize mission success.
Without adapting to these variations, UAVs risk wasting time and energy on low-value
areas, which could hinder overall mission efficiency. Therefore, an optimal search approach
would allocate more time and effort to high-probability zones, dynamically adjusting based
on learned information about the environment. This is especially relevant in scenarios
where uneven target distributions are expected, such as when searching large regions that
include both sparsely populated rural areas and heavily populated urban regions.
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In this paper, we provide novel cooperative search algorithms that dynamically adapt
the path-planning algorithm based on gathered information while it operates in areas with
uneven target distributions. The search algorithm learns the target-density environment
using Gaussian process (GP) regressions and uses this information to drive UAV behav-
ior. A depiction of this concept is shown in Figure 1. In our approach, UAVs prioritize
revisiting areas that are highly likely to provide information on new or existing targets
while minimizing time spent in regions where targets are rarely observed. The balance
between exploiting regions with a high likelihood of valuable information and exploring
new or lower-priority areas is guided by the uncertainty in the GP model. This method is
particularly effective in search regions with nonuniform target densities and frequencies,
such as road networks with highways or areas that encompass both sparsely and densely
populated regions.

Figure 1. This figure depicts the research objective to efficiently search for targets using UAVs by
predicting the target densities along the road networks based on their history of observations.

This paper extends the authors’ prior published conference proceeding [8] which
applied GP regressions in a centralized implementation to a search region by segmenting
the area into grid cells. We expand this approach by also providing a decentralized road
network algorithm. The road network approach provides several advantages over a grid
cell approach, including the ability to (a) automatically learn the road network through
open source information, (b) limit UAVs from searching areas where targets will not be
found (i.e., off of roads), (c) provide a more accurate prediction of target locations, and
(d) propagate target uncertainty along the road network through a novel kernel function
applied in the GP regression.

Specifically, the contributions in this paper include:
• Creating search algorithms that balance the exploration and exploitation of a region in

uneven target densities for both a grid region and road network.
• Automatic generation of a road network using open-source databases that may drive

the search algorithm.
• Developing a novel kernel function that determines spatial closeness to points along

the road network and thus provides a method to update the GP regression.
• Constructing a decentralized implementation of our search algorithm using consen-

sus filters.
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The paper is organized as follows. Section 2 presents a review of related works.
In Section 3, we outline the overall path-planning approach and explain how cooperating
vehicles optimize their search areas using a cost function. The core contributions are
highlighted in Section 4, where we explain the method for calculating and updating road
segment rewards based on learned information. In Section 5, we compare our approach
with baseline methods across both grid-based and road network scenarios. Finally, Section 6
offers conclusions and a summary of the work.

2. Related Works
The performance of a search algorithm is generally assessed based on the mission’s

objectives, such as ensuring frequent and uniform coverage of an area or identifying
and tracking dynamic targets within a specified region. Each objective comes with its
own advantages and trade-offs. Frequency-driven methods aim to optimize the interval
between visits to various locations in the search area. Some strategies prioritize reducing
this interval, as highlighted in [9–11], while others aim for consistency in the elapsed
time across the entire search grid, as discussed in [12,13]. Another approach emphasizes
identifying the maximum number of high-interest locations in the shortest time, often
employing probabilistic methods, such as in [14].

While these algorithms perform well according to their evaluation criteria, they often
show limitation when applied to searching for and monitoring moving targets. Specifically,
they may struggle to accurately map the targets or predict their behavior. In many scenarios,
targets are not uniformly distributed across a search area, leading to UAVs spending
disproportionate amounts of time searching regions with few or no targets.

In this work, we choose to model the target distributions using GP regressions, both
for a grid region and road networks. GP regressions can model complex behavior with-
out parameterized prior knowledge [15]. They also have the advantage of providing an
uncertainty quantification along with a mean function defined over the entirety of the
space [16]. This makes it an ideal tool for modeling target densities since targets exhibit
complex, nonlinear patterns with sharp spatial boundaries (i.e., as occurs when they are
confined to roads). GPs have been used previously to estimate wind fields for gliders and
UAVs [17–19], discover patterns [20], and in model predictive control [21–23].

There are many approaches to multi-agent path routing, including both learned and
analytical policies. For learned policies, some multi-agent path routing methods have used
Reinforcement Learning (RL) for applications such as path finding [24–26], collaborative
searching and tracking [27,28], air combat [29], network optimization [30,31], and area
coverage [32,33]. Though these methods do show promise, in contrast to our method, they
are often sample inefficient, require high computational power and memory, can lead to
stochastic policies, and may need to be retrained when there are any modifications to the
vehicle or environment models.

Other multi-agent path routing methods have used Mixed Integer Linear Program-
ming to optimize UAV placement applications such as maximizing cellular coverage [34]
or truck multi-drone routing over a directed graph [35]. The work by [36] chooses actions
from a finite control set by evaluating all sets of actions up to a horizon and then uses a
more efficient policy to evaluate the reward for future actions. This requires much less
computation than an exhaustive search over sets of actions. Our multi-agent path routing
method extends this work by combining an exhaustive search algorithm with a greedy-
heuristic algorithm, while incorporating an adaptive threshold based on spatial diversity
in the paths to determine when to switch between the two.

An important aspect of multi-agent path planning is providing algorithms capable
of sharing information while increasing the number of cooperating vehicles. While many
works rely on full communication between UAVs and centralized planning, for this work
we assume that UAVs have a finite communication radius and are unable to connect to a
centralized processing station. Assuming an undirected and connected communication
topology, each UAV shares observation and target count numbers. We use a consensus filter
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to calculate the average estimate of the shared information. Consensus filters are useful in
driving vehicles to a common state [37]. In prior research, they have been used to estimate
environmental information [38,39], track objects [40], determine the number of targets [41],
and drive vehicles to formations [42]. Using a consensus filter enables our method to be
decentralized and more robust to real-world communication networks.

3. Vehicle Path Planning
This section explains how our path planning algorithm operates and works to enable

cooperative control between UAVs. Figure 2 illustrates the main components of the UAV
framework, where each vehicle gathers information (target detections) from within its
sensing field of view. Each UAV updates the parameters of its search-reward function
by merging its local heat map data with those from peer UAVs, as described in Section 4.
The vehicle’s updated understanding of the environment is then used to determine its
paths. This discrete process is repeated once all the vehicles have moved forward in time.

Figure 2. This figure provides the functional diagram of our cooperative search algorithm. This
shows that once vehicles sense information from their environment and share their local common
operating picture then this information is incorporated in the road segment rewards.

The rest of this section outlines the UAV model in Section 3.1 and the approach for
determining vehicle paths using receding horizon control in Section 3.2.

