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Observable GNSS-IMU Sliding Window Filtering Using Differential Flatness
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Abstract— Measurements from the global navigation satellite
system (GNSS) and inertial measurement units (IMU) comple-
ment one another. Global position is observed from GNSS at
low frequencies, and attitude and angular velocity are estimated
from IMU data at high frequencies. However, in order to
observe global attitude, there must be sufficient motion to
excite each axis of the IMU, which may not be possible for
large vehicles with constrained dynamics. We propose to model
the trajectory estimate on the flat output space of a motion
model whose heading is constrained to be in the direction
of motion. This mitigates the need to observe heading from
the measurements. In this method we use a continuous-time
spline and optimize the control points such that the flat output
trajectory fits the available GNSS and IMU measurements. We
validate the proposed method with simulated data and show
that it achieves a higher accuracy and lower solve time than
continuous-time estimation on the configuration manifold SE(3).

I. INTRODUCTION

The problem of determining the state (e.g. position, ve-
locity, attitude, etc.) of a dynamic system given a set of
measurements from noisy sensors is critical to any naviga-
tion scenario that involves autonomous or semi-autonomous
agents. The global navigation satellite system (GNSS) was
developed for this purpose. Any mobile device equipped with
a GNSS receiver can obtain accurate global positioning data
in real time. However, GNSS positioning has several limi-
tations: the measurements come at low frequencies (usually
less than 5 Hz), are subject to high amounts of noise, and,
because the measurements are range-based, do not provide
any information about the attitude of the system. The high
noise of GNSS positioning can be significantly reduced by
using carrier-phase differential corrections, in which case the
relative receiver position can be recovered with centimeter-
level accuracy. To observe attitude, an inertial measurement
unit (IMU) is often used. IMUs measure the angular rate
and specific acceleration of the system at high frequencies
(above 100 Hz). However, these measurements are plagued
by time-varying biases which are not observable using the
IMU alone. By fusing IMU with GNSS measurements, it is
possible to determine both the position and orientation of the
system.
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However, it is well-known that the full global attitude
of a GNSS-IMU system is only observable if there is
sufficient excitation of the gyroscope and accelerometer,
which requires maneuvering the system with a non-constant
acceleration and angular rate [1]. These types of motions
are not always possible for large vehicles like passenger
aircraft and watercraft, and are not convenient (or even
acceptable) in many scenarios. A magnetometer can be used
to observe global heading, but due to the common presence
of external magnetic disturbances, they may not provide
sufficient reliability.

Most often, GNSS and IMU measurements are fused
using some nonlinear variant of the Kalman filter (KF) [2]—
[4]. However, the KF is prone to inconsistencies caused by
linearization when applied to nonlinear estimation problems.
As an alternative to the KF, discrete batch optimization
approaches that optimize the discrete state at a set of
measurement times in a sliding time window have been
proposed [5], [6]. These use Newton-based optimization to
iteratively relinearize the nonlinear model during estimation,
thus they are less susceptible to linearization errors. However,
these methods require integrating the measurements from
high-frequency sensors to keep the number of optimization
variables low [7]. Continuous-time batch methods [8] can
also be used, which allow for direct incorporation of mea-
surements from multiple asynchronous, high frequency sen-
sors without increasing the number of optimization variables.
Typically, these methods use continuous splines or Gaussian
processes defined directly on the configuration manifold
SE(3) to parameterize the system trajectory.

All of these methods will fail to estimate the full pose
of the GNSS-IMU system if there is insufficient motion
throughout the trajectory because the global heading and
IMU biases will not be observable. However, in continuous-
time estimation it is possible to constrain the estimated
trajectory such that heading is always in the direction of
motion [9]. There are a large class of vehicles whose dy-
namics have this nonholonomic constraint, including fixed-
wing aircraft, wheeled ground vehicles, boats, and some
underwater vehicles. If the global heading is constrained,
then there is no need to observe it, and the full pose of the
system can be estimated using only GNSS and IMU without
a changing acceleration or angular rate.

We propose to apply this motion constraint to enable
fully-observable GNSS-IMU estimation using differential
flatness (DF)-based continuous-time trajectory estimation.
In this method, we define the trajectory of the system as
a continuous spline in the flat output space of the yaw-
constrained motion model and recover the full pose and twist
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of the system using DF. DF has often been used in the
trajectory planning and control of these types of vehicles
(e.g., [10]), but to our knowledge has not been used in
trajectory estimation apart from our previous work [9], which
introduced DF-based continuous-time estimation generally
but did not apply it to a three-dimensional model. This paper
is an application of our previous work, and provides the
following new contributions:

¢ a GNSS-IMU fusion method that uses DF-based trajec-
tory estimation to constrain the estimated heading and
make the problem fully-observable, and

« simulation results that validate the proposed method and
show that it outperforms continuous-time estimation on
SE(3) both in terms of accuracy and computation time.

