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ABSTRACT

Recent observations of caustic-crossing galaxies at redshift 0.7 . z . 1 show a wealth of transient events. Most of them are believed to
be microlensing events of highly magnified stars. Earlier work predicts such events should be common near the critical curves (CCs)
of galaxy clusters (“near region”), but some are found relatively far away from these CCs (“far region”). We consider the possibility
that substructure on milliarcsecond scales (few parsecs in the lens plane) is boosting the microlensing signal in the far region. We study
the combined magnification from the macrolens, millilenses, and microlenses (“3M lensing”), when the macromodel magnification
is relatively low (common in the far region). After considering realistic populations of millilenses and microlenses, we conclude that
the enhanced microlensing rate around millilenses is not sufficient to explain the high fraction of observed events in the far region.
Instead, we find that the shape of the luminosity function (LF) of the lensed stars combined with the amount of substructure in the
lens plane determines the number of microlensing events found near and far from the CC. By measuring β (the exponent of the
adopted power law LF, dN/dL = φ(L) ∝ (1/L)β), and the number density of microlensing events at each location, one can create
a pseudoimage of the underlying distribution of mass on small scales. We identify two regimes: (i) positive-imaging regime where
β > 2 and the number density of events is greater around substructures, and (ii) negative-imaging regime where β < 2 and the number
density of microlensing events is reduced around substructures. This technique opens a new window to map the distribution of dark-
matter substructure down to ∼103 M�. We study the particular case of seven microlensing events found in the Flashlights program in
the Dragon arc (z = 0.725). A population of supergiant stars having a steep LF with β = 2.55+0.72

−0.56 fits the distribution of these events
in the far and near regions. We also find that the new microlensing events from JWST observations in this arc imply a surface mass
density substructure of Σ∗ = 54 M� pc−2, consistent with the expected population of stars from the intracluster medium. We identify
a small region of high density of microlensing events, and interpret it as evidence of a possible invisible substructure, for which we
derive a mass of ∼1.3 × 108 M� (within its Einstein radius) in the galaxy cluster.

Key words. gravitational lensing: strong – gravitational lensing: micro – supergiants – dark matter

1. Introduction

Galaxy clusters are the most powerful lenses in the universe.
At the critical curves (CCs hereafter), and ignoring microlenses,

? Corresponding author; jdiego@ifca.unican.es
?? Brinson Prize Fellow.

small sources can be magnified by very large factors, with the
maximum magnification for a source of radius R, µmax = µo/

√
R,

where µo is a constant related to the smoothness of the lens-
ing potential. For galaxy clusters, µo can be of order 10 when
R is expressed in arcseconds. At the caustics of these clusters,
stars with sizes a few times R� (that is, R ≈ 10−11 arcseconds
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at redshift z ≈ 1) can reach theoretical extreme magnification
factors exceeding 106 (Miralda-Escude 1991). In practice, the
ubiquitous presence of microlenses from the intracluster medium
(ICM) reduces the maximum magnification for these stars to
<105 (Venumadhav et al. 2017; Diego et al. 2018). Despite this
reduction in the maximum magnification due to microlenses, the
flux from massive lensed stars at z ≈ 1 that are at a fraction of a
parsec from a cluster caustic can be boosted by ∼7–10 mag and
be detected with current telescopes reaching a depth of 28 mag
(Kelly et al. 2018; Golubchik et al. 2023; Diego et al. 2024a).

The extreme magnification near the critical curves of clusters
has allowed the discovery of distant stars that would otherwise
remain undetected. The first such star, Icarus at z = 1.49, was
discovered (Kelly et al. 2018) with the Hubble Space Telescope
(HST), and was quickly followed by many others also observed
with HST (Rodney et al. 2018; Chen et al. 2019; Kaurov et al.
2019; Diego et al. 2022; Welch et al. 2022; Kelly et al. 2022;
Meena et al. 2023a). The farthest star discovered to date with
HST through this technique is Earendel at a record breaking
z ≈ 6 (Welch et al. 2022). In total, HST has already discovered
several dozen lensed-star candidates at 0.725 < z < 6 Kelly et al.
(2022), most of them believed to be blue supergiants (BSGs)
and luminous blue variable stars (LBVs). HST has passed the
torch to the new James Webb Telescope (JWST), which in
a short time has already discovered over a dozen lensed-star
candidates (Chen et al. 2022; Diego et al. 2023a; Meena et al.
2023b; Furtak et al. 2024; Diego et al. 2023b; Yan et al. 2023).
Among these, several are believed to be red supergiants (RSGs),
which are difficult to detect with HST (Diego et al. 2023a,b,
2024a; Yan et al. 2023). JWST will extend the search for dis-
tant stars to even higher redshifts and also to fainter stars. With
a little luck, JWST will even directly observe the first genera-
tion of stars (Pop III) in caustic crossing high-redshift galaxies
(Windhorst et al. 2018).

Some of these transients are believed to be due not
to microlensing, but to intrinsic variability of LBVs
that can increase their brightness by several magnitudes
(Weis & Bomans 2020). They have up to 5 mag variations on
decade-long timescales, and smaller amplitudes on shorter
timescales of months to years that are typical of supergiants.
LBVs are luminous enough that they can be observed even at
modest magnification factors (µ ≈ 20) if they are at z < 1 (a
star at z = 1 with L = 106 L� would have apparent magnitude
∼28.7 at µ = 20). Owing to their variable nature, they can
be identified as transients in difference images between two
epochs. At higher redshift, even these bright stars would become
undetectable unless they are magnified by larger factors (a star
at z = 2 with L = 106 L� would have apparent magnitude
∼32.4 at µ = 20 and ∼28.2 if µ = 1000). Although most of the
lensed stars are found in regions near cluster CCs, a significant
fraction of these stars have been observed farther from the CCs
where the magnification from the cluster is relatively small
(µ < 100). Examples include the off-caustic event described
by Meena et al. (2023a) or some of the events reported by
Kelly et al. (2022) and Yan et al. (2023).

The outbursts of LBVs can be confused with genuine
microlensing events, especially if the observations are separated
by long periods that do not allow us to distinguish a microlensing
event from an LBV outburst based on the light curve. A genuine
microlensing event (in the optically thin regime) near the micro-
caustic (or maximum magnification) has a well-defined shape
for the light curve since the luminosity changes as 1/

√
(t − to),

where t is time and to is the time at which the background star
touches the microcaustic (to is a free parameter). LBVs are very

rare compared with the more numerous but fainter supergiant
stars, and since we can only identify them through their out-
bursts (or active phase), active LBVs are even rarer, so we expect
to see only a few of them. The specific number depends on their
abundance in the host galaxy, driven primarily by the recent star-
formation history of that galaxy; hence, we expect to see them in
very blue portions of lensed galaxies. Despite their scarcity, but
because of their high luminosity and varying nature, LBVs are
good candidates for transient events that take place in regions of
low magnification.

In the lens plane, the magnification at a short distance, d,
from the CC can be well approximated by µ ≈ Θ(′′)/d(′′)
(Schneider et al. 1992). In this expression Θ(′′) is related to the
inverse of the derivative of the lensing potential at that posi-
tion. For a symmetric lens, Θ(′′) = constant, and for an isother-
mal profile, it is exactly the Einstein radius, but for real non-
symmetric lenses with elliptically shaped CCs, Θ varies along
the CC, with maximum values at the cusps of caustics. For
massive clusters where lensed stars have been discovered, Θ(′′)
takes values between ∼50′′ and ∼100′′. Then, for these clus-
ters, and at distances d & 1′′, the magnification from the clus-
ter typically drops below 100. In these regions of the lens plane
with µ < 100, the combined effect from the macrolens and
the microlenses is often subcritical, µ × Σ∗ . Σcrit, for typical
values of the surface mass density of microlenses found near
CCs, Σ∗ < 20 M�. Near the CC, even for small values of Σ∗
there is always a region around the CC in which microlensing
supercriticality is achieved, µ × Σ∗ > Σcrit. In this region, the
probability of microlensing events is expected to be maximum
(Diego et al. 2018; Palencia et al. 2023). We refer to this portion
of the lens plane as the “near region”. In contrast, outside this
region and away from the CC, d increases and µ decreases with
µ × Σ∗ < Σcrit. Here we are in the microlensing subcritical por-
tion of the lens plane where microlensing events are more rare.
We refer to this portion of the lens plane as the “far region” cor-
responding to the regions inside and outside the corrugated net-
work of small critical curves around the galaxy cluster CC (see,
for instance, Diego et al. 2018, for a description of this corru-
gated network).

It is in principle difficult to explain the apparently high num-
ber of events found in the far region. This begs the question of
whether a significant fraction of these events are active LBVs
which can be more easily observed in the far region, or the
cluster lens model is inaccurate on small scales, lacking sub-
structures in the far region that can boost the magnification, and
hence become supercritical around the substructures. Perturba-
tions in the mass distribution on scales comparable to small satel-
lites in the cluster (millilenses) can create pockets of relatively
high magnification on angular scales of several milliarcseconds
at distances of few arcseconds from the CCs. These pockets
of high magnification become islands of supercriticality where
microlenses along the line of sight can now create more frequent
microlensing events. The combined lensing effect of a galaxy
cluster scale lens, with its swarm of small satellites and the myr-
iad of microlenses from the matter associated with the ICM, has
not been studied previously in detail. We refer to this effect as
3M lensing (macromodel lenses, millilenses, and microlenses),
and it constitutes one of the foci of this work.

Recent observations made with JWST of some of
these cluster lenses have revealed a wealth of unresolved
structures in the ICM (Lee et al. 2022; Faisst et al. 2022;
Harris & Reina-Campos 2023). Some of these objects are
expected to be globular clusters (GCs) that are stripped away
from their host galaxies by strong tidal forces from the clus-
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ter. These are the same forces that strip stars away from the
infalling galaxies and into the ICM. An extended population
of GCs in the ICM has been found, for example, in the rich
lensing cluster Abell 2744 at z = 0.3 with JWST imaging
(Harris & Reina-Campos 2023). In addition to GCs, the inner
regions of galactic cores in small galaxies can survive tidal forces
and appear as GC-like objects. These ultracompact dwarf galax-
ies (UCDs) tend to be more massive than GCs and possibly
harbor a supermassive black hole (SMBH) in their center. For
simplicity we refer from now on to all these unresolved objects
as GCs, keeping in mind that other types of objects may fall into
this category.

The number and distribution of these GCs is in agree-
ment with observations made at lower redshift and also
with expectations from numerical N-body simulations. Thou-
sands of GCs with masses in the range 105 M� < M <
107 M� are expected to be found within the critical curve of
these clusters (Faisst et al. 2022; Lee et al. 2022; Diego et al.
2024b; Harris & Reina-Campos 2023). These GCs can act as
millilenses, whose lensing effect is magnified by the macrolens
(Gilman et al. 2017; Dai et al. 2018; Williams et al. 2024). In
the vicinity of GCs, pockets of high magnification are cre-
ated which, combined with the ubiquitous microlenses, can
result in an increased rate of microlensing events around the
millilenses, and near their small CCs around them, typically
spanning a few milliarcseconds in the image plane. That is,
for the smallest millilenses the increased rate of events would
appear to originate from the same HST or JWST pixel (30
milliarcseconds for NIRCam short-wavelength detectors). Small
dark matter (DM) structures can also act as millilenses, since
these are predicted by many DM models (Kolb & Tkachev 1993;
Graham et al. 2016; Visinelli et al. 2018; Arvanitaki et al. 2020;
Gilman et al. 2021; Gorghetto et al. 2022). Microlenses overlap-
ping with these small-scale DM structures make transient events
more likely around them, serving as signposts of small-scale
fluctuations in the distribution of DM. This is discussed in detail
in this work.

The small CCs around these millilenses (or in general small
DM structures) will inevitably overlap with the microlenses
from the same ICM. The net lensing effect is a combination
of the macrolens, the millilens, and the numerous microlenses.
The effect of large macromodel magnifications plus microlenses
has been studied in detail in earlier work (Venumadhav et al.
2017; Diego et al. 2018; Diego 2019; Palencia et al. 2023).
The combined effect of large macromodel magnification plus
millilenses was studied over two decades ago by (for exam-
ple) Mao & Schneider (1998) and Metcalf & Madau (2001),
and more recently by many others (e.g., Hezaveh et al. 2016;
Gilman et al. 2017, 2018; Dai et al. 2018; Cyr-Racine et al.
2019; Gilman et al. 2019, 2020; Powell et al. 2023; Gilman et al.
2024; Williams et al. 2024; Tsang et al. 2024). The combination
of the three effects has not been considered in detail so far, and
to the best of our knowledge is presented here for the first time.

In this work we pursue four goals: (i) study the
macro+milli+micro lensing (“3M lensing”) effect over stars at
cosmological distances and near cluster CCs in order to provide
context for recent and future discoveries of lensed stars where
3M lensing is likely taking place, (ii) address the question of
whether the millilensing effect from the numerous millilenses
is sufficient to explain the transient events found at distances
d > 1′′ from cluster CCs, (iii) study the relation between the
number of observed microlensing events, the amount of sub-
structure on small scales in the lens plane, and the luminosity
function of the background population of high-redshift stars,

and (iv) apply our results to recent observations, in particu-
lar to the case of the seven alleged microlensing events found
by HST in the Dragon galaxy at z = 0.725 as part of the
Flashlights program (Kelly et al. 2022). This arc was originally
known as the Giant Arc or A370 Arc01 (Soucail et al. 1987,
1988; Lynds & Petrosian 1989; Grossman & Narayan 1989;
Smail et al. 1993, 1996), and rebranded as the Dragon arc after
new images were obtained following the HST Servicing Mission
4 update of the ACS in 20091.

The paper is organized as follows. Section 2 presents a
series of definitions that are used throughout and gives exam-
ples of typical scales appearing in lensing that become useful in
later portions of the paper. The simulations of the 3M lensing
effect used in this work are presented in Section 3 . We focus
in Section 4 on the probability of magnification in 3M lens-
ing. Section 5 discusses the scaling of the effect with millilens
mass and macromodel magnification. In Section 6 we describe
how to compute the contribution, from a given mass function of
GCs, to the area in the source plane (which can be interpreted
as a probability) where microlensing effects are expected to be
maximum. Section 7 estimates the probability of microlensing
events in the far region around millilenses, while Section 8 esti-
mates the probability of microlensing events anywhere in the far
region, not just near millilenses. In Section 9 we discuss how to
apply the previous results to map the distribution of DM on small
scales, and apply our results to the particular case of the Flash-
light microlensing events in the Dragon arc. The Dragon arc has
been observed by the VLT/MUSE, providing resolved spectral
information along the arc (Patrício et al. 2018). We discuss our
results in Section 10 and conclude in Section 11. An Appendix
contains details of the lens model for the particular example used
to illustrate this work.

2. Definitions and useful numbers

We use several definitions throughout the paper, which for con-
venience we summarize here. Critical curves (CCs) are the
regions in the image plane (also known as lens plane or plane
of the sky) where magnification formally diverges. The image
plane and observer (or source) plane are connected through the
lens equation, β = θ − α(θ,M), where β are positions in the
source plane, θ are positions in the image plane and α(θ,M) is
the deflection angle that depends on the distribution of mass of
the lens. Through this equation, we can map the CCs into the
corresponding curves in the source (or observer) frame, which
are called caustics. A caustic region is the portion of the source
plane which is bounded by the caustic curves. The near region
is defined as the portion of the lens plane close to the cluster
CC where the rate of microlensing events is maximized. This
region is defined in terms of the cluster magnification and the
surface mass density of microlenses. It is a band around the
cluster CC where the cluster magnification is above the criti-
cal value, µ & µcrit = Σcrit/Σ∗, where Σcrit and Σ∗ are the critical
surface mass density for lensing and the surface mass density
of microlenses, respectively (Diego et al. 2018). An example is
shown in Figure 1, where the near region is contained within the
two thin cyan curves. Similarly, the far region is the portion of
the lens plane where the macromodel magnification is µ < µcrit,
and in the same figure it would be the region outside the band
defined by the two cyan curves.