3.1. Vehicle and Target Model

We model the UAVs as fixed-wing aircraft that travel at a fixed velocity and altitude.
Each UAV is controlled with changes in heading achieved through a coordinated turn,

.
ψ

a
(k) =

g tan φa(k)
Va(k)

,

where g is the gravitational constant, a → [1, . . . , A] is the ath UAV,
.
ψ

a
(k) is the turn rate

at time step k, Va(k) is the ground speed, and φa(k) is the roll angle. All aircraft have a
saturation limit on their roll rate |

.
φ

a
| ↑

.
φ

max
.

The pth target’s state at time step k is given by xp(k)=
[

xp(k) yp(k)
.
xp(k)

.
y

p
(k)

]T

,
which represents the target’s north-east-down (NED) Cartesian position and velocity.
Targets are assumed to move in a fixed plane with the distinguishing relationship between
them and the UAVs being the bearing and ground range. As such, UAV sensors measure the
ground range and azimuth angle of targets in their sensor’s field of view. These detections
are converted from their range-azimuth measurement space to a Cartesian coordinate frame
and used in an extended Kalman filter (EKF) to estimate the targets’ positions.

The measurement noise wa ↓ N (0, R) of vehicle a is characterized by range and
azimuth uncertainties, εr and εϱ with noise covariance matrix given by R = diag

[
ε2

r , ε2
ϱ

]
.
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The measurement matrix that relates measurement space to state space for UAV a and
target p is

Hp,a(k) =




xp(k)↔xa(k)

rp,a(k)
yp(k)↔ya(k)

rp,a(k)
0 0

yp(k)↔ya(k)

r
2
p,a(k)

↔ xp(k)↔xa(k)

r
2
p,a(k)

0 0



,

where (xa(k), ya(k)) is the planar position UAV a at time step k. Target p’s position is(
xp(k), yp(k)

)
. The ground range between target p and UAV a is rp,a(k) =√(

xp(k)↔ xa(k)
)2

+
(
yp(k)↔ ya(k)

)2.
A sensor measurement is

zp,a(k) = Hp,a(k)xp(k) + wa.

Estimates of the target’s state x̂p,a(k) and error covariance Pp,a(k) are updated using
an EKF as described in [43]. Sensed target information is assumed to be shared with all
peer UAVs.

3.2. Cooperative Search

Our search mission is carried out by rewarding vehicles for sensing specific portions
of the operating area, M → R2. The operating area may be subdivided in two different
ways, either using a road map or dividing the area into equally spaced grid cells. The first
method is advantageous if the road network is known and targets travel along it (i.e., no
off-road maneuvers). The second method places no assumptions on target movement nor
requires prior knowledge of the area. In this subsection, we describe the vehicle rewards
and routing for each of these two approaches.

If not otherwise known, a road network may be obtained by exporting data from
OpenStreetMap [44], which contains worldwide information. Major roads may be extracted
from the data, while discarding trails, paths, and other lower-interest road segments to
create a road-network graph G = {V, S} with vertices V and road segments S connecting
the vertices. D = card{S} equal to the total number of road segments. Each road segment
Sd → S with d → [1, . . . , D] is described by two endpoints Sd =

{
Vi, Vj

}
which have

positions (xi, yi) and
(
xj, yj

)
respectively. To ensure all road segments are of similar length,

a maximum and minimum threshold is chosen, with the maximum road segment length
chosen to be less than the sensing diameter of the UAVs. Road segments greater than
the specified maximum length are divided into equal sections of length smaller than the
maximum. These newly created segments are appended to the set S. Road segments in
Sd → S whose lengths are less than the specified minimum are grouped with adjacent road
segments to create a grouped segment Gg, where g is an index of the road segment group,
and Gg is made up of subsets of S. Let G be the total set of road segment groups. Every
Gg → G contains one or more road segments and every segment in S belongs to exactly one
Gg. The total length of road segments contained in group Gg, len

(
Gg

)
, is greater than the

minimum road segment length and less than the maximum road segment length.
In a grid-based approach, M is divided into equally spaced grid cells Sg each identified

by a grid number g and center location
(
xg, yg

)
in the east-north frame.

In both search approaches, the reward function for UAV a is

Jsearch(k) = ∑
g

Jg(k), ↗g → Γa(k),

where Γa(k) is either the union of grid cells or road segment groups G that are contained
within the vehicle’s sensing radius at time step k and

Jg(k) = Jg,max(k)↔
(

Jg,max(k)↔ Jg(k ↔ 1)
)
e
↔∆t/ζ (1)
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is the reward of the gth road-segment group (or grid cell) with growth rate ζ, time step
∆t between sensor measurements, and the maximum grid cell or group reward Jg,max(k).
The reward Jg(k) is time-varying and may differ for each group or cell.

Equation (1), modified from [45], rewards visiting areas that have not been recently viewed.
Making Jg,max(k) time-varying is critical to modifying UAV behavior based on information
learned from the environment. The definition of Jg,max(k) is discussed in Section 4.

Grid cells are sensed, and belong to the set Γa(k), when their centers
(

xg, yg

)
fall inside

the UAV’s sensing radius rs, in other words, the distance rg,a(k) between the UAV and grid
cell center is less than rs, which is calculated as

rg,a(k) =
√(

xg ↔ xa(k)
)2

+
(
yg ↔ ya(k)

)2.

Road segment groups require that the endpoints of each segment be contained within
the sensing radius. The distances between the UAV and the two endpoints Vi and Vj of
segment Sd are defined as

ri,a(k)=
√
(xi ↔ xa(k))

2 + (yi ↔ ya(k))
2

rj,a(k)=
√(

xj ↔ xa(k)
)2

+
(
yj ↔ ya(k)

)2

and therefore rd,a(k) = max
(
ri,a(k), rj,a(k)

)
and rg,a(k) = max

{
rd,a(k) : ↗Sd → Gg

}
. When

rg,a(k) is less than rs, then g → Γa(k).
We use a receding horizon controller (RHC) to simultaneously plan the paths for all

UAVs. RHC operates by looking at future rewards over an event horizon and selecting the
path that maximizes the UAV’s objective function. The vehicles then execute one decision
command in their chosen path policy, before repeating the process of re-optimizing the
entire path for the next horizon. At each time step, the vehicle assesses all possible control
commands. For this work, each UAV controls its roll angle φc and can choose to bank left,
go straight, or bank right, with φc → [↔φmax, 0, φmax].