The rest of this paper is outlined as follows. Section II
introduces DF-based continuous-time estimation, Section III
explains the yaw-constrained motion model that we use,
and Section IV shows how this model is applied to the
GNSS-IMU estimation problem. Section V presents some
simulation results, and concluding remarks are given in
Section VI.

II. CONTINUOUS-TIME ESTIMATION USING
DIFFERENTIAL FLATNESS

A. Spline-based Estimation

The goal of continuous-time estimation is to determine the
continuous trajectory x(t) taken by a system given a set of
N, measurements {z’},—=1 ... n, acquired from one or more
sensors indexed by s € S. The sensor measurements are
modeled by

i

Z

hs(x(t,)) +m,

= (D
where t? is the measurement timestamp and n ~ N'(0, ;)
is additive Gaussian noise. Because the trajectory can be
sampled at any time, the sensors can be asynchronous and
run at high frequencies. Define a discrete set of estimation
parameters {X,, € £ }mzo,... M 1n the estimation parameter
space £ and a state interpolation function

x(t) = o(t, {Xm})

from which the estimated state can be sampled at any
time ¢. Continuous-time estimation seeks to find the optimal
estimation parameters that cause the state trajectory to fit the
acquired measurements by solving the problem

2)

N
DD Mz = (et Ry )

arg min
Xm}  sesi=1

Xm

In this paper, we will use splines to represent continuous
trajectories. The estimation parameters are the control points
of the spline and the estimation parameter space & is the
configuration manifold of the system. We will consider
splines on Euclidean spaces as well as splines on Lie groups.
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1) Euclidean splines: The shape of a spline in the space
R? (where d is the number of degrees of freedom of the
system) is uniquely determined by a set of control points
{Pm € R%},,,—0.... . and corresponding knot points {t,, €
R}n=o,... M4k, Where k is the spline order that determines
the continuity of the spline!. The spline can be sampled at
any time t using

p(t) = ®,(t)P, € RY, (4)
where n is chosen such that ¢t € [t,,, t,41],
_ _ _ T
P, = [PI_kH pl_m Pﬂ ) o)

and ®,,(t) is a basis matrix that encodes the continuity
constraints of the spline. See [11] for more details and a
derivation of (4).

2) Lie groups: Suppose instead that the configuration
manifold is a Lie group G. Define the control and knot points
as before, except let the control points be g,, € G. Then the
spline is sampled using [8]

M
9(t) = Gn—k1 [ [ Exp (b; () myj—k11) »
j=1

Q; = Log(;-4,4i),

(6)

where b;(t) € R are basis functions that ensure the spline
is C*~2 continuous, and Exp(-) and Log(-) are respectively
the exponential and logarithmic map of G.

The state interpolation function (2) is the composition
of (4) or (6) and their time derivatives. The time derivative
g(t) represents an infinitesimal perturbation to g(t) expressed
in the left tangent space. We do not show how to evaluate
this here to due space constraints, but a derivation is given
in [12].

B. Differential Flatness

A system that is differentially flat can have all of its states
x € X and inputs u € U expressed as functions of a flat
output y € ) and its time derivatives [13], i.e.,

)
®)

The flat output space ) often has lower dimension than
the configuration manifold of the system [14], thus it is
advantageous to perform estimation on this space rather than
the configuration manifold [9]. If the spline is defined in the
flat output space, then the state interpolation function (2)
is the composition of (7) and (4) or (6) and their time
derivatives, depending on whether the flat output space ) is
Euclidean. The estimation problem is still represented by (3),
except that the estimation parameter space is now the flat
output space. Figure 1 outlines the steps required to evaluate
the predicted measurements using differential flatness.

'A spline of order k is C¥~2 continuously differentiable.
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Fig. 1: Measurement evaluation using differential flatness.