1 https://www.newscientist.com/article/
dn17765-upgraded-hubble-telescope-spies-cosmic-dragon/
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Fig. 1. Dragon arc as seen by HST (blue = F435W, green = F814W, red = F160W). The eight transients (seven in the arc) identified by Kelly et al.
(2022) are marked with circles. Labels are the same as in the original reference. The white curve is the CC from our lens model (see Appendix) at
the redshift of the arc. The two cyan curves mark the boundary region between macromodel magnification above and below 100. The arc covers
∼1150 kpc2 in the lens plane. Out of this, 190 kpc2 is within the cyan curves (near region) and 960 kpc2 is outside the cyan lines (far region).

Following standard practice (e.g., Treu 2010), the term
macrolens is used when referring to the galaxy cluster scale
lens, and the term millilens is used when referring to GCs or
in general unresolved structures such as galactic core remnants,
dwarf galaxies in the ICM, satellites in general, small DM halos,
or intermediate-mass primordial black holes (Dike et al. 2023).
These systems are expected to have Einstein radii of order mil-
liarcseconds, hence the term millilensing. The term microlens is
used for stars or stellar remnants in the ICM, which have Einstein
radii of order microarcseconds. Some DM candidates such as
primordial black holes with masses comparable to stellar objects
would also fit in this category (see, for instance, Diego et al.
2018; Oguri et al. 2018; Vall Müller & Miralda-Escudé 2024).

For example, the Einstein radius of a 1 M� microlens at
z = 0.375 and for a source at z = 0.725 (the redshifts of the
cluster lens and Dragon galaxy, respectively) is 1.8 microarcsec-
onds (µas) before accounting for the effect of the macrolens or
millilens. For the same redshifts, a millilens with mass 105 M�
would have an Einstein radius of 0.57 milliarcseconds (mas),
also before accounting for macromodel effects. For any other
mass, M, at the same redshift, the Einstein radius would be
θE ≈ 1 mas ×

√
M/(3.1 × 105 M�). In general, when embedded

in a macromodel potential with magnification µ, the CC around
the millilens or microlens with mass M behaves as a larger
millilens or microlens with effective mass µt × M (Diego et al.
2018; Oguri et al. 2018), where µt is the tangential macromodel
magnification (µr would be the radial component and µ = µtµr).
For the particular case of a microlens near a millilens, the same
scaling with magnification applies, only in this case the magni-
fication µt is from the combined effect of the macromodel plus
the millilens.

The CCs associated with these types of lenses are macro-
CCs, milli-CCs, and micro-CCs. Similarly, we use the terms
macrocaustic, millicaustic, and microcaustic when referring to
the corresponding caustics. We refer to the macromodel mag-
nification as µ1m, while we use the term µ2m when referring to
the magnification from the combined macromodel plus millilens,
and µ3m (the 3M lensing magnification) when referring to the
magnification of all three components (macrolens plus millilens
plus microlenses).

In Section 9 we define the luminosity function (LF) of stars
as dN/dL = φ(L) ∝ (1/L)β, which gives the number of stars
per luminosity bin and unit area. This “classic definition” is use-
ful when working with nonmagnified and uniform distributions
(or sources in the source plane before magnification is applied),

since in this case the properties of the LF are independent of the
region being considered. But when dealing with lensed sources,
there is a strong dependence on the magnification. Because of
this, we also use a different definition for the lensed luminosity
function, or φ̂(L), which gives the number of stars per luminos-
ity bin and in a given area in the source plane (not per unit area).
This alternative definition is useful when we are considering the
number of stars in a particular region with macromodel magni-
fication µ, in the interval µmin < µ < µmax. That is, in this case
φ̂(L) means φ̂(L, µmax

min ), where µmax
min is all macromodel magnifi-

cations in the interval of magnification, but for convenience we
simply use the expression φ̂(L).

Below we present a few useful numbers for the particular
case of the Dragon arc, which holds the record for the num-
ber of transients discovered as part of the Flashlights program
Kelly et al. (2022). The location of these events in relation to
the CC is shown in Figure 1. This arc contains seven high-
significance transients, with at least two of them found in the far
region (see Figure 1) and good candidates to be stars impacted
by 3M lensing (Kelly et al. 2022). For the particular case of the
Dragon galaxy, the redshift of the lens is 0.375 (A370 clus-
ter), and the redshift of the lensed galaxy is 0.725. We adopt
a flat-universe cosmology with Ωm = 0.3 and h = 0.7. For this
model, the angular diameter distances to the lens at z = 0.375,
the source at z = 0.725, and from the lens to the source are
1066 Mpc, 1495 Mpc, and 646 Mpc, respectively. We assume all
matter in the lens is located in the lens plane at z = 0.375 and
all sources are in the same plane at z = 0.725. In practice, the
lens extends along the line of sight by c × δz ≈ 1000 km s−1.
A smaller dispersion is expected in the source plane, but these
corrections are at the percent level and are ignored here. For the
same cosmology, 1′′ subtends 5.16 kpc at z = 0.375 and 7.24 kpc
at z = 0.725. The critical surface mass density for these redshifts
is Σc = 3640 M� pc−2 and the distance modulus to z = 0.725 is
43.24 mag. For illustration purposes, a star with absolute mag-
nitude −7 (color corrected in a given filter) and magnified by a
factor of 100 would have apparent magnitude 31.2, still out of
reach of JWST with 1 hr integration in one of the wide filters.
However, the same star during a microlensing event (lasting typ-
ically a few days to a few weeks depending on the mass of the
microlens, relative speed, and direction of motion with respect
to the microcaustic), can be temporarily magnified by a factor
of ∼1000, and would appear ∼2.5 mag brighter (i.e., ∼28.7 mag)
during that period. This would be detectable in a 1 h integration
time with JWST and be interpreted as a transient.
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Finally, we use the term “detectable through microlensing”
(or DTM) stars to refer to all the stars that have detectable
changes in brightness due to microlensing. These are either stars
that (i) are detected in several epochs but between two epochs
change their brightness by some amount (due to a microlensing
event), or (ii) are detected in only one epoch because microlens-
ing is temporarily boosting their flux. In general, we assume that
the second type of DTM stars are ∼2 mag below the detection
threshold before microlensing. Most of the stars at z > 0.5 that
can be detected through microlensing belong to the supergiant
type. During a microlensing event, these stars typically gain 1–
3 mag (Kelly et al. 2018; Diego et al. 2018). We adopt a value
of 2 mag as a compromise (see also Section 10.1 for a more
detailed discussion). During a microlensing event, any DTM star
increases (or decreases) its brightness by ∼2 mag and can be rec-
ognized as a transient.

3. 3M lensing

To study the 3M lensing effect, we rely on simulations that com-
bine all three mass ranges (macro, milli, and micro). Since our
focus is to study microlensing events around millilenses (embed-
ded in a macrolens potential), we set the simulation parameters
to match the scale of millilenses but at the same time resolve
the microlenses. As mentioned in Section 2, before macromodel
effects, the scale of a 105 M� millilens is typically ∼1 mas in the
image plane. On that scale, the effect of the macromodel can be
very well approximated as a smooth gradient with a slope that
is roughly the inverse of the Einstein radius of the macrolens
(Diego et al. 2018). The scale of microcaustics is ∼1 µas. To
properly resolve microcaustics, the pixel size needs to be much
smaller than 1 µas. A pixel size of 10 nanoarcseconds (nas) in the
source plane is sufficient to resolve the microcaustics from the
smallest microlenses. After accounting for macromodel effects,
the critical region of the millilens grows as the macromodel mag-
nification. Hence, the simulation needs to span several milliarc-
seconds in the image plane if the macromodel magnification is
µ1m > 10. To simulate several milliarcseconds in the image plane
with a resolution of 10 nas in the source plane would require a
prohibitive number of ∼1012 pixels. We can significantly reduce
this by simulating a smaller millilens, since the number of pix-
els needed scales approximately with the mass of the millilens.
Luckily, the magnification properties of 3M lensing for larger
millilenses can be extrapolated by simply rescaling the results
derived with smaller millilenses (see Section 5). In particular,
we consider very small millilenses with masses of order 103 M�
and later study how our results scale with the millilens mass.

Hence, to explore 3M lensing in a wide range of scenarios,
we define a fiducial model that is used for the main calcula-
tions and later study the scaling with macromodel, millilens, and
microlenses around this fiducial model. For the fiducial model
we adopt a macromodel magnification µm = µt ×µr = ±10×2.3,
where µt and µr are respectively the tangential and radial mag-
nifications from the macromodel. The magnification can be pos-
itive or negative depending on what side of the critical curve we
are considering. The side with positive magnification is also the
side with positive parity (counterimages have the same orienta-
tion as the original source). In contrast, when the magnification
is negative the counterimage has negative parity (inverted in rela-
tion to the original source). The assumed macromodel magnifi-
cation is small enough such that the microcaustics do not usually
overlap and microlensing is a rare event. For the millilens we
assume a fiducial model with a relatively small GC having a
mass of 2 × 103 M�, with a truncated core power-law density

profile

ρ(r)3D ∝
1

(Rc + r)α
, (1)

where Rc is the core radius and the profile is truncated at
some radius Rmax. This millilens is representative of a small
and compact GC that would survive the strong tidal forces in
clusters. The core radii of the density profiles of millilenses
can be approximately estimated from dwarf galaxies. Typical
radii of 109 M� galaxies in the LITTLE THINGS galaxy survey
are about 300 pc, with substantial variation between individual
galaxies (Table 2 of Oh et al. 2015). This size is consistent with
those presented by Wolf et al. (2010). Motivated by the virial
condition and assuming that the concentration parameter is the
same for all subhalos, rcore ∝ m1/3. This relation can be scaled
to smaller masses (Williams et al. 2024). For instance, for very
small millilenses with mass 2 × 103 M�, the core radii should
be a factor of ∼80 smaller than for the 109 M� halo, or ∼3.7 pc.
For our calculations we adopt the most optimistic scenario where
millilenses are most lensing-efficient, and therefore we assume
a much smaller core radius of rc = 0.15 pc. For the truncation
radius we take ∼10 times the core radius. Very compact struc-
tures in the Milky Way, such as the central region of R136 in
the Large Magellanic Cloud (LMC), would have a similar scale
(diameter ≈1 pc from Massey & Hunter 1998). Our core and
truncation radii for the small 2 × 103 M� GC are also consistent
(after extrapolation to smaller masses) with the radii of the more
massive GCs found in the Milky Way by Baumgardt & Hilker
(2018), who find typical half-mass radii of ∼5 pc for GCs with
mass ∼105 M�. A small core radius also accounts for the fact that
we expect the more compact structures to be the ones surviving
in denser environments (Moliné et al. 2017).

The specific shape of the profile and truncation radius play
a role in the lensing effect since they define the mass contained
within the Einstein radius of the millilens. As mentioned above,
in this work we consider the most favorable condition where
the millilenses are very compact and most of their mass is con-
tained within the Einstein radius. This is satisfied when α = 2
or greater. In this situation, the dependence on the profile is very
weak. Only for shallow profiles (α . 1.3) and large cores, the
millilens may be subcritical and not able to produce large mag-
nification factors. A visual comparison of the millicaustics for
four different millilens models is shown in Figure 2. The macro-
model magnification for the four millilenses in the figure is set
µ1m = µt × µr = −10 × 2.3 = −23. The two smallest millilenses
have exactly the same mass and produce millicaustics that are
nearly identical, despite the two millilenses having different core
sizes and truncation radii (but the same α). The two millilenses
with larger mass have a correspondingly larger millicaustic area.
For the large millilens with α = 2, the gap between the caus-
tic regions (demagnification region) increases as the square root
of the mass when compared to the smaller millilenses with the
same α, so a millilens 100 times more massive can demagnify a
region ten times larger in diameter. For the millilens with identi-
cal mass but a shallower profile (α = 1.5), we observe a reduc-
tion in the lensing probability (or area with magnification greater
than some value) of ∼25%. On the other hand, a steeper slope
with α = 3 (and consistent with N-body simulations of sub-
halos; Moliné et al. 2017) increases the lensing probability, but
only by ∼2%, so our choice of α = 2 is valid to represent even
more compact millilenses with α > 2.

Finally, to complete our fiducial model for the 3M lensing
simulations, for the microlenses we consider a surface number
density of Σ∗ = 50 M� pc−2. This is close to the expected value
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Fig. 2. Effect of the millilens profile. Comparison of millicaustics for
four millilenses under the influence of the same macromodel magnifi-
cation (|µ1m| = 23) but for different mass, core size Rc, truncation radius
Rmax, and exponent α. The profile is defined as ρ(r) ∝ (Rc + r)−α. The
image shown in grayscale is the sum of the four magnifications from
the four millilenses. The caustics for the two millilenses with mass
104 M� and slope α = 2 are nearly identical and fall on top of each
other, indicating that the mass is the main driver defining the size of
the caustic region. The largest millicaustic corresponds to a millilens
with four times more mass, and larger core and truncation radii, but the
same slope α. The area above µ = 100 is a factor of four larger than in
the smaller millilenses. A third millilens with the same mass, Rc, and
Rmax but a shallower profile (α = 1.5) behaves as the larger millilens
with α = 2 but a mass of 2.93 × 104 M�, owing to the reduction in
mass within the Einstein radius. Even shallower profiles (α . 1) with
large cores result in subcritical millilenses (no caustics or cusps). On
the other hand, a steeper profile with α = 3 or greater produces a mil-
licaustic almost indistinguishable from the one obtained when α = 2.

around the Dragon arc, if one assumes that stars in the ICM con-
tribute ∼2% to the total projected mass at this position. The value
is also consistent with direct estimates of the surface mass den-
sity of stars in the intracluster light (ICL) from recent JWST data
in massive clusters and at distances between 50 kpc and 70 kpc
from the center of the cluster (Montes & Trujillo 2022), the dis-
tance at which our case study (the Dragon arc) is from the center
of A370.

Originally, the pixel scale is set to 30 nas, and in the lens
plane we distribute the microlenses randomly in a circular region
of radius 1.2 mas until we reach the desired surface mass density
of Σ∗ = 50 M� pc−2. For the mass function of the microlenses
we adopt a Chabrier (2003) model with a lower mass of 0.1 M�.
The specific model for the mass function plays a secondary role,
since the most relevant parameter for microlensing is the value
of Σ∗. The considered circular area is sufficiently large to easily
accommodate the small millilens of the fiducial model. A second
higher resolution simulation is later done around the cusps of the
millicaustics and with a smaller pixel size of 10 nas that resolves
the microcaustics even better.

Since the macromodel magnification can be positive (outside
the cluster CC or positive-parity region; Blandford & Narayan

1986) or negative (interior to the cluster CC or negative-
parity region), and the millilens caustics behave very differ-
ently depending on the parity, we simulate both parities but keep
the absolute value of the macromodel magnification constant.
When simulating the two parities, we only change the tangen-
tial component of the macromodel magnification – that is, we
take the two values µt = ±10. In tangential critical curves, the
tangential magnification changes rapidly as one gets closer to
(or farther away from) the CC, while the radial component of
the macromodel magnification changes very slowly. A value of
µt = ±10 is representative of scenarios similar to the far region,
where macro+microlensing alone is unlikely to produce tran-
sient events but the combined 3M lensing effect can boost the
probability of transients around millilenses in the far region.