With cooperating vehicles, a joint-reward RHC is used to determine paths for all the
vehicles that will maximize the aggregate reward. The combined reward for A vehicles of
an RHC with event horizon L is computed using [45]

J
A

search
=

k+L

∑
k

∑
g

Jg(k), ↗g → ΓA(k), (2)

where ΓA(k) =
{⋃

A
a

(
rg,a(k) < rs

)
is the set of road segments or grid cells that are con-

tained within any of the UAV’s sensing radius. The value Jg(k) is given if it lies within
the field of view of any vehicle. Therefore, multiple vehicles viewing the same location
simultaneously do not yield any additional reward.

The goal of our vehicle path planning objective can thus be summarized as follows:

maximize
ΦA

c

J
A

search

subject to ↗φc → ΦA

c , φc → [↔φmax, 0, φmax]
(3)

where ΦA
c is the sequence of commands for all UAVs over the horizon.

3.3. Vehicle Path Planning

Jointly planning the paths of cooperating UAVs is computationally expensive. Using
a standard exhaustive search requires evaluating the objective function of every path
combination of all the UAVs. This becomes impractical even with a modest number of
UAVs employing a short event horizon. We address this challenge with two strategies:
(a) a Rollout policy that lessens the number of paths evaluated, and (b) a block coordinate
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ascent (BCA) optimization, which plans each vehicle’s path individually while assuming
the paths of all other vehicles remain fixed.

This paper builds on the Rollout policy introduced in [36], which combines exhaustive
search with a greedy heuristic. We augment the Rollout policy by introducing an adaptive
threshold that decides when to transition from an exhaustive search to our greedy-heuristic
method. The threshold is triggered when there is sufficient spatial diversity between the
UAV paths being evaluated.

Figure 3 shows our adaptive Rollout policy, where initially, every possible combination
of D discrete command options is evaluated. Once a spatial distance between UAV paths
exceeds a predefined threshold, the policy switches to greedily selecting the immediate
best reward, significantly reducing the number of UAV path combinations that need to be
evaluated. The exhaustive search guarantees an optimal solution for the initial planning
steps, and after achieving sufficient spatial diversity, the Rollout policy completes the path.
In practice, this method can produce near-optimal results [36]. The initial exhaustive search
remains computationally feasible because it is limited to a small portion of the overall
planned path before switching to the greedy-heuristic policy. This approach aligns well
with our discrete optimization problem that involves both a nonlinear objective function
and constraints.

Figure 3. This figure illustrates the Rollout policy for path planning, which initially employs an
exhaustive search before transitioning to a greedy heuristic policy once sufficient spatial diversity
is achieved among the potential paths. The darker gray circles represent the states selected for
expansion by the greedy heuristic policy.

Other methods may offer more computationally efficient path planning and should be
explored. In particular, approaches such as Monte Carlo Tree Search [46] would align well
with the discrete and nonlinear aspects of our objective function and should be evaluated
to determine whether it provides a better path-planning solution. However, since this was
not the primary focus of our paper, we have not included that work here. Instead, we
suggest that future research explore alternative optimization techniques that may further
reduce computational costs.

The second method we use to reduce computational complexity is the BCA algorithm.
This is a derivative-free optimization approach that allows us to optimize the path of a
single vehicle conditioned on assuming the policies of all other vehicles are fixed [47,48].
Each vehicle iteratively updates its policy, sharing the best policy with its neighbors. This
cyclic process repeats until a convergence criterion is met. In this work, convergence occurs
when either no vehicle changes its policy after a complete cycle of all UAVs updating their
paths, or a predefined number of cycles is reached. In practice, we found that convergence
generally occurs after 2–3 cycles.

The full path planning algorithm is provided in Algorithm 1. The potential paths
are propagated forward for L lookahead steps, initially exploring all possible paths. If the
spatial threshold is met, the planner switches to a greedy policy, selecting the next UAV
state with the highest immediate reward. Once all UAV paths are propagated forward
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to the Lth lookahead step, the path with the highest reward is chosen and shared with
all neighboring UAVs. The next UAV then plans its path, assuming all other UAVs will
follow the most up-to-date paths shared by their neighbors. These cycles continue until
the convergence criterion is satisfied. With the RHC, the UAVs then execute a step of its
planned path, prior to using the information learned to re-plan a new path.

Algorithm 1 Vehicle Path Planning.

1: Input: Current UAV states si ↗i → [1, . . . , A] and current path policies π.
2: Output: Updated path policies ΦA

c for all vehicles
3: while converging do
4: for each UAV a → [1, . . . , A] do
5: Set P = {sa}
6: for each lookahead step ω → [1, . . . , L] do
7: for each parent node state p → P do
8: Set P = P{p} ! Remove p from our set of parent nodes.
9: for each discrete control command φc → [↔φmax, 0, φmax] do
10: Propagate forward UAV a’s state using φc to get sa,ω,c
11: Evaluate the reward J

A

search,d for the full path up to this state:
12: (a) Using Equation (2), and
13: (b) the cumulative path from state sa to sa,ω,c, while
14: (c) keeping the policies of other vehicles are fixed.
15: Calculate the spatial difference τ(i,j) between each child
16: state sa,ω,c ↗φc → [↔φmax, 0, φmax]

17: if max
{

τ(i,j)


> spatial threshold then

18: Pick the child node sa,ω,c with the highest path reward: max
{

J
A

search

}
.

19: Add the highest reward state into set P = P ↘
{

sa,ω,c
}

20: else
21: Add all child states as the parent states for the next lookahead
22: step: P = P ↘

{
sa,ω,c

}
↗φc → [↔φmax, 0, φmax]

23: Communicate UAV a’s policy ΦA
a,c with neighbors

4. Learned Search Rewards
This section outlines the key contribution of our paper: a novel approach for dynami-

cally adapting UAV search behaviors based on real-time environmental data. As described
in the prior section, the UAVs determine their optimal path using the objective function
in Equation (3). However, as they collect sensor data during flight, we use that sensed
information to evolve their search behavior through modification of the search rewards.
This ongoing data collection is used to continuously adjust the maximum reward value,
Jg,max(k), which informs and refines the vehicle’s future planning.

Our method ensures that UAVs not only prioritize high-density target regions but
also maintain essential coverage of lower-density areas. By continuously updating the
reward values based on the UAV’s learned target densities, this approach optimizes search
efficiency while ensuring thorough exploration of the entire operational region.

The steps for determining the reward are shown on the right side of Figure 2. We will
discuss how each of these steps is implemented for both the road network and the grid cell
approach in the following two subsections.

4.1. Road Network

In this subsection, we explain how our search rewards are calculated when operating
with the UAVs following a road network. Algorithm 2 provides an outline of the road
segment reward method and will be explained below. This iterative algorithm runs at each
time step, incorporating the latest information on target positions. The steps for the road
segment reward method are as follows:
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Algorithm 2 Method for Multi-Agent Search using Road Network GPR.

