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Abstract
This paper unifies the theory of consistent-set maximization for robust outlier detection in a simultaneous localization and
mapping framework. We first describe the notion of pairwise consistency before discussing how a consistency graph can be
formed by evaluating pairs of measurements for consistency. Finding the largest set of consistent measurements is
transformed into an instance of the maximum clique problem and can be solved relatively quickly using existing maximum-
clique solvers. We then generalize our algorithm to check consistency on a group-k basis by using a generalized notion of
consistency and using generalized graphs. We also present modified maximum clique algorithms that function over
generalized graphs to find the set of measurements that is internally group-k consistent. We address the exponential nature
of group-k consistency and present methods that can substantially decrease the number of necessary checks performed
when evaluating consistency. We extend our prior work to perform data association, and to multi-agent systems in both
simulation and hardware, and provide a comparison with other state-of-the-art methods.
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1. Introduction

Multi-agent simultaneous localization and mapping
(SLAM) refers to the problem of estimating a map of the
environment by fusing the measurements collected by
multiple robots as they navigate through that environment.
For the estimated map to be accurate, both the local tra-
jectories of the vehicles and the relative offsets (translation
and orientation) between the trajectories need to be
estimated.

In SLAM, the estimation problem is often modeled using
a factor graph containing pose and landmark node variables,
and factor nodes that encode the relationship between poses
and landmarks. A special case of the SLAM problem, called
pose graph SLAM, eliminates the landmark nodes and only
estimates the vehicle trajectory. We often formulate the
problem as the maximum likelihood estimation (MLE) of
the time-discretized robot trajectory given odometric and
loop-closure measurements as described by Cadena et al.
(2016). Assuming independence and additive Gaussian
noise in the measurement and process models, the problem
becomes a nonlinear, weighted-least-squares problem that
can be solved quickly using available solvers like those

presented by Kaess et al. (2008), Kümmerle et al. (2011),
and Agarwal et al. (2023).

In multi-agent SLAM, multiple vehicles are used to map
the environment, resulting in increased scalability and ef-
ficiency in the mapping process. However, in addition to
estimating the local map, the vehicles must also estimate
their relative pose to accurately combine their maps.
Generating inter-vehicle measurements is a process that is
often susceptible to perceptual aliasing and can be inac-
curate. Identifying poor inter-vehicle measurements is a
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challenging problem given the lack of a single odometry
backbone and potentially no prior information on the initial
configuration of the vehicles, as shown by Pfingsthorn and
Birk (2016). In this paper, we first present a technique to
identify poor inter-vehicle measurements for full-degree-of-
freedom constraints between vehicles. We then generalize
this technique to enable its use with low-degree-of-freedom
measurements.

Rather than attempt to classify measurements as inliers
and outliers, we find the largest consistent set of inter-robot
relative-pose measurements. In our prior conference paper
(Mangelson et al., 2018),1 the problem is formulated as a
combinatorial optimization problem that seeks to find the
largest set of pairwise-consistent measurements. We then
show that this problem can be transformed into an instance
of the maximum-clique problem, that existing algorithms
can be used to find the optimal solution for moderately sized
problems, and that heuristic-based methods exist that often
find the optimal solution for larger numbers of measure-
ments. This proposed method is then evaluated on both
simulated and real-world data showing that the technique
outperforms existing robust SLAM algorithms in selecting
consistent measurements and estimating the merged maps.
These contributions are included in Section 4, Section 5, and
Section 11.

Our second conference paper (Forsgren et al., 2022)2

generalizes the concept of pairwise consistency to group-k
consistency for scenarios, such as range-based SLAM,
where pairwise consistency is insufficient to characterize the
consistency of a set of measurements. We show that by
using a generalized graph and modifying known maximum-
clique algorithms to function over generalized graphs, we
can robustly reject outliers in scenarios where pairwise
consistency fails. The generalized method was evaluated on
simulated data and showed that enforcing group-k consis-
tency outperforms enforcing pairwise consistency. These
results are discussed in Sections 6 to 8, 9.2, and 12.

This paper builds on our two prior conference publi-
cations and makes the following contributions:

1. We develop a framework that takes advantage of the
hierarchical structure of consistency to decrease the
number of consistency checks needed when building
the generalized graph online. (Section 7)

2. We evaluate GkCM on hardware data recorded by an
unmanned underwater vehicle in a range-only SLAM
scenario and compare with other outlier-rejection al-
gorithms (Section 12).

3. We propose a consistency function that can be used in
vision-based multi-agent pose graph optimization
problems. We verify this consistency function on both
simulated and hardware data (Sections 9.1 and 13).

4. We compare our maximum clique algorithms over
hypergraphs with other recently developed algorithms
(Section 8, Section 12, and Section 13).

5. We release our implemented algorithms including a
mechanism to evaluate consistency in sets of k

measurements and a parallelized implementation of our
maximum clique algorithms over generalized graphs
(https://bitbucket.org/jmangelson/gkcm/src/master/).

The remainder of this paper is organized as follows. In
Section 2, related work is discussed. In Section 3, the
general formulation of the multi-robot pose graph SLAM
problem is presented. Pairwise consistency maximization
(PCM) is presented in Sections 4 and 5. The generalized
algorithm, Group-k consistency maximization (GkCM), is
presented in Sections 6 to 8. A brief discussion of our target
applications and the consistency checks used to evaluate
consistency are presented in Section 9. An evaluation of our
maximum clique algorithms over generalized graphs is
found in Section 10, followed by the evaluation of PCM in
Section 11 and GkCM in Sections 12 and 13. Finally, in
Section 14, we conclude.

2. Related work

The ability to identify and remove outlier measurements is
important to many robotics and computer-vision applica-
tions. Given the sensitivity of nonlinear least-squares op-
timization to poor information, there has been a significant
amount of effort dedicated toward developing methods to
detect and remove outlier measurements from the optimi-
zation problem.

The random sample consensus (RANSAC) algorithm in
Hartley and Zisserman (2003) is popular in the computer-
vision community and detects outliers by fitting models to
random subsets of the data and counting the number of
inliers that belong to each model. The RANSAC algorithm
struggles in scenarios where there is no unique model of the
underlying data, such as in multi-agent SLAM, or when the
outlier ratio is so large that no accurate model of the data can
be found. Recent work by Sun (2021) has improved the
RANSAC algorithm by adding a compatibility score be-
tween the random samples. The new technique, called
RANSIC, shows improved performance in high-outlier
regimes but will still struggle in multi-agent SLAM sce-
narios because no unique model exists that can classify the
measurements as inliers and outliers. A technique called
VODRAC introduced by Hu and Sun (2023) also improves
on the RANSAC and RANSIC algorithms by using a two-
point sampling strategy combined with a weight-based
voting strategy that speeds up the consensus maximiza-
tion and is robust in 99% outlier regimes.

Other approaches use the concept of M-estimation.
These techniques attempt to detect the presence of outliers
during the optimization process and use a robust cost
function to decrease their influence in the weighted non-
linear least-squares problem. Sünderhauf and Protzel (2012)
use switchable constraints, which introduces a switchable
error factor that can be turned off if the residual error be-
comes too high. Dynamic covariance scaling (DCS), in-
troduced by Agarwal et al. (2013), generalizes the
switchable constraints method by increasing the covariance
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matrix associated with measurements that have a high re-
sidual error, essentially smoothing the transition to turning a
constraint off. Yang et al. (2020a) introduce graduated non-
convexity (GNC), a technique that first solves a convex
approximation of the original problem and iteratively solves
less-convex approximations until the original problem is
solved. The max-mixtures technique presented by Olson and
Agarwal (2013) uses mixtures of Gaussians to model various
data modes and can detect outliers in real time. Each of these
methods was designed for a single-agent system and assumes
a trusted odometry backbone is present. To apply these
systems successfully inmulti-agent scenarios would require a
good initialization of the relative pose between agents which
is not always available. Expectationmaximization techniques
are used by Dong et al. (2015) and Carlone et al. (2014) to
detect outliers among inter-robot measurements for multi-
agent systems but the technique still requires an initial guess
of the relative pose between agents. Most recently Yang and
Carlone (2022) introduce a method called STRIDE that
reformulates the estimation problem using standard robust
cost functions as a polynomial optimization problem. Their
method is certifiably optimal and works with up to 90% of the
measurements being outliers but does not run in real-time.

Carlone et al. (2014) noted that classifying measurements
as inliers or outliers is an unobservable task. In light of this,
the focus of research has changed from classifying mea-
surements as inliers and outliers to identifying the largest
consistent or compatible set of measurements. Joint com-
patibility branch and bound (JCBB), first introduced byNeira
and Tardós (2001), is a method that searches for the largest
jointly compatible set. However, utilizing JCBB in multi-
robot mapping problems can be difficult because it requires
solving the graph for a combinatorial number of measure-
ment combinations to evaluate the likelihood of each mea-
surement given each combination of the other measurements.

Single-cluster spectral graph partitioning (SCGP), used
by Olson et al. (2005), identifies an inlier set by thresholding
the eigenvector associated with the largest eigenvalue of the
adjacency matrix of the underlying consistency graph.
SCGP has successfully been applied to pose SLAM (Olson
2009) as well as range-only SLAM (Olson et al. 2005). A
similar algorithm called CLIPPER thresholds the eigen-
vector associated with the largest eigenvalue of the com-
patibility graph’s affinity matrix and shows that they can
identify inliers in 99% outlier regimes. CLIPPER has
successfully been applied in point-cloud, line-cloud, and
plane-registration problems (Lusk et al. 2021; Lusk and
How 2022).

In Mangelson et al. (2018) we introduce PCMwhich also
generates a consistency graph, but transforms the problem
into an instance of the maximum-clique problem by
showing that the maximum clique represents the largest
pairwise consistent set. Graph-based Maximum Consensus
Estimation for Point Cloud Registration (GMCR) (Gentner
et al. 2023) builds on PCM and decouples the scale, ro-
tation, and translation estimation into three separate prob-
lems. GMCR utilizes a translation invariant and a rotation

invariant that are used to generate three separate consistency
graphs (one for scale, rotation, and translation). The
maximum clique of each of these graphs is found and used
to estimate the respective quantity. TEASER++, introduced
by Yang et al. (2020b), also decouples the scale, rotation,
and translation estimation but formulates the problem as a
truncated least-squares problem that is certifiably optimal.
TEASER++ utilizes maximum clique methods after the
scale estimation step to prune the number of outliers present
and decrease the problem size before performing the ro-
tation and translation estimation. These algorithms are
designed and tested for point cloud registration while our
proposed algorithm is tested in multiple applications and
can easily be applied to problems not tested here. Recent
work done by Zhang et al. (2023) utilizes multiple maximal
cliques, instead of just the maximum clique, when identi-
fying correspondences in point cloud registration. The use
of maximal cliques resulted in more correct correspon-
dences being identified in point cloud registration problems
but also resulted in more error in the estimated rotation and
translation between point clouds than when the maximum
clique was used.