The magnification in the observer plane (caustics) is com-
puted using standard ray tracing. We show the result for the fidu-
cial model in Figure 3, and for the two parities, that is for µt = 10
(positive parity) and µt = −10 (negative parity). The radial mag-
nification is identical in both cases, µr = 2.3. The left panels
show the caustic region with the 30 nas pixel size while the right
panels display the higher resolution simulation with 10 nas per
pixel and around two of the cusps of the millilens caustics. In
all cases, the magnification (grayscale) is shown in log scale to
better appreciate the details. The numbers in yellow indicate the
typical magnification (from the macrolens and millilens) outside
the caustic region and near the center of the caustic region.

At the caustics the magnification can be very large. For
these simulations the maximum magnification is limited by the
nonzero size of the pixel but still results in magnification factors
of ∼1000 at the caustics for the 30 nas pixel and a few thousand
for the 10 nas pixel. A large star at z = 0.725 with R ≈ 100 R�
would be ∼33 times smaller than this pixel size, and the maxi-
mum magnification at the caustic would be ∼6 times larger.

The case with positive parity (top-left panel) shows the
classic diamond-shaped caustic. In the simulations, the larger
tangential magnification from the macromodel goes in the hor-
izontal direction, resulting in a caustic that is more stretched in
the vertical direction. The magnification near the center of the
caustic is almost twice the magnification of the macromodel,
so most of the inner-caustic region provides a relatively mod-
est boost in relation to the macromodel value. Only in the small
regions near the four cusps of the caustic, and very close to the
caustics themselves, the magnification from the millilens alone
can be sufficiently large to make luminous stars at z = 0.725
detectable. Immediately outside the caustic region the most com-
mon value for the magnification is below the macromodel value.
In this outer region the effect of the millilens is to slightly demag-
nify sources, hence compensating the larger magnification inside
the millicaustic region, and ensuring that the average magnifica-
tion over sufficiently large areas equals the macromodel value
(flux conservation). A source which is significantly larger than
the millilens caustic, for instance a star-forming region several
parsecs in size, would have an average magnification very close
to the macromodel value and thus insensitive to the presence of
the millilens. Only very small objects within such a source, for
instance stars, can attain large magnification values when they
are near the millicusps or millicaustics.

For the case of negative parity (bottom-left panel) we observe
some significant differences, with two small triangle-shaped
high-magnification regions bracketing a larger low-magnification
region. This is a well-known configuration for caustics in
negative-parity regions (Chang & Refsdal 1979, 1984). The mag-
nification between the two triangular-shaped caustic regions can
be very small, of order 1. A small object with a size of 1 pc or less
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Fig. 3. Simulated magnification maps of 3M lensing. Left panels. Shown as grayscale is the log of the magnification in the observer plane
(caustics) around a millilens with mass 2× 103 M�, in two regions (positive and negative parities) where the macromodel magnification is ±23 and
with a surface mass density of microlenses Σ = 50 M�pc−2. The numbers in yellow indicate typical magnification values at these positions. For
millilenses in regions with positive parity, outside the millicaustic region the magnification is typically below the macromodel value (but higher
at the microcaustic regions). In the center of the millicaustic region, the typical magnification is ∼50% higher than the macromodel value. This
situation is reversed in the region with negative parity. Right panels. Zoom-in around the regions of highest magnification at the millicaustics and
marked with black rectangles in the left panel. Near the millicusps and millicaustics, microcaustics always overlap one another at magnifications
greater than 100, hence maximizing the occurrence of microlensing events.

placed in this inner region would be demagnified by the millilens,
making its detection more difficult. This scale would be larger for
heavier millilenses or larger macromodel magnification values.
Hence, it is possible that sources a few pc in size such as GCs
or small star-forming regions in the lensed galaxy get demagni-
fied by a millilens and remain undetected if their lensed coun-
terimage is in a negative-parity region behind a millilens. This
cannot happen for counterimages behind the millilens in the por-
tion of the lens plane with positive parity, where demagnification
more than a few percent cannot take place. Since sources near
a cluster caustic form two highly magnified counterimages near
the CC, one counterimage with positive parity and one counter-
image with negative parity, objects as small as a star or a small
group of stars may appear highly magnified on one side of the
CC (positive parity) and remain undetected on the other side of
the CC (negative parity). This mechanism could explain the lack
of asymmetry between the positive- and negative-parity images
of stars or groups of stars recently observed in highly magni-
fied galaxies (Diego et al. 2023b, 2022; Adamo et al. 2024). On
smaller scales, a similar mechanism but involving microlenses
was used to explain the lack of counterimages of lensed stars such
as Icarus (Kelly et al. 2018).

At the smaller microlens level, we show in the right panels a
zoomed-in version of the high magnification near a diamond-
shaped cusp (positive parity) and a triangular-shaped caustic
region (negative parity). In both cases we see how microcaustics
adopt similar shapes (diamonds and triangles) and have a ten-

dency to align with the millicaustics. In some cases, microlenses
around the millilens on the side with positive parity behave as
microlenses with negative parity and vice versa for the side with
negative parity. These rare exceptions can be appreciated near
the cusp regions, where locally the parity can be inverted owing
to the influence of the millilens. As expected, the number den-
sity of microcaustics increases in the cusps and near the caustics.
This is due to the larger magnification of the millilens that con-
centrates more microcaustics in these regions. The size of the
microcaustics also grows with the millilens magnification in a
fashion similar to that near the caustics of galaxy clusters. The
highest probability of observing microcaustic crossings is then
near the cusps of millilens caustics. As described in earlier work
(Diego et al. 2018; Palencia et al. 2023), when the effective sur-
face mass density of microlenses approaches the critical value,
Σcrit, microlensing effects are maximized (in particular, fluctu-
ations in the observed flux). For our fiducial model, this hap-
pens when the combined magnification from the macrolens and
millilens is µ2m & Σcrit/Σ∗ ≈ 75. The right panel of Figure 3
shows this effect near the cusps. For convenience, the baseline
magnification (that is, µ2m) is marked at different positions. In
the case of millilens cusps in positive-parity regions (top-right
panel), the magnification just outside the cusp is typically 25%
smaller than the macromodel value. Inside the cusp region the
magnification is higher than the macromodel and can exceed val-
ues of µ = 100 near the cusps and caustics. There are also small
areas around a few microcaustics where the parity is inverted and
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Fig. 4. Probability of magnification in 3M lensing. Blue lines are for
macromodel plus microlenses only, while red and green lines are for
3M lensing and for two millilens masses. Dashed lines correspond to
negative parity and solid lines to positive parity. The probability scales
as the total small-scale mass (millilens plus microlenses).

the magnification can be relatively smaller. One such example is
marked with the magnification value 50 in the top-right panel.

For millilenses in regions with negative macromodel parity
(bottom-right panel), the most striking difference is the regions
with significant demagnification. Outside the caustic region (or
triangle), microcaustics can demagnify (with respect to the
macromodel) regions as big as R = 0.01 pc, for instance the
optical portion of a quasar accretion disk or a supernova pho-
tosphere months after the explosion2. In regions not containing a
microcaustic, outside the caustic region the typical magnification
ranges between µ ≈ 25 and µ ≈ 40 – that is, between ∼10% and
∼75% higher than the macromodel value – again compensating
the lower magnification between the two caustic regions. Inside
the caustic region the typical magnification is higher, especially
near the cusps of the caustics. There is a sharp transition between
the main caustic in the bottom portion of the figure where the
magnification changes rapidly between extreme values to val-
ues of order 10. Inside the caustic region we also observe local
changes in the parity, for instance around the microlens marked
with magnification 200. As in the previous examples, near the
cusps the microcaustics overlap, filling the space, and the prob-
ability of microlensing is maximum. In both examples we see
this effect when µ2m & 100, close to the value µ2m ≈ 75 derived
above. We adopt this value (µ2m = 100) as the critical magnifica-
tion above which microcaustics are constantly overlapping and
microlensing effects are maximum – that is, in what follows we
assume µcrit = 100. In Section 10 we discuss how our results
depend on this choice.

4. Statistics of 3M lensing magnification near a
single millilens

The magnification pattern discussed in the previous section
is interesting to interpret some events, and in particular to explain
the lack of symmetry between pairs of images close to CCs when
small objects, up to a few pc in size, are multiply imaged. In
this work we are interested in the regime where the macromodel
magnification is not that large, farther away from the CC, and
in particular on the probability of having microlensing events

2 This area would be even larger in regions with higher macromodel
magnification.

around millilenses. For this it is useful to compute the area in the
source plane having magnification above µcrit, or A(µ > µcrit),
since stars in this area are the most likely to show microlensing
effects.

We compute A(µ > µcrit in the two regions shown on the
right side of Figure 3, for the two parities and around the cusps
of the millilenses. We compare with the area computed in the
same region and for the same configuration of microlenses but
removing the millilens. The result is shown in Figure 4. Dashed
lines refer to the area computed in portions of the lens plane with
negative parity (bottom-right panel of Figure 3), while solid lines
are for positive parity (top-right panel of Figure 3). The green
lines are for a millilens with mass 2 × 103 M� plus microlenses,
while the blue curves are for the case where only microlenses are
included in the simulation. For comparison, we show as red lines
the case where the mass of the millilens is reduced by a factor of
2. As in the case of microlensing near caustics explored in ear-
lier work, the probability of high magnification is slightly larger
in areas with negative parity (dashed lines). In these regions sig-
nificant demagnification can take place in relatively large areas,
that is compensated by the larger magnifications of the cusps.

In all cases, the probability of magnification scales as the
expected µ−2 power law. The departure from this scaling at µ >
1000 is mostly an artifact due to the nonzero pixel size, although
at larger magnification factors of µ > 10000 many micro-
caustics overlap and the magnification is expected to fall faster
than µ−2 and become a log-normal distribution (Diego 2019;
Palencia et al. 2023). The ratio of the green to the blue curves
corresponds approximately to the ratio of masses between the
millilens and the stellar mass in the same region. For this particu-
lar area the stellar mass in the right panels of the figure is roughly
the fiducial value times the area of the two right panels and times
the macromodel magnification (to transform the source area into
image area): M∗ = (50 M� pc−2) × (0.163 pc) × (0.41 pc) × 23 =
77 M�. Dividing the millilens mass (2 × 103 M�) by this mass
gives a ratio of 27, which is roughly the ratio between the green
and blue lines. Similarly, reducing the mass of the millilens by a
factor of two results in a reduction in the probability by approx-
imately the same factor (red curves).

Although not shown in the figure, the corresponding proba-
bility for the case where microlenses are ignored would be very
similar to the fiducial model but a bit below the green lines owing
to the small reduction in mass due to the absence of microlenses.
Hence, if we are interested in the probability of having magni-
fication µ3m > 100, this is basically determined by the millilens
and the macromodel. In this situation, microlenses play the role
of providing the temporary boost in flux to the lensed stars mov-
ing across the dense web of microcaustics to promote them
beyond the detection limit and hence appear as transients. The
problem can then be reduced to studying the contribution from a
population of millilenses to the probability of having µ2m > 100
and across an area in the image plane where the macromodel
takes different values of µ1m.

5. Scaling with millilens mass and macromodel
magnification

Having established that the most interesting 3M lensing effects
concentrate around the cusps of the millilenses, and that we can
reduce the problem we seek to solve to computing the probability
that the macrolens plus millilens produce magnification greater
than some value µ2m, we now focus on the scaling of A(> µ2m)
with the mass of the millilens (Mmil) and macromodel magnifi-
cation (µ1m).
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Fig. 5. Scaling of probability of magnification. The curves show the area
in the source plane with magnification greater than a certain value due
to millilenses in the lens plane. Solid lines are for millilenses in regions
of the lens plane where the macromodel magnification is positive (posi-
tive parity), while dashed lines are for millilenses in regions of the lens
plane with negative macromodel magnification (negative parity). Blue
curves are for a millilens with mass 103 M� and macromodel magni-
fication ±23, red curves are for millilenses with mass 4 × 103 M� and
macromodel magnification ±23. Green curves are for a millilens with
mass 103 M� and macromodel magnification ±46. The black vertical
line indicates a factor of four difference. The probability of magnifica-
tion scales linearly with the mass of the millilens and quadratically with
the macromodel magnification.

We characterize this probability by fitting the tail of the mag-
nification with the canonical law A(> µ) = Ao/µ

2. The parameter
Ao defines the strength of the millilens and contains the scaling
we seek. Figure 5 shows an example with two masses for the
millilens and two values for the macromodel magnification. As
in Figure 4, dashed lines indicate negative parity and solid lines
are for positive parity. The black vertical line shows a multiplica-
tive factor of 4. This factor corresponds to the difference in mass
and to the square of the difference in macromodel magnifica-
tions. Hence, the parameter Ao scales with mass as Ao ∝ M
and with macromodel magnification as Ao ∝ µ2

1m. A similar
result is found in earlier work for microlenses (Diego et al. 2018;
Palencia et al. 2023).

By fitting the different curves we find the scaling of the prob-
ability with the millilens mass (Mmil) and macromodel magnifi-
cation (µ1m),

A2m(> µ) = 0.19
(

Mmil

103 M�

) (
µ1m

µ

)2

pc2 . (2)

This scaling is almost insensitive to the particular values of the
tangential and radial values of the macromodel magnification,
and the probability depends only on their product, or µ1m. In rare
situations where µr ≈ µt, the caustic shape morphs into a singu-
lar point, but the probability of magnification is still given by the
same scaling and depends only on the product µt × µr = µ1m.
The law above is derived for the redshifts of the Dragon arc and
cluster A370, but it can be rescaled for other redshifts simply by
correcting for the factor Dds/DdDs. Also, the scaling in Equation
2 appears to work for individual microlenses. We tested the scal-
ing with a single simulation of a 2 M� microlens in a potential
with µ1m = 20 at a resolution of 2 nas per pixel, and the scal-
ing in Equation 2 holds even at this low mass. One can even
extrapolate this relation to cluster-scale lenses by considering
µ1m = 1, since cluster lenses are generally in large-scale poten-
tials with magnification µ1m ≈ 1. The prediction for the area

above µ = 30 for a cluster at z = 0.375 with mass 1015 M�, a
source at z = 0.725, and µ1m = 1 is A(µ > 30) ≈ 210 kpc2, while
for five well-modeled clusters in Vega-Ferrero et al. (2019) with
masses ∼1015 M� (excluding the supermassive MACS0717 clus-
ter), the area A(> µ = 30) for these redshifts ranges between
∼1300 kpc2 and ∼3700 kpc2, corresponding to a factor of ∼6 to
∼20 more. Despite this disagreement, it is still remarkable that
the prediction comes to within one order of magnitude, consider-
ing there is a 12 orders of magnitude difference in mass between
a small 103 M� millilens and a massive 1015 M� galaxy cluster,
and the latter are highly irregular, rich in substructure, and with
shallower potentials (that are more efficient at increasing the area
in the source plane with high magnification).