1: Initialize arrays Ca(k) and Ta(k), with length equal to the number of road segments D

2: Compute covariance matrices K, Ks, Kss (Equation (12))
3: For each timestep k

4: For each UAV a → [1, . . . , A]
5: Local Heat Map Update:
6: For all road segments within sensing radii of UAVs
7: Set Td(k) = true
8: end for
9: For all detected targets
10: Update estimated target state x̂ using EKF
11: Find target association likelihoods to each road segment (Equation (4))
12: Set Cd(k) to the normalize likelihood values
13: end for
14: Consensus:
15: Compute road segment group target densities, ρg,a(k) (Equation (5))
16: Compute average target density Xd,a and variance s

2
d,a for each segment

17: GP Regression:
18: Find estimations fa and variances ε2 (Equations (7) and (8))
19: Ya ≃ fa + εg

20: Normalization and Scaling:
21: Normalize Ya (Equation (11)) to find Jd,a,max

22: Time Update:
23: Find road segment reward Jd at time k (Equation (1))
24: end for
25: Choose Action:
26: Choose the best action for the UAV using RHC
27: end for

1. Local Heat Map Update: In this step, each UAV uses its observations to locally create
a heat map of the target densities. A probabilistic approach is used to associate
the noisy target observations with specific road segments. This approach enables
us to distribute the target’s probability of associating across multiple road segment
groups. The heat map is stored as a list of target counts and a number of road segment
observations.

2. Consensus: Local target counts are shared among peer UAVs using a consensus
algorithm. This decentralized approach eliminates the need for a common ground
station, allowing the UAVs to share information directly with those within their
communication radius. Through the consensus algorithm, each UAV agrees on the
target counts and number of observations for the road segments. This enables them to
act on the collective knowledge of all cooperating UAVs, providing a more complete
view of the environment, including areas they may not have directly observed.

3. Gaussian Process Regression: We use GPs to model the mean and variance of target
densities across the entire operational area, allowing us to predict densities in areas
without direct or recent measurements. Applying GPs to a road network required
developing a custom kernel function, where similarity is propagated along connecting
roads and through intersections. Updated target densities and variances are recur-
sively calculated through the GP regression anytime new information is received.

4. Normalization and Scaling: The GP-derived predicted target densities and variances
are used to calculate a maximum reward value for each road segment. To do this,
we first increase the GP estimates by their standard deviations. This incentivizes
exploration; areas with high uncertainty will yield higher reward values. Next, these
adjusted estimates are normalized to a predetermined maximum value, Jmax, and
assigned to each road segment group as their upper reward limit, denoted as Jg,max(k).

5. Time Update: The upper reward limit, Jg,max(k), for a road segment group g, is used
to calculate the reward a UAV receives for observing that group. This value is updated
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at each time step according to Equation (1). The update follows an exponential curve
that starts at the last road segment observation, incentivizing the monitoring of areas
that have not been viewed recently.

Each of these steps is described in detail in the following subsections.

4.1.1. Local Heat Map Update
This subsection explains how each vehicle creates a local heat map of the observed

target densities. At each time step, each vehicle uses its estimated target tracks x̂p,a to
update the local target counts. Only tracks that were detected during the current time
step are included. The counts are stored for vehicle a in a one-dimensional array Ca(k)
of length D. Each entry in the array Cd,a(k), where d → [1, . . . , D], contains the number
of targets assigned to each road segment for time step k. Since measurements are noisy,
target estimates may not perfectly align with the road segment on which they are traveling.
Therefore, we probabilistically associate each target with roads using its likelihood value.

To find this association, we first project x̂p,a onto each line segment to get the closest
point on the road segment to the target. Then using the target’s error uncertainty Pp,a(k),
we compute the Mahalanobis distance µp,c between the target p’s estimated position and
the closest point on each road segment. Road segments that fall within the 95% Chi-
squared bound, µp,c <

⇐
5.99, are selected. For selected segments, the likelihood value is

determined as
Λ = be

(↔ 1
2 µ2

p,c↔κ), (4)

where b = card
{

rg,a < rs

}
is equal to the number of road segments within the UAV’s

sensing radius and κ = ↔0.5 Log
(Pp,a(k)

)↔ Log(2π) is the constant value for the log-
likelihood. The likelihood values are normalized and stored in Ca(k) for each road segment
at that time step.

Each UAV also keeps a Boolean array Ta where the d
th entry is Td,a with d → [1, . . . , D].

The entry’s Boolean value indicates if the road segments fell within the vehicle’s sensor
range during that time step. This vector helps track negative information (i.e., when a road
segment contains no targets) and ensures that target densities are computed correctly.

At the start of a simulation, the vectors Ca(0) and Ta(0) are initialized with non-
zero target counts and observations. This encourages an initial exploration of all the
road segments.

4.1.2. Consensus
This subsection describes the decentralized algorithm used to share target density

information among a group of cooperating UAVs. UAVs can only communicate with
peer vehicles that fall within their communication range. Although the communication
topology is time-varying, we assume that it is strongly connected at each time step. Decen-
tralized sharing of target information is accomplished using a proportional-integral (PI)
consensus filter. PI consensus filters have been utilized in past research when communicat-
ing spatiotemporal environmental information across strongly connected communication
topologies [38,39].

We use the PI consensus filter to converge to the average number of target counts and
times that each road segment was sensed using the local Ca and Ta values. Let η0,a be UAV
a’s input to the estimated value (either Cd,a or Td,a). The PI consensus filter is [39]

.
η

a
= γ(η0,a ↔ ηa)↔ Kp ∑

j→Na

(
ηa ↔ ηj

)
+ KI ∑

j→Na

(
ζa ↔ ζ j

)

.
ζ

a
= ↔KI ∑

j→Na

(
ηa ↔ ηj

)
,

(5)

where γ > 0 is a gain indicating its reliance on its own input relative to the input of others,
Kp is the proportion gain, KI is the integral gain, ηa is the consensus variable of vehicle a
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(i.e., the average of Cd,a or Td,a), ζa is an integrator variable used internally to the filter, and
Na are the peer agents in the neighborhood of UAV a.

From the resulting consensus outputs, we calculate the target counts for each group
Cg,a(k) as the sum of counts for all road segments in its group at each timestep k. The
density for the group at each timestep is then defined as

ρg,a(k) =
Cg,a(k)

len
(
Gg

) .