III. YAW-CONSTRAINED MOTION MODEL

Suppose that a GNSS-IMU sensor is moving through the
world as it collects measurements. Let B denote a coordinate
frame that is rigidly attached to the IMU, and Z denote an
inertial coordinate frame. The pose of the IMU is

B BT
TS — [RI RIPB/I} € SE(3),

0 1

where RZ € SO(3) is the rotation from the inertial frame
to the IMU frame and pj,; € R® is the position of the
IMU expressed in the inertial frame. We will consider a class
of vehicle dynamics that constrains the heading angle to be
fixed in the direction of its velocity v% T = p,fs ¥Ves (this is
similar to a unicycle dynamic model, but extended to three
dimensions), i.e.,2

where pﬁ 7= [pz Dy pz] " The roll and pitch angles are
left unconstrained. The full rotation RZ is recovered from
the roll, pitch, and heading using

9

By
B

1) = atan2 ( (10)

CoCy CoSy —Sg
Rg = [S¢SeCy — CpSyy  SpSHSy + CpCy  SeCo | (1n
CpSeCy + S¢Sy CpSeSy — S¢Cy  CyCo
and the angular velocity is given by
o= st
Wiz = | cob +sscot) | (12)
—s48 4 cyCotp
where ¢, = cos(a) and s, = sin(«).
Define the state of the system as X =

{Tg,vﬁ/z,wg/z,aﬁ/z}, where aé/z = Vg/z. Then this
system is differentially flat with flat output y = {p% 170 Ps 0},
2 f.(y) is given by (9)-(12), and

where [, (y,¥,¥)
y=1{y,y,¥}

While the nonholonomic constraint (10) may seem restrict-
ing, we note that there are a number of systems that have
this behavior. For example, most ground vehicles are only
capable of traveling in the direction of their orientation due
to friction between the tires and the ground. A few other
examples include fixed-wing aircraft and boats, in the case
that wind or water current is negligible.

IV. GNSS-IMU ESTIMATION

We are interested in fusing position measurements from a
GNSS receiver and inertial measurements from an IMU in

2Equation (10) assumes that the B axes are aligned such that the forward
axis points in the direction of motion. This is not generally the case.
However, it should be possible to determine the rotation from the B frame
to the frame where the nonholonomic constraint applies. This problem is
beyond the scope of this paper.
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a way that renders the full state x of the system observable.
In principle, the global rotation Rg of the system is only
observable if there is sufficient excitation of the IMU [1].
However, for large vehicles with relatively slow dynamics,
maneuvering to excite the IMU may not be possible or
desirable. Often a magnetometer may be used to observe
the global attitude, but magnetometers are affected by per-
turbations from static and dynamic magnetic fields near the
sensor, thus they cannot be used reliably in many scenarios.
Using the differentially flat model presented in Section III
means that the global heading is constrained by the position
trajectory, thus there is no need to observe it with the sensors.
This will allow us to estimate the full pose of the system
without needing to excessively maneuver the IMU or use a
magnetometer.

A. Measurements

Position measurements from the GNSS receiver are mod-
eled by
i

Y A—

; (13)

hp(x(t))) + 1, = Pi/z(ty) + 1,0
where tli is the timestamp of the ¢-th measurement (where
i=1,---,N,) and n, ~ N(0,%,). Here we have assumed
that the GNSS receiver origin is coincident with the origin
of the IMU frame, and that the GNSS and IMU clocks are
synchronized. Additionally, we have assumed that enough
satellites are in view to fully estimate the position and
clock bias, and that the position estimate is not corrupted
with multipath interference. While these assumptions may
be optimistic, they are commonly used in GNSS-based
localization.

The IMU consists of a low-grade MEMS gyroscope and
accelerometer. The gyroscope measurements are modeled as

zi=h

: (14)

, B s ,
o(x(ty)) +my £ wp z(ty) + bg(ty) +ny,
where té is the timestamp of the ¢-th gyroscope measurement
(where i = 1,--- , N,), b, is a bias term that walks in time,
and n, ~ N(0,3X,). The accelerometer measurements are
modeled as

z, = ha(x(t;)) +m,

, ) ) 1

S RE(E) (adolth) — gea) +bu(t) +my )
where g is the gravitational constant, es = [0 0 1] T, tfl is
the timestamp of the i-th accelerometer measurement (where
i=1,---,N,), b, is an additive bias term that walks in time,
and , ~ N(0,3,). The gyroscope and accelerometer biases
are assumed to follow a Gaussian random walk process, i.e.,

bg = ngb7

(16)
b, = UAY

where 1y, ~ N(0,Xg) and 7y, ~ N(0, Zyp).
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Fig. 2: Factor graph of the continuous-time GNSS-IMU sliding window filter when a GNSS measurement is received (IMU measurements are not shown).

