Enabling Moving Target Defense for Real-Time
CPS Security

Rajarshi Mukherjee
Department of Electrical and
Computer Engineering
Virginia Tech
Arlington, Virginia, USA
rajarshim13@vt.edu

Mohamed Azab
Department of Computer and
Information Sciences
Virginia Military Institute
Lexington, Virginia, USA
azabmm @ vmi.edu,

Thidapat Chantem
Department of Electrical and
Computer Engineering
Virginia Tech
Arlington, Virginia, USA
tchantem @ vt.edu

mazab@vt.edu

Abstract—The Internet of Things (IoT) phenomenon has
rather quickly enveloped modern society leading to regular
interactions with several IoT devices and networks. Due to
the exponential increase in the utilization of such devices,
coupled with inherent limitations such as resource constraints
and outdated firmware these devices are vulnerable and may be
regularly subject to various threats. Most such systems lack any
and all forms of encryption due to cost and resource constraints,
as well as the general perception that such devices pose a low risk
for attacks. Additionally, IoT networks are also present in several
Cyber-Physical System (CPS) based applications such as water
treatment facilities, where an entity can exploit these vulnera-
bilities to cause an attack with far-reaching consequences. With
that in mind, a Moving Target Defense (MTD) is an emerging
tactic to help shore up the defenses of such networks. This is
done by regularly updating system parameters with the intention
of putting up barriers for any malicious individual attempting
to breach the network. This work deals with an attack scenario,
wherein an attacker aims to take control of the sensors in a
wastewater treatment facility, with the intention of deceiving
the operators of said facility. An attack of this manner has the
ability to tamper with the chemical composition of the treated
wastewater which can end up devastating the ecosystems that
this water gets released back into. This paper shows how an
attacker can perform a Man-in-the-Middle (MiTM) attack using
ARP (Address Resolution Protocol) spoofing and subsequently
launch a Denial of Service (DoS) attack on the sensor network
and disrupt the legitimate data stream. Based on this attack,
an MTD approach is proposed, which is based on the routine
updating of the IP and MAC addresses of the sensors with the
aim to obfuscate as much of the network from the attacker
as possible. The findings show that this method significantly
improves the network’s ability to resist ARP spoofing and allows
it to gracefully recover from a DoS attack. Additionally, this
work experimentally showcases the overhead these techniques
may impose. This would allow for system designers to provision
for the resources needed without affecting the timeliness of time-
sensitive systems, i.e., Real-Time Systems (RTS).

Index Terms—moving target defense, mqtt, sensors, rts

This paper was supported in part by the National Science Foundation
(NSF) under grant number CPS-2038726, and by the Commonwealth Cyber
Initiative, an investment in the advancement of cyber R&D, innovation,
and workforce development. For more information about CCI, visit www.
cyberinitiative.org.

979-8-3315-4090-6/24/$31.00 ©2024 IEEE

I. INTRODUCTION

Cyber-Physical Systems (CPS) are consolidated systems
where a mixture of computational elements and sensors are
tasked with the monitoring, logging, and regulation of phys-
ical objects in real time. Over the years, such systems have
been deployed to control critical infrastructure, some of which
have recently been found to have several vulnerabilities,
such as Supervisory Control and Data Acquisition (SCADA)
systems [1], smart grids [2], and automobiles [3]. [4] shows
the terrifying potential of such attacks with hospitals, power-
plants , and oil pipelines all being targeted. This work looks at
such a Real-Time CPS (i.e., CPS with timing constraints), that
has been crafted using common sensors utilized in Internet of
Things(IoT) networks, which communicate over Wi-Fi as is
common in several applications. Thereafter, some common
security challenges that such a system faces are analyzed
and a Moving Target Defense (MTD) based approach is
employed to help secure it. Security in such systems can
be imagined to be similar to a constant game of hide-and-
seek, where the network is trying its best to hide the true
details of its configuration layout and schematics, while the
attacker is always chasing down different pathways to glean
more details. [5] best describes MTD as a method to increase
the “uncertainty and unpredictability” of a system in a way
that improves its security while still allowing it to maintain
a similar level of utility. Previous work in this domain [6]
have noted how MTD approaches can be broadly classified
under shuffling, redundancy and diversity. While there have
been approaches discussing IP randomization [7], SDN based
MTD approaches [8], virtualization based techniques [9], and
even IPv6 based approaches [10], there has been a dearth of
research specifically looking at device level implementations
for IoT networks. This research is an attempt to showcase the
feasibility of having an MTD based approach on a realistic
test-bed to tackle a real world threat model, and assess
its benefits in contrast to the costs it imposes on system
resources.