We define Xg,a to be the average of ρg,a, where we use Td,a from one of the segments
in the group (all Td,a in the same group would be equal) to determine the number of
measurements of the group. The average target density for each road segment Xd,a in the
group are all set to the group average. The combined vector of average target densities for
all road segments is defined as Xa → RD⇒1 where the total number of road segments is D.
We let s

2
g,a be the variance of the target densities for the road segments in group g.

A target density heat map is created using Xd,a, which provides UAV a’s best in-
formation of the area. The heat map continuously updates as targets are observed by
the UAVs.

4.1.3. Gaussian Process Regression
This subsection describes how we utilize a GP regression to predict the target densities

across the entire operational area. GPs allow us to predict target information in areas
without direct observations given a spatial correlation between two locations. We spatially
correlate our target densities using a unique kernel function that propagates target densities
along the road network and intersections, assuming an equal probability of movement in
any direction.

We will outline the GP regression notation that is relevant to our research and show
how it is used to create a global target density map. A more comprehensive treatment of
GPs may be found in [15].

Using information from the target density heat map, a GP regression is applied to
all road segments, utilizing their mean values and variances, Xd,a and s

2
d,a. This approach

allows us to predict target densities in regions without direct observations. Gaussian
processes are defined as collections of random variables at input points X that are charac-
terized by a mean function m(X) and covariance function k(X, X

⇑). The distribution over
an arbitrary function f (X) is defined as

f (X) ↓ GP
(
m(X), k

(
X, X

⇑)).

GP regression employs Bayes’ rule to compute a posterior distribution over functions
using both training and test points. For this work, the training data consists of measure-
ments from the road segments, and the test points include all road segments within the
search area. The resulting posterior distribution enables inference of the target density
across the entire search region.

We assume that the mean m(X) ⇓ 0, and that the input X is all road segments in S.
The prior covariance K is an n ⇒ n matrix, where n is the number of road segments that
have at least one measurement. The matrix K is constructed using a custom kernel which
accounts for the minimum along-road distance dist(i, j) between road segments i and j, and
the number of intersections h(i, j) along this shortest path. The custom kernel function is
designed to be

k
(
Si, Sj

)
= εf e

↔λ1dist(i,j)
e
↔λ2h(i,j) (6)

where λ1, λ2, and εf are the tuned hyperparameters. The along road distances dist(i, j) are
computed using Dijkstra’s algorithm with special care taken to find the shortest distance
between either of the two road segment’s endpoints. Road segments i, j → ξ, where ξ ⇔ S

contains road segments that were measured at least one time.
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This kernel function provides a similarity measure between road segments and op-
erates under the assumption that ground vehicles travel by the shortest path from one
location to another and are equally likely to choose any direction at an intersection. Note
our prior covariance matrix is only dependent on the structure of the road network. In
practice, we only need to compute this kernel function once, offline, when the road network
is defined. Then in-flight UAVs take a subset of this matrix (for the road segments that have
been observed) to use in the GP regression.

A joint covariance matrix of current data (training points) and desired estimates (test
points), Ks, is constructed and used to help predictive variance and mean target density.
The matrix Ks is of size D ⇒ n, where D is the total number of road segments, and n is the
number of road segments with one or more measurements. The matrix is constructed using
Equation (6), where Ks(i, j) = k

(
Si, Sj

)
, ↗i → S and ↗j → ξ.

New road segment predictions are calculated using

fa = Ks(K + E)↔1
Xa, (7)

where E is a matrix with diagonal elements E(i, i) = s
2
i,a, ↗i → ξ, [49,50]. The prediction

vector fa is of length D ⇒ 1.
The variance of fa is calculated by

ε2
a = Kss ↔ Ks(K + E)↔1

K
↖
s , (8)

where Kss(i, j) = k
(
Si, Sj

)
,↗i, j → S.

Tuning the hyper-parameters of the kernel function leads to optimized performance
of the Gaussian process. To illustrate the importance of proper hyper-parameter tuning
consider a simple 1-D case that uses the Laplacian kernel function

k(i, j) = ε2
f
e
↔λ|xi↔xj |, (9)

where λ is the length scale, ε2
f

is the signal variance, and xi , xj are the 1-D positions. The
hyper-parameters λ and ε2

f
are the length scale and signal variance respectively.

As demonstrated in [15], Figure 4 illustrates the impact of the length factor and signal
variance on the GP regression, highlighting how variations in these parameters can lead
to good-fit, under-fit, or over-fit models. Data points sampled from a noisy sine wave
are shown as red “+” symbols, with the GP prediction represented by the blue line and
the 95% confidence region shaded in gray. In Figure 4a, a GP regression with high signal
variance ε2

f
and a length scale set to cause underfitting is depicted. Figure 4b displays a GP

regression with lower ε2
f

and a chosen length scale that achieves a good fit. Figure 4c shows
an over-fitted GP regression, where the prediction follows the training data too closely,
and the uncertainty region expands rapidly, even at small distances from the training
data points.

In Equation (6), the hyper-parameters are λ1, λ2, and ε2
f

(two length scales and signal
variance). The length scales affect the distance traveled in the input space before the output
changes significantly [15].

A common method of tuning the hyperparameters of a kernel function is to minimize
the log marginal likelihood of that kernel function using gradient descent methods [51,52].
We likewise tune the hyperparameters one time off-line by minimizing the negative log
marginal likelihood of Equation (6), which is

log p(Ca|X) = ↔1
2

C
T

a


K + ε2

n I

↔1
Ca ↔

1
2

log
K + ε2

n I

↔
n

2
log 2π. (10)

The log marginal likelihood was computed using Algorithm 2.1 in [15], which uses
Cholesky decomposition to find the matrix inverses.
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Figure 4. An illustration of how the length scale (λ) and signal variance (ε2
f
) influence the GP

regression fit using test data generated from a noisy sine wave. (a) Under-fit GP regression; (b) Good-
fit GP regression; (c) Over-fit GP Regression.

Equation (10) was minimized using a gradient descent algorithm. As noted in [15],
ε2

n is included to model noise variance when tuning. This variable was kept constant
throughout the tuning process. In practice, we found that the starting values must be
relatively close to the order of magnitude of the ideal value. Optimal tuning also required a
training data set that was large enough to seed the Gaussian process but small enough so
as not to over-fit the model. We used the observations from a single simulation run with a
sub-sample of only 10% of the road segments.

4.1.4. Normalization and Scaling
This subsection outlines the normalization step in our road segment reward method,

which ensures a consistent distribution of rewards. The GP regression outputs the predicted
target densities for each road segment along with their associated uncertainties. To promote
exploration, we augment the predicted target density by adding one standard deviation
to the predicted target density according to Ya = fa + εa, where Ya = [Y1,a, Y2,a, . . . , YD,a]

↖.
By initializing Ca(k) and Ta(k) with non-zero values, we ensure Ya does not start at zero,
incentivizing the UAVs to explore a road segment multiple times before the variance
is decreased.