All consistency-based methods described previously are
constrained to evaluate consistency on a pairwise basis. Shi
et al. (2021) generalize the evaluation of consistency to
groups of k measurements and uses the maximum k-core of
an embedded consistency graph to quickly approximate the
maximum clique in an algorithm called ROBIN. Our prior
work (Forsgren et al. 2022) introduces GkCM which
evaluates measurements for consistency in groups of k ≥
2 and generates a generalized consistency graph where
edges in the graph connect k nodes. The effectiveness of
GkCM was demonstrated in range-based SLAM which
requires evaluating groups of 4 measurements for consis-
tency. We also modified the maximum-clique algorithms
presented by Pattabiraman et al. (2015) to find the maxi-
mum clique of a generalized graph given that no other
maximum-clique algorithm over a generalized graph ex-
isted. Since then, Shi et al. (2022) have presented a mixed-
integer linear program (MILP) that will find the maximum
clique of a generalized graph.

Our contributions in this paper are a generalization of the
work done by Mangelson et al. (2018), and an extension of
the work by Forsgren et al. (2022). Specifically, we dem-
onstrate the effectiveness of the proposed GkCM algorithm
in multi-agent SLAM scenarios and propose a new con-
sistency function for multi-agent visual SLAM applications
that requires evaluating consistency in groups of three. We
present heuristics that alleviate the computational burden of
the GkCM algorithm and compare our generalized maxi-
mum clique algorithm with another maximum clique al-
gorithm over generalized graphs.

3. Problem formulation

In our factor-graph formulation of SLAM, we denote time-
discretized versions of the robot trajectory by xi 2 SE(2) or
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SE(3). The factors in the graph are derived from the
measurements observed by the robot and penalize estimates
of the trajectory that make the observed measurement un-
likely. We denote measurements that relate the variables xi
and xj by zij and call them odometric measurements if i and j
are consecutive and loop-closure measurements if i and j are
non-consecutive in time. The goal of pose graph SLAM is,
then, to estimate the most likely value of each pose variable
xi given the measurements zij. We can formulate the single-
robot pose graph SLAM problem as the MLE

bX ¼ argmax
X

PðZjXÞ: (1)

where X is the set of all pose variables xi, and Z is the set of
all relative pose measurements zij.

In multi-robot SLAM, we also need to estimate the
relative transformation between the local coordinate frames
of the respective robots. We adopt the method presented by
Kim et al. (2010), which proposes the use of an anchor node
for each trajectory that encodes the pose of the vehicle’s
local coordinate frame with respect to some global reference
frame. We denote the homogeneous transformation matrix
representing this offset by Tg

a and represent measurements
relating cross-trajectory poses by zabij , where a and b are
robot IDs and i and j respectively denote which poses on
robots a and b are being related. Tg

a is an element of SE(2) or
SE(3). zabij is also often an element of SE(2) or SE(3) but can
be a function of this transformation in general.

In the case of two robots, the SLAM estimation problem
becomes

bX, bT
g
¼ argmax

X,Tg
P
!
Za,Zb,Zab

""X,Tg
#
, (2)

where X now represents the trajectories of both robots, Zab

represents the set of all cross-trajectory measurements, Zr

represents the set of measurements local to robot r, and
Tg ¼ fTg

a,T
g
bg. This problem can be treated as weighted,

nonlinear least squares and can be solved efficiently using
an array of specialized optimization libraries.

Existing methods can handle outlier measurements in
the local measurement sets Za and Zb, but not in the inter-
robot set Zab since no prior estimate of the initial trans-
formation between coordinate frames of the robots exists
in general. The focus of this paper is on selecting a subset
of the measurements in the inter-robot set Zab that can be
trusted. The next sections outline our approach to
accomplish this.

4. Pairwise consistent measurement
set maximization

In this section, we first define a novel notion of consistency
and then we use that notion to formulate the selection of
inter-robot loop closure measurements as a combinatorial
optimization problem that finds the largest consistent set.

4.1. Pairwise consistency

Directly determining if a measurement is an inlier or outlier
from the graph itself is unobservable as shown by Carlone
et al. (2014). Thus, instead of trying to classify inlier versus
outlier, we attempt to determine the maximum subset of
measurements that are internally pairwise consistent:

Definition 1. A set of measurements ~Z is pairwise in-
ternally consistent with respect to a consistency metric C
and the threshold γ if

C
!
zi, zj

#
≤ γ, " zi, zj 2 ~Z (3)

where C is a function measuring the consistency of mea-
surements zi and zj, and γ is chosen a priori.

This definition of consistency requires that every mea-
surement in the set be consistent with every other mea-
surement in the set with respect to C and γ. The details of the
function C are problem-dependent and will be left to the
user to determine. We describe our target application and the
associated consistency function in Section 9.1.

It should also be noted that pairwise consistency does not
necessarily signify full joint consistency. A set of mea-
surements can be pairwise internally consistent but not
jointly consistent. However, checking full joint consistency
is an exponential operation and requires possibly checking
every combination of measurements to evaluate their
consistency (Neira and Tardós 2001). Finding the
maximum-cardinality pairwise-consistent set is also expo-
nential, but by formulating the problem in this way, we can
leverage a body of literature on the maximum-clique
problem in graph theory that can find or estimate the so-
lution efficiently. In practice, we observed that testing for
pairwise consistency was restrictive enough to filter in-
consistent measurements from typical pose graphs with full
degree-of-freedom measurements.

4.2. The maximal cardinality pairwise
consistent set

Having this definition of pairwise internal consistency al-
lows us to restrict our algorithm to only consider sets of
measurements that are pairwise internally consistent;
however, due to perceptual aliasing, we may end up with
multiple subsets that are pairwise internally consistent. We
need to find a way to select between these possible subsets.

The underlying assumption of our method is based on the
following two initial assumptions:

Assumption 1. The pose graphs are derived from
multiple robots or the same robot in multiple sessions
exploring the same environment.
Assumption 2. The inter-robot measurements are de-
rived from observations of that environment and the
system used to derive them is not biased toward selecting
incorrect measurements over correct ones.

2248 The International Journal of Robotics Research 43(14)



These assumptions fit a large number of multi-robot
mapping situations and are reasonable even in perceptu-
ally aliased environments whenever a place recognition
system does not systematically select the perceptually
aliased measurement over the correct ones.

If the above conditions are met then the following can
also be safely assumed:

Assumption 3. As the number of inter-robot measure-
ments increases, the number of measurements in the
correct consistent subset will grow larger than those in
the perceptually aliased consistent subsets.

Our goal is, then, to efficiently find the largest consistent
subset of Zab, which we denote by Z*.

To formalize this, we introduce a binary switch variable,
su, for each constraint in the set Zab and let su take on the
value 1 if the measurement is contained in the chosen
subset, and 0 otherwise. Note that there is a single su for
each measurement zabij 2Zab; however, for simplicity of
notation, we now re-number them with the single index u
and denote the corresponding measurement zabij by zu.
Letting S be the vector containing all su, our goal is to find
the solution, S*, to the following optimization problem

S* ¼ argmax
S2f0, 1gm

kSk0

s:t:jjϵuvjjΣuv susv ≤ γ " u, v,
(4)

where m is the number of measurements in Zab, zu is the
measurement corresponding to su, ϵuv is the associated error
term corresponding to measurements zu and zv, and Σuv is
the covariance matrix associated with the error ϵuv. We refer
to this as the PCM problem.

Once found, we can use S* to index into Zab and get Z*.
This consistent subset of the measurements can then be
plugged into any of the existing nonlinear least-squares-
based solvers to merge the individual robot maps into a
common reference frame. In the next section, we show how
this problem can be reformulated into an equivalent
problem that has been well studied.

5. Solving PCM via maximum clique over
consistency graphs

In this section, we describe how to solve the PCM problem.
The goal of PCM is to determine the largest subset of the
measurements Zab that are pairwise internally consistent.
This pairwise consistency is enforced by the n2 constraints
listed in equation (4) where n is the number of measure-
ments inZab. It is important to note that the norm on the left-
hand side of the constraints does not contain any of the
decision variables si. These distance measures can be cal-
culated in pre-processing and combined into a matrix of
consistency measures Q, where each element
½Q%uv ¼ quv ¼ jjϵuvjjΣuv

, corresponds to the consistency of

measurement zu and zv. This process is depicted in steps B
and C in Figure 1.

We will now introduce the concept of a consistency
graph.

Definition 2. A consistency graph is a graph
G ¼ fV , Eg where each vertex v 2 V represents a
measurement and each edge e2E denotes consistency of
the vertices it connects.

We can transform the matrix of consistency measures
Q into the adjacency matrix for a consistency graph if
we threshold it by γ and make it symmetric by requiring
that both quv and qvu be less than or equal to γ to insert an
edge into the graph. An example adjacency matrix and a
consistency graph are shown in step D of Figure 1.

A clique in graph theory is defined as a subset of
vertices in which every pair of vertices has an edge be-
tween them and the maximum clique is the largest such
subset of nodes in the graph. A clique of the consistency
graph corresponds to a pairwise internally consistent set of
measurements because every measurement is pairwise
consistent with every other measurement in the set. Thus,
the solution to the problem defined in equation (4) is the
maximum clique of the consistency graph (see step E of
Figure 1).

In graph theory, the problem of finding the maximum
clique for a given graph is called the maximum clique
problem and is an NP-hard problem (Wu and Hao 2015).
Zuckerman (2006) and Feige et al. (1991) show that the
maximum clique problem is also hard to approximate,
meaning that finding a solution arbitrarily close to the true
solution is also NP-hard. Dozens of potential solutions have
been proposed, each of which can be classified as either an
exact or a heuristic algorithm. All of the exact algorithms are
exponential in complexity and are usually based on branch
and bound, while the heuristic algorithms often try to ex-
ploit some type of structure in the problem, making them
faster, but not guaranteeing the optimal solution (see Wu
and Hao 2015).

In 2015, Pattabiraman et al. (2015) proposed a method
that aggressively prunes the search tree and can find
maximum-clique solutions for large sparse graphs relatively
quickly. They present both an exact algorithm as well as a
heuristic version that can be used when the exact algorithm
becomes intractable. Though our method could theoreti-
cally use any one of the proposed maximum clique algo-
rithms, we selected the one proposed by Pattabiraman et al.
(2015) because of its simplicity, parallelizability, and open-
source implementation.

6. Group-k consistency maximization

In this section, we generalize the notion of consistency to
sets of k > 2 measurements and use this generalized defi-
nition to formulate a combinatorial optimization problem.
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While maximizing pairwise consistency in Mangelson
et al. (2018) outperformed other existing robust SLAM
methods, pairwise consistency is not always a sufficient
constraint to identify outlier measurements. For example, a
set of three range measurements may all intersect in a
pairwise manner even if the set of measurements do not
intersect at a common point, indicating that they are pair-
wise consistent but not group-3 consistent.

As currently framed, the consistency function defined in
equation (3) is constrained to take only two measurements
as its input. In some scenarios, such as with the range
measurements described above, it may be useful to define a
consistency function that depends on more than two
measurements.

6.1. Group-k consistency

To handle the situation where consistency should be en-
forced in groups of greater than two measurements we now
define a novel notion of group-k internally consistent sets.