6. Probability of 3M lensing far from the cluster CCs
from a population of millilenses.

Evolved GCs have masses in the range ∼103–106 M� and
are baryon dominated with mass-to-light ratios of a few
(Goudfrooij & Fall 2016; Harris et al. 2017; Bragaglia et al.
2017; Baumgardt & Hilker 2018). Puffy or low-mass GCs are
less resilient against disruption from tidal forces in the galaxy
cluster, which together with two-body interactions can lead to
their complete dissolution. Almost the entire range of GC lumi-
nosities has been measured in the Virgo and Fornax Cluster
galaxies (Jordán et al. 2007; Villegas et al. 2010), where it is
found that the luminosity functions (LFs) of evolved GCs are
well matched by a log-normal distribution Harris et al. (2014).
At higher redshifts, it is expected that the faint end of the LF
will be boosted, since young low-mass clusters will not have
been disrupted yet (Reina-Campos et al. 2022). Dynamical dis-
ruption mechanisms also affect massive clusters, thus lowering
the maximum mass, but the presence of ultracompact dwarf
galaxies (UCDs) in the observed samples would prevent detect-
ing differences in this regime. Since colors and luminosities
alone are not sufficient to disentangle these two populations,
and both would produce the millilensing effect considered in this
paper, we consider them both indistinctly. Recent work based on
JWST has revealed a population of massive GC-like objects in
galaxy cluster environments at intermediate redshifts, z ≈ 0.2–
0.4 (Faisst et al. 2022; Lee et al. 2022; Harris & Reina-Campos
2023). The high masses of some of these objects, exceeding in
some cases 107 M�, are larger than those for massive GCs and
are suspected to be the stripped galactic cores of dwarf galaxies
(Faisst et al. 2022). The population of GC-like objects in galaxy
clusters is then probably a combination of true GCs and UCDs.

To describe the mass function of GCs, we adopt a log-normal
LF (Harris et al. 2014; Harris & Reina-Campos 2023). Assum-
ing a constant mass-to-light ratio, the mass function should be
similar to the LF (given as a function of magnitude in that ref-
erence). For the log-normal shape, we assume three parameters:
(i) the peak, Mo, of the log-normal, which depends on the effect
of dynamical disruption processes, as well as on the detection of
the faintest and harder to detect GCs, (ii) the dispersion, σ, of the
log-normal, and (iii) the number of GCs which we parameterize
as a number density of GCs (the total area covered in the lens
plane by the Dragon arc is ∼1150 kpc2, out of which 960 kpc2

are in the far region). The GC mass function takes the form (see
Eq. (1) of Harris et al. 2014)

dN
d log10 M

=
N
√

2πσ
exp

[
−

(log10 M − log10 Mo)2

2σ2

]
, (3)

where N is a normalization constant. We consider two alterna-
tive models that are shown in Figure 6; each one has a different
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Fig. 6. GC mass function. The two colored lines show the two log-
normal models used in this work (see text).

value of Mo and σ. Model 1 (with log10(Mo) = 5.2 and σ = 0.6)
is our reference model and corresponds to the expected mass
function of GCs from numerical simulations of star-cluster pop-
ulations within cosmological zoom-in Milky-Way-mass simu-
lations (Reina-Campos et al. 2022). In contrast, Model 2 (with
log10(Mo) = 5.8 and σ = 0.5) is an alternative and top-heavy
mass function that we use to check the dependency of our results
with the GC mass function. The value of σ in these mod-
els is comparable to the universal value derived for the LF by
Harris et al. (2014).

We can now combine all ingredients and compute the area
in the source plane with magnification µ2m > µcrit created by
millilenses in the far region. Above µcrit, microcaustics are con-
stantly overlapping in the source plane and the probability of
microlensing saturates at its maximum. As discussed earlier, we
adopt µcrit = 100, which satisfies the supercritical condition
Σeff = µcritΣ∗ & Σcrit when Σ∗ ≈ 50 M� pc−2.

The area in the source plane where microlensing is most
likely to take place is computed as the integral over the region in
the lens plane with macromodel magnification µ1m < µcrit = 100
and the mass functions of GCs,

Afar(µ2m > 100) =

∫
dµ1m

∫
dN
dM

P(µ1m)A2m(> µ) dM , (4)

where A2m(> µ) is given by Equation 2, the magnification is inte-
grated between 1 and 100, and P(µ1m) is the probability for the
macromodel magnification (or area with magnification µ) in the
lens plane. This probability goes as µ−1 when taking logarithmic
bins in µ. That is, we take P(µ1m) = dA/d log(µ) = Po/µ1m and
determine Po with the constraint

∫
dµP(µ1m) = 1.

7. Expected vs. observed number of transients near
millilenses in the far region

With Equation 4, we can compute the area in the source plane
around millilenses in the far region with magnification µ2m >
100, or Afar(µ2m > 100), but we want to compare this area with
the area in the near region satisfying µ1m > 100, or Anear(µ1m >
100). Most microlensing events are expected to take place in
these two areas. Microlensing can in principle take place with
similar probability in both areas, provided the number density of
stars is the same in both regions3.

3 In Section 9 we see how this also depends on the LF of the back-
ground stars.

The area in the near region is determined by the lens model
for the galaxy cluster. We use the free-form WSLAP+ model
derived for this cluster with the latest constraints from HST (see
appendix). Based on the WSLAP+ model, we first compute the
area in the source plane (from the macromodel) with magnifi-
cation >100 and that overlaps with the Dragon arc. This area
can be computed in the image plane, then divided by a factor of
100 to transform it into source-plane area, and finally divided by
an additional factor of two to account for the two parities. This
results in 0.95 kpc2 in the near region of the source plane where
the macromodel should produce two counterimages with mag-
nification µ > 100 each. The two counterimages should appear
in the corresponding near region in the image plane (band deter-
mined by the two cyan curves in Figure 1). Alternatively, the
area above a certain magnification can be computed directly in
the source plane with ray-tracing methods. In this case we obtain
the total magnification of a source that gets multiply imaged into
N counterimages. At large magnification factors, usually two
of the counterimages carry most of the amplification (this hap-
pens when the source is very close to a cluster caustic). In this
situation one can approximate the total magnification as twice
the magnification from each counterimage. To account for this
effect we then need to compute the area in the source plane
with magnification >200, resulting in an estimate of 0.57 kpc2

in the source plane. Neither method is perfect when addressing
global properties of an entire galaxy, especially in the case of the
Dragon arc where multiple cluster caustics intersect the back-
ground galaxy but the range 0.57–0.95 kpc2 should be a good
approximation to the truth (within a factor of 2). This range for
the area Anear(µ1m > 100) is shown as an orange horizontal band
in Figure 7. The luminous stars in this area are the most likely to
experience microlensing near the cluster CC.

Before computing the result of Equation 4, we confirm that
the macromodel probability of the WSLAP+ model does indeed
scale as P(µ1m) = dA/d log(µ) = Po/µ1m. This is demonstrated
in Figure A.1 in the Appendix. The ordinate in Figure 7 shows
Equation 4 computed in the far region and for the two GC mass-
function models shown in Figure 6. That is, for each model we
show the total area near millicaustics in the source plane with
magnification greater than µcrit = 100, and as a function of the
number density of GCs overlapping with the Dragon arc in the
far region (µ1m < 100). Any star in the background galaxy that
falls within this area in the source plane will have the same prob-
ability of experiencing a microlensing event (creating counterim-
ages in the far region of the image plane) than stars with similar
brightness in the near region of the source plane and with an esti-
mated area of 0.57–0.95 kpc2 (counterimages would form in the
near region of the image plane).

The area in the near region (source plane) is shown as a hor-
izontal orange band at the top of the figure. Clearly, the predic-
tion (solid lines) is below the orange band for any reasonable
number density of GCs (vertical blue band). Microlenses over-
lapping with the millilenses would increase this only by a small
amount since the stellar mass from the ICL overlapping with
the millilenses is much smaller (see Figure 4), so the contribu-
tion from microlenses overlapping with the millilens to the area,
A(µ > 100), is very small.

The abscissa in Figure 7 shows the number density of GCs.
The total number of GCs can be obtained after multiplying by
the area contained in the far region of the Dragon arc in the lens
plane (960 kpc2). The average mass of a GC after integrating the
GC mass function (normalized to

∫
dN/dM = 1 GC) is close

to the peak of the log-normal, so the abscissa also can be trans-
formed into surface mass density by simply multiplying by this
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Fig. 7. Expected and observed area in the source plane with magnifica-
tion µ > 100. The red and blue solid lines show Afar(µ2m > 100), the
expected area in the source plane with magnification greater than 100
around millilenses in the far region for the two different mass functions
shown in Figure 6. This area is computed as a function of the num-
ber density of millilenses, NGC, and later rescaled to the area in the far
region (960 kpc2). The blue vertical band shows the typical range of
number density of GCs at the distance of the Dragon arc from nearby
clusters. The horizontal orange band shows Anear(µ1m > 100), the area in
the source plane with macromodel magnification µ1m > 100. The green
horizontal band represents the fraction of microlensing events found in
the far region with respect to the near region (∼0.1 to 0.5 times the
number of events found in the near region).

number. Since the Dragon arc is at a distance of ∼50–70 kpc
from the brightest cluster galaxy (BCG), we can compare this
number density with the one observed in nearby clusters (such
as Coma or Virgo). The blue vertical band in Figure 7 is the
observed number density in the local universe from Peng et al.
(2011) and for distances in the range 50–70 kpc.

Recent observations from the HST Flashlights program sug-
gest that the observed rate in the far region is almost compa-
rable to the number of events in the near region. The Dragon
arc holds the record for the largest number of transient events
reported so far in an individual galaxy. Kelly et al. (2022) find
seven transients in this arc after comparing two deep epochs
in very wide filters taken with HST. Six of these events have
estimated macromodel magnifications below 100 (from two lens
models), indicating a clear preference for these events to appear
in regions of the lens model where the macromodel magnifica-
tion is not extreme. The uncertainty in the magnification of these
events is relatively high, especially near the CCs, but even adopt-
ing a more conservative value for the critical magnification of
µcrit = 30, three of the events have magnifications below 30 in
the two lens models considered by Kelly et al. (2022). From our
lens model, at least two events are clearly in the far region (see
Figure 1). As a conservative and generous range, we assume that
the ratio of far-to-near events is between 0.1 and 0.5 times the
lower bound of the orange band. This range is represented by
the green band in Figure 7.

A similar result is found in the Warhol galaxy (z = 0.94)
but with JWST observations (Yan et al. 2023). Seven transient
events are found, with three in regions having macromodel mag-
nification below 100 (and as low as µ ≈ 30). Interestingly, all
three events peak their emission at wavelengths λpeak > 2 µm,
suggesting these are cool stars. For the case of Warhol the rate
of far-to-near events would then be close to 0.5, and given the
very red nature of these transients, the LBV hypothesis seems
less likely. The smaller number of events is partially due to the

fact that the galaxy is farther away, so it requires even more
extreme magnification factors to detect the same star, disfavoring
the LBV hypothesis for these events. Also, the cross section of
the cluster caustics with the background galaxy is substantially
smaller than for the Dragon arc, hence reducing the chance of
finding stars near high-magnification regions. On the other hand,
Warhol is at half the distance from the BCG than the Dragon arc,
so the number density of GCs and the probability of microlens-
ing near GCs in Warhol should be at least double the probabil-
ity of the Dragon galaxy, but still far too small to explain the
observed ratio of more than 0.1. In the same work (Yan et al.
2023), four additional events are reported in the galaxy Spock, at
a slightly larger redshift, z = 1.0054. One out of the four events
was found in a region with predicted macromodel magnifica-
tion below 100, which would put the rate of far-to-near events
at ∼1/3, again orders of magnitude higher than expected. As in
the case of Warhol, this transient is also very red, λpeak > 2 µm,
making the LBV interpretation equally unlikely. For the Spock
galaxy the high ratio of events far away from the CC is even
more striking since this galaxy is in a portion of the cluster with
an estimated surface number density of microlenses lower than
for Warhol and the Dragon arc, so the amount of magnification
needed (from the macromodel) to achieve the critical surface
number density is higher. A detailed treatment for the Warhol
and Spock galaxies is beyond the scope of this paper (see, how-
ever, Diego et al. 2024a, where two of the HST microlensing
events in the Spock arc are studied in more detail). Here we sim-
ply use them as additional examples of an apparently high ratio
of events in the far to near regions.

If the number density of stars that can be detected during a
microlensing event is the same in the far and near region, the
ratio of the areas in the near and far regions translates directly
into the expected rate of microlensing events in the near and far
regions. In Section 9 we subsequently see how the LF of the
background stars plays also an important role in determining the
final number of microlensing events, but here we can anticipate
that for any reasonable LF, and at GC densities of 1 GC kpc−2,
the area from millilenses in the source plane (and hence the rela-
tive probability between the far to near events) is far below what
is needed to produce a significant number of microlensing events
in the far region (horizontal green band).

8. Transients from microlenses alone (no
millilenses) in the far region

So far we have focused all our attention on the possible role
played by millilenses at explaining the 0.7 < z < 1 transient
events observed in the far region of cluster CCs. Since in this
region the macromodel magnification is relatively small, micro-
caustics from stars contributing to the ICM do not overlap in
the source plane and the probability of microlensing is greatly
diminished, but this does not mean microlensing in areas with
lower magnification µ2m cannot take place.

One fundamental difference between microlenses and
millilenses is that microlenses have a much higher number den-
sity. At the distance from the BCG of the Dragon arc, the
surface mass density of microlenses in our fiducial model is
Σ∗ = 50 M� pc−2. This estimate is consistent with measurements
based on the ICL at similar distances (Montes & Trujillo 2022).
In the 960 kpc2 occupied by the Dragon arc, this surface mass
density translates into a total mass of 4.8 × 1010 M�. This is a
factor of 50 larger than the mass from GCs assuming a number
density of 1 GC per kpc2 and a mean mass of 106 M� per GC
(Model 1).
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Fig. 8. Contribution from microlenses in the far region to high magni-
fication. This result is similar to Figure 7, but considers only the effect
of macromodel magnification and microlenses in the far region. The
two solid black curves show the area in the far region of the source
plane where microlenses create magnification factors >100 and 200,
and as a function of the surface mass density of microlenses. Above
µ > 100 in the far region, stars are already very close to a microcaus-
tic and can reach it in a few months. For µ > 200 more stars can be
detected, but they reach the microcaustic on a shorter timescale. The
vertical blue band shows the expected range of surface mass densities
for microlenses that constitute 1% and 2% of the total projected mass.
(The convergence at the redshift of the Dragon arc from the macromodel
in the Dragon arc region ranges between 0.58 and 0.62, so we adopt the
mean value 0.6, while the shear ranges from 0.36 to 0.38.) The vertical
dashed line is the fiducial microlensing model.

It is then natural to expect that microlenses alone should play
a bigger role than millilenses. We repeat the calculation done for
the GCs, but this time as a function of the surface mass density
of microlenses and ignoring the contribution from millilenses.
Since the GCs assumed earlier are very compact, with masses
contained within their effective Einstein radius, they behave as
point masses, so we can use the scaling law in Equation 2 by
simply replacing the millilens mass by the surface mass density
of microlenses. This extrapolation can be tested against the sim-
ulation result shown in Figure 4, where for 77 M� we find an
area above µ = 100 of ∼5 × 10−4 pc2, while for the same mass
and the scaling in Equation 2 we expect 7.7 × 10−4 pc2 (in both
cases µ1m = 23).