The array Ya needs to be normalized to maintain a balanced reward function when
integrating with other mission objectives, such as target tracking or collision avoidance.
Each road segment maximum reward is computed as

Jd,a,max =
Yd,a Jmax

max(Ya)
(11)

where Jmax is the set maximum reward for any road segment.

4.1.5. Time Update
The final step in our reward method is to update the current reward based on the

elapsed time. The reward for viewing a road segment group grows exponentially starting
from the time it was last observed (as described in Equation (1)). These reward values are
used in the RHC controller to evaluate high-value paths and drive the UAV to choose paths
that lead to target-rich locations.

4.2. Grid Based

In this section, we describe how search rewards are adapted when operating with
the operational space divided into a grid. This approach is useful in scenarios where the
road network is either unknown, cannot be automatically generated from open-source
databases, or when vehicles are expected to travel off-road or along smaller, unmapped
roads. The process for creating the grid cell rewards follows the same steps as those for
road networks with only minor modifications. In the next paragraphs, we highlight these
differences when compared to the road-network approach.
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1. Local Heat Map Update: Under the grid-cell implementation, when targets are
detected they are associated with the grid cell in which their estimated position is
located. Because grid cells have uniform spatial dimensions, the resulting counts are
not normalized like they were with the road network implementation.

2. Consensus: The consensus algorithm works identically to that presented in Section 4.1.2.
However, the values over which consensus is performed now includes a target and
observation count for each grid cell (as opposed to road segment).

3. Gaussian Process Regression: In the grid-based approach we use a Laplacian kernel
function instead of the custom kernel function. The Lapalacian kernel function
associates the ith and jth grid points based upon the Euclidean distance,

k
(
Si, Sj

)
= ε2

f
e
↔λ

√
(xi↔xj)

2+(yi↔yj)
2
, (12)

where ε2
f

is the variance of the signal, λ is the length scale, and i, j → ξ, where ξ ⇔ S

and only contains the grid points which have been measured at least once. The hyper-
parameters, ε2

f
and λ, are optimized using the same method that the road segment

hyper-parameters were chosen, as is described in Section 4.1.3.
4. Normalization and Scaling: As with the road-network GP, we apply a normalization

factor to determine the maximum possible reward value, Jmax, for each individual
grid cell. Each grid cell is then assigned a relative maximum value, Jg,max(k), which
(as in Section 4.1.4) is proportional to the ratio of its mean target density plus one
standard deviation to the overall maximum of the mean target densities plus one
standard deviation across all grid cells.

5. Time Update: As before, the reward of a grid cell at any time step is calculated using
Equation (1).

5. Results
In this section, we evaluate the GP regression methodology for calculating search

rewards by testing within a simulated environment. The scenario includes both urban and
rural areas and illustrates the algorithm’s ability to map and explore mixed environments.
The grid-based map and an imported road network method are both tested.

We test the GP regression method against two baseline search reward methods: uni-
form maximum search rewards (UMSR) and heat map maximum search rewards (HMMSR).
The results demonstrate that the GP regression method improves the ability to accurately
model the target environment.

The first comparison method, UMSR, applies Equations (1) and (11) with a fixed Jmax

rather than adapting dynamically based on learned information. In this approach, road
segment rewards depend solely on the time elapsed since their last update.

The second comparison method, HMMSR, relies on the learned heat map to set each
cell’s maximum road segment reward, Jg,max. It calculates the normalized reward using the
mean target value for each cell. However, this method lacks the incentive to search regions
initially found to have a low mean target value and is unable to predict mean target values
in cells that have not yet been searched.

To evaluate the effectiveness of each approach, we create a true heat map of the search
area that is updated using the true positions of the targets at every time step. The heat map
is computed by associating each target with the correct road segment or grid cell, keeping a
running sum of targets, and then dividing by the elapsed time since the simulation started.
Because we use true target locations, it provides the exact heat map at each simulation time
step. This enables us to compare the heat maps generated from the three different search
methods to the true map.

We use two different metrics to evaluate our three search reward algorithms. The first
metric computes the fraction of targets that were observed and is calculated by taking the
number of targets the UAVs are tracking and dividing it by the total number of targets
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that are currently in the search area. A high value for this metric indicates that the search
method is effectively directing the UAVs to regions with higher target densities.

To prevent the UAVs from becoming fixated on local maxima and ensure their learned
heat map accurately reflects the true target distribution, the search strategy must balance
exploiting target-dense regions with exploring the operational area. The second metric
is the root mean squared (RMS) error between the true heat map and the learned heat
maps. This is computed at each time step and quantifies the difference in perceived target
densities. In computing the learned heat maps, we remove the initial values provided to
all grid cells or road segments that were used to artificially encourage exploration at the
beginning of each simulation. This ensures that we are only evaluating the information that
was directly learned by the UAVs. The target averages are computed at each time step and
set to Xd,a. A lower RMS value reflects a more accurate understanding of the environment
and target densities.

5.1. Chatsworth Grid Cell Search Simulation

Our simulation environment is illustrated in Figure 5. Figure 5a shows the 5000-m
square search area in Chatsworth, California, with red lines indicating the targets’ paths
throughout the full simulation. We generated these target paths using the Simulation of
Urban Mobility (SUMO) software package [53] v1.1. SUMO simulates vehicle movement
based on actual road networks and standard driving patterns, such as stopping at inter-
sections. The simulation creates a higher concentration of targets on larger roads, such as
freeways, which gradually disperse into the rural areas. The map also includes large low-
density traffic areas in the upper and lower-left regions of the map. In this search region, a
freeway runs horizontally across the middle of the region. It has two exits positioned in the
middle and right section that filter into a set of smaller urban roads. The top-left portion
of the search region has no vehicular roads. Figure 5b provides the true heat map for this
search region given at simulation time t = 600 s.

Figure 5. This figure shows the Chatsworth simulation environment and true heat map at time
t = 600 s. (a) Target paths and road network; (b) True heat map.

The Chatsworth simulation is used to test our GP search method along with the two
baseline search comparisons. We tested these algorithms using 100 Monte Carlo (MC) runs,
with 120 moving targets, two UAVs, and an event horizon of ten steps for each UAV’s path
planner. Figure 6 provides an example result of one of the MC simulation runs. Using
the method described in Section 4.1.3, ε2

f
and λ were optimized for the grid cell and road

network methods. Table 1 lists the parameters we used in these simulations.
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Figure 6. These figures display the heat maps and UAV paths for a single simulation run across all
three search methods at time t = 600 s, with two UAVs conducting searches in the Chatsworth region.
(a) UMSR Method; (b) HMMSR Method; (c) GP Regression Method; (d) Heat map for UMSR; (e) Heat
map for HMMSR; (f) Heat map for GP regression.