Definition 3. A set of measurements ~Z is group-k in-
ternally consistent with respect to a consistency metric C
and the threshold γ if

Cðfzo,…, zkgÞ ≤ γ, " fz0,…, zkg2Pk

!
~Z
#

(5)

where C is a function measuring the consistency of the set of
measurements {zo, …, zk}, Pkð~ZÞ is the set of all permu-
tations of ~Z with cardinality k, and γ is chosen a priori.

This definition of consistency requires that every
combination of measurements of size k be consistent
with respect to C and γ. We note that the n-invariant
introduced by Shi et al. (2021) is a special case of our
generalized consistency function that does not depend on
the relative transformation between poses where mea-
surements were taken. The appropriate choice of con-
sistency function is problem-dependent and therefore left
to the user to determine. However, we define our target
applications and their associated consistency functions
in Section 9. As with pairwise consistency, establishing
group-k consistency does not guarantee full joint con-
sistency. We settle for checking group-k consistency and
use it as an approximation for joint consistency to keep
the problem tractable.

It is worth noting that certain consistency checks may
contain degenerate cases where the consistency may not
be evaluated. One such example occurs when using
trilateration with range measurements to localize a
feature in the environment. If two or more of the poses
where two range measurements are identical there will
not be a unique location for the feature that is consistent
with the range measurements. In scenarios where de-
generacies are possible, a test to detect a degeneracy can
be designed. If the test indicates the poses are in a de-
generate configuration, one or more of the measurements
can be stored in a buffer whose consistency with the
maximum clique can be tested later. If a degeneracy is
still present, then the consistency of the measurement
must be tested another way, or the measurement be la-
beled inconsistent. In practice, we found that degenerate
configurations did not present an issue because of noise
inherent in our target applications.

6.2. Group-k consistency maximization

Analogous to pairwise consistency defined by Mangelson
et al. (2018), we now want to find the largest subset of
measurements that is internally group-k consistent. We use
the same assumptions described in Section 4.2.

As in PCM, our goal is to find the largest consistent
subset of Z. We accomplish this by introducing a binary
switch variable su for each measurement in Z and let su be
1 if the measurement is contained in the chosen subset
and 0 otherwise. Letting S be the vector containing all su,
our goal is to find S* to the following optimization
problem

Figure 1. An illustration of the Pairwise Consistency
Maximization (PCM) algorithm for selecting consistent inter-
map loop closures measurements. (a) Given two independently
derived pose graphs (shown in dotted and solid circles in step A)
and a set of potential loop closures between them (shown by
colored, dotted lines), our goal is to determine which of these
inter-robot loop closures should be trusted. (b) Using a consistency
metric such as Mahalanobis distance, we calculate the
consistency of each pairwise combination of measurements. (c)
We store these pairwise consistency values in a matrix where each
element corresponds to the consistency of a pair of
measurements. (d) We can transform this matrix into the
adjacency matrix for a consistency graph by thresholding the
consistency and making it symmetric using the maximum
consistency when associated elements across the diagonal have
differing consistency values. Each node in this graph represents a
measurement and edges denote consistency between
measurements. Cliques in this graph are pairwise internally
consistent sets. (e) Finding the maximum clique represents finding
the largest pairwise internally consistent set. (f) After
determining the largest consistent set, we can robustly merge the
two pose graphs using only the consistent inter-map loop closures,
allowing us to reject false measurements.
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S* ¼ argmax
S2f0, 1gm

kSk0

s:t: Cðfz0,…, zkgÞ s0/sk ≤ γ
"fz0,…, zkg2PkðZÞ

(6)

where m is the number of measurements in Z and zu is the
measurement corresponding to su. We refer to this problem
as the Group-k consistency maximization, or GkCM,
problem. This problem is a generalization of PCM, and for
k = 2 they become identical.

6.3. Solving group-k consistency maximization

As with PCM, we can solve the GkCM problem by finding
the maximum clique of a consistency graph. However,
because we want to find the largest subset that is group-k
internally consistent, we need to operate over generalized
graphs. In graph theory, a k-uniform hypergraph (or gen-
eralized graph), G, is defined as a set of vertices V and a set
of k-tuples of those vertices E (Bollobás, 1965). Each
k-tuple is referred to as an edge and a clique, within this
context, is a subgraph ofGwhere every possible edge exists
in E. We now introduce the concept of a generalized
consistency graph:

Definition 4. A generalized consistency graph is a
generalized graph G ¼ fV , Eg with k-tuple edges,where
each vertex v 2 V represents a measurement and each
edge e2E denotes consistency of the vertices it connects.
An example of a generalized graph and its maximum
clique are shown in Figure 2.

Solving equation (6) is equivalent to finding the maxi-
mum clique of a generalized consistency graph and consists
of the following two steps: Building the generalized con-
sistency graph and finding the maximum clique. The next
two sections explain these processes in more detail.

7. Building the generalized consistency graph

The graph is built by creating a vertex for each measurement
and performing the relevant consistency checks to deter-
mine what edges should be added. If the graph is created all

at once, there are
$m
k

%
checks to perform. If the graph is

being built incrementally by checking the consistency of a
newly added measurement with those already in the graph

then the number of checks is
$m& 1
k & 1

%
. Due to the number

of checks to be performed, it is important that the consis-
tency function in equation (5) be computationally efficient.
Note that all the checks are independent, allowing for the
computation and graph construction to be parallelized on a
CPU or GPU to decrease the time to perform the necessary
checks. Additionally, memory usage is not significantly
affected by the choice to perform the consistency checks
incrementally or in batch.

As a consequence of the combinatorial growth in the
number of checks, we need to develop a method that can
substantially reduce the number of checks to be computed.
We utilize the fact that a set of measurements that are group-
k consistent will almost always be group-(k& 1) consistent,
assuming that the group-k and group-(k & 1) consistency
functions are similar. Using this observation, we can first

perform
$ m
k & 1

%
checks and record which combinations of

measurements passed the consistency check. Then, when
performing the group-k check we only need to check
combinations for which all groups of (k & 1) measurements
passed their respective check. The process can be done
starting with group-2 checks and building up to the final
group-k check. We show in Section 10 that this can sig-
nificantly decrease time spent performing consistency
checks. This hierarchy-based heuristic can also be used
when constructing the graph incrementally.

An example where this heuristic is useful is when de-
termining the consistency of range measurements to a static
landmark. Three range measurements are consistent if they
all intersect at the same point. However, if any pair of the
three measurements do not intersect then any group-3
consistency check containing that pair of measurements
will also fail. Thus, when processing measurements, we can

check the
$m
2

%
pairwise intersections of measurements and

do only the group-3 checks on combinations where con-

sistency is possible instead of the total
$m
3

%
checks.

8. Finding the maximum clique of a
generalized graph

Once the graph has been built, we can find the largest
consistent set by finding the maximum clique of the graph.
The PCM algorithm used the exact and heuristic methods
presented by Pattabiraman et al. (2015) but these algorithms
were not designed for generalized graphs and used only a
single thread. Here, we generalize these algorithms to

Figure 2. An example of a generalized consistency graph with
edges made of 3-tuples. (a) Highlights that each edge denotes
consistency of three measurements. (b) Highlights the maximum
clique of the generalized graph in blue. (a) Generalized graph. (b)
Maximum clique.
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function over k-uniform hypergraphs and provide a paral-
lelized implementation of their algorithms.

We start by defining relevant notation. We denote the n
vertices of the graphG ¼ ðV , EÞ as {v1,…, vn}. Each vertex
has a neighborhood N(vi), that is the set of vertices con-
nected to that vertex by at least one edge. The degree of vi,
d(vi), is the number of vertices in its neighborhood. We also
define an edge set, E(vi), for each vertex consisting of a set
of (k& 1)-tuples of vertices. The edge set is derived from the
set of k-tuples in E containing the given vertex by removing
the given vertex from each edge. Figure 3 shows an example
of these values for a given graph.

8.1. Algorithm overview

The generalized exact and heuristic algorithms presented
in Algorithm 1 and Algorithm 2 respectively are similar in
structure to the algorithms by Pattabiraman et al. (2015)
but require additional checks to guarantee a valid clique is
found since the algorithms now operate over generalized
graphs.

The exact algorithm, Algorithm 1, begins with a vertex v
and finds cliques of size k that contain v (MaxClique line 5).

A set of vertices, U, that would increase the clique size by
one is found (MaxClique line 11) from the set of edges R
that a valid candidate vertex must have (MaxClique line 7).
The Clique function then recursively iterates through po-
tential cliques and updates R and U (Clique lines 13, 16).
The clique is tracked with S and a check is performed to see
if S > Smax where Smax is replaced with S if the check passes.
The process is repeated for each vertex in the graph
(MaxClique line 3). The exact algorithm evaluates all
possible cliques, and as such, the time complexity of the
exact algorithm is exponential in the worst case.

The heuristic algorithm, Algorithm 2, has a similar
structure to the exact algorithm but uses a greedy search to
find a potential maximum clique more quickly. For each
node with a degree greater than the size of the current
maximum clique (MaxCliqueHeu line 4), the algorithm
selects a clique of size k who has the greatest number of
connections in E(vi) (MaxCliqueHeu line 5). This is done by
summing the number of connections each node in N(vi) has
in E(vi) and selecting the edge e 2 E(vi) with the sum total of
connections. If the selected clique can potentially be made
larger than Smax, then a greedy search selects nodes based
on the largest number of connections in E(vi) (CliqueHeu
line 5). The generalized heuristic algorithm presented in

Algorithm 2 has the same complexity of O(nΔ2) as the
original algorithm presented by Pattabiraman et al. (2015)
despite the modifications made to operate on generalized
graphs.

Both algorithms are guaranteed to find a valid clique and
can be easily parallelized by using multiple threads to si-
multaneously evaluate each iteration of the loop on line 3 of
MaxClique and MaxCliqueHeu. This significantly decreases
the runtime of the algorithm. Our releasedC++ implementation
allows the user to specify the number of threads to be used.

Figure 3. Examples of the degree, neighborhood, and edge set
definitions for generalized graphs.
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A heuristic was introduced by Chang et al. (2021) to
avoid computing the maximum clique from scratch in in-
cremental scenarios. When a new measurement is received
the maximum clique will either remain unchanged or a
larger clique will exist. A more efficient search can be
performed by only searching for cliques that contain the
new measurement and comparing the largest clique with
that measurement to the current maximum clique. We
implement this heuristic in our maximum clique algorithms
over generalized graphs so that GkCM can be performed in
both batch and incremental scenarios.

9. Target applications and associated
consistency checks

We introduced the notion of a consistency check in equation
(5) and noted that the specifics of a consistency check will
be dependent on the measurement and the application. This
section is dedicated to describing our target applications
with the appropriate consistency checks.

9.1. Multi-agent pose graph optimization

Our first application is multi-agent pose graph optimization
(PGO). Pose graph optimization is a special case of the
SLAM problem where only the vehicle trajectory is esti-
mated. This is accomplished by condensing measurements to
environmental features into other inter-pose constraints. This
can be accomplished using a variety of sensors and we target
the use of LIDAR and camera sensors in our experiments.