This work falls squarely under the shuffling category of
MTD techniques. By continuously varying and hence hiding
the system parameters, the aim is to show that by creating a

www.cyberinitiative.org
www.cyberinitiative.org

continually moving target for attackers, the overall difficulty
of breaking into a system is significantly increased. The
primary focus of this paper is to emphasize how projects both
small and big in scale need to implement robust and proactive
defense techniques to repel bad actors. These projects also
include real-time CPS where overhead due to MTD must be
accounted for in order to guarantee performance. In our CPS,
for instance, data that is delivered to the system late may be of
limited use and might be discarded. Thereby, any attacker who
can even slightly delay the transmission of accurate data, can
end up causing several missed deadlines, and significantly re-
duce performance. To that end, the total overhead introduced
by this approach, compared to a defenseless network, reflects
the costs associated with implementing an MTD setup in such
a system. This work helps show how such a defense technique
can easily be adopted on any general connected system that
involves sensors communicating over commonly intercepted
media such as Wi-Fi, and the benefits derived from having
such a proactive approach to system design.

II. TARGETED THREAT VECTORS

In this section, the primary threat types dealt with are
examined, alongside a discussion on how a bad actor might
carry out such attacks on a network in order to hamstring its
ability to communicate reliably.

A. ARP spoofing

When devices on the same local network need to differen-
tiate amongst each other, they do so on the basis of a 48 bit
12 digit hexadecimal number popularly known as the Media
Access Control (MAC) address. By design, these addresses
could potentially be thought of to be specific to a given
device or computer, and something that is encoded into the
hardware by the device manufacturer. However, there do exist
several tools and software programs that allow individuals the
ability to change their MAC addresses to any desired address,
a fact which opens up the potential of spoofing a known
device’s MAC address and essentially taking the place of the
target device in a network. On the other hand, when devices
want to communicate globally on the internet across multiple
networks, they require an Internet Protocol (IP) address to
help enable communication. Assuming that the IP addresses
of two devices are known, when communication between the
two is attempted, a secondary protocol is required to resolve
which physical device has been assigned a particular network
address. To that end, the Address Resolution Protocol (ARP)
is utilized to help the devices finally achieve communication
[11].

ARP works on the basis of requests and replies, where
the sending device first broadcasts an ARP request across the
network containing the IP address of the intended recipient
and requests its associated MAC address. The receiving
device assigned to that IP address then posts an ARP reply,
containing its MAC address, in turn verifying its identity. This
communication is generally unencrypted and is hence highly
prone to spoofing or poisoning attacks [12]. In practice, an

attacker with access to a network could use several tools to
eavesdrop upon the ARP requests and replies to ascertain the
addresses of the devices communicating on it. Therein, they
could choose to assume the identity of one of these devices by
spoofing their MAC address. This opens up a lot of channels
of attacks [13] where attackers could choose to listen in on
privileged communication, assume the identity of a chosen
device and inject fake data, or stop the chosen device from
communicating freely.

B. DoS attack

Denial of service attacks, as the name suggests, attempt
to prevent a machine or a network node from providing its
regular service by overwhelming its capabilities through a
constant barrage of directed requests. DoS attacks are similar
to a battering ram, and they come in with the sole intention
to completely overcome a target’s ability to deal with the
traffic directed their way, and thus degrade the performance
of entire systems. IoT systems with their scarce resources
offer a lucrative target for bad actors to launch DoS attacks
on. DoS attacks are also commonly used in conjunction with
a spoofing attack to block actual data from being transmitted
while the attacker can inject manipulated data in its stead.