The result for microlenses alone is shown in Figure 8, where
we compare the area in the far region of the source plane with
magnifications µ > 100 and µ > 200. As expected from their
larger surface mass density, the contribution from microlenses
is substantially more than from millilenses. In the figure, we
mark with a vertical dashed line the surface mass density of our
fiducial model. The microlenses in this model are sufficient to
explain the elevated rate of events in the far region. The blue
vertical band marks the range of surface mass densities corre-
sponding to convergence from the stellar component between
1% and 2% of the total convergence of the cluster at the position
of the Dragon arc. Our fiducial model corresponds to κ∗ = 2.3%,
a reasonable value for distances between 50 and 70 kpc to the
center of the cluster. In Figure 8 we do not include the effect
of millilenses. They would contribute ∼10% to the area above
magnification µ > 100. This is a modest increase in the proba-
bility of microlensing. However, this increase would not be uni-
formly distributed; it would concentrate around the position of
the millilenses, hence introducing clustering in the distribution

of observed microlensing events that can be measured and used
to reveal the presence of the millilenses.

The results presented so far have not taken into account the
LF of the background stars, since we are simply looking at the
ratio of areas (or relative probabilities) between the far and near
regions where µ2m > 100 (or µ3m > 100 for the far region) and
µ1m > 100 (for the near region). The probability of microlensing
is proportional to these areas, but the number of stars that can be
detected through microlensing (as mentioned earlier, we refer to
this group of stars as DTM stars) depends strongly on the LF as
we shall see in the next section, where we also discuss the key
elements that makes imaging DM substructure with lensed stars
possible.

9. Mapping dark matter substructures with
microlensing events

We have seen how millilenses are not the most likely explana-
tion for the high fraction of events (proportional to the area with
high magnification) found in the far region, but microlenses (and
LBVs) offer a more likely explanation. However, we have also
seen how the rate of microlensing events is enhanced around
millilenses (or in general perturbations in the small-scale distri-
bution of mass). Figures 7 and 15 of Williams et al. (2024) show
that the number of highly magnified images is proportional to
the length of millilens CCs. This offers the interesting prospect
of using distant stars as backlights and microlensing events as
the markers of substructure that is influencing the number of
detected microlensing events. We can then map the location of
microlensing events, and use them to learn about the distribu-
tion of matter along the line of sight. This is analogous to using
a photographic plate to trace the distribution of photons cross-
ing an imperfect glass with nonuniform thickness, where in our
case the photons are the distant stars being microlensed and the
irregularities in the glass screen are the small perturbations in the
lensing potential from DM substructures. The analogy with pho-
tographic plates will be made more evident later in this section.

So far we have ignored the role played by the LF of the popu-
lation of lensed stars, but the distribution of microlensing events
depends on the distribution of matter and the specific form of
the LF. Many of the microlensed stars are ∼1–2 (apparent) mag-
nitudes below the detection threshold before microlensing. In
the following sections, we assume all microlensing events pro-
vide a boost of ∼2 mag (on average), so the DTM stars would
be the ones that during a microlensing event can be detected.
The specific amount of magnification provided by microlenses is
irrelevant for our calculations. All that matters is that microlens-
ing can promote fainter stars beyond the detection threshold and
make them vary in flux between two epochs, so they can be rec-
ognized as transients in the difference of images taken with the
same filter. Most of the DTM stars would be undetectable with-
out microlensing, but some may be already detectable with just
the boost provided by the macrolens (and the millilens, if one
happens to be nearby) and before microlensing, but all of them
would appear as transients during a microlensing event.

9.1. Number density of DTM stars

The number density of DTM stars, and in a region with magnifi-
cation µ, is given by

ρ(µ, β) =
As(µ)
Ai(µ)

∫ Lmax

L1(µ)
φ(L) dL , (5)
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where φ(L) ∝ (1/L)β is the classic (per unit area) LF of the
background population of stars, L1(µ) = Lmin/µ with Lmin the
minimum luminosity that could be detected at the redshift of the
background galaxy at magnification µ = 1 and is set by the depth
of the observations, Lmin = 100.4(mthr−dm(z)), with mthr the limiting
magnitude of the observations, dm(z) the distance modulus to
redshift z, and for simplicity we ignore color corrections. In real-
ity, since we are interested in stars that can be detected through
microlensing, Lmin is smaller by a factor of 102/2.5 = 6.31, or
2 mag fainter, and during a microlensing event, a star with lumi-
nosity Lmin/6.31 will be magnified enough to be detected. Since
these are DTM stars, they can be detected when experiencing a
microlensing event, and eventually all of them would be detected
if one could monitor the area for a sufficiently long time. Lmax is
the most luminous star in the area considered and depends on
the assumed shape of the LF, or the existence of a limiting lumi-
nosity for the stars, such as the Humphreys-Davidson (HD) limit
for RSGs (Humphreys 1978). For our purposes, we assume the
observations are deep enough such that we can see microlensing
from stars much less luminous (before magnification) than the
most luminous star in the portion of the galaxy being magnified.
In the expression above we assume that the probability of magni-
fication when millilenses and microlenses are added is similar to
the one given by the macromodel alone, so we can simply rely on
the macromodel magnification. This is a very good approxima-
tion since millilenses and microlenses do not modify the proba-
bility of magnification significantly (when computed over areas
much larger than the scale of the micro or millilenses), but rather
they borrow magnification from surrounding regions and redis-
tribute it around the millilenses and microlenses (see Figures 7
and 8 of Diego 2019, where the probabilities of magnification
for the smooth model and the smooth model plus microlenses
are very similar). For moderate magnification factors and typical
depths, L1(µ) > Lmax and the integral is zero in Equation 5, but
for sufficiently large µ, L1(µ) < Lmax and the number of DTM
stars (and consequently microlensing detections) is greater than
zero. The areas in the image and source plane are Ai and As
(respectively), and they are related by As = Ai/µ. Taking as unit
area As = 1 and replacing φ(L) by (1/L)β, we find

ρ(µ, β) =
L1−β

µ(1 − β)

∣∣∣∣∣Lmax

L1(µ)
(6)

except for if β = 1, in which case the number density is

ρ(µ, β) =
log(L)
µ

∣∣∣∣∣Lmax

L1(µ)
. (7)

For a steep LF with β = 3 and sufficiently large values of µ,
we find that ρ(µ) ∝ µ, where we have assumed that L1(µ) �
Lmax. The number density of DTM stars from such a population
of background stars would then directly trace the magnifica-
tion, and with it the distribution of mass on small scales. If
microlenses are present in this area, they will make these DTM
stars detectable, with a rate of microlensing events that increases
with the abundance of microlenses as shown in Section 8. The
tight relation between the LF and the number of microlensing
events is discussed later in Section 9.3.

In general, for any β > 1 and for Lmin/µ � Lmax, the number
density of DTM stars scales with µ as

ρ(µ, β) ∝ µ(β−2) . (8)

Based on this, we can define two distinct regimes, which we
identify with traditional photographic plate imaging, where pho-
tons are crossing a glass with nonuniform thickness. For steep

LF with β > 2, we are in the positive-imaging regime. Here, the
number density of DTM stars (the photons that reach the pho-
tographic plate) is larger around substructures with larger mag-
nification factors (or in our analogy, when photons are crossing
portions of the glass that focus the light more into the photo-
graphic plate). For shallow LF with β < 2 we are in the negative-
imaging regime, where the number density of DTM stars is
reduced around substructures. In our photographic-plate anal-
ogy, this would correspond to the negative of the photograhic
plate, where the silver particles have absorbed more photons
behind the small-scale structures. For the particular case of an
LF with β = 2, we expect the number density of events to be uni-
form and independent of magnification. The photographic anal-
ogy would be the superposition of the positive image and the
negative plate, leaving as a result a homogeneous image.

To better illustrate this specific case, we discuss a simple
experiment. For β = 2, and considering two logarithmic bins
in magnification, we can think of two regions, A and B, with
the same LF but different magnifications; 10 < µB < 100 and
100 < µA < 1000. Region A has mean magnification a factor of
ten larger than region B. In the image plane, region A is ten times
smaller than region B (true for logarithmic bins in µ), while in
the source plane, region A is 102 times smaller than region B.
The number density of DTM stars in the source plane of region
A is ten times larger than in region B (

∫ ∞
L1

L−2 dL ∝ L−1
1 , with L1

ten times smaller in A than in B), but the area is 102 smaller so
there are ten times fewer objects detected in the image plane in
region A than in B (see Figure 9), but since the area in the image
plane of B is ten times larger, the number density of DTM stars
in the image plane is the same in A and B.

The case of a shallow LF, β < 2, is counterintuitive since
we expect to see a smaller number density of DTM stars in
regions of higher magnification. This shallow LF resembles
the faint end of the LF of quasistellar objects (QSOs) at high
redshift. Most lensed QSOs are found in regions with moder-
ate magnification factors, in agreement with Equation 8 above.
This is similar to the enhancement-dilution effect, or magnifi-
cation bias, discussed in the context of distant lensed galax-
ies and QSOs (Canizares 1981; Narayan 1989; Borgeest et al.
1991; Narayan & Wallington 1993; Broadhurst et al. 1995;
Umetsu et al. 2014).

9.2. The observed luminosity function.

The LF of the observed events, φ̂(L), can be directly related to
the LF of the background stars (before magnification). For an LF
with β , 3 and considering a region with minimum magnifica-
tion µ1, we have

φ̂(L) =

∫ µmax

µ1

φ(L/µ)As(µ)
dµ
µ
∝ µ

β−3
1 φ(L) , (9)

where µmax is the maximum magnification for a star, µmax ≈ 104

for supergiant stars (see Section 10.1), and we have assumed
µmax � µ1. The extra term 1/µ inside the integral is the reduc-
tion in luminosity bin size at magnification µ, and As(µ) ∝ µ−3.
For the particular case of β = 3 we have

φ̂(L) ∝
(
log(µmax) − log(µ1)

)
× φ(L) , (10)

which has a weak dependence on µ1. As discussed in Section 2,
the luminosity functions in Equations 9 and 10 do not conform
with the classic definition of number density per luminosity and
unit area, but instead correspond to regions in the image plane
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with an area that depends on µ1 and µmax. The LF maintains its
form, but its amplitude (compared with the amplitude of φ(L)),
scales as µβ−3

1 for β , 3, and remains virtually independent of the
magnification when β ≈ 3. For a LF with β ≈ 3, the reduction in
area in the source plane (As(µ) ∝ µ−3) is almost perfectly com-
pensated by the increase in the number of objects with smaller
luminosity L/µ. In this case, the number of lensed objects per
logarithmic interval in magnification is the same at all magni-
fications (a visual example of this constancy in µ is shown in
Section 9.4).

Similarly, we can define the probability of magnification of
the lensed stars, ˆφ(µ) as

φ̂(µ) =

∫ ∞

Lmin

φ(L/µ)As(µ) dL ∝
µβ−3

Lβ−1
min

. (11)

For an LF with β = 3, all magnifications have similar probability,
so the observed population of lensed stars will have equal frac-
tions of fainter and luminous stars. A shallower LF with β < 3,
will be dominated by low-magnification events far from the CC
(i.e., from intrinsically very luminous stars), while a steeper LF
with β > 3 will produce mostly high-magnification events near
the CC (i.e., low intrinsic luminosity stars).

9.3. Connecting the distribution of transients with the LF and
the amount of substructure.

Interestingly, the observed number density of events in Flash-
lights traces the magnification (higher concentration of events
in the near region), so this points (in principle) to a population
of DTM with β > 2 (Equation 8). But this would be true only
if substructure is not present. The relation between the LF and
substructure adds complexity to this interpretation, as we have
seen in Sections 7 and 8, where the probability of having tran-
sient events (proportional to the area where large magnification
factors are possible) in the far region depends also on the amount
of substructure (micro- and millilenses). To estimate the ratio of
microlensing events in the far and near regions, one needs to take
into account both the LF and the amount of substructure.

We begin by computing the number of DTM stars in a log-
arithmic bin in magnification. For the sake of clarity, we derive
the scaling with µ both in the image and source planes, and show
how they are both equivalent. To show this scaling with µ, we
consider two areas in the image plane, Ai and Bi, with magnifi-
cations µA < µB. For simplicity, the widths in magnification of
areas Ai and Bi are the same in logarithmic scale. In particular,
we will be considering two bins in magnification (in log scale),
10 < µ < 100 for the far region and 100 < µ < 1000 for the
near region, or respectively Ai and Bi. When considering loga-
rithmic bins, the area of Ai is µB/µA times bigger than the area
of Bi when computed in the image plane. In the source plane,
the area of Bs is reduced in size by an extra factor µB/µA since
As = Ai/µA and Bs = Bi/µB. That is, when computing areas in
the source plane the area of As is (µB/µA)2 times bigger than the
area of B as expected (Schneider et al. 1992).
Image-plane interpretation. We count DTM stars in the image
plane in areas Ai and Bi with magnification µA and µB. The num-
ber of DTM stars are the ones that are found in the smaller areas
As = Ai/µA and Bs = Bi/µB in the source plane, and above
the luminosity L1(µ) = Lmin/µ, where µ = µA or µ = µB.
Since Bi = AiµA/µB, then the area of Bs in the source plane
is Bs = Bi/µB ∝ µ

−2
B , and the number of DTM stars scales with

µ as

dNDT M

dlog(µ)
∝

1
µ2

∫ Lmax

L1(µ)
φ(L)dL ∝

µβ−3

Lβ−1
min

. (12)

Source-plane interpretation. We count stars that fall in the
source plane in areas As and Bs with magnifications µA and µB. In
this case, the calculation is simplified since we can work directly
with the area in the source plane which scales as ∝ µ−2. The
number of DTM stars above luminosities L1(µ) = Lmin/µ is then

dNDT M

dlog(µ)
∝

1
µ2

∫ Lmax

L1(µ)
φ(L)dL,∝

µβ−3

Lβ−1
min

(13)

and thus equivalent to Equation 12. In the above equations,
where we have made the usual approach that Lmax >> L1(µ) =
Lmin/µ. For DTM stars, we have seen how Lmin is approximately
6.31 times below the luminosity corresponding to the detection
limit (2.5log10(6.31) ≈ 2 mag). We have also ignored the multi-
plicity of counterimages, but this cancels out when considering
the ratio of events in the near and far region, assuming the mul-
tiplicity is the same in both regions. From Equation 13, and for
an LF with β = 3, we expect the same number of DTM stars
per logarithmic bin in magnification (see also Equation 11). In
the image plane, the area per logarithmic bin in magnification
scales as µ−1, so the number density of DTM stars for this case
would go as µ and trace the magnification, in agreement with
Equation 8.

The total number of stars that experience microlensing in
the far region is given by the number of DTM stars in that
region (Eq. 13) times the probability of each star to experience
microlensing. This probability is proportional to the black solid
line in Figure 8:

Nfar ∝
dNDTM

dlog(µ)
× A(µ2m > 100,Σ∗) . (14)

For the near region, we have a similar expression, but replac-
ing A(µ2m > 100,Σ∗) by A(µ1m > 100), which is given by the
orange band in Figure 8. Here we ignore millilenses since we
have established in Section 8 that the dominant effect is coming
from microlenses.

We can now express the ratio of events in the near and far
regions:

Nnear

Nfar
=

(
µ̂near

µ̂far

)β−3 A(µ1m > 100)
A(µ2m > 100,Σ∗)

. (15)

In the expression above, we made the simplification that in the
far and near regions the number of events can be expressed in
terms of their corresponding average magnification, µ̂, computed
as the mean magnification in the source-plane region with µ >
µ1,

µ̂ =

∫ ∞
µ1
µAsdµ∫ ∞

µ1
Asdµ

= 2µ1 . (16)

Here we adopt µ1 = 10 for the far region of the Dragon arc and
µ1 = µcrit = 100 for the near region.