9.1.1. Multi-agent LIDAR PGO. LIDAR-based PGO uses a
rotating laser-rangefinder to generate a point cloud that describes
the distance and direction of objects in the surrounding envi-
ronment. The rotation and translation between point clouds can
be estimated using point cloud registration algorithms likeGICP
(Segal et al., 2009). When the two point clouds used in the
registration algorithm are sequential, an odometry constraint is
formed, otherwise it is a loop closure constraint. Point clouds

between different robots can be compared and when a match is
detected and aligned, an inter-vehicle constraint is formed that
describes the relative rotation and translation between the two
agents. When two different inter-robot constraints have been
obtained, a loop can be formed by concatenating the odometry
of each robot with the inter-vehicle constraints. Consistency can
be evaluated by traversing the loop formed using two inter-
vehicle constraints and checking if the resulting transformation
is the identity. In our experimental validation we used the k = 2,
or pairwise, consistency metric given by

C
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zabik , z

ab
jl

%
¼

"""
"""
!
2zabik

#
Å bxaij Å zabjl Å bxblk

"""
"""
Σ

(7)

b
""""ϵikjl

""""
Σ ikjl

, (8)

which is based on the metric used by Olson (2009). In equation
(7) we have adopted the notation of Smith et al. (1990) to denote
pose composition usingÅ and inversion using2, k'kΣ signifies
the Mahalanobis distance, and the variables bxaij and bx

b
lk are the

current relative pose estimates of the associated poses corre-
sponding to inter-robot measurements zabik and zabjl .

This choice of metric is useful because it is both easy to
compute and follows a chi-squared distribution, giving us a
strategy to select the threshold γ without knowledge of the
specific dataset. The composition inside the norm of equation
(7) evaluates the pose transformation around a loop and should
evaluate to the identity transformation in the case of no noise
(see Olson, 2009). With Gaussian noise, this normalized
squared error follows a chi-squared distribution with degree of
freedom equal to the number of degrees of freedom in our state
variable. By setting γ accordingly, we can determine if the
measurements zabik and zabjl are consistent with one another.

9.1.2. Multi-agent visual PGO. Camera sensors can also be
used in PGO problems. The rotation and direction of
translation between two images of the same location can be
estimated using bundle adjustment or decomposing the
essential matrix. Note that without outside information like
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the baseline between the two images, the scale of the
translation cannot be recovered. It is possible to use an IMU
to estimate the scale and recover a full relative pose con-
straint but such information is typically not present in multi-
agent scenarios resulting in a low-degree-of-freedom con-
straint that takes the following form

zabij ¼
$
α, ϵ,Rab

ij

%
(9)

whereRab
ij expresses the rotation of agent b at pose j in the frame

of agent a at pose i, and α and ϵ are the azimuth and elevation
angles describing the direction of pose j with respect to pose i.
Lacking the scale factor causes themeasurement to lose a degree
of freedom over the full relative pose transformation and means
that a pairwise check is no longer sufficient to check the
consistency of the inter-vehicle measurements. We provide a
visual reference of the setup in Figure 4 showing the relationship
of the poses andmeasurements between the two agents. The k =
3 check, Cðzabil , zabjm, zabknÞ has two parts: the first part is similar to
the consistency check in equation (7) except that we trace a loop
using only the rotations as shown here
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This portion is repeated for all combinations of two mea-
surements in the group of three. If this check passes, then we
proceed with the second part of the consistency check,
which verifies that the azimuth and elevation angles are
consistent as required by

C
$
zabil , z

ab
jm, z

ab
kn

%

d
¼

""""

""""h
$
Xa

ijk ,X
b
lmn,Z

ab
il, jm, kn

%
&
&
α

ϵ

'""""

""""
Σ

C
$
zabil , z

ab
jm, z

ab
kn

%

d
≤ γd,

(11)

where the function hðXa
ijk ,X

b
lmn,Z

ab
il, jm, knÞ calculates the

expected azimuth and elevation angle using the poses on
agents a and b associated with the measurements in Z. The
function h first uses two of the measurements in Z to es-
timate the scale in the direction of translation by solving a
linear least-squares problem given by
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ijtjm
#
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ijR
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s ¼
&
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sjm

'
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(12)

where t is the unit vector denoting the direction indicated
by the azimuth and elevation angles of a particular mea-
surement, taij denotes the position of j with respect to i for
agent a, s is a two vector denoting the scale on the two
measurements used, and sil is the scale on the measurement
between poses i and l. While testing this function, we
found that it was sensitive to the errors in the rotations in
the poses and measurements that would often result in a
negative scale. To alleviate this, we first perform an ini-
tialization step using the single-loop technique described
by Carlone et al. (2015). We elected to use the single-loop
technique because it has an algebraic solution and is less
computationally intense than methods such as chordal
initialization that produce accurate initializations in more
complex pose graphs.

Once the scale has been recovered, the relative pose and
uncertainty between the agents is estimated by applying the
scale

Tab
il ¼

 
Rab
il sil t

ab
il

01x3 1

!

ΣT ¼ HΣzHT

where ΣT is the covariance matrix on the full relative
pose, Σz is the covariance on the measurement and H is
the Jacobian of the function that applies the scale. The
poses involved in the third measurement, which we will
call Ta

k and Tb
n , can be expressed in a common reference

frame as

Ta
k ¼ Ta

k

Tb
n ¼ Tab

il Å Tb
ln:

With this information, the expected azimuth and elevation
angles are calculated as

dT ¼
!
2Ta

k

#
Å Tb

n

α ¼ atan 2ðdT :y, dT :xÞ

ϵ ¼ atan 2
&
dT :z,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dT :x2 þ dT :y2

q '
:

(13)

The covariance on dT is calculated using methods described
by Mangelson et al. (2020), and the covariance on the

Figure 4. Avisual of the setup used in the consistency check for a
multi-agent visual PGO scenario. There are two agents each with
odometry and several inter-vehicle measurements as outlined in
equation (9). All measurements are expressed in frame of robot a.
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expected azimuth and elevation angles are found by further
pre- and post-multiplying by the Jacobian matrix of their
respective functions. This process is repeated three times so
that each measurement can be validated.

9.1.3. Degenerate configurations. In scenarios such as
when two poses lie exactly on top of each other, the relative
pose cannot be recovered because the matrix in equation (12)
becomes singular, resulting in a degeneracy. Should such a
degeneracy occur, solutions such as those discussed in
Section 6 may be used. In practice, however, such degen-
eracies never arose due to the noise inherent in the problem.

9.2. Range-based SLAM

In range-based SLAM, a robot explores its environment and
takes distance measurements to beacons or landmarks in the
environment. This is commonly done with underwater
vehicles using acoustic pulses. After several distance
measurements to a single beacon have been acquired, the
position of the beacon can be estimated and used to correct
the odometry of the robot. The number of required mea-
surements depends on whether a 2D or 3D position is being
estimated. Our experiments target a 2D scenario and use a
k = 4 consistency check given by

Cðzai, zbi, zci, zdiÞ ¼
))h

!
Xabcd ,Zi

abc

#
& zdi

))
Σ
≤ γ (14)

where zdi is a range measurement from pose d to beacon i,
Xabcd is a tuple of poses xa, xb, xc, and xd, and Zi

abc is a tuple
of range measurements from poses xa, xb, and xc to beacon i.
The value γ is a threshold value and the function
hðXabcd ,Ri

abcÞ is a measurement model defined as
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where Xabc is a tuple of poses xa, xb, and xc, and pi is the
position of pose i. The function lðXabc,Ri

abcÞ is a trilater-
ation function that depends on the input poses and the
associated range measurements and returns an estimate of
the beacon’s location denoted b. The covariance, Σ, is a
function of the covariances on the measurements z, and the
poses x. The joint covariance, Σj, of the poses and beacon
location is calculated by forming the measurement Jacobian
of a factor graph and using methods described by Kaess and
Dellaert (2009). Once the joint covariance has been ob-
tained the covariance, Σ, is calculated as Σ ¼ HΣTHT þ Rzd

where H ¼
&
∂h
∂x

∂h
∂b

'
, ΣT ¼ blockdiagðΣj,ΣzdÞ, and Rzd

is the measurement uncertainty on zd.
The metric checks that the range to the intersection point

of three range measurements matches the range of the fourth
measurement at some confidence level. The check is done
four times for a given set of four measurements, where each
permutation of three measurements is used to localize the
beacon. As with the consistency functions in Section 9.1, this
consistency function follows a χ2 distribution, meaning that
the threshold value γ can be easily chosen without knowledge
of the data. Given the combinatorial nature of group

consistency, the trilateration algorithm needs to be fast and
accurate. The algorithm described by Zhou (2011) fits these
criteria and presents a closed-form algorithm that performs
comparably to an iterative nonlinear optimization approach
but without the need for an initial guess or an iterative solver.

Since the measurements to multiple beacons are often
being collected, we make the following simplifying as-
sumption when applying GkCM to range-based SLAM.

Assumption 4. The data association for a given mea-
surement is known meaning that inliers can be identified
individually for each beacon. We will relax this as-
sumption later in one of our experiments.

9.2.1. Degenerate configurations. Since our consistency
check defined in equation (14) uses a trilateration algorithm,
we need to discuss the scenarios where trilateration fails to
provide a unique solution. The first case is where the poses are
collinear as shown in Figure 5, and the second is when two of
the three poses occupy the same position. The trilateration
algorithm by Zhou (2011) is robust to such configurations and
can return two estimates for the beacon’s location. The con-
sistency check in equation (14) can pass if either estimate is
deemed consistent.

10. Evaluation of generalized graph operations

This section marks the beginning of our experimental
validation. We first begin by evaluating our algorithms over
generalized graphs, followed by an evaluation of PCM
using the multi-agent LIDAR PGO consistency check de-
scribed in Section 9.1. We next evaluate GkCM in a single
agent range-based SLAM scenario. Lastly, we evaluate
GkCM in a multi-agent visual PGO application.

We carried out several experiments to evaluate the ef-
fectiveness of Algorithm 1, Algorithm 2, and our hierarchy-
based approach to evaluating consistency.We also provide a
comparison of Algorithms 1 and 2 with the MILP algorithm
in Shi et al. (2022) and the maximum k-core algorithm in Shi
et al. (2021) which, to our knowledge, are the only other
algorithms that find or approximate the maximum clique of
a generalized graph.

Figure 5. Degenerate pose configuration where range
measurements do not result in a unique landmark location.
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10.1. Hierarchy of consistency evaluation

In this first experiment, we first evaluate the effectiveness of
using a hierarchy of consistency checks to decrease the time
required to perform all the required checks in a group-4
scenario. For a given number of measurements m, we
randomly picked m/10 measurements that would be in the
maximum clique meaning that these measurements are
always consistent with each other. We also randomly
identified other groups of measurements that are consistent
with each other so that the consistency graph that would be
formed would have 20% of the total edges present in the
graph. Once all the measurements were generated we
evaluated the runtime to check the consistency of all
measurements in both a batch and incremental manner. We
performed three different evaluations. The first was using
just a group-4 check, the second was a group-3 check fol-
lowed by a group-4 check, and the last was a group-2 check
followed by a group-3 check followed by a group-4 check.