C. System specifications

For evaluations three ESP 8266 NodeMCU devices are
used, with each simulating a sensor in a network. Each
NodeMCU has an Xtensa LX106 microcontroller, with 4
MB of flash memory, and an on-board Wi-Fi module. The
low-cost nature of these boards, along with their ability to
communicate over both bluetooth and Wi-Fi, makes them an
ideal choice for several Internet of Things (IoT) applications.
A Mosquitto server is deployed on a Linux based Raspberry
Pi 4 Model B (quad core ARM Cortex-A72 processor, 2GB
RAM), and set up with a Message Queue Telemetry Transport
(MQTT) based communication network to best mimic an
actual IoT application. MQTT is a popular and lightweight
communication protocol that is preferred for many resource-
constrained applications. It operates on a publisher-subscriber
model where devices can communicate on topics or channels.
Every ESP8266 device on the network functions as a sensor
that communicates to the Mosquitto broker over individual
topics dedicated to the readings from that sensor. The broker
processes these readings and channels them to the designated
destinations. This choice of a test-bed to evaluate these
techniques on is based on a desire to show the validity of
a similar MTD approach on an easily reproducible setup.

III. THREAT MODEL

In a wastewater treatment facility, various IoT sensors are
deployed to measure different quality indicators such as pH
levels, turbidity, and chlorine levels. These sensors are dis-
tributed across multiple water tanks and send their readings to
a central control system via the MQTT protocol. The Human-
Machine Interface (HMI) screens display these readings to
the operators for monitoring and controlling the facility. The

Human Machine
Interface

-

Messages
subscribed to
using MQTT

((tr))
RPi Mosquitto server

Messages
published using

MQTT

Chlorine Sensor

©

Turbidity sensor

©

pH Sensor

@(%{ﬁm

Fig. 1. The threat model showing the attacker, the sensors, the server and
the human machine interface.

attacker aims to manipulate the pH level readings without
changing the displayed values on the HMI screens. This can
cause potential safety and compliance issues. To achieve this,
the attacker performs a Man-in-the-Middle (MiTM) attack
using ARP spoofing and then launches a Denial of Service
(DoS) attack to disrupt the legitimate sensor data stream.

It can be assumed that the attacker has good knowledge of
the facility’s network to identify the IP and MAC addresses
of the sensors responsible for measuring pH levels and
the MQTT broker. The attacker performs ARP spoofing to
intercept the traffic between one of the pH sensors and the
MQTT broker to understand the conversation and capture
the MQTT Topic and the data stream format. The attacker
records the normal pH levels reported by the actual sensor to
facilitate future replay attacks. The communication between
the sensor and the MQTT broker uses the MAC address of
the sensor as a unique sensor identifier. By sending malicious
ARP replies, the attacker tricks the MQTT broker into trusting
the compromised node. The attacker can then easily replay
an old, captured message showing a normal pH reading. The
facility is assumed to not have any encryption for the sensor
data, a situation unfortunately common in closed, isolated,
and presumably physically secure networks.

The attacker begins injecting fake pH level readings into
the MQTT traffic. These fake readings are designed to appear
normal but slightly deviate from the actual sensor data. To
ensure their fake data remains undetected and to avoid any
suspicions due to discrepancies in the compromised sensor
data stream readings and the other sensors’ readings, the
attacker launches a Ping Flood [14] attack (a type of DoS
attack) against the actual sensor to block or delay their traffic.
This results in the legitimate sensor data being either blocked
or delayed, thereby allowing the attacker to upload their own
manipulated data-points to the HMI screens. At this point,
physical manipulation of the pH concentration will not be

easily detected, and the attacker can cause serious damage.
As the wastewater treatment facility operators rely on the
HMI screens to monitor pH levels, the fake data could cause
the system to either underdose or overdose different chemi-
cals, leading to potential safety hazards such as insufficient
disinfection or chemical overuse. The manipulation might
also cause regulatory compliance issues, resulting in fines or
operational shutdowns.