The value of β can be obtained by inverting the equation
above,

β = 3 +
log(Nnear/Nfar) − log(RA(Σ∗))

log(µ̂near/µ̂far)
, (17)
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where RA is the ratio of areas,

RA(Σ∗) =
A(µ1m > 100)

A(µ2m > 100,Σ∗)
= A(µ1m > 100)

500
Σ∗(M� pc−2)

, (18)

where from Figure 8) we have A(µ2m > 100,Σ∗) =
Σ∗(M� pc−2)/500. For the near region, we take A(µ1m > 100) ≈
0.7 kpc2, which is approximately in the middle of the orange
band in Figure 8. That is, RA = 7 for Σ∗ = 50 M� pc−2. Only
the ratio of areas in the far and near regions is relevant for this
calculation, and this ratio of areas is independent of the value
of µcrit (see Section 10.2 below). The number of microlensing
events is Nfar = 2, (labelled 3 and 6 in Figure 1) and Nnear = 5,
while the ratio µ̂near/µ̂far = 10. Replacing these numbers in Equa-
tion 17, we finally obtain β = 2.55+0.69

−0.48
+0.18
−0.29 = 2.55+0.72

−0.56, where
the first error comes from Poissonian uncertainty in Nnear and
Nfar, and the second error corresponds to the range 25 M� pc−2 <
Σ∗ < 75 M� pc−2. The final error bar is obtained after adding in
quadrature the first two uncertainties.

With Equation 17, β can be quickly calculated for any arbi-
trary amount of substructure. Even though we have expressed
Equation 17 as a function of the stellar surface mass density,
Σ∗, in truth this value represents all substructure that contributes
to the area in the source plane with magnification µ > 100.
For a larger value of Σ∗ = 140 M� pc−2 we find β = 3 and for
Σ∗ = 14 M� pc−2 we find β = 2, or β = 1 for an unrealistically
low Σ∗ = 1.4 M� pc−2. Since β can be measured directly through
the observed LF (when sufficient events are available), one can
invert Equation 17 and derive Σ∗, or in general the surface mass
density of substructure since all small substructure contributes to
Σ∗.

Equation 17 and Figure 10 summarize the intricate relation-
ship between the number of observed microlensing events, the
LF, and the amount of substructure. The same ratio of events in
the far and near regions can be obtained by (i) reducing β (hence
increasing the relative number of DTM stars in the far region)
and reducing Σ∗ (compensating the increase due to lowering β
by reducing the amount of substructure producing microlenses
and millilenses), or (ii) increasing β, which increases the num-
ber of DTM stars in the near region in relation to the number of
available DTM stars in the far region, but increasing Σ∗ as well,
thus compensating the reduction of DTM stars in the far region
by increasing the chance of a microlensing event.

A visual version of Equation 17 is shown in Figure 10, where
we invert the equation to show the ratio of events in the near
and far regions as a function of β and the amount of substruc-
ture Σ∗. In the figure we highlight with white lines two possi-
ble combinations of the parameters Σ∗ and β that produce equal
ratios of events in the far and near regions, or five times more
events in the near region than in the far region. The measured
ratio using Flashlights data (2.5) falls in between these two lines.
Future observations of this fascinating galaxy will improve the
constraints of the observed ratio of events near-to-far and the
exponent β. This can later be used to derive the amount of sub-
structure, Σ∗, needed to make the observed ratio compatible with
the observed β.

Recently, Fudamoto et al. (2024) report 46 alleged
microlensing events in the Dragon arc based on the differ-
ence between two observations made with JWST and separated
by ∼8.5 months. 45 out of these 46 events are in the Dragon arc.
Together with the seven events from the Flashlights program in
the Dragon arc, there are 52 known events so far in this arc. As
shown by Broadhurst et al. (2024, who use the same lens model
as in this paper, and hence the same definition of the far and near
regions), 17 of these events are in the far region, and hence the

Fig. 9. Monte Carlo realization of lensed stars for a case with β = 2.
For this example, half a million stars with luminosities in the range
50 L� < L < 5× 105 L� are placed in a region with magnification µ3m >
10. The maximum luminosity corresponds to the observed HD limit for
supergiant stars in the local universe Humphreys (1978). The diagonal
cut in the red points is just Lobs = 50×µ L�. The simulation is complete
above Lobs ≈ 106 L�. The LF of stars has a slope of β = 2. Blue dots
represent stars before magnification and red dots are the magnified stars.
In the top-right inset we show the LF of the stars before magnification
(blue curve) and the observed LF after magnification (red curve). In the
bottom-right inset we show the spatial distribution of the 500 brightest
events and for a model with magnification µ = 1′′/d where d is the
distance to the CC (marked with a vertical light blue line at d = 0′′) in
arcseconds.

ratio of events Nnear/Nfar = 2.05. Since the lensed LF maintains
the slope β (see Eq. 9), one can derive β from the observed LF of
the microlensed events. From the new events of Fudamoto et al.
(2024), Broadhurst et al. (2024) derive the observed slope of
the LF and finds β ≈ 2.5. From Equation 17, we can substitute
the ratio Nnear/Nfar ≈ 2.05 and the observed β ≈ 2.5 to derive a
value for the amount of substructure of Σ∗ = 54 M� pc−2, very
close to our fiducial value for microlenses, Σ∗ ≈ 50 M� pc−2.
Thus, we can conclude that microlensing from intracluster stars
with Σ∗ = 54 M� pc−2 offers an excellent explanation for the
distribution of the large number of events in this arc reported
by Fudamoto et al. (2024). As discussed earlier, millilenses are
expected to contribute ∼10% to the number of events, so the
higher value for Σ∗ derived above is consistent with the small
contribution coming from millilenses. Future observations of
this arc with JWST will reveal even more events that will better
show not only the difference between the far and near regions,
but also the clustering of microlensing events around the few
millilenses that are expected to overlap with this arc. Some
of this clustering is already evident in the spatial distribution
of events shown by Fudamoto et al. (2024), but a detailed
analysis is needed to distinguish between the clustering due to
millilenses in the lens plane and intrinsic clustering of luminous
stars in the background galaxy.

9.4. Validation with Monte Carlo simulations

In order to test the validity of Equations 8, 9, 11, and 13, we per-
form Monte Carlo simulations (see Kelly et al. 2018, where they
also used simulated data to study the particular case of Icarus).
One example is shown in Figure 9 for the particular case of β = 2
and computed in a region where the magnification is > 10 (i.e.,
µ1 = 10). We create a sample of half a million stars from the
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Fig. 10. Ratio Nnear/Nfar as a function of β and Σ∗ (expressed in units of
M� pc−2). The white lines show the combination of β and Σ∗ that predict
the same number of events in the far and near regions (Ratio = 1) or five
time more events in the near region than in the far region (Ratio = 5).

LF with luminosities L > 50 L�. This sample is shown as thick
blue dots, with the bulk of the blue points falling below 103 L�
and hence not shown in the plot. For this simulation we have
set an upper limit to the intrinsic luminosity equal to the HD
limit of 5 × 105 L�, so no blue dots are found above this value.
The LF from this sample is shown as a blue line in the top-
right panel. To each star we assign a random magnification in the
interval µ1 < µ < µmax and following the canonical probability
As(µ) ∝ µ−3. After multiplying the luminosity by the magnifi-
cation, the magnified stars are shown as red dots, with the mag-
nification for each star indicated on the abscissa. We compute
the lensed LF from the same sample of half a million stars (red
curve in the top-right panel). In a realistic situation, the number
of stars in an area with magnification µ1 < µ < µmax should
be a factor µ̂2 smaller, but we use the same sample for conve-
nience. In these conditions, the amplitude of the red line scales
as µ̂β−1, instead of the expected µ̂β−3 from Equation 9, so for this
particular case of β = 1, the red line is above the blue one by
a factor µ̂ = 20. Only one star is above a detection threshold of
29 mag, but a few dozen have apparent luminosities (after mag-
nification) above several million and are in regions where the
magnification already exceeds the critical value, µcrit = 100, so
they are good candidates to move toward a microcaustic and be
promoted beyond the detection threshold.

The diagonal cut in the red points corresponds to the small-
est luminosity considered in the simulation, 50 L�. In the sim-
ulation, there is no star brighter than the HD limit of Lmax ≈

5 × 105 L�, while in the lensed sample, we can reach appar-
ent luminosities exceeding 107 L�. The most luminous stars in
the lensed sample correspond in this case to relatively moderate
magnification factors, µ ≈ 400 (before microlensing).

Regarding the number density, Equation 8, the uniform num-
ber density of observed events when β = 2, is also well repro-
duced by the Monte Carlo, as shown in the bottom-right inset
plot of Figure 9. The abscissa shows the inverse of the magnifi-
cation of the observed events, which can be transformed into a
distance to the CC for an spherical isothermal lens model with
a small Einstein radius of ∼1′′. A small reduction in the number
density is observed at larger distances (small magnifications).

Fig. 11. Similar to Figure 9 but for the case where β = 3. In this case,
all magnifications have comparable probability as predicted by Equa-
tion 11. The lensed LF (thick red line) lies a factor of µ̂β−1 above the
nonlensed LF (blue line). The smaller number of events at high lumi-
nosity when compared to Figure 9 is due to the fact that the number
of stars in the simulation is the same in both cases, but for the steeper
LF there are more stars with lower luminosities. The number density if
events concentrates around the CC, tracing the magnification.

This reduction in number is due to the imposed HD limit in the
Monte Carlo simulation.

The dependence on the exponent β is made more evident
when we compare the previous result with the Monte Carlo sim-
ulation for the case with β = 3, and shown in Figure 11. Again,
the bulk of the blue points falls below luminosities 104 L� and
is not shown in the plot. The red points have a uniform distri-
bution in magnification, as predicted by Equation 11. As before,
the observed LF (thick red line in the upper-right inset plot) lies
above the blue curve by a factor µ̂β−1 = (2 × 10)2. The spatial
distribution shows a much different distribution than in the case
with β = 2, with the number density directly tracing the magni-
fication (Equation 8).

9.5. A possible invisible millilens in the Dragon arc

Since β can be estimated directly from the observed ˆφ(L), or
from the distribution of events as discussed above, combining the
spatial distribution of the number density with the observed LF
it is then possible to identify deviations that can be attributed to
local departures from the macromodel magnification or regions
in the source plane with a different LF. Departures from a smooth
distribution in the number density can be taken as evidence for
substructure, which can locally increase the number density of
DTM stars (and transient events) according to ρ(µ, β) ∝ µ(β−2).
The number density of microlensing events is then a direct tracer
of substructure, and can be used to map the underlying structure
of DM fluctuations on subarcsecond scales and down to the mil-
liarcsecond scale (see also the CC structure around millilenses
in Williams et al. 2024, Fig.3).

In Section 4 we discussed how a millilens with mass as small
as 2×103 M� can boost the probability of microlensing by at least
an order of magnitude when compared to the case of microlenses
only (see Figure 4). Such a millilens and its associated Einstein
ring would be too small to be resolved even with JWST, so all the
microlensing events near the cusps of the millilens would seem
to originate from the same pixel. Since the timescale for a sin-
gle star with µ ≈ 100 to reach the closest microcaustic is about
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1 yr (see next section), repeated observations with high cadence
(weeks) should reveal the population of bright stars behind the
microlens as each one crosses one of the multiple microcaus-
tics around the millilens cusp. As discussed above, the LF of all
events coming from this single pixel should be proportional to
the LF of the background population of luminous stars, and with
the same exponent β.

For larger millilens masses, and β > 2, the microlens-
ing events around the millilens will take place in neighbor-
ing pixels and form a cluster of events. The clustering of
detected events can be used to trace the underlying mass dis-
tribution of millilenses. Since microlensing events are most
likely in supercritical regions, if a substructure in the far region
becomes supercritical, microlensing events will more likely be
detected around that region than in nearby subcritical regions.
If enough events are detected in a lensed galaxy, a pattern
emerges with clusters of events at the position of these substruc-
tures. We can approximate the size of a supercritical region of
a substructure with mass Msub as the area contained within its
observed Einstein radius, which is given by Θobs ≈

√
µ1m × ΘE

(Diego et al. 2018). If the substructure has circular symmetry,
ΘE =

√
(4GMsub/c2)(Dds/(DdDs)), and the mass of the sub-

structure can be obtained as

Msub = Θ2
obs

c2

4Gµ1m

DdDs

Dds
. (19)

Events 3 and 6 in Figure 1 are located in the far region but
separated by only 0.15′′. At this position µ1m = 13 from our
lens model. If we assume the observed Einstein radius is half
the separation between the events, from the relation above we
would obtain a mass for the possible undetected substructure
along the line of sight to these events of ∼1.3 × 108 M� within
the Einstein radius of the substructure. The virial mass of the
substructure could be significantly higher if it is not concen-
trated enough to contain most of its mass within its Einstein
radius. From the N-body simulations discussed in Section 10.4,
we expect of order 1 satellite galaxy with this mass and over-
lapping with the Dragon arc. This is a tantalizing result, but
it cannot be taken too seriously because it lacks statistical sig-
nificance, and the two events mentioned above could simply
be a chance occurrence of two microlensing events that hap-
pen to take place near each other. However, if substructures
in this mass range exist in the cluster in the far region of the
Dragon arc, they will become more evident with future obser-
vations of this arc, since new events will have a higher ten-
dency to appear in positions near previous events. Future JWST
observations may also reveal the hidden substructure that is
increasing the microlensing rate at this location, or alternatively
there is an overdensity of luminous stars at this position in
the Dragon arc that can also increase the rate of microlensing
events there. LBV can be distinguished from genuine microlens-
ing events through their light curves, since they have light
curves that depart from the 1/

√
t − to behaviour expected for

microlensing events (t is time and to is the crossing time if the
microcaustic).

10. Discussion

It is important to discuss some of the approximations in this work
and consider aspects that have not been treated in the previous
sections but affect some of our conclusions.

  

1 yr
  @ 500 km/s
 =  70.2 nas

μ=100

1 Mo in μmacro=23, zlens=0.375, zsource=0.725

R=1500 Ro

μ
18             60              200                  1000

Caustics

Fig. 12. Cusp region around a microcaustic with 1 M� in a macromodel
with magnification µ = 23. The gray scale shows the magnification. The
region near the caustic with magnification ∼100 is marked in black. The
white bar in the bottom right is the distance moved by a background star
at z = 0.725 in 1 yr when the relative velocity is 500 km s−1. The max-
imum magnification is 3700 at the tip of the cusp. The pixel size is
320 R�, so a supergiant star with diameter 80 R� would reach twice this
magnification at the maximum, or µtip

max ≈ 7400. At the fold caustics,
the maximum magnification for a 80 R� diameter star would be smaller,
µfold

max ≈ 1000. The straight line with dots shows the track of a hypotheti-
cal star moving across the caustic. The size of the dot corresponds to a
star with radius 1500 R�.

10.1. Duration of microlensing events

At µ = 100, a star with absolute magnitude −7 would still be
undetected within the far and near regions (apparent magnitude
31.24 for µ = 100). A few of these undetected stars will be close
enough to a microcaustic in the source plane. Approximately
half of these stars will be moving away from the microcaustic
and hence remain undetected in the near future, but the other half
will be moving closer to the microcaustic and become brighter
over time. At magnification µ = 1000, the same star with abso-
lute magnitude −7 can now be detected easily with JWST in
exposures of 1 hr. For a background star near a microcaustic, the
time it takes to move from µ = 100 to µ = 1000 depends on
several factors such as the mass of the microlens, the macro-
model magnification, the relative velocity between the back-
ground star and the microcaustic, the direction of motion relative
to the microcaustic, and the point of crossing of the microcaus-
tic. To get a sense of this timescale, we assume a microlens with
mass 1 M�, the same macromodel magnification of the fiducial
model µ1m = 23, and a relative velocity of v cosα = 500 km s−1,
where α is the angle between the direction of motion and the
microcaustic. In this situation, when the background star is at
magnification µ = 100, the microcaustic is ∼0.1 µas away as
shown in Figure 12.