We first tested the efficacy of this heuristic in a batch
scenario where all measurements are processed after the data
has been collected. For a given 4-uniform hypergraph size we
generated a graph with n nodes as described previously. We
varied the number of measurements between 30 and 110, and
tested in increments of 10, measurements recording the time
required to process all checks. We repeated the test 100 times
and averaged the time to perform all checks. As can be seen in
Figure 6, for each hierarchy used we achieved about an order
of magnitude speed up for this setup. Using just a group-4
check required an average of 13.9 s to perform the checks for
all 110 measurements and we reduced that time to an average
of 0.244 s when group-2 and group-3 checks were used to
filter out inconsistent combinations.

We also tested the hierarchy of checks in incremental
scenarios. The setup for the incremental scenario was the
same as the batch scenario except that we started with
10 measurements and measured the time required to process
all the required checks as each new measurement came in.

We saw similar speed gains as those found in the batch
scenario, decreasing the required time from 305 ms to
0.73 ms. The entirety of the results for this experiment can
be seen in Figure 6.

We note that this approach is most effective in high
outlier regimes where the vast majority of the measurements
will not be consistent with one another. In scenarios where
the outlier ratio is low, using the proposed hierarchy ap-
proach provides no benefit and can even result in increased
memory usage since the consistent sets of the previous
hierarchy must be stored and increased run times because
few combinations will be filtered out. As such we note that
the efficacy of this technique will be situation dependent.
This technique also shows one advantage of our consistency
function formulation over the use of invariants as used in
several other works (Shi et al., 2021; Lusk et al., 2021;
Gentner et al., 2023) since a lower-order invariant may not
exist for a given application.

10.2. Timing comparison of maximum
clique algorithms

In this second experiment, we evaluate the runtime char-
acteristics of the proposed maximum clique algorithms over
generalized graphs in Algorithms 1 and 2 as well as the
MILP algorithm (Shi et al., 2022) and the maximum k-core
method (Shi et al., 2021).

We begin by outlining the method for finding the max-
imum k-core and describing theMILP problem. A k-core of a
graphG is the largest subgraph ofG such that every vertex in
G has a degree of at least k. The maximum k-core is the k-core
with maximum k forG or where the (k + 1)-core is the empty
set. We base our maximum k-core algorithm on the work by
Matula and Beck (1983) which presents a linear-time al-
gorithm. The k-core algorithm used by Shi et al. (2021) finds
the k-core of a 2-uniform hypergraph by embedding a
k-uniform hypergraph into a 2-uniform hypergraph. For
example, an edge in a 3-uniform hypergraph that connects
nodes a, b, and c, would form three edges in a 2-uniform
graph. These edges would connect nodes a and b, a and c,
and b and c. While Shi et al. (2021) note that the maximum
k-core often provides a good approximation of the maximum
clique, we note that this is for the maximum clique of a 2-
uniform hypergraph. We will show later that this does not
always hold for k-uniform hypergraphs.

The MILP algorithm developed in Shi et al. (2022) is
defined as follows. Given a k-uniform hypergraph GðV , EÞ
where jV j ¼ N the maximum clique can be found by
solving the following MILP given by

max
b2f0, 1gN

XN

i¼1

bi

s:t:
X

i2M
bi ≤ k & 1,"M ) V , jMj ¼ k,MÏ E:

(16)

Figure 6. Time to complete all consistency checks in both batch
and incremental scenarios using different hierarchies of checks.
Batch results are represented by solid lines while incremental
results are dashed. Note the log scale on the time axis.

2256 The International Journal of Robotics Research 43(14)



The algorithm seeks to maximize the number of vertices
in the set b subject to the constraint that for every potential
edgeM that does not appear in E, the sum of the variables bi
in that edge must be less than k. We implement this MILP
algorithm in C++ using the Gurobi solver Gurobi (2017).

In this experiment, we randomly generated 3-uniform
hypergraphs with various node counts ranging from
25 vertices to 300 vertices. Each graph contained all the
edges necessary to contain a maximum clique of cardinality
ten and additional randomly selected edges to meet a
specified graph density. While the run times of the algo-
rithms are dependent on the density of the graph, for this
experiment, we chose to hold the density of the graph
constant at 0.1 such that approximately ten percent of all
potential edges were contained in the graph. We generated
100 sample graphs for each number of nodes and used all
four of the algorithms listed above to estimate the maximum
clique of each graph and measured the average runtime for
each. Figure 7 shows the results of this experiment using
various numbers of threads ranging from one to eight. The
exact algorithm and the MILP algorithm were only used for
graphs with a total number of nodes of 100 or less because
of the exponential nature of the algorithms.

As can be seen in Figure 7 theMILP algorithm in Shi et al.
(2022) is the slowest algorithm followed by the exact al-
gorithm in Algorithm 1. This is to be expected since both
algorithms are guaranteed to find the maximum clique and do
not use any heuristics or approximations that would cause
them to find a suboptimal solution. Both the k-core and
heuristic algorithm (Algorithm 2) run significantly faster,
with the heuristic maximum-clique algorithm using eight

threads being the fastest in this test case. This is primarily due
to the graph density. As noted above, the performance of both
Algorithm 1 and Algorithm 2 are largely dependent on the
graph’s density and that run time will increase as the density
increases. We suspect that as the graph density grows the
runtime for Algorithm 2 would exceed that of the maximum
k-core algorithm. Additionally, if we look at the rate of

Figure 7. Average runtime for generalized maximum clique algorithms proposed in this paper. We also compare against other
generalized maximum clique algorithms in Shi et al. (2022, 2021). This includes both the time to evaluate the necessary data structures
such as neighborhoods/edge sets and the time to estimate the maximum clique. Using eight threads, the heuristic algorithm was able to
find the maximum clique of a graph with 250 nodes in a few seconds.

Figure 8. Evaluation of the heuristic algorithm proposed in
Algorithm 2. Individual lines denote the cardinality of the
maximum clique (where M is the size of the maximum clique)
inserted into the graph. The horizontal axis denotes the density of
edges in the graph and the vertical axis denotes the percentage of
test cases where the algorithm returned a clique of the correct
cardinality. The heuristic algorithm returned cliques of the correct
size 100% of the time for the graphs with max clique size of 14,
17, 20, 23, 26, and 29.
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increase for the k-core and heuristic algorithms, the k-core
algorithm seems to scale slightly better with the number of
vertices in the graph. For larger graphs than those used in this
experiment, we expect that the k-core algorithm will out-
perform Algorithm 2 in terms of speed.

10.3. Heuristic evaluation

In the third experiment, we again randomly generated 3-
uniform hypergraphs as described previously, however, in
this case, we varied the density of the graph and the size of
the inserted clique, while holding the total number of nodes
at 100. For each graph, we used the MaxCliqueHeu algo-
rithm to estimate the maximum clique and then evaluated
whether or not the algorithm was successful in finding a
clique of the same size as the clique we inserted. We again
generated 100 sample graphs for each combination of
inserted-clique size and graph density. Figure 8 plots the
summarized results. If the algorithm happened to return a
maximum clique larger than the inserted clique, then the
associated sample was dropped because the inserted clique
was not the maximum clique.

This experiment shows that the size of the maximum
clique and the success rate of the proposed heuristic al-
gorithm are correlated. In addition, it shows that, with the
exception of the case when the inserted clique was small
(cardinality 5), the density of the graph and the success rate
are inversely correlated. As such, the heuristic seems to
perform best when the size of the maximum clique is large
or when the connectivity of the graph is relatively sparse.

Prior work states that the maximum k-core provides a good
approximation of the maximum clique of a graph. We took this
opportunity to evaluate the maximum k-core algorithm used in
ROBIN (Shi et al. (2021)). In this experiment, we found that the
k-core almost always contained the maximum clique of the
generalized graph. However, further examination showed that
the k-core was larger than the maximum clique by dozens of
nodes. This translates to the maximum k-core including dozens
ofmeasurements in the consistent set that should not be used in a
SLAM application. Our application experiments later show that
the k-core can, at times, provide a good approximation of the
maximum clique of a generalized graph and produce usable
maps as a result. In general, the maximum k-core does not
always provide a good approximation of themaximumclique of
a generalized graph, and exploring the cases when a maximum
k-core can approximate the maximum clique of a generalized
graph is an interesting avenue for future work.

11. Pairwise consistency
maximization evaluation

In this section, we evaluate the performance of PCM on a
variety of synthetic and real-world datasets. For compari-
son, we implemented single cluster graph partitioning
(SCGP) (Olson et al., 2005), dynamic covariance scaling

(DCS) (Agarwal et al., 2013), and random sample con-
sensus (RANSAC) (Hartley and Zisserman, 2003).

We implemented SCGP as described in Olson et al.
(2005), except for using an off-the-shelf eigen-
factorization library as opposed to the power method for
simplicity. We implemented DCS as described in the original
paper with f = 5. We implemented RANSAC by iteratively
selecting a single, random inter-map measurement and
evaluating the likelihood of the other measurements given the
model estimated from the sampled measurement. Because
the processing time for this evaluation is so low (given that
the Mahalanobis distance evaluations were performed in pre-
processing), we exhaustively iterate through all the mea-
surements and evaluate the likelihood of the other mea-
surements with respect to it in turn. We then return the set of
measurements that are likely given the sampled point with the
largest support. As explained in Section 11.2, RANSAC is
especially sensitive to the likelihood threshold and does not
check pairwise consistency.

For PCM, we present results using the exact-maximum-
clique algorithm (PCM-Exact), as well as the heuristic al-
gorithm (PCM-HeuPatt) as explained by Pattabiraman et al.
(2015).

11.1. Simulated 1D world

First, we simulated a one-dimensional world where the
robot has a single state variable, x, and receives measure-
ments that are direct observations of that state. We simulate
inlier measurements by drawing multiple samples from a
Gaussian distribution with a fixed variance and mean x. We
simulate both random and perceptually aliased outliers by
drawing multiple samples from a single Gaussian with fixed
mean and variance and several others from individual
Gaussians with random means and variances. We assume
the variances are known and are used when computing
Mahalanobis distance.

11.1.1. Comparison with combinatorial. For this first ex-
periment, we compare how well PCM-Exact and PCM-
HeuPatt approximated the combinatorial gold standard in
equation (4). We generated 100,000 sample worlds. On each
of these samples, we estimated the pairwise consistent set
using the combinatorial solution as well as PCM-Exact,
PCM-HeuPatt, SCGP, and RANSAC.

Figure 9 shows a comparison between these four
methods with respect to the combinatorial solution. Both
PCM methods enforce the consistency of the returned
measurements. PCM-Exact returns the same number of
points as the combinatorial solution 100% of the time, while
PCM-HeuPatt returns the same number of points 98.97% of
the time. SCGP varies significantly in both the number of
points returned and the consistency of those measurements.
RANSAC also sometimes returns more or less points than
the combinatorial solution and also fails to enforce mea-
surement consistency. Interestingly, RANSAC is especially
dependent on a threshold value. The threshold value for
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RANSAC is centered around a single point and thus is not
the same as the threshold value for PCM. If the value is set
too high, the number of inconsistent measurements in-
creases. If it is set too low, the total number of returned
measurements decreases below the optimal. In Figure 9,
RANSAC’s threshold is set arbitrarily to show a single
snapshot.