IV. MOVING TARGET DEFENSE FRAMEWORK

This section will include a discussion on the techniques
utilized to protect against the threat model discussed in the
previous section. It can be ascertained that the network has to
be reinforced against two primary scenarios. Firstly, it should
attempt to hide from an attacker’s view the true schematics
of the network including the list of its device and network
addresses. The proposed method, as described below is to
shuffle these addresses to make it difficult for an attacker
to keep up with the ever-changing parameters. Secondly, in
the event that an attacker does get a hold of legitimate and
active network parameter values and attempts to block the
actual sensor from transmitting data, an approach to remove
the attacker from the network and regain control of the
communication channel is discussed below.

A. Shuffling

In any typical IoT network, the MAC addresses, and the
IP addresses assigned to the devices on it are fixed, and
thereby offer a very convenient attack surface for a malicious
individual. The attempt here is to make any network appear as
a moving target where the MAC addresses of the NodeMCU
devices are programmatically generated and periodically up-
dated. The new MAC addresses are randomly generated and
updated at every chosen interval of time. Each time a new
MAC address is assigned, each device requests a fresh IP
address from the network router. Fig.4 shows how a single
sensor with a single device ID can have multiple MAC and
IP addresses assigned to it as per this moving target defense
methodology.

As outlined in Fig.2 , this approach involves an initial
connect by the sensor to the MQTT network using its original
manufacturer provided MAC address. It is assumed that this
initial addition of devices is carried out in a supervised
fashion where an operator manually whitelists these MAC
addresses and allows the devices to start communicating
on the network. Once a network has established its first
connection, the shuffling technique is implemented following
a pre-specified interval of time after which each sensor then
declares its newly randomized MAC address on a secure
MQTT topic. It is assumed that the attacker is under no
condition able to gain access to the messages being relayed
on this channel. Strict server rules are implemented that
only allow certain whitelisted MAC addresses to establish
connections to the server. Then the server on receiving this
broadcast adds the new MAC address to its list of whitelisted
addresses, and also checks if it is due to purge some of

Initial MQTT connection (

Connection

L approved

New MAC address

Publishing new MAC address on mtd/whitelist (

Sensor

Reconnect attempt with new MAC
and IP address

ﬁ)l)z

Server

added to whitelist

Connection
approved if address

is whitelisted

Data published via MQTT if -
connection approved

Periodic purge of old MAC
addresses once a pre-decided
limit is reached

Fig. 2. The Moving Target Defense methodology showing the MAC address whitelist being updated and subsequent communications via MQTT.

the oldest MAC addresses from its whitelist. This limit of
how many whitelisted addresses to store is dynamic and can
be decided as per the application and the total number of
devices that might be required in the network. This move
ensures that stale addresses get removed in a timely manner,
so that any attacker that manages to get a hold of any
whitelisted MAC address has only a finite amount of time
before that address gets its approval rescinded. Subsequently,
right after broadcasting its new address value, the sensor
terminates the existing Transmission Control Protocol (TCP)
connection, gets assigned a new randomized MAC address,
requests a fresh IP address, and then attempts a reconnect
over MQTT. Once its MAC address is validated against the
approved list of addresses, the device is again allowed to
publish freely on the network till another reshuffle is initiated.
This approach aims to make it significantly more challenging
for an attacker to burrow into a network, reduces the window
during which a network can be successfully scanned, and thus
aims to mitigate some of the common problems that plague
IoT networks. Additionally, certain modifications are made to
address specific concerns that arise when the system has been
actively breached, as demonstrated below.

