
Enabling Moving Target Defense for Real-Time
CPS Security

Rajarshi Mukherjee

Department of Electrical and

Computer Engineering

Virginia Tech

Arlington, Virginia, USA

rajarshim13@vt.edu

Mohamed Azab

Department of Computer and

Information Sciences

Virginia Military Institute

Lexington, Virginia, USA

azabmm@vmi.edu,

mazab@vt.edu

Thidapat Chantem

Department of Electrical and

Computer Engineering

Virginia Tech

Arlington, Virginia, USA

tchantem@vt.edu

Abstract—The Internet of Things (IoT) phenomenon has
rather quickly enveloped modern society leading to regular
interactions with several IoT devices and networks. Due to
the exponential increase in the utilization of such devices,
coupled with inherent limitations such as resource constraints
and outdated firmware these devices are vulnerable and may be
regularly subject to various threats. Most such systems lack any
and all forms of encryption due to cost and resource constraints,
as well as the general perception that such devices pose a low risk
for attacks. Additionally, IoT networks are also present in several
Cyber-Physical System (CPS) based applications such as water
treatment facilities, where an entity can exploit these vulnera-
bilities to cause an attack with far-reaching consequences. With
that in mind, a Moving Target Defense (MTD) is an emerging
tactic to help shore up the defenses of such networks. This is
done by regularly updating system parameters with the intention
of putting up barriers for any malicious individual attempting
to breach the network. This work deals with an attack scenario,
wherein an attacker aims to take control of the sensors in a
wastewater treatment facility, with the intention of deceiving
the operators of said facility. An attack of this manner has the
ability to tamper with the chemical composition of the treated
wastewater which can end up devastating the ecosystems that
this water gets released back into. This paper shows how an
attacker can perform a Man-in-the-Middle (MiTM) attack using
ARP (Address Resolution Protocol) spoofing and subsequently
launch a Denial of Service (DoS) attack on the sensor network
and disrupt the legitimate data stream. Based on this attack,
an MTD approach is proposed, which is based on the routine
updating of the IP and MAC addresses of the sensors with the
aim to obfuscate as much of the network from the attacker
as possible. The findings show that this method significantly
improves the network’s ability to resist ARP spoofing and allows
it to gracefully recover from a DoS attack. Additionally, this
work experimentally showcases the overhead these techniques
may impose. This would allow for system designers to provision
for the resources needed without affecting the timeliness of time-
sensitive systems, i.e., Real-Time Systems (RTS).

Index Terms—moving target defense, mqtt, sensors, rts

This paper was supported in part by the National Science Foundation
(NSF) under grant number CPS-