11.1.2. Timing comparison. We also used this 1D world to
evaluate the timing characteristics of the different

algorithms. To test this, we generated 500 sample worlds
each for an increasing number of measurement points. The
results are shown in Figure 10. Note, these timing results
can be significantly improved through parallelization.

11.2. Synthetic 2D comparison

To test our method’s accuracy and consistency on a full
SLAM dataset, we took a portion of the City10000 dataset
released with iSAM (Kaess et al., 2008) and split it to form

Figure 9. Histograms that evaluate how well PCM, SCGP (Olson et al., 2005), and RANSAC (Hartley and Zisserman, 2003)
approximate the combinatorial maximum pairwise consistent set in equation (4). The first row of histogram plots shows the size of the
measurement set as compared to the maximum consistent set size. The second row of histograms shows the number of inconsistent pairs
returned with respect to the set γ threshold on Mahalanobis distance.

Figure 10. A plot of the evaluation times of the different methods versus the number of measurements being tested. The combinatorial
solution takes exponential time and PCM-Exact takes exponential time in the worst case, while the other methods are polynomial in the
number of measurements. (This excludes the time to estimate the distance matrix Q, which is required for all methods).
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two separate robot trajectories. After removing all factors
connecting the two graphs, we generated 81 different
versions of this dataset by randomly selecting a subset of the
true loop closures between the two graphs to be used as
inliers, as well as randomly adding outlier loop closures to
the graph. As before, some of the outliers are internally
consistent to simulate perceptual aliasing and some are
generated randomly with random mean and covariance. In
this experiment, the number of inlier loop closures was 15,
there were two groups of five perceptual aliased outliers,
and the number of random outliers was 90.

11.2.1. Parameter sweep. Because RANSAC is signifi-
cantly dependent on the threshold value set, we ran a pa-
rameter sweep for the likelihood threshold over all
81 datasets. Figure 11 summarizes this experiment. The true
positive rate (TPR) and false positive rate (FPR) of PCM are
relatively unaffected by the choice of the threshold pa-
rameter as long as it is less than about 85%. RANSAC, on
the other hand, has a different FPR for each threshold se-
lected and never has an FPR of zero. This is because PCM
conservatively evaluates the consistency of each mea-
surement and determines the consistency of a group of
measurements as a whole, while RANSAC selects the
largest set of measurements that are likely given a single
randomly selected measurement. The last plot shows the
average normalized chi-squared value of the residual for the
entire graph after solving with the selected factors. This
value should be close to zero if the graph is consistent.

The results show that PCM does significantly better at
restricting the set of measurements to those that are

consistent with one another, decreasing the likelihood of
getting a false measurement. This is essential because of the
extreme susceptibility of SLAM to false loop closures. The
results for PCM-HeuPatt are also almost indistinguishable
from those of PCM-Exact.

11.2.2. Accuracy Analysis. To evaluate the accuracy of
PCM, we compared its performance on all 81 datasets to
SCGP, RANSAC (using the two second to lowest thresh-
olds from Figure 11), and dynamic covariance scaling
(Agarwal et al., 2013) or DCS. γ for both PCM-Exact and
PCM-HeuPatt was set so that it corresponded to the
equivalent of 11% likelihood.

Table 1 gives an overall summary of the results. We used
the mean squared error (MSE) of the trajectory of the two
graphs (with respect to the no-outlier case), the residual, and
the normalized χ2 value of the nonlinear least squares solver
as metrics to evaluate the solution accuracy. The rotation
MSE was calculated via ϵrot ¼ 1=n

P
i

""""logðRu
i trueRi estÞ

""""
F

over each pose i and the translation MSE was calculated in
the normal manner. For this experiment, all MSE were
calculated with respect to the absolute trajectory value.

PCM has the lowest trajectory MSE, and DCS has the
lowest residual. Note that DCS also has the highest tra-
jectory MSE, which is as expected. DCS seeks to minimize
the least-squares residual error and depends on a good
initialization to determine what measurements are consis-
tent enough to not be turned off. Without this initialization,
inter-map factors have large residuals and are turned off by
the DCS algorithm.

Once given the matrix Q, RANSAC and both PCM
methods take about the same amount of time to find the
consistency set. The average time to estimate the Maha-
lanobis distances without the use of analytical Jacobians,
parallelization, and incremental updates was 70.8 s.

Figure 12 shows example plots of the estimated maps.
Both SCGP and RANSAC have trouble disabling all in-
consistent measurements. PCM-HeuPatt accurately ap-
proximates PCM-Exact and both PCM methods do well at
disabling inconsistent measurements. When PCM does
accept measurements not generated from the true distri-
bution, they are still consistent with the uncertainty of the
local graphs.

11.3. Real-world pose graph SLAM

We evaluate PCM on the 3D University of Michigan North
Campus Long-Term Vision and LiDAR Dataset (NCLT)
released by Carlevaris-Bianco et al. (2015). The NCLT
dataset was collected using a Segway robot equipped with a
LiDAR and Microstrain IMU, along with a variety of other
sensors. There are 27 sessions in all with an average length
of 5.5 km per session.

For our experiment, we took two sessions collected about
2 weeks apart, removed the first third of one and the last
third of the other, and then generated potential loop-closure

Figure 11. The true positive rate (TPR = TP/(TP + FN)), false
positive rate (FPR = FP/(FP + TN)), and average normalized χ2

value of PCM-Exact, PCM-Heu, and RANSAC versus the
threshold value γ. The TPR and FPR can be thought of as the
probability of getting a true positive or a false positive. The χ2

value should be close to zero if the measurements in the graph are
consistent.
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measurements between the two graphs by aligning every
fourth scan on each graph using GICP (Segal et al., 2009)
and selecting the match with the lowest cost function. We
then labeled these registrations as inliers and outliers by
thresholding the translation and rotation mean-squared
error of the estimated pose transformations with respect
to the ground-truth poses for the dataset derived by
performing pose graph optimization on all 27 sessions.
Finally, to increase the difficulty of the dataset, we re-
moved all but one sixteenth of the measurements labeled
as inliers from the graph, resulting in a graph with ten
inliers and 98 outliers.

In this experiment, we compare PCM-HeuPatt with
DCS, SCGP, and RANSAC. Table 2 provides a comparison
of results and Figure 13 shows the estimated maps. The
MSE was calculated using the same method as in the prior
section, however, in this test we calculated trajectory and
map relative pose error separately. The trajectory MSE
calculates the error in the estimated relative pose between
consecutive nodes allowing us to evaluate graph correct-
ness, while the relative map pose MSE evaluates the offset
between the maps.

PCM results in the graph with the best trajectory MSE
and the best translational MSE for the relative pose of the
two graphs and results in a consistent graph regardless of
threshold. It also detects all of the inlier measurements as
well as three of the measurements labeled as outliers. DCS
once again disables all measurements. SCGP results in an
accurate graph but only enables three of the inlier mea-
surements, and finally, RANSAC (for both of the lowest
thresholds tried) enables all inliers and several outliers, and
results in an inconsistent graph regardless of the threshold
selected.

We repeated this experiment but varied the threshold
value, γ, used in PCM and RANSAC and recorded the
normalized χ2 error of the resulting optimization which can
be seen in Figure 14. As can be seen, PCM maintains a
consistent normalized χ2 < 1 across all threshold values
indicating that it chooses a set of measurements that are
consistent with each other and the odometry data. The χ2

values produced using RANSAC vary with the threshold

value and are often large indicating that RANSAC was not
able to identify a consistent set of measurements.

Note that while in this experiment PCM admits more
false positives than in the last experiment, the measurements
it accepts are consistent with the inlier measurements and
local trajectories even though they were labeled as outliers
(Figure 14). Notice that PCM has a better MSE for the
relative map pose than the no outlier (NO-OUT) version of
the graph. This suggests that by maximizing the consistent
set, PCM is selecting measurements that are actually inliers
but were mislabeled as outliers when compared to the
ground truth. After verification, this turned out to be
the case.

It is also important to note that although SCGP results in
an accurate graph for this dataset, as shown in the earlier
experiment, this does not occur in all cases. In addition, if it
fails to select the maximum consistent set of measurements,
this can be catastrophic in the case of perceptual aliasing.

12. Range-based SLAM evaluation

In this section, we evaluate the performance of GkCM on
several synthetic and real datasets where a robot is exploring
and taking range measurements to static beacons. We
compare the results of GkCM, using both the exact (GkCM-
Exact) and heuristic (GkCM-HeuPatt) maximum clique
algorithms, to the results of PCM, where the consistency
check for PCM is the check used by Olson et al. (2005), and
both MILP and k-core variants of ROBIN.

12.1. Simulated 2D world

First, we simulate a two-dimensional world where a robot
navigates in the plane. We simulate three different trajec-
tories, (Manhattan world, circular, and a straight line) along
with range measurements to static beacons placed randomly
in the world. Gaussian noise was added to all range mea-
surements and a portion of the measurements were cor-
rupted to simulate outlier measurements. Half of the
corrupted measurements were generated in clusters of size
5, and the other half as single random measurements using a

Table 1. Results from using DCS, SCGP, RANSAC(with two different thresholds), and PCM to robustly merge maps generated from a
synthetic city dataset. These results are a summary of runs on 81 different generated datasets. We evaluated the mean-squared error (MSE)
of the two graphs with respect to the non-outlier case (NO-OUT). The worst results for each metric are shown in red, the best are shown in
blue, and the second best shown in bold.
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Figure 12. Example plots of the maps estimated by PCM-Exact, PCM-HeuPatt, RANSAC, DCS, and SCGP for one of the generated city
datasets. Correctly labeled inlier factors are shown in bold dark blue with correctly disabled outliers shown as dotted gray. Accepted
outliers are shown in bold red with disabled inliers shown in pink.
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Gaussian distribution with a random mean and a known
variance. We assume that the variances of the range mea-
surements are known and that these variances are used when
performing the consistency check. The simulation was run
multiple times varying values such as the trajectory and

beacon locations, and statistics were recorded for
comparison.

12.1.1. Monte Carlo experiment. This first example was
done to show how GkCM performs in situations with large
percentages of outliers. In this experiment, a trajectory of
75 poses was simulated with measurements being taken at
each pose and 60 of the measurements were corrupted to be
outliers. GkCM was used to identify consistent measure-
ments that were used to solve the range-based SLAM
problem in equation (1) using GTSAM (Kaess et al., 2012).
The experiment averaged statistics over 100 runs and results
are shown in Table 3 where we report the mean and standard
deviation for each metric. Figure 15 shows visual examples
of the maps produced using the set of selected measure-
ments by each method except GkCM-Exact because it is
identical to the result in ROBIN-MILP.

As can be seen, GkCM-Exact and ROBIN-MILP per-
form the best across most metrics followed closely by
GkCM-HeuPatt. It is expected that GkCM-Exact and
ROBIN-MILP would perform equivalently because they are

Table 2. Results from using DCS, SCGP, RANSAC(with two different thresholds), and PCM to robustly merge segments extracted From
two sessions of the NCLT dataset. NO-OUTcorresponds to a version with none of the measurements labeled as outliers. We evaluated the
mean squared error (MSE) of the two graphs with respect to the ground truth. The worst results for each metric are shown in red and the
best are shown in blue.