1) Periodic polling of existing connections: A potential
problem still exists where should an attacker be able to
infiltrate the network by spoofing a whitelisted MAC address,
the approach described above would not be able to terminate
an existing MQTT connection, since no checks are performed
after the initial connection is established. To that end, a
background task on the server is used that can be scheduled

to run periodically every few minutes. As shown in Fig. 3, the
script goes ahead and first retrieves a list of all active MAC
addresses connected to the network. Then, all these addresses
get verified against the present whitelist, which has been
gradually updated by the valid devices on the network, and
every connection with a MAC address which is not present in
the whitelist is immediately flagged as an unauthorized device
and the connection is terminated. After the flagged connection
is terminated, the firewall rules are updated to ensure that
a legitimate sensor is still able to connect using that MAC
address at a later stage. Thus, even if the attacker does spoof
a legitimate MAC address and is able to establish an MQTT
connection, they would only be allowed to transmit data for a
finite amount of time before they are shut out of the system,

Get active MAC addresses

Loop through all addresses

Last active MAC

Add DROP rule for address I
address?

I

Remove DROP rule for address I

Fig. 3. Flowchart showing the technique to purge old connections periodi-
cally.

and they have to go through the procedure of obtaining a fresh
and valid MAC address all over again. The frequency of this
polling methodology can be dynamically altered depending
on the needs of the system, the nature of the attacker, and the
type of timing constraints under consideration.

2) Maintaining a ledger of whitelisted MAC addresses on
sensors: Now, to address the second issue that was broached
earlier, about the scenario where an attacker gets a hold of
the details of the devices on the network and chooses to block
off or delay a sensor from reporting its readings using a ping
flood attack on a device’s IP address. Such an attack would
drastically reduce performance and might even prevent any
traffic from going from the affected sensor to the server. This
means, that there might be a scenario such that, when the
sensor attempts to reshuffle its MAC and IP addresses, it
might be unable to establish a stable enough connection to
publish those details on the whitelist topic. To that end, a very
simple mechanism is proposed where each sensor internally
maintains a ledger of the last few MAC addresses that it had
successfully been allowed to broadcast with. It is assumed that
at the time of the attack, the sensor had been broadcasting for
a while to have these ledgers already populated. Subsequently
a routine is added to the regular MQTT reconnect procedure
where should a sensor fail to connect a few times in a row, as
can be expected in case it hasn’t been able to communicate
its new MAC address yet, the sensor will attempt reconnects
with the old MAC address values stored in its ledger. Multiple
addresses are stored to account for scenarios where either the
attacker has ping flooded other IP addresses that might still be
associated with an old physical address, or in case the oldest
MAC addresses already got purged from the whitelist. Using
a pre-vetted MAC address, the sensor can now reconnect, and
quickly initiate another shuffle before the attacker can catch
on. This ensures that even when the attacker has identified
and blocked off several physical and network addresses that
have been used previously by a sensor, the network has an
inherent ability to rebound from this attack and try to continue
to broadcast information.

MAC Address 1

Q MAC Address 2

MAC Address 3
Device ID Network MAC Address
Address
Xyz 192.158.12.2 MAC Address 1
Xyz 192.158.12.4 MAC Address 2
Xyz 192.158.12.8 MAC Address 3
Xyz 192.158.12.n MAC Address n

Fig. 4. A single sensor in a network can assume multiple MAC and IP
addresses.

B. Summary of Framework
In summary, this framework can be described as:

¢ Dynamically changing the MAC and IP addresses of the
sensors on the network.

« Maintaining a whitelist of approved MAC addresses that
gets routinely updated and maintained.

o Periodically checking to ensure the existence of only
approved devices on the network.

o Maintaining a short local ledger on sensors to attempt
reconnects with in the event of a DoS attack.

V. SYSTEM EVALUATION

In this section, the experimental results obtained are dis-
cussed and evaluated. Firstly, the discussion will focus on the
overhead that the MTD approach introduces into the network
as opposed to a naive system without any form of proactive
security. Secondly, the discussions will revolve around the
observations from conducting an attack on the system as
described in the threat model, and thus showcase the benefits
of using a moving target approach in such situations.