B. Sliding Window Filtering

We will estimate the pose of the system over time from
the GNSS and IMU measurements using a spline in the flat
output space described in Section III. The position pg ¥es is
Euclidean, thus we will use a Euclidean spline to represent its
evolution in time. However, the pitch 6 and roll ¢ belong to a
space that is diffeomorphic to the Lie group SO(2). Thus we
will use splines on SO(2) to represent these parameters, and
interpolation will be done using equation (6). We will make
the knot points of the position and angle splines identical, so
that the control points of the three splines can be considered
to correspond to one another, and we will define y,,
{Pm> Pm,0m} to be the composition of the m-th control
point of the position, roll, and pitch splines. In addition, we
will need to estimate the gyroscope and accelerometer biases.
Because the dynamics of the biases are generally quite slow,
we will represent these as constants between consecutive
GNSS timestamps, bFkE=1 pEE=1 Consecutive bias terms
will be constrained by the cost terms

k,k—1

2
kk—1 k—1,k—2

r O 17

& H &b (522g) " {17

where dt, = t’; — t’;’l. The prior terms rft;k_l for the

accelerometer bias variables are represented similarly. Then
the cost function to be minimized is

arg min Z ZHZ

{S'm},{bgh’k_l}v{bf kot }SE{P ga} =1

_|_Z k,k— 1+’I“

th ||z: !

k,k—1
ab

);
(18)

where %(t%) = f.(t(t%, {¥m}). In order to solve this problem
we will need to know the Jacobians of the measurement mod-
els with respect to the control points y,,. These Jacobians
are presented in Appendix A.

The number of measurements that are obtained grows lin-
early with time. To keep the computational cost of estimation
bounded, we will use sliding window filtering, where only
the most recent measurements are considered. In particular,
we will keep the most recent ngwg GNSS measurements
and all IMU measurements that were received since the last
GNSS measurement in the filter, and discard old measure-
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Fig. 3: Simulated sinusoidal trajectory.

ments as new measurements are received’. Figure 2 shows
an example factor graph of the continuous-time GNSS-IMU
sliding window filter.

V. SIMULATION RESULTS

We simulated the GNSS-IMU estimation problem using

the following parameters:
3, = diag(2.5 x 107%,2.5 x 1072, 1 x 10~ 2) m?

¥, = 1 x 107%T (rad/s)?, X, = 2.5 x 107°T (m/s?)?,

gy = 2.5 x 107°T (rad/s?)?, S = 2.5 x 10751 (m/s°)?,
g = 9.805m/s?.
19)

The GNSS noise is typical of measurements that have
been corrected using differential signals from a base station
receiver. GNSS measurements were simulated at 5 Hz and
IMU measurements were simulated at 100 Hz. For esti-
mation, we used a spline of order k¥ = 6 and uniform
spacing between knot points dt 0.3 s, and we set
nswg = 20, which means that the most recent 4 seconds
of data was optimized in the sliding window filter. The filter
was run whenever a new GNSS measurement was available
(every 0.2 s). We simulated a 20 s sinusoidal trajectory
that constrained the heading to be in the direction of the
velocity vector, shown in Figure 3. To solve problem (3), we
used Levenberg-Marquardt optimization implemented with
the Ceres solver [15].

We compared our differential flatness-based method to
spline continuous-time estimation on SE(3), where the head-
ing was left unconstrained. The SE(3) spline also used & = 6

31n order to keep the filter consistent, these measurements and the control
points connected to them should be properly marginalized before discarding.
We consider this to be beyond the scope of the paper.
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Fig. 4: True versus estimated pose and twist for the DF-based method and for a spline on SE(3). The rotation plots represent Log (Rg )

Spline Type | Pos. RMSE (m) Rot. RMSE (rad) Twist RMSE
Flat Output 0.0565 0.0258 0.1206
SE(3) 0.1688 0.5307 1.5677

TABLE I: Trajectory Error Comparison

and 6t = 0.3 s. Plots of the estimated pose and twist versus
truth are shown in Figure 4, and the position, rotation, and
twist root-mean-squared error (RMSE) for both methods are
shown in Table I. The DF-based method significantly outper-
formed the spline on SE(3) in terms of trajectory quality. This
is because the trajectory did not provide enough acceleration
for the full global rotation to become observable from the
IMU measurements. The DF-based method, however, did
not need to observe the global heading because of the
nonholonomic constraint applied to the trajectory estimate,
thus it was able to obtain high rotational accuracy.