Table 1. Parameters Used in Simulations.

Simulation Type Grid Based Road Network

Sensing Radius (m) 300 300
Airspeed (m/s) 35 50
Target Speed (m/s) 10 10
Maximum Road Segment Length (m) N/A 75
Minimum Road Segment Length (m) N/A 2

The simulation for the UMSR method is shown in Figure 6a. As expected, the UAVs
cover the search area in an uniform manner regardless of the target densities. The decision
to revisit previously search areas is based purely on the elapsed time since they were last
observed, as reflected in the grid cell rewards. Cells that were recently searched appear in
light gray, while those that have not been observed for a longer period are depicted in dark
gray. Figure 6b displays the learned heat map from the UMSR method. When compared to
Figure 5b, the outline of the road is visible, although it lacks clarity due to the absence of
repeated measurements.

The simulation for the HMMSR method is shown in Figure 6b, where the grid cell
rewards show that the learned heat map influences those values. The darker grid cells
appear in areas where target observations have been made, indicating that the UAVs have
learned these regions have higher target concentrations. The high-density roads, such as
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the freeway and bigger streets, consistently get set to the highest reward values due to the
increased max rewards, Jg,max, which encourages more frequent searches of those areas.
As a result, the UAVs tend to focus on regions with a higher density of targets. Using
the HMMSR method leads to a greater number of target detections and a more accurate
heat map, as shown in Figure 6e, compared to the UMSR method. The HMMSR search
method offers a better approximation of the true map, yielding a reduced RMS error when
compared against the UMSR method.

The top set of panels in Figure 6, Figure 6a–c show each search algorithm’s final target
and vehicle trajectories at t = 600 s. The target paths are shown with the red lines, with
green “x” marking their positions at the final time step (t = 600 s). The positions of the two
UAVs are given by the blue circles, with the sensing radii depicted by the large dotted blue
circles. Each of the UAV’s velocities are given by the blue arrows, while the solid blue lines
trace their trajectories throughout the simulation. The current reward value for searching a
grid cell is depicted using gray shading, with darker cells indicating higher rewards. Cells
that the UAV is actively sensing are shown in white, indicating that the reward has already
been collected.

Figure 6c depicts the simulation using our GP regression search method. The UAV
trajectories indicate that, in comparison to the other methods, more time is spent observing
the road networks in the southwest portion of the search area, reflecting how the UAVs
gravitate toward regions with higher target densities. However, the UAVs still engage in
exploration, as evidenced by the comparison of their heat maps. The heat map for the
single MC run of the GP regression search method is shown in Figure 6f. It is evident that
this heat map provides more detail than the heat maps which result from the UMSR and
HMMSR methods. The heat map clearly shows the freeway and major city roads.

One advantage of GP regression is its capability of predicting values into unmeasured
regions. In our scenario, this means we can predict the target densities of regions that have
not been searched. This is shown Figure 6c, where the middle freeway section has a high
reward in an area that the UAVs have not searched. This suggests that the GP regression,
using data from neighboring areas, has predicted a high average number of targets in those
grid cells. As a result of this prediction, the grid cell is given a high maximum reward value,
prompting the UAVs to prioritize searching these cells over others. In this simulation, the
GP regression’s prediction would likely lead a UAV to encounter a significant number of
targets in those areas.

The RMS heat map errors averaged across all the MC runs are shown in Figure 7.
The error is displayed for all three of the search methods from time interval t = [0, 600] s.
Initially, each method starts with the same error and the error remains close for the first
part of the simulation (until about 30 s). However, following this initial period, the GP
regression error decreases below that of the other methods and remains significantly lower
for the rest of the simulation. The UMSR method performs worse than the HMMSR method
because the HMMSR method fully leverages existing knowledge, allowing it to learn the
high-density regions more accurately and quickly.

The mean RMS heat map error and standard deviation are shown in Table 2 for each
of the three search methods. This table also provides the fraction of targets detected. As
anticipated, the GP regression method outperformed the other two methods in terms of
heat map RMS error, with an average error of 8.45, compared to 11.41 for UMSR and 9.95
for HMMSR. This represents a 15% and 26% improvement in mapping target densities
using our method over the comparative approaches. A two-sample t-test between the
error of the GP regression method and UMSR resulted in a p-value of 5.21 ⇒ 10↔31, while
the comparison between the GP regression method and HMMSR resulted in a p-value
of 2.54 ⇒ 10↔11. These results indicate that the differences in RMS errors between the
methods are statistically significant.
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Figure 7. RMS errors for the heat map averaged over 100 MC runs for 600 s using the grid cell method
in the Chatsworth region.

Table 2. RMS error, standard deviation, and average fraction of targets seen for the Chatsworth
simulations at time t = 600 s.

Approach Final Heat Map Error Average % Targets Seen

UMSR 11.41 ± 6.70 3.78 ± 1.57 ⇒ 10↔5

HMMSR 9.95 ± 6.86 5.12 ± 2.2 ⇒ 10↔4

GP Regression 8.45 ± 6.17 5.60 ± 4.80 ⇒ 10↔5

Similarly, Table 2 shows the GP regression method also achieves superior performance
in terms of the average fraction of targets detected, with an average value of 5.60. This
result surpasses that of the HMMSR method, which acheived an average of 5.12, and the
UMSR method, which had an average of 3.78. A two sample t-test comparing the GP
regression method to UMSR produced a p-value of 7.5 ⇒ 10↔242, while the comparison
between the GP regression method and HMMSR resulted in a p-value of 1.06 ⇒ 10↔15.
These low p-values indicate that the differences in the fraction of targets detected by the
GP regression method, compared to both UMSR and HMMSR, are highly statistically
significant. These results suggest that the GP regression method not only improves target
heat map accuracy but also significantly enhances the system’s ability to maximize the
amount of targets detected within the search area.

5.2. Chatsworth Road Network Search Simulation

The Chatsworth simulation is now used to test the road-network-based search algo-
rithm. The environment is identical to that presented in Section 5.1 with the exception
that the search area is segmented into road segments as part of a road network rather
than being divided into grid cells. The simulation used OpenStreetMaps to import road
segment information.

Figure 8 shows Chatsworth as viewed as a road network. Note that using a road
network drastically reduces the search space when compared with the equivalent grid-
based approach. As a result, we would expect all three algorithms to have drastically
reduced heat map RMS errors. To create the density inequalities in the search space (for
which this method was designed), we ensure that the main freeway has a much higher
traffic density than the non-freeway roads. The balance of traffic between the main freeway
and the non-freeway roads is split so that approximately 80% of the cars travel from one
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end of the freeway to the other and 20% of the cars exit the freeway and drive through the
residential or non-freeway roads.