A. Overhead due to Moving Target Defense

In this experiment, the spotlight is on quantifying the
impact of a moving target defense on overall system per-
formance, specifically narrowing down on the total overhead
imposed by this dynamic shuffling technique. A message
exchange between a sensor and an actuator controller server
operating within a mission-critical RT application is simu-
lated. In this scenario, it is assumed that the system has
firm deadlines, as delays in message exchange could result in
delayed actuation, potentially leading to significant issues or
system failure. The experiments are conducted by repeatedly
transmitting a fixed set of messages over the network, first
without any shuffling, and then by gradually introducing the
defense methodology with varying shuffling intervals, and
record the resulting overhead produced. In the context of
an RTS, the messages can be considered to be periodic
tasks with fixed periods and relative deadlines. For a task
to be able to meet its deadline, it needs to successfully be
transmitted over MQTT onto a specific topic and received and
processed by the server within a required amount of time. It
is additionally considered that tasks are released, or become
ready for execution once the previous task has been published.

Fig.5 and Table I show a distinct and predictable trend
with regards to the frequency of the shuffling attempts. The
number of deadline misses and the overhead are derived for
200 messages-each having a specific deadline. Additional
overhead due to network latency, jitter, and transmission
delays are accounted for on top of the delays due to the fresh
reconnect attempts every time a new MAC and IP address
are allotted. Tasks are scheduled to be released 500 ms after
each other, and have an additional 100 ms after being released
to be processed by the server. All the timeliness calculations
occur on the server end in order to avoid issues with clock
drift which would require additional synchronization. If the
actuation server does not receive a new message from the

sensor within 600 ms of the previous one, it discards that
message and records a deadline failure. It can be observed
that with an increase in address shuffling interval from 30 to
70 seconds, the network overhead drops precipitously from
over 36000 ms to 8900 ms, and so do the number of deadline
misses from 5 down to 1. Additionally, it is observed that
when the system is not having to deal with an active attack
on any sensors (as in this case), it is able to predictably
across multiple experiments maintain a stable overhead, that
allows system designers more confidence when it comes to
guaranteeing system behavior and for the building of systems
more compliant to potential deadline misses. In order to show
the nature of the overhead observed by varying other system
parameters as well, Fig.7 can be referred to see how the
system behaves when the period of the tasks, or the inter-
arrival time between tasks is varied. By increasing the period
from 200 to 1000 ms and keeping a constant shuffling interval
of 50 seconds. The trend is complementary of the behavior
observed in Fig. 5 and can be explained as follows. As the
inter arrival time of tasks is increased, keeping the number of
tasks constant, the total time needed to transmit all of the tasks
increases as well. This leads to encountering more reshuffles
while waiting for the tasks to be released, and hence more
overhead.

350001 —&— MTD Overhead

30000+

25000+

20000+

Total Overhead (ms)

15000 1

10000 1

30 40 50 60 70
Interval before the addresses are shuffled(s)

Fig. 5. Total overhead due to MTD as a function of time between shuffling.

TABLE I
SHUFFLING FREQUENCY VS. DEADLINE MISSES AND TOTAL OVERHEAD

Shuffling Frequency (s) | Deadline Misses | Total Overhead (ms)
30 5 36475
40 4 26978
50 3 21800
60 2 14001
70 1 8900

B. Response to ARP spoofing and DoS attacks

Continuing with the example from above, for this exper-
iment a sensor and an actuator communicating in a time-