At a velocity of v cosα = 500 km s−1, a star with abso-
lute magnitude −7, within a microcusp and with magnification
µ ≈ 100, would take ∼1 yr to reach the caustic and become
detectable. At the tip of the cusp, the magnification for a super-
giant star with diameter 80 R� reaches a maximum of ∼7500,
and ∼1000 at the fold caustics. At this velocity, this maximum
magnification can be maintained for ∼1.5 days Miralda-Escude
(1991), after which the magnification will drop to a factor of a
few and the star will no longer be detectable. Approximately 1/3
of the background stars in the far region with absolute magni-
tude −7, and near a microcaustic with magnification µ ≈ 100,
will move toward the caustic and become detectable after 0.5–
1 yr of observation (or similarly, they are detectable now and
will disappear behind the microcaustic after 1 yr or move away
from the caustic). The exact same reasoning applies for the more
numerous stars with double the magnification, or absolute mag-
nitude −7 + 2.5 log10(2) = −6.25, but in an area eight times

A167, page 17 of 24



Diego, J. M., et al.: A&A, 689, A167 (2024)

Fig. 13. Light curve of a star moving at 500 km s−1 along the track
shown in Figure 12. The blue dotted line corresponds to a star with
the same diameter as the pixel of the simulation (320 R�), while the red
solid line corresponds to a much larger and more luminous star with
R = 1500 R�. The star crosses the entire caustic region in ∼9 yr, with
the first peak grazing the caustic and producing a wide peak.

smaller in the source plane (A/dµ ∝ µ−3) and with magnifica-
tion µ > 200. But in this case, the distance to the microcaustic
is four times smaller, so the cadence should be higher in order
to detect these stars before they cross the caustic and become
undetectable again.

One factor to keep in mind is the very large radius of the most
luminous RSGs, that can reach radii of ∼1500 R� (Meynet et al.
2015). Since the maximum magnification is lower for larger
stars, these very luminous RSGs would generally have smaller
magnification factors, typically a few hundred as shown in
Figure 13. When addressing the detectability of these stars, care
needs to be taken to account for the smaller maximum magni-
fication of large RSGs. Interestingly, the large radii of massive
RSGs should correlate with where they are observed. If an RSG
has a radius of 1500 R� and it can only be magnified by factors
of a few hundred in the far region, only those RSGs exceeding
105 L� can be observed at z = 0.725 during peak magnification.
Less luminous RSGs of similar size can still be observed in the
near region since multiple microcaustics overlap and the magni-
fication can be µ > 2000 in this case (or 2.5 mag deeper). The
most luminous RSG is expected to have a maximum luminosity
close to the HD limit, Lmax ≈ 5 × 105 L� or absolute magni-
tude ∼ − 9.5, which at magnification 100 can still be detected
at z = 0.725 with apparent magnitude ∼28.7, so anywhere in
the far region provided they are close enough to a microlens or
millilens. BSGs, on the other hand, can be even more luminous
and smaller (R . 25 R�), so during a microlensing event they
can be magnified by factors µ > 1000 in the far region, allowing
us to see the fainter (but more magnified) BSGs or the brighter
but with more moderate and more likely magnification factors
(µ < 50).

10.2. Critical magnification

The definition of the far-to-near ratio depends on the ratio of
areas near to and far from the cluster CC, which in turn depends
on our choice for the critical magnification. Taking a larger µcrit
by a factor of three would lower the orange (and green) bands in
Figure 7 and Figure 8 by a factor of 9, but it would also lower
the solid lines by the same factor of 9, leaving our conclusions
unchanged. Hence, our conclusions are independent of the par-

ticular value of µcrit. There is, however, a relatively small depen-
dence on µcrit impacting our findings. The results in Figure 7 and
Figure 8 are normalized to the area in the far region, which for
µcrit = 100 represents 83.4% of the area covered by the Dragon
arc. Lowering µcrit would reduce this fraction of area where far
events from millilenses can take place. The dependence of the
fraction of area in the near region scales almost linearly with
µcrit, so we can approximate this as Ffar ≈ 1 − 16.7/µcrit, where
16.7 is the fraction of area in the near region when µmacro = 100.
For example, from this law we find F = 66.6% and F = 91.6%
for µcrit = 50 and µcrit = 200, respectively, while from the
lens model we find 69.3% and 93.2%. Hence, in the conser-
vative case where µcrit = 50 (this would require a very high
Σcrit > 100 M� pc−2), we find that the lines in Figures 7 and
8 would be corrected by a factor of 66.6/83.4 = 0.8, while
for µcrit = 200, the same curves would move upward by a
small amount 91.6/83.4 = 1.1, leaving our results virtually
unchanged.

10.3. Slope of the lensing potential

Related to the previous point, another source of uncertainty
impacting our results is the specific properties of the cluster
lens model, in particular the slope of the lensing potential. The
macromodel magnification enters in Equation 2 quadratically. If
the macromodel magnification in the far region is three times
larger, this would increase the amplitude of the solid lines in
Figure 7 by a factor of 9, bringing the prediction from millilenses
and the observation to better agreement. The median and mean
magnifications of the WSLAP+ model in the far region of the
Dragon arc are 19.2 and 27.7, respectively. Increasing the magni-
fication by a factor of three would bring the most common values
of µ1m in Equation 2 close to the value of µcrit, resulting in a very
uniform distribution of microlensing events along the Dragon
arc. Such a lens model would require a very shallow lensing
potential, possibly in conflict with lensing constraints. Compar-
ing our lens model magnification in the far region with the pre-
dicted magnification from the lens models in the same region
of Li et al. (2024), we find that on average those models predict
24% ± 22% more magnification than our lens model in the far
region. Based on this, and taking the upper limit (46% increase),
we expect the solid colored lines in Figure 7 to increase by a fac-
tor of ∼2.1, still insufficient to explain the low rate of predicted
events.

10.4. Number density of millilenses

N-body simulations show a tight correlation between the virial
mass of the cluster and the number of GCs, Mvir = 5 ×
109 M� × NGC (Burkert & Forbes 2020; Valenzuela et al. 2021).
The galaxy clusters in which transient stars have been found are
all very massive, with virial masses ∼1015 M�. Hence, we expect
∼2 × 105 GCs in each of these clusters. It is difficult to estimate
with precision the expected number density of GCs (detected and
nondetected) at the positions of the transients, but we can get an
order-of-magnitude estimate and see if it is in agreement with
the observed densities in nearby clusters.

If we assume that the distribution of GCs follows a cored
isothermal profile, then the number density of GCs falls with dis-
tance to the center as ∼(Rc + R)−1. Assuming all ∼2×105 GCs in
the cluster are within a radius of 1 Mpc with this profile, we find
that the number densities at R = 50 kpc and R = 70 kpc (mea-
sured from the BCG in the south of A370, which is the center of
the South group in this merging cluster) vary between ∼0.76 and
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∼1.13 per kpc2 when the core radius (Rc) varies between 0 and
10 kpc. This is within a factor of two of what was assumed in
Figure 7, and hence this higher estimate of the number density
is still insufficient to explain with millilenses the anomalously
high observed ratio of far-to-near microlensing events. Modify-
ing the radial profile to a steeper one with number density scaling
as (Rc + R)−2 (similar to what would be expected if the dis-
tribution of GCs follows the profile from Navarro et al. 1996),
and for the most favorable scenario with Rc = 0, the number
density increases to ∼1.6 and ∼2.9 GCs per kpc2 at 70 kpc and
50 kpc (respectively) from the center of the halo. Alternatively,
we measure the number density of compact unresolved objects
in the vicinity of the Dragon arc using the most sensitive F200W
image of the new JWST data of this cluster. We find a num-
ber density of ∼0.1 object per kpc2 (see also Berkheimer et al.
2024). These compact objects correspond to the massive end of
the tail of the distribution in Figure 14, with masses above a few
times 106 M� (see the masses derived by Faisst et al. 2022, for
similar objects). From the same figure, we estimate (conserva-
tively) that the number of missing objects is a factor of ∼10
larger, which would bring the number density of GCs near the
Dragon arc to ∼1 object per kpc2. The very same conclusion is
reached by Saifollahi et al. (2024), based on Euclid observations
of the much closer Fornax cluster; they reach high completeness
up to ∼24 mag in Euclid’s Y , J, and H bands (Fornax is at just
20 Mpc, so this depth is equivalent to reaching ∼29 mag with
JWST), finding a maximum number density of GCs of ∼1 GC
per kpc2. This is still insufficient, since it would place the ratio
of far-to-near events one order of magnitude below the observed
rate.

The mass function in Figure 6 excludes halos more massive
than a few times 107 M�. Naturally, we expect halos in this mass
range to still contribute as millilenses, but it is unclear how many
of those exist, since their potential must be shallow enough to
not contain dense concentrations of stars in their central regions,
hence evading direct detection.

Nevertheless, dwarf galaxies, or small satellites in general,
are expected to be numerous in cluster environments and intro-
duce perturbations in the magnification in the far region (and also
in the near region). From the lensing point of view, their cored
structures and relatively low mass make many of them subcriti-
cal (that is, they do not produce CCs). However, the fraction of
critical to subcritical halos remains unknown in cluster environ-
ments, so it is difficult to accurately predict their contribution to
the probability of high magnification. Even if they do not reach
criticality, at distances of ∼1′′ from the cluster CC, the mass
associated with a satellite may be enough to alter the inverse of
the magnification µ−1

2m = (1 − κ2m)2 − γ2
2m near the satellite, and

bring it close to the small value needed for microlensing events
to be maximized, |µ−1

2m| ≈ 10−2.
Here we rely on results from pseudo-analytical realizations

based on state-of-the-art recipes calibrated using numerical N-
body simulations to assess the contribution from undetected
satellite galaxies. We employed a sample of 16 very-high-
resolution realizations using the MOKA algorithm (Giocoli et al.
2012, 2016) assuming a mass of 1015 M� at z = 0.37. The
cluster-size halo is populated by Monte Carlo sampling the sub-
halo mass function measured by (Giocoli et al. 2010) and extrap-
olating it to 1.5 × 105 M�. The halos have a triaxial model
(Jing & Suto 2002; Despali et al. 2014) and subhalos are spa-
tially distributed as calibrated by Gao et al. (2004).

The resulting mass function from satellites is shown in
Figure 14, where we compare it with the mass function of GCs
used in our main result (Model 1). For this comparison, we have

Fig. 14. Comparison of mass functions of GCs and satellites. The red
solid line shows the total number of GCs in the area corresponding to the
Dragon arc from the GC mass function, after normalizing it to a density
of 1 GCs per kpc2. The black dashed line shows the mass function from
N-body simulations of a population of satellites in a cluster with Mvir =
1015 M� and computed in a similar area at distances between 50 and
70 kpc from the center of the halo (same distance of the Dragon arc).
The dotted lines shows the dispersion in the number of satellites from
16 different realizations. In most realizations, no halos more massive
than ∼108 M� are found within the region considered. The total mass
from the GC mass function is 4.01×108 M� and the total mass from the
satellite mass function is 3.07 × 108 M�. Finally, the sum of mass from
the GC mass function up to 106 M� and the mass from the satellite mass
function above 106 M� is 5.01 × 108 M�.

computed the total number of GCs in the area of the Dragon
arc (∼960 kpc2) and assuming the number density of GCs is 1
per kpc2, roughly the upper limit of the vertical blue band in
Figure 7. The mass function of satellites is also normalized to
the same area covered by the Dragon arc, and it corresponds
to the abundance of satellites with masses larger than 106 M�
found at distances between 50 and 70 kpc from the cluster center
in simulated clusters at z ≈ 0.37, and with virial mass 1015 M�.
Rather than repeating the calculation we did for GCs, we can
estimate the contribution from these satellites in the most favor-
able situation. We assume that all satellites are supercritical and
compact enough so they contribute to the magnification similarly
to GCs – that is, they follow the scaling of Equation 2. This is an
optimistic scenario because a fraction of these satellites will be
subcritical. In fact, it is unlikely that a large fraction of them are
supercritical since this would imply they have dense detectable
cores, and none is clearly observed as a resolved source in the
vicinity of the Dragon arc. Nevertheless, under the ideal assump-
tion above, the upper-limit contribution to the area in Equation 4
from the satellites should be proportional to their total integrated
mass. We compute this mass from the dashed-line model shown
in Figure 14 and find a total mass of 3.07 × 108 M� in the area
occupied by the Dragon arc. Repeating the same calculation for
the red solid curve in Figure 14, we find that the GCs con-
tribute 4.01×108 M� in the same area, or 30% more. Considering
instead a combined mass function composed of the red curve up
to 106 M� and the dashed black line above this mass, the total
mass is 5.01 × 108 M�, or 25% more than the GC contribution.
Translating these numbers into Figure 7, the red curve (Model
1) would move upward by only a factor of 1.25. Hence, even
in the most optimistic case in which satellites are very compact
and supercritical, the contribution from the undetected satellite
galaxies is relatively minor.
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10.5. Substructure along the line of sight

So far we have assumed the milli-lens substructure capable of
promoting a micro-lensing event to detectability lies inside the
virial radius of the cluster. However, CDM also predictions
a sizeable population of halos along the line of sight (LOS),
which can also contribute to the lensing perturbations (e.g.,
Gilman et al. 2019). On average, we expect substructures to con-
tribute to the surface mass density an amount similar to the con-
tribution from the mean density of the universe, ρ̄ = Ωm × ρcrit.
In CDM, the overwhelming majority of dark matter halos on
the relevant mass scales are subcritical, and the lensing effects
of these objects drop when placed close to the observer and
source. Therefore, we consider LOS contributions from the red-
shift range 0.15 < z < 0.5, assuming the source is the Dragon
galaxy (at z = 0.725). In this interval, the critical density of
the universe is, on average, 1.41 times higher than at z = 0,
ρcrit(z = 0) = 2.77×1011×h2 M�Mpc−3. Projecting along the line
of sight (1268 Mpc comoving), we then get an average contri-
bution of ΣLOS ∼ 242.7 M� pc−2. Unlike subhalos of the cluster,
dark matter halos outside the cluster environment are not affected
by tidal forces.

To assess the contribution from halos outside the virial radius
of the cluster, we calculate the expected number of dark mat-
ter halos in the mass range 105–109 M� using the mass function
model presented by Sheth & Tormen (1999). In addition to the
halos drawn from the Sheth-Tormen mass function, we account
for correlated structure around the cluster. The mass of the clus-
ter 1014–1015 M� causes a local enhancement to the density field
that increases the number of dark matter halos within ∼5 Mpc−1;
these objects are effectively at the same redshift as the cluster
itself, but are not inside the virial radius or even necessarily
bound to the cluster potential, and thus they are typically not
included in satellite mass functions. We model the local enhance-
ment through the two-halo term (Gilman et al. 2019), with the
additional correction proposed by Lazar et al. (2021). The halos
along the line of sight, including those corresponding to corre-
lated structure around the cluster, contribute 100–200 M� pc−2,
depending on the assumed virial mass of the cluster. This consti-
tutes a significant contribution that can potentially impact the
results discussed in previous paragraphs. From Figure 10, an
increase of this magnitude in Σ would make the amount of sub-
structure in the far region very large, ΣTot = Σ∗ + ΣLOS ≈

150 M� pc−2, which would imply a ratio of events of ∼1 in the far
and near regions, and in conflict with the observed ratio of ∼2.5.
Alternatively, for a fixed ratio of events ∼2.5, a larger value for
ΣTot would imply a large value of β & 3. However, in CDM dark
matter halos on these scales are predicted to be subcritical for
lensing, even when placed on top of a cluster convergence map,
and thus they contribute subdominantly to the lensing magnifica-
tion perturbations required to boost the signal from microlenses.
We will be able to revisit this topic with future measurements of
more events in the Dragon arc that will enable measurements of
β directly, and provide a better estimation of the ratio of events
in the near and far regions, resulting in a constraint on the con-
tribution from microlenses and millilenses in the lens plane and
in the LOS to ΣTot.