Figure 8. Chatsworth as a road network.

Throughout the simulations, there were approximately 120 active targets. This resulted
in a greater dispersion of targets throughout the residential areas and provided more
incentive for the UAVs to explore the residential areas. While this also increased the
number of targets on the freeway, these road segments had a maximum reward value of
Jmax. Since there was already a high number of targets on these roads the reward values
of these roads were not increased as more targets were added to the simulation. The
overall outcome was that by increasing the number of targets in the simulation, vehicles
that explored the residential areas obtained more information and created a more accurate
heat map than vehicles that focused on searching only the highest-density areas along the
main freeway.

This second scenario also varies from the first in that a road network, not a grid, was
implemented as the basis for the search area. The greatest implication of this change is that
the vehicles have a much smaller area to search. While they can still fly off the roads in order
to get to other areas of the map, there is no longer any incentive to spend time searching
areas with no roads. As the results below will show, the change from grid-based to road
networks led to a significant decrease in overall RMS error for all the search methods.

For this simulation, Figure 9 shows the results from time t = [0, 600] s, and Table 3
shows the results at the final simulation time. All three search methods are compared with
over 100 Monte Carlo runs performed at ten look-ahead steps with 120 total targets and
two UAVs. The results show that GP Regression had the lowest final RMS error of 0.2260
as compared to UMSR and HMMSR. This gives a 2.4% and 1.8% improvement in mapping
the target densities when using GP regression over the comparative approaches. When
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GP regression was compared to UMSR and HMMSR in a two-sample t-test the p-values
were 3.11 ⇒ 10↔6 and 1.85 ⇒ 10↔4 respectively, showing a statistically significant lower
RMS error.

Figure 9. RMS errors for the heat map averaged over 100 MC runs for 600 s using the Chatsworth
road network.

Table 3. Road network simulations average and standard deviation of the RMS error and fraction of
targets seen.

Approach Final Heat Map Error Average % Targets Seen

UMSR 0.2316 ± 0.000129 5.67 ± 7.39 ⇒ 10↔5

HMMSR 0.2302 ± 0.000154 6.23 ± 9.62 ⇒ 10↔5

GP Regression 0.2260 ± 9.72 ⇒ 10↔5 6.17 ± 9.35 ⇒ 10↔5

However, when comparing the average number of targets seen, HMMSR had the
highest average. A two-sample t-test between HMMSR and GP regression resulted in a
p-value of 0.091 which shows that there was not a statistically significant difference in
the average targets seen. When comparing the average targets seen by UMSR and GPR
the p-value was 9.56 ⇒ 10↔48, which is a significant difference. The closeness of these
values is unsurprising since the objective function is rewarding searching areas rather than
specifically finding targets. The RMS error provides a more suitable measurement relating
to how the vehicles are rewarded. Since GP regression had a significantly lower RMS
error than the other methods, it can be concluded that GP regression was more accurate in
learning and predicting target densities across the whole map.

5.3. Multiple Vehicles

All of the simulation results presented thus far have used only two UAVs. In this
subsection, we explore how increasing the number of vehicles changes the results.

In Table 4 we see the resulting RMS error for the UMSR, HMMSR, and GPR methods
using 2, 3, and 4 vehicles and a grid-based search. Although this shows that GPR performs
better, the difference between the methods decreases as the number of vehicles increases.
In terms of a percentage increase, this shows as GP regression performs 16% better than
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HMMSR with 2 UAVs, but this changes to only a 3.6% improvement given 4 UAVS.
This intuitively makes sense, since additional vehicles mean that the search locations are
revisited more frequently and there is less incentive to reward visits to high-density cells.
As is also expected, the overall RMS value for each method decreases as the number of
vehicles increases. More vehicles enable faster learning of the map.

Table 4. Chatsworth grid simulations final RMS error with multiple vehicles.

Approach 2 UAV 3 UAV 4 UAV

UMSR 10.87 ± 7.01 8.46 ± 5.08 6.71 ± 2.90
HMMSR 9.32 ± 9.32 6.28 ± 3.38 4.99 ± 1.48
GPR 7.78 ± 5.20 5.63 ± 2.19 4.81 ± 1.21

In Table 5 we see the resulting RMS error for the UMSR, HMMSR, and GPR methods
using 2, 3, and 4 vehicles and a road-network-based search. This table shows similar trends
as were found in the grid-based search method, albeit with lower RMS errors due to the
restricted search space. The percentage decrease in RMS error when comparing the GP
regression method with HMMSR drops from 2.5% to less than 1% as the number of UAVs
increases from two to four. The scenario used for these results was specifically chosen
to highlight the utility of the GPR method since this method is most useful when there
is both (a) a disparity in the regions with high and low densities of targets and (b) there
may be long intervals when the locations are unseen (i.e., the search space is not close to
being saturated).

Table 5. Chatsworth road network simulations final RMS error with multiple vehicles.

Approach 2 UAV 3 UAV 4 UAV

UMSR 0.242 ± 3.410↔4 0.247 ± 6.910↔5 0.254 ± 3.010↔5

HMMSR 0.242 ± 3.0 ⇒ 10↔4 0.249 ± 8.1 ⇒ 10↔5 0.255 ± 3.5 ⇒ 10↔5

GPR 0.236 ± 2.3 ⇒ 10↔4 0.244 ± 3.8 ⇒ 10↔5 0.253 ± 1.1 ⇒ 10↔5

6. Conclusions
In this paper, we presented a novel algorithm for searching areas with uneven target

densities. Using GP regression, our method continuously integrates new information about
target locations to guide cooperative UAV path planning and coordination. Higher rewards
are given to regions with denser target populations over time. The results show that GP
regression effectively estimates and predicts target densities, even in unobserved parts
of the search area. Additionally, simulation results highlight the numerical advantages
of GP regression over baseline search methods. Our approach strikes a balance between
exploration and exploitation, achieving the lowest error in the learned heat map of target
densities while maintaining a high target observation rate.

Future work in this area will address the limitations of the current work and focus on
several key directions: (1) Rigorously determining the diversity of target density distribu-
tions and the number of UAVs for which this approach is most beneficial. (2) Investigating
the use of alternative kernel functions and time-varying Gaussian processes to predict
dynamic patterns in the target behavior, overcoming the current assumption of temporally
consistent target densities. (3) Developing more computationally efficient path planning
policies to improve upon the Rollout policy used in this work.
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