critical application are considered. The attacker, after attempt-
ing to and failing to connect using random or outdated MAC
addresses, finally manages to find an opportunity to connect
using a scanned MAC address which is still whitelisted. The
attacker is then able to connect, and both listen in on and
publish fake messages on the network. Since the legitimate
sensor has not been completely blocked yet, it still manages
to publish valid data on the server. However, as soon as a few
reshuffle attempts are made, and the background poller task
activates, it promptly disconnects the attacker from the net-
work due to its MAC address not being whitelisted anymore.
After being unable to have any sort of long-term success
with just trying to spoof a MAC address, the attacker tries
to block the sensor from communicating with the actuator by
performing a DoS attack on an active IP address they managed
to scan. Fig.6 shows the delays or total overhead imposed on
a naive and an MTD framework equipped system, when under
DoS attack. The MTD framework can be seen to lead to a
slightly higher overhead across the first few messages, which
is primarily due to the multiple reconnect attempts made
before the sensor successfully reverts to a MAC address from
its internal ledger. These changes alongside a change in its IP
address helps repel the attempt to block communications. It
can be clearly observed how over time the MTD framework
is able to resist the DoS attack, and deliver a much lower
overhead, and hence much better performance than a naive
system. Thus, unlike a regular system, the attacker must
constantly struggle to gain the upper hand against the system’s
inherent characteristics.

Overhead observed when a sensor has a DoS attack carried out on it

—e— MTD Technique
250000 1 —g— Naive System

200000 4

150000 4

Total Overhead (ms)

100000 4

50000

0 100 200 300 400 500
Number of Messages Sent

Fig. 6. Comparing the overhead of MTD to a naive approach when under a
DoS attack

VI. FUTURE WORK
A. Authentication

MQTT communication can be made significantly more
secure by using the Transport Layer Security (TLS) pro-
tocol [15]. This involves using certificates to validate the
authenticity of all the clients as well as the server. Since
MQTT is a light-weight protocol, TLS helps provide security
against known network level threats by providing a layer
of encryption to the communication, and thereby makes it

—a— MTD Overhead
35000+

30000+

25000+

20000+

Total Overhead (ms)

15000+

10000

200 300 400 500 600 700 800 900 1000
Period of tasks(in ms)

Fig. 7. Total overhead observed due to MTD vs. varying task periods

difficult for any bad actor to decipher the contents of the
messages exchanged on the network. Due to the resource
constrained nature of IoT applications, encryption is often
forsaken for want of performance, however moving forward
the aim is to showcase a way to include encryption and still
maintain timeliness constraints. While encryption alone might
not be enough to deter determined attackers, an MTD based
approach coupled with encrypted data channels promises to
be challenging to most bad actors.

B. Multi-factor decision making algorithm

As observed in the previous sections, despite the system
having many dynamic parameters, there still remain several
key items such as the address shuffling interval, the number
of addresses to whitelist at any given time, and the period of
the background poller task, that are constant during program
execution. This work can be extended to allow for these pa-
rameters to be changed on the fly as per the circumstances of
the system. Further research will make use of modern learning
based techniques to be able to flag critical situations when the
system is under extreme duress. Under such circumstances,
the system would react by reducing the shuffling interval, and
increasing the frequency of the background poller to quickly
and efficiently gain an upper hand over most attackers. This
would allow the most judicious use of system resources due
to the ability to switch between modes of operation based on
perceived threat levels.

VII. CONCLUSION

This paper is an attempt to draw attention to the need
to develop Real-Time Cyber Physical Systems with a direct
emphasis on the security needs that may plague it. With
attackers getting smarter and better equipped, the need of
the hour is a proactive design mindset. This research has
shown how making the target mobile makes it significantly
harder to hit, and even in the scenario that the attacker
catches up to the defense technique, how their ability to cause
damage can be limited. This moving target defense method

is shown to be useful against attackers attempting to breach
a network, and the results can easily be replicated across
multiple combinations of hardware and firmware with minor
system specific changes. Additionally, this aims to give other
checks and balances that might be present in surrounding
systems, or even the humans in charge, the time to spot
irregularities in the readings and prevent the situation from
snowballing into something more serious.

REFERENCES

[1] X. Gao, T. Shang, D. Li, and J. Liu, “Quantitative risk assessment of
threats on scada systems using attack countermeasure tree,” in 2022
19th Annual International Conference on Privacy, Security & Trust
(PST), 2022, pp. 1-5.

[2] K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and
attacks including false data injection attack in smart grid using kalman
filter,” IEEE Transactions on Control of Network Systems, vol. 1, no. 4,
pp. 370-379, Dec. 2014.