Figure 5 shows box plots of the time required to solve the
estimation problem for each step of the estimator. The red
line is at 0.2 s, which is the maximum solve time allowed
for real-time performance. All but two of the steps offered
faster-than-real-time performance for the DF-based method,
whereas only a quarter of the SE(3) steps solved in less than
0.2 s. This shows that the DF-based method is capable of
running in real-time (with an update rate of 5 Hz), whereas
the SE(3) spline method is far too slow. One reason that
the SE(3) spline required so much time to solve is that
computing time derivatives and Jacobians of splines on Lie
groups is computationally intensive. Using DF allows us to
avoid using a spline on SE(3), which is why our method
solved much faster. This is an additional benefit of using
DF-based estimation in the GNSS-IMU fusion problem.

VI. CONCLUSION

In this paper we presented a DF-based continuous-time so-
lution to the GNSS-IMU estimation problem. We introduced
a model that constrains the heading of the system to be in
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Fig. 5: Solve time distributions for each sliding window filter run, pictured
for DF-based estimation (left) and SE(3) spline estimation (right).

the direction of motion, allowing the full pose of the system
to be observed even with limited motion. We validated this
method in simulation and showed that it can estimate the full
pose of the system even when there is a lack of sufficient
motion to observe the global heading. These results indicate
that our method outperforms continuous-time estimation on
SE(3) in terms of both accuracy and computation time.

The results in this paper are largely preliminary. There are
several additional steps that should be taken to fully validate
the proposed method. First, it is unlikely that the IMU axes
will be completely aligned with the coordinate system in
which the nonholonomic constraint applies. The rotation
between these two coordinate systems will need to be
calibrated prior to online estimation. Second, control points
and measurements that leave the sliding window should be
marginalized rather than discarded to avoid overconfidence.
Third, while our results show that this method is capable
of real-time performance, the update rate is far lower than
that of e.g., a Kalman filter would be. Improvements in
computation time would be highly beneficial. Finally, this
method will need to be validated online using true hardware
data collected onboard a yaw-constrained vehicle. In the
case that the vehicle dynamics do not exactly obey the
constraint (10) (for example if a ground vehicle experiences
wheel slip or a fixed-wing aircraft undergoes a crabbing
motion) the quality of the trajectory estimate will degrade.
More experiments must be done to understand how much
degradation will take place and whether the proposed method
is suitable in these scenarios.
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APPENDIX
A. Jacobians

In this Appendix we present the Jacobians required to
solve (3) using Levenberg-Marquardt optimization. This is
trivial for the GNSS model,

0z,

8p7ﬂ
if m € [n—k+ 1,n], 0 otherwise. Here I goes in the
m — (n — k + 1)-th spot, and ®,,(t) was defined in (4).

The Jacobians of the IMU measurement models are not
so straightforward. We start with the gyroscope. We have

-®,t)[-- 0 1T 0 -] (20)

O0zy awlBS’/I ¢ a“’Z/I D
0n 00 Dow 0 Dow 4y
8Zg 5“2/1 00 50-’2/1 a0
00y 00 00, 06 00,
Let £ = [qb 0 w].Then
B 0 *Cg’(/) 0
&;Z/Iz —s¢9:+c¢091/:} —s¢59¢. of,
—cyt —sgCo  —cyseyp O 22)
B 1 0 -
a“;zz/z: 0 ¢4 s¢,ceg
0 —S¢  CypCo

The Jacobians of ¢, 6, $, and 6 with respect to their spline
control points are obtained similarly to (20). We also need

0z, :a""g/z ) 81%/1 ) af)%/I
Opm O \OPj;z OPm  ODf; OPm
(23)
Noting that )
=D 1P, (24)
1Bl
where p = [p, py}T and 1" = [(1) Ol]’ we can compute
O [ 1 =Tia 2 (2TiAs) &T
GOL,; [P~ o (BT1%0) BT 0)

(25)

(f)-(?Tw = [-mrp’1" 9.
Ps/z
Finally we need the Jacobians of the accelerometer model.
We have
0z, ~ORE 0¢
Obpm, 0p Obm’
where (-)" is the wedge map of SO(3). The Jacobians for 0
are obtained similarly. Noting that
R = Exp(—¢e1)Exp(—fez)Exp(—tes),
it is possible to find that
ORE
23

= —(Rfag,; — ges) (26)

27

= —[e1 Exp(—¢ei)es Exp(—de;)Exp(—bes)es],
(28)
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where we use the method described in [16] to represent
Jacobians of Lie group elements. Finally,

A
0z, B.T AORE 9 8pB/I
— = — R a — ge N —
0 I G O b )
..I
Pi/z
RB
R oy
where
0 .
8;5#: pEp 1" 0 (30)
B/T
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