Figure 14. The normalized χ2 value of the resulting NCLT graph
versus the threshold value γ for PCM-HeuPatt and RANSAC.
The χ2 value for RANSAC is never below one signifying that the
selected factors are probabilistically inconsistent, while the χ2

value for PCM is relatively constant and below 1.0 regardless of
threshold.

Figure 13. Plots of the trajectories of two partial sessions of the NCLT dataset as estimated by PCM-HeuPatt, RANSAC, DCS, and
SCGP.
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both guaranteed to find the exact maximum clique. GkCM-
HeuPatt uses a heuristic to help find the maximum clique
faster but can find a suboptimal clique. This accounts for the
small differences in accuracy between the GkCM-HeuPatt
and the exact maximum clique methods. We also note that
GkCM-HeuPatt runs significantly faster than either of the
exact maximum clique methods while sacrificing minimal
accuracy. Both PCM and the k-core methods ran faster than
GkCM-HeuPatt, but the results for these methods are not
accurate because their consistent sets contain outlier mea-
surements. The only other statistic where either GkCM-
Exact, ROBIN-MILP, or GkCM-HeuPatt was not the best
method was the true positive rate (TPR). In this case, both
PCM and ROBIN-k-core did better at including more inliers
in their set of consistent measurements. However, we argue
that since the presence of even a single outlier can have
serious negative effects on the map quality, the false positive
rate (FPR) is a better metric to evaluate each algorithm and
GkCM-HeuPatt, GkCM-Exact, and ROBIN-MILP had the
lowest FPR. The normalized χ2 entry in the table tells us
how well the state estimates fit the data that has been se-
lected and ideally χ2 < 3.84 indicating that the data fits
within a 95% confidence interval. The χ2 values for GkCM-
HeuPatt and ROBIN-MILP both meet this threshold while
those for PCM and ROBIN-k-core are far larger, indicating
inconsistencies in the measurements.

The inaccurate results for PCM were expected because
PCM enforces group-2 consistency instead of group-4
consistency. For range-based SLAM, group-2 consis-
tency is much less strict and only requires that two range
measurements have a common intersection point. The
group-4 consistency check used by the other methods is
much more strict and requires that all four measurements
share the same intersection point within a reasonable
amount of uncertainty. Given that the ROBIN-k-core
algorithm uses this stricter group-4 consistency check,
we found it surprising that the resulting map was inac-
curate. We knew that the data used to construct the k-core
graph was the same data used to construct the generalized
graphs used in the GkCM and ROBIN-MILP algorithms
yet these other algorithms were able to reject virtually all of
the outlier measurements. Further inspection of the k-core
and the maximum cliques showed that the k-core included
most, if not all, of the measurements found in the cliques
produced by the exact maximum clique algorithms used in
GkCM-Exact and ROBIN-MILP. This finding leads us to
theorize that the embedding of a 4-uniform hypergraph
into a 2-uniform hypergraph does not guarantee that a
similar enough graph structure will exist for the maximum
k-core to approximate the maximum clique of the original
graph.

Additionally, we wished to know at what ratio of outliers
to inliers the performance of GkCM begins to drop off. To
measure this we simulated robot odometry for 100 poses
and corrupted the measurements taken to a beacon with
enough outliers to achieve a desired outlier ratio. We ran the
set of measurements through GkCM and observed if theT
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selected set of consistent measurements matched the ground
truth. Using the same robot odometry, this was done with
several different outlier percentages ranging from 70% to
90% outliers. The process was repeated for multiple

trajectories and the true/false positive rates for each outlier
percentage were recorded. For computation purposes, this
was only run for GkCM-HeuPatt and results can be seen in
Figure 16.

The figure shows that the true and false positive rates for
GkCM-HeuPatt are fairly constant until about 85% of the
measurements are outliers. For PCM however, the true
positive rate decreases with the number of outliers, and the
false positive rate increases. These results are expected
because as more outliers are present, it is more likely that
either an outlier clique will form or that an outlier mea-
surement will intersect with the inlier set with a pairwise
basis showing the need for group-k consistency.

12.2. Hardware experiment

This experiment evaluates the ability of GkCM to reject
outliers in range-based SLAM using an underwater vehicle
and acoustic ranging to beacons of an unknown location.
We use the dataset collected by Olson et al. (2006), where
they use SCGP to detect and remove outlier range mea-
surements. The data collected uses four beacons placed

Figure 15. Results of a single run of the Monte Carlo experiment where 80% of the 75 measurements considered are outliers. The blue
dashed lines and x denote the estimated trajectory and beacon locations. The green line and triangles denote the true trajectory and
beacon locations.

Figure 16. Results showing the normalized TPR (TP/(TP + FN))
and FPR FP/(FP + TN) by varying the number of outliers for a
fixed trajectory.
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around the area of exploration. The underwater vehicle
collects between 400 and 600 measurements to each beacon
over the course of the experiment. Due to the exponential
runtime of the maximum clique algorithms and the factorial
increase in the number of consistency checks, we down-
sample the number of measurements to 100 measurements
to each beacon. Given that outliers are present in the data,
we randomly selected 80 outlier measurements and 20 inlier
measurements as classified by the SCGP algorithm. This
was done to ensure that there is an inlier clique in the data
while showing that we can reject outliers in high-outlier
regimes.

We compare the results of GkCM with the results pro-
duced by SCGP, PCM, and with ROBIN using both the
MILP and k-core algorithms. A summary of our results can
be found in Table 4 and visual results can be seen in
Figure 17. As can be seen, both GkCM-Exact and GkCM-
HeuPatt attained the highest accuracy but GkCM-HeuPatt
was able to find the maximum clique for each beacon in

about 2.5 min while GkCM-Exact required about 15 h to
find the same clique. PCM and ROBIN-k-core had faster
evaluation times but produced much less accurate results.
The evaluation time for SCGP is not listed because the set of
consistent measurements selected by SCGP was provided in
the dataset, but SCGP also produced less accurate results
than the GkCMmethods. Lastly, ROBIN-MILP was used to
find the maximum clique but the program was terminated
after running for 2 days. Had ROBIN-MILP been allowed to
finish, we would expect the results to be identical to GkCM-
Exact since these algorithms are guaranteed to find the same
consistent set of measurements.

We note that the accuracy of PCM and SCGP varied with
the subset of measurements used in the test. However, in all
the tests we ran they never performed better than either
GkCMmethod, although they occasionally achieved similar
performance and a qualitative comparison between these
algorithms and GkCM can be seen in Figure 17. The least
accurate algorithm ended up being the ROBIN-k-core

Table 4. Results for the χ2 value, residual, and landmark error for the hardware experiment. Best results are in bold. DNF indicates the
algorithm did not finish.

χ2 Residual LM error (m) Evaluation time (s)

GkCM-HeuPatt 5.42e-3 41.1 4.73 151
GkCM-exact 5.42e-3 41.1 4.73 55800
ROBIN-MILP DNF DNF DNF DNF
ROBIN-k-core 51.4 3.94e5 166 36.1

PCM 4.63 3.51e4 90.0 22.3
SCGP 0.456 3450 64.4 N/A

Figure 17. Example plots of the maps estimated by GkCM, PCM, MILP and k-core variants of ROBIN, and SCGP on the data collected
in Olson et al. (2006). No truth data for the vehicle is available but the true beacon locations are denoted by a green x and the estimated
locations by a blue triangle.
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technique. This is surprising considering that the algorithm
uses a group-4 consistency metric and that PCM produced
usable results in many instances by only enforcing group-2
consistency. We again compared the maximum k-core with
the maximum cliques found using the exact maximum
clique algorithms in GkCM-Exact and ROBIN-MILP and
found that the maximum k-core contained the entire max-
imum clique produced by these other algorithms in every
instance. This supports our theory that the k-core of an
embedded generalized graph is not guaranteed to maintain a
similar enough structure to provide a good approximation of
the maximum clique of the original graph.

12.3. Data association

In this experiment, we remove the assumption that the
correspondence between a range measurement and its
beacon is known. To accomplish this, we modified both the
exact and heuristic algorithms to track the n largest cliques
where n is the number of beacons in the environment as-
suming the number of beacons is known. Since each clique
corresponds to consistent measurements that belong to a
unique beacon, we enforce the constraint that a measure-
ment cannot appear in more than one clique.

This experiment was run on a short trajectory of 30 poses
where five measurements were received at each pose (one to
each beacon). As such 150 measurements are being con-
sidered by the GkCM algorithm. Results were averaged over
81 different trials. Visual results can be seen in Figure 18
while statistics are in Table 5. GkCM correctly identifies the
five cliques corresponding to the different beacons and
outperforms PCM in all the metrics. We do not provide a
comparison with the other algorithms since they are unable
to track multiple cliques simultaneously.

12.4. Tuning experiment

We showed that changing the threshold value, γ, did not
significantly impact the results of the PCM algorithm. Due
to enforced group consistency, as opposed to pairwise, we
designed an experiment to test if GkCM has a similar
property. We accomplished this by fixing a robot trajectory
of 50 poses and the associated measurements and running
GkCM multiple times with a different value for γ each time.
The measurements contained 40 outliers that were gener-
ated as described previously. We averaged the χ2 value and
the true and false positive rates over multiple runs. Figure 19
shows how the above values vary with the consistency
threshold for both GkCM and PCM.

As can be seen, GkCM performs better than PCM in both
the normalized χ2 and false positive rate, which is more
important in our application than the true positive rate. The
results indicate that the performance of GkCM varies more
with the threshold γ than PCM, especially at low and high
confidence thresholds. As such, we recommend that con-
fidence values be used from the 50& 90% confidence range

where performance was less variable with the confidence
threshold.

12.5. Incremental update

In this last experiment, we evaluate the incremental
heuristic described by Chang et al. (2021) since their
experiments only evaluated the heuristic for a k-uniform
hypergraph where k = 2. For this experiment, we generate
a trajectory of 100 poses and measurements, and at each
step, we evaluate how long both an incremental and
batch update take. Updates include performing consis-
tency checks and finding the maximum clique. We record
the runtime for the graph size and average statistics over
multiple runs. We plot the runtime against the size of the
graph in Figure 20.

As can be seen, the incremental update with this
heuristic provides similar benefits for GkCM as it does
for PCM. On average, for a graph of 100 nodes with
80 outliers, it takes a batch solution over 40 s to solve for
the maximum clique while it takes only 3 s for the in-
cremental update. These findings validate the results
presented by Chang et al. (2021) and also allow for
GkCM to be run closer to real-time.

13. Multi-agent visual PGO evaluation

This section describes the experimental setup and the results
obtained for each of the experiments evaluating the efficacy
of GkCM for multi-agent visual PGO applications. In each
experiment, we compare our results with the pairwise
consistency approach in PCM and with both the MILP and
k-core variants of ROBIN.