[3] K. Koscher et al., “Experimental security analysis of a modern auto-

mobile,” in 2010 IEEE Symposium on Security and Privacy, Oakland,

CA, USA, 2010, pp. 447-462.

W. Duso, M. Zhou, and A. Abusorrah, “A survey of cyber attacks on

cyber physical systems: Recent advances and challenges,” IEEE/CAA

Journal of Automatica Sinica, vol. 9, no. JAS-2021-1215, p. 784, 2022.

[5] J. Zheng and A. S. Namin, “A survey on the moving target defense
strategies: An architectural perspective,” Journal of Computer Science
and Technology, vol. 34, no. 1, pp. 207-233, 2019. [Online]. Available:
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1906-z

[6] Y. Magdy, M. Azab, A. Hamada, M. R. M. Rizk, and N. Sadek,

“Moving-target defense in depth: Pervasive self- and situation-

aware vm mobilization across federated clouds in presence of

active attacks,” Sensors, vol. 22, no. 23, 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/23/9548

A. Clark, K. Sun, L. Bushnell, and R. Poovendran, “A game-theoretic

approach to ip address randomization in decoy-based cyber defense,”

in Decision and Game Theory for Security (GameSec 2015), November

2015, pp. 3-21.

[8] M. Azab, M. Samir, and E. Samir, ““mystify”: A proactive moving-
target defense for a resilient sdn controller in software defined
cps,” Computer Communications, vol. 189, pp. 205-220, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
50140366422000949

[91 Y. Huang and A. K. Ghosh, Introducing Diversity and Uncertainty
to Create Moving Attack Surfaces for Web Services. New York,
NY: Springer New York, 2011, pp. 131-151. [Online]. Available:
https://doi.org/10.1007/978-1-4614-0977-9_8

[10] K. Zeitz, M. Cantrell, R. Marchany, and J. Tront, “Designing a micro-
moving target ipv6 defense for the internet of things,” in Proceedings
of the 2nd International Conference on Internet of Things, Big Data
and Security (IoTBDS), April 2017, pp. 179-184.

[11] R. W. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, ser.
Addison-Wesley Professional Computing Series. Addison-Wesley,
January 1994.

[12] R. Kaur, G. Singh, and S. Khurana, “A security approach to prevent arp
poisoning and defensive tools,” International Journal of Computer and
Communication System Engineering 2312- 7694, vol. 2, pp. 431437,
07 2015.

[13] J. S. Meghana, T. Subashri, and K. Vimal, “A survey on arp cache
poisoning and techniques for detection and mitigation,” in 2017 Fourth
International Conference on Signal Processing, Communication and
Networking (ICSCN), 2017, pp. 1-6.

[14] D. Stiawan, M. E. Suryani, Susanto, M. Y. Idris, M. N. Aldalaien,
N. Alsharif, and R. Budiarto, “Ping flood attack pattern recognition
using a k-means algorithm in an internet of things (iot) network,” IEEE
Access, vol. 9, pp. 116475-116484, 2021.

[15] E. Rescorla, “Rfc 8446: The transport layer security (tls) protocol
version 1.3,” USA, 2018.

[4

=

[7

—

https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1906-z
https://www.mdpi.com/1424-8220/22/23/9548
https://www.sciencedirect.com/science/article/pii/S0140366422000949
https://www.sciencedirect.com/science/article/pii/S0140366422000949
https://doi.org/10.1007/978-1-4614-0977-9_8

	Introduction
	Targeted Threat Vectors
	ARP spoofing
	DoS attack
	System specifications

	Threat Model
	Moving Target Defense Framework
	Shuffling
	Periodic polling of existing connections
	Maintaining a ledger of whitelisted MAC addresses on sensors

	Summary of Framework

	System Evaluation
	Overhead due to Moving Target Defense
	Response to ARP spoofing and DoS attacks

	Future Work
	Authentication
	Multi-factor decision making algorithm

	Conclusion
	References