10.6. Presence of hyperluminous stars

The events found in the Dragon galaxy by the Flashlights pro-
gram are observed in only one filter, so unfortunately we lack
color information to assess whether these events could be LBVs
at moderate magnifications or microlensing events of the much

more abundant but fainter supergiant stars. In low-redshift arcs
such as the Dragon arc, hyperluminous stars with absolute mag-
nitude −11 or brighter could be seen anywhere around the arc
in regions with moderate magnification factors of µ1m > 20.
Such high luminosity can be reached, for instance, during an
outburst of an LBV reaching an absolute magnitude of −11
(Weis & Bomans 2020), or apparent magnitude ∼29 with mag-
nification µ ≈ 20. Outbursts as luminous as −14 mag have been
recorded (Pastorello et al. 2010), or even brighter for the so-
called “supernova impostors” that can be as luminous as super-
novae (e.g., Kilpatrick et al. 2018). These superluminous LBVs
are exceedingly rare and can be detected anywhere at this red-
shift without the help of magnification, so we do not consider
them here. In the case of typical LBV outbursts, they would be
more likely detected in the far region since this corresponds to a
larger area in the source plane.

In the Dragon arc, Li et al. (2024) estimate ∼3 LBVs
should be present. We can independently estimate the num-
ber of LBVs if we assume the Dragon galaxy contains a sim-
ilar number of LBVs as the number found in our neighbor-
hood. The number of LBVs with absolute magnitude brighter
than −10 found in the Milky Way plus LMC plus SMC is
NLBV ≈ 100 (Humphreys & Davidson 1979; Hamann et al.
2006; Crowther et al. 2010; Hainich et al. 2014). To see one of
these stars without help from microlensing or millilensing, the
magnification needs to be µ1m ≈ 50. Only a portion of the
Dragon arc has magnification > 50. We can estimate this by
multiplying the upper bound of the orange region in Figure 7
by a factor of four – that is, ∼5 kpc2 in the Dragon arc are mag-
nified by a factor of 50 or more. This corresponds to a fraction
of 6.3% × (Rgal/5kpc)2, where we have adopted the estimated
radius of the Dragon galaxy from our lens model, Rgal ≈ 5 kpc.
The number of expected LBVs in this area is then N ≈ 6, close
to the estimate from Li et al. (2024). Most of these LBVs likely
will be in a quiescent phase and hence not detected as transients
when comparing observations separated by 1 yr (or ∼0.5 yr in the
source frame), but for observations at two epochs separated by
several years, a significant fraction of them will show measur-
able changes in flux and be identified as transients. We conclude
that some of the events found in the far region of the Dragon arc
may be LBVs, but without color information we cannot confirm
this hypothesis.

At higher redshifts, larger magnification factors are needed
to see outbursting LBVs, so the expectation in this case is to see
mostly genuine microlensing events in the far region. An exam-
ple (but also an exception) is Godzilla, a star which is believed
to be an outbursting LBV at z = 2.37 with at least five coun-
terimages (Diego et al. 2022), all of them (but one) are unde-
tected at macromodel magnification µ1m ≈ 100 (the example),
but interestingly with one being detected thanks to the magnifi-
cation boost provided by a millilens (µ2m & 2000) (the excep-
tion). Diego et al. (2022) estimate that at any given point ∼30
extremely magnified LBVs (EMBLVs) at 1 < z < 3 and with
magnification >1000 should be detectable in the sky and with
apparent magnitudes as bright as 24. Large-scale high-cadence
surveys such as LSST can reveal them and complete a census of
EMBLVs up to z ≈ 3.

10.7. Alternatives to ΛCDM

Although the combination of standard microlensing (that is, not
involving a millilenses) and LBVs offers the simplest explana-
tion for the high ratio of events found in the far region, it is inter-
esting to consider other scenarios in which dark matter physics,
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Fig. 15. Simulated magnification (in magnitudes) for a source traversing a caustic region. The lens model includes ψDM with de Broglie wave-
length 18 pc (red) or 10 pc (blue). Two macromodel magnifications are shown: µmacro ≈ 100 (red) and µmacro ≈ 50 (blue). The effects of different
lens components are marked. For this figure, the number density of microlenses was reduced to just 1 M� pc−2 in order to better show the effect of
ψDM. Even at moderate values of µmacro (blue), the effects of ψDM are very different from standard CDM expectations.

or various baryonic effects (e.g., Ragagnin et al. 2024), alter the
properties of halos. For example, warm DM models predict less
substructure on subgalactic scales. Surviving halos in warm DM
have lower concentrations than their CDM counterparts, and
therefore have a suppressed lensing efficiency, lowering the con-
tribution from millilenses to the lensing probability. On the other
hand, self-interacting DM can cause halos to undergo core col-
lapse, a process that dramatically raising their central density,
potentially to a degree that causes them to become super-critical
for lensing (Gilman et al. 2021). Alternatively, wave dark mat-
ter, (ψDM) is expected to increase the magnification in the far
region. In this model, DM has density fluctuations at scales given
by the de Broglie wavelength and the halo mass (Schive et al.
2016), from the dependence on momentum:

λdB = 15
(

10−22 eV
mψ

) (
1015 M�
Mcluster

)1/3

pc , (20)

where mψ is the mass of the ultralight axion-like particle (ALP).
For masses mψ ≈ 10−22 eV and a 1015 M� cluster, this scale
corresponds to 3 mas in the lens plane. This pervasive inter-
ference substructure causes the CC to become corrugated on
the de Broglie scale (Chan et al. 2020; Laroche et al. 2022;
Amruth et al. 2023), and increasingly so for more massive halos,
with many detached islands where the magnification diverges at
relatively large offsets from the cluster CC (Amruth et al. 2023;
Laroche et al. 2022; Powell et al. 2023).

Similarly to microlenses, ψDM fluctuations are ubiquitous
across the lens plane, and as in the case of microlenses and
millilenses, these fluctuations get amplified near the CC by the
macromodel. In Figure 15 we show the effect of ψDM over a
small region in the observer plane. For this particular case the
source is at z = 1, but the effect would be very similar for
z = 0.725. The simulation of ψDM follows Amruth et al. (2023),
and for this particular case the value of Σ∗ has been decreased to
Σ∗ = 1 M� pc−2, to better appreciate the ψDM effect. Two mod-
els for ψDM are considered with λdB = 10 pc and λdB = 18 pc,
for cluster-scale lenses. We also consider two macromodel mag-
nifications. As shown in the figure, ψDM introduces perturba-
tions in the magnification pattern in the source plane at the
sub-milliarcsecond level. This scale is similar to the scale of
the caustics from the GCs considered earlier, and is consistent

with results from analyses of multiply-imaged quasars in which
the effect from ψDM is shown to be comparable to the effect
of population of halo millilenses (Laroche et al. 2022). Interest-
ingly, smaller masses for the ALP (blue curve) result in more
pronounced effects but over a smaller region. In both cases, a
significant portion of the source plane can attain sufficiently high
magnifications so the critical magnification is reached, maximiz-
ing the probability for microlensing effects to take place.

The de Broglie wavelength (hence the mass of the ALP)
and the macromodel magnification determine the type of object
that can exhibit different magnifications. For instance, in the
λdB = 10 pc model and µ1m = 50 in Figure 15, the scale of
the object needs to be typically larger than ∼0.1 pc in order to
be insensitive to ψDM fluctuations, while for the λdB = 18 pc
and µ1m = 50 model the source needs to be larger than 0.5 pc
in order to not exhibit asymmetric fluxes. Future observations of
the Dragon arc will reveal additional microlensing events, which
are expected to form clusters of microlensing events around the
strongest fluctuations in the boson field.

11. Conclusions

We study the 3M lensing effect from the combination of a macro-
model, a millilens, and microlenses. The possibility is consid-
ered that microlensing events found at relatively large distances
from the cluster CC in the Dragon arc, or far region, are aligned
with millilenses in the lens plane that increase the probabil-
ity of microlensing. We study the scaling of the area above
certain magnification (or lensing probability) near a millilens,
with the mass of the millilens and macromodel magnifica-
tion, with and without adding microlenses. Near the cusps of
millilenses, this probability scales with the mass of the millilens,
and microlenses play a minor role. We consider a realistic pop-
ulation of millilenses and model their mass function with a log-
normal function, then compute the total area in the far region of
the source plane associated with this population of millilenses
that has magnification greater than some critical value. We find
that the contribution to this area from millilenses is less than the
contribution from the far more numerous microlenses elsewhere
in the source plane. Hence, the addition of millilenses does not
appreciably increase the expected rate of microlensing events
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far from the critical curve (which is given mostly by the more
numerous microlenses). Other factors, such as the presence of
LBVs, also contribute to the number of transient events in the
far region, especially in lensed galaxies at low redshift where
LBVs can be detected even at modest magnification factors.

We pay special attention to the spatial distribution of
microlensing events and find that the number density of
microlensing events also depends on the exponent of the LF,
ρ(µ, β) ∝ µβ−2. We make the analogy of traditional photographic-
plate imaging and identify two regimes: (i) positive-imaging
regime when β > 2 and the number density of microlensing
events is higher around massive substructures (high µ), and (ii)
negative-imaging regime when β < 2 where microlensing and
microlensing events have smaller number densities at the posi-
tion of massive substructures (also high µ).

We discuss the intimate relationship between the abundance
of DTM stars and the number of observed microlensing events
where the second is proportional to the former. We demonstrate,
both analytically and with Monte Carlo simulations, how the
number density of DTM stars shows a strong dependence on
the LF and the macromodel magnification. Once the popula-
tion of DTM stars has been established (from the LF and the
macromodel magnification), the problem of estimating the num-
ber of microlensing events can be reduced to studying a popula-
tion of DTM stars as they move across the web of microcaustics,
where the later depends not only on the amount of substructure
(microlenses and millilenses), but also on the macromodel mag-
nification. We use the observed density of events in the far and
near regions of the Dragon arc to derive the slope of the LF,
finding that a steep LF with β = 2.55+0.72

−0.56 is consistent with the
observations. Variation of the LF along the lensed Dragon Arc
or absorption by dust are not considered in this work but they
should add an additional element of uncertainty in the results.
With future data, one can measure the slope β directly from the
observed LF and confront it with our estimate of β = 2.55+0.72

−0.56
derived from the spatial distribution of the number density of
microlensing events.

We derive a relation between the slope of the LF, β, the
amount of substructure, Σ, and the ratio of observed microlens-
ing events in the near and far regions, Nnear/Nfar. We estimate
the amount of substructure along the line of sight and, from the
relation between β, Σ, and Nnear/Nfar, we argue that most of this
substructure should be in the form of subcritical halos. Other-
wise, the inferred values of β would be very high.

Small substructures in the far region of the CC can
be mapped (imaged) by measuring this number density of
microlensing events, which should correlate with the location
of millilensing substructures. The clustering may also reveal a
non-uniform distribution of the background stellar population
that can equally show clustering. Repeated observations of the
same arc may be and a detailed analysis of the photometry (or
spectra if available) may be needed in order to clearly distin-
guish between the two scenarios. We apply this technique to
two microlensing events forming a pair of local high density,
and under the assumption of a uniform distribution of the back-
ground stars, find that if this peak in the density of microlens-
ing events is due to a substructure, its mass is ∼1.3 × 108 M�
within its Einstein radius. This technique shall open a new win-
dow to map the distribution of mass on scales of milliarcsec-
onds, including perturbations in the DM field. As an illustration,
we consider the case of ψDM and argue that this type of model
can be proven with repeated observations of low-redshift caustic-
crossing arcs, such as the Dragon arc, thereby greatly increas-
ing the statistics on the spatial distribution of microlensing

events and revealing the hidden nature of DM at subarcsecond
scales.

At the time of submission of this paper, new JWST obser-
vations have revealed more than 40 microlensing candidates in
the near and far regions of the Dragon arc. Most of these events
are suspected to be due to RSGs at z = 0.725. These events
are presented by Fudamoto et al. (2024). Here we do a sim-
ple estimation based on the new findings by Fudamoto et al.
(2024) and conclude that microlenses with a surface mass den-
sity Σ∗ = 54 M� pc−2 offer a good explanation for the distribution
of microlensing events in the new JWST data. Detailed analysis
of these new events will be the subject of a future paper.
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Appendix A: Lens Model

Details of the algorithm are provided by Diego et al. (2005,
2007, 2016). This modeling technique has been applied suc-
cessfully to several clusters observed with HST and JWST
(Diego et al. 2005, 2007, 2016, 2023a, 2024b).

The model for A370 is derived using 32 lensed galaxies with
spectroscopic redshifts, and producing over 90 multiple images,
or constraints. The model is derived as part of the Beyond the
Ultradeep Frontier Fields and Legacy Observations (BUFFALO)
project (GO-15117, PIs Steinhardt & Jauzac; Steinhardt et al.
2020), and also incorporates information from weak lensing
measured with HST images. Details of the dataset are given by
Niemiec et al. (2023).

This model incorporates all member galaxies detected by
HST near the Dragon arc, so it includes all relevant deflectors at
galactic scales and above. The CC predicted by our lens model
in the Dragon arc is shown in Figure 1. For this work we are
interested in the area in the source plane with magnification
µ > µcrit from millilenses that are in regions of the lens plane
where µ1m < µcrit (or far region). We are also interested in a sim-
ilar area in the source plane but from regions in the lens plane
near the cluster CC where the macromodel alone can provide
µ1m > µcrit needed for the probability of microlensing to be high
enough. More precisely, we are interested in the ratio of the two
areas, since this ratio will essentially correlate with the ratio of
events found near the CC and far from the CC. The use of a
different lens model should have a relatively small impact on
our conclusions provided these lens models include all mem-
ber galaxies near the critical region, since these member galax-
ies can alter the position of the CCs. The ratio of events should
then remain more or less constant for most models, with a rel-
atively small dependence on the slope of the lensing potential.
This difference in slopes can account for a factor of ∼ 2 in the
ratio of areas and hence on the ratio of events between different

Fig. A.1. Area above a certain magnification in the Dragon arc. The
solid line shows the area with magnification > µ computed in the image
plane and in the region occupied by the Dragon arc. The dashed line is
the simple power-law fit A(> µ) = 1.5 × 104/µ in kpc2.

lens models. A level of uncertainty of a factor of ∼ 2 should be
kept in mind owing to uncertainty in the macro galaxy cluster
model.

The area in the image plane above a magnification µ com-
puted in the region of the Dragon arc is shown in Figure A.1.
As expected, this area scales as the canonical 1/µ scaling law.
Above µ = 100 there are 190 kpc2 in the image plane. Dividing
by µ = 100, this corresponds to 1.9 kpc2 in the source plane,
and correcting for the multiplicity factor two (for every counter-
image with magnification µ = 100 in the image plane, there is
another on the other side of the CC with similar magnification),
we arrive at 0.95 kpc2, setting the upper boundary of the orange
region in Figure 7.
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