Figure 18. Results of GkCM for performing data association and
outlier rejection. Each clique found is shown in a different color.
Measurements labeled as outliers included in the maximum clique
are red dashed lines.
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13.1. Simulation results

We first evaluated our algorithm in simulation. We ran-
domly initialized two agents in a predetermined area and
let the agents move about in a Manhattan world scenario.
After generating the path, we searched for poses on each
robot within half a meter of each other to generate an
inter-robot measurement. For computational purposes,
we selected 100 measurements to be used, and if
100 measurements were not generated we reran the

simulation until 100 measurements were present. We
then ran the GkCM, PCM, and ROBIN (using both the
MILP and k-core clique solvers) to find the largest inlier
set. Statistics such as the TPR, FPR, RMSE, and the χ2

value of the resulting PGO routine were recorded and
averaged over 100 runs. To initialize the relative pose,
we use chordal initialization (Carlone et al., 2015) to
generate rotation estimates. To initialize the translation,
we picked two measurements from the set of inlier
measurements and estimated the scale by solving
equation (12) and applying the scale to the unit vector
created by the azimuth and elevation angles.

As can be seen from the results, all of the methods
performed fairly equally across all the metrics except for
evaluation time. PCM ran the fastest followed closely by
GkCM-HeuPatt. ROBIN-k-core and GkCM-Exact were
next with all four of these methods finding the maximum
clique in less than a second. The slowest algorithm was
the ROBIN-MILP which required almost a minute on
average to find the maximum clique. Differences in the
residual and normalized χ2 statistics were also observed
and we believe the large differences in these fields are a
result of different initial conditions. We could not
guarantee that the same measurements were used to
initialize the scale on the translation vector between the
two agents since the inlier cliques were not guaranteed to
be the same. Often the cliques had five or six mea-
surements in common with one or two that varied be-
tween them. Due to the nature of least-squares methods,
this caused the scale to vary and resulted in the maps
converging to slightly different solutions. We note that
this is a problem with the initialization of the graph,
which is not the focus of this research. Each of these
methods was able to reject nearly all of the outlier
measurements, noting that PCM and ROBIN-k-core also
found more inlier measurements in their consistent sets.
Visual results for a single trial can be seen in Figure 21
while statistics are in Table 6. Note that ROBIN-MILP
and GkCM-Exact share a figure because they produce the
exact same results.

We note that in this experiment the ROBIN-k-core
algorithm performed nearly as accurately as the GkCM
and ROBIN-MILP algorithms. As with the range-based
SLAM experiments we compared the maximum k-core
with the maximum cliques produced by GkCM-Exact
and ROBIN-MILP and found that the maximum k-core
contained the entire maximum clique produced by these
other algorithms. There were usually a few other

Table 5. Statistics for GkCM and PCM in Data Association experiment. Best results are in bold.

Translational
RMSE (m)

Rotational
RMSE (rad)

Beacon
error (m)

Residual Inliers χ2

Avg Std Avg Std Avg Std Avg Std TPR FPR Avg Std Median

GkCM-HeuPatt 0.626 0.565 0.247 0.0629 34.1 52.1 72.1 88.7 0.837 0.008 1.05 1.26 0.306
PCM 3.15 3.61 0.452 0.222 40.3 51.0 1010 1040 0.95 0.0166 13.9 14.2 29.3

Figure 19. Results showing the normalized χ2 value, TPR, and
FPR by varying the consistency threshold value, γ, for a fixed
trajectory.

Figure 20. Timing data for both batch and incremental updates for
GkCM and PCM. This includes the time to perform the relevant
consistency checks and the new maximum clique. Note the log-
scale on the vertical axis.
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measurements included in the k-core and these measure-
ments were usually inlier measurements that the other al-
gorithms had missed. This experiment shows that it is
possible that embedding a generalized graph into a 2-
uniform graph can maintain a similar enough graph
structure so that the maximum k-core approximates the
maximum clique of the original graph. Exploring conditions
when this may be true is beyond the scope of this paper but
is an interesting avenue for future work.

13.2. Hardware results

Having shown that the GkCM algorithm is effective at
rejecting outliers in a simulation environment, we now seek
to validate our algorithm using hardware data. In this ex-
periment, we used the NCLT dataset presented by
Carlevaris-Bianco et al. (2015) because it provides data of a
robot exploring the same area over multiple sessions, and
has ground truth data for large portions of the dataset

Figure 21. Results for each of the algorithms in the multi-agent visual PGO simulation. The red and blue solid lines denote the true
trajectories of each vehicle while the dashed lines denote the estimated trajectories.

Table 6. Statistics comparing GkCM to other methods in the multi-agent simulation experiment. Best results are in bold.

Trans. error
(m)

Rot. error (rad) Residual Inliers χ2 Evaluation
time (ms)

Avg Std Avg Std Avg Std TPR FPR Avg Std Median Avg Std

GkCM-HeuPatt 1.26 1.87 9.29e-3 6.43e-3 8920 40200 0.741 2.22e-4 2.95 13.3 1.07e-2 0.701 0.540
GkCM-Exact 1.34 2.18 9.945e-3 6.87e-3 11400 48800 0.741 2.22e-4 3.77 16.1 1.04e-2 6.08 5.41
Robin-MILP 1.34 2.18 9.945e-3 6.87e-3 11400 48800 0.741 2.22e-4 3.77 16.1 1.04e-2 55600 23600
Robin-k-core 1.41 2.05 8.55e-3 8.23e-3 11900 41300 0.991 2.22e-4 3.91 13.6 1.51e-2 5.05 0.863

PCM 1.37 2.00 8.61e-3 8.20e-3 11300 40700 0.985 2.22e-4 3.73 13.4 1.39e-2 0.428 0.727
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measured using RTK GPS techniques. We selected two
sessions (Feb. 2, 2012, and Feb. 4, 2012) that occurred in the
same season and around the same time of day to facilitate
place recognition, which was done using the OpenFABMap
library developed by Glover et al. (2012). We trained
OpenFABMap using data collected in one session and
created matches to places in the second session. Due to the
size of the dataset, we elected to use only one of the cameras
onboard the robot and used every 50th image.

With this setup, we generated 267 matches of which
25 were identified as true matches while the others were
labeled as outliers due to perceptual aliasing. We estimated
the relative pose between the two images by decomposing
the essential matrix using OpenCV, which was then refined
through bundle adjustment using GTSAM Dellaert (2012).
From this relative pose, we generated the measurement in
equation (9) using equation (13) and transformed the co-
variance of the relative pose to the measurement covariance
using the Jacobian of equation (13). Once the measurements
were generated, we then checked the consistency of all the
measurements and found the maximum clique using each of
the methods discussed previously. The measurements found
in the maximum clique, along with the odometry data for
both sessions, were then used in a multi-agent pose-graph
optimization algorithm to combine the maps made during
each session.

A visual representation of our results can be found in
Figure 22 while the statistics are in Table 7. As can be seen,
both the GkCM methods can successfully filter out the
outlier measurements and fuse the maps and have the best
performance across all metrics except evaluation time in
Table 7. The methods produce identical results because they
found the same maximum clique, however, GkCM-HeuPatt
was able to find the maximum clique much faster than
GkCM-Exact. The former required almost 6 min while the
latter required about five and a half days. ROBIN-MILP was
terminated before it finished finding the maximum clique,
but because it is guaranteed to find the maximum clique it
would produce results equivalent to GkCM-Exact. Both the
k-core and PCM methods found their consistent set of
measurements faster, but their sets contained outlier mea-
surements that corrupted their estimated results and ren-
dered the map unusable. As noted before, the primary
shortcomings of these methods are that PCM enforces
consistency on a pairwise basis, and ROBIN-k-core
operates over a 2-uniform hypergraph instead of a 3-
uniform hypergraph.

The results produced by the GkCM-HeuPatt and GkCM-
Exact methods successfully merge the maps with some error
in the offset in the origins of the two maps. The map of the
second agent (shown by the greed dotted line in Figure 22)
should lie nearly on top of the blue dotted line but often is

Figure 22. Results for the hardware experiment. The solid red and purple lines are the true robot trajectories generated using GPS, Lidar,
and odometry. The dotted lines are the estimated trajectories using odometry and inter-vehicle measurements from a camera.
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shifted down and to the left. We believe this level of error to
be acceptable for several reasons. The first is that much less
information was used when fusing the maps in our estimated
results than was used in generating the ground truth. The
ground truth data fused RTK-GPS and Lidar scans with the
odometry from all 12 sessions where data was collected.
Lidar scans were aligned to generate constraints both in a
single session and between sessions. This allowed many
full-degree-of-freedom constraints to be generated within
each session and between the different sessions. Compar-
atively, our solution used only a subset of the visual in-
formation provided and only used this information to
generate constraints between the two sessions. No loop
closure constraints were generated when the robot visited a
location it had visited before in the same session. Addi-
tionally, using only a single camera increases the difficulty
of the problem because the scale is not observable in the
inter-session constraints. This problem does not arise when
comparing Lidar scans.

Lastly, it was not anticipated that the simulation ex-
periments and hardware experiments produced such dif-
ferent results. In the simulation, all methods had a fairly
similar level of accuracy, but ROBIN-k-core and PCM were
less accurate in the hardware experiment. We attribute this
to the difference in the length of the trajectories used in the
simulation and hardware experiments. The simulated
experiments had a trajectory consisting of about
500 poses per robot while the two sessions in the NCLT
dataset had over 23,000 and 29,000 poses respectively. This
means that the distance between inter-vehicle measurements
in the NCLT dataset is longer and that the accumulated
relative pose uncertainty in the odometry between mea-
surements was larger. This larger uncertainty caused more
consistency checks to pass and resulted in a denser con-
sistency graph. The result of this is that more measurements
were labeled as consistent when evaluating the NCLT
dataset. PCM did not have the benefit of the direction in-
formation to filter out more outlier measurements like
GkCM. ROBIN-k-core had the benefit of the direction
information but the denser graph but could not
approximate the maximum clique of the group-3 consis-
tency graph.

14. Conclusion

In this paper, we presented a unification of the theory
of consistency and its applications to outlier rejection in

multi-agent robotic systems. We first present the PCM al-
gorithm and show that it can successfully reject outlier loop
closures in multi-agent systems when other common
techniques fail to do so. We then generalize the PCM al-
gorithm and introduce the GkCM algorithm that enforces
consistency in groups of k measurements. This work in-
troduced two algorithms that can find the maximum clique
of a generalized graph that are used to find the largest set of
consistent measurements. We provide a comparison of our
maximum-clique algorithms with another maximum-clique
algorithm over generalized graphs and show that our al-
gorithms can find the maximum clique faster. Enforcing
group consistency enables GkCM to enforce consistency for
low-degree-of-freedom measurements and we showed that
GkCM outperforms techniques that enforce pairwise con-
sistency in both range-based SLAM and multi-agent visual
PGO applications. Lastly, we presented techniques that
alleviate the exponential nature of both evaluating consis-
tency and finding the maximum clique, and released an
open-source implementation of our library for future use by
the research community.
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ROBIN-MILP DNF DNF DNF DNF DNF
ROBIN-k-core 311 0.985 8.84e6 55.4 3.32

PCM 354.5 0.692 2.24e5 1.40 41.4
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Notes

1. ⓒ 2018 IEEE. Reprinted, with permission, from Pairwise
Consistent Measurement Set Maximization for Robust Multi-
Robot Map Merging. 2018 IEEE International Conference on
Robotics and Automation (ICRA).

2. ⓒ 2022 IEEE. Reprinted, with permission, from Group-k
consistent measurement set maximization for robust outlier
detection. 2022 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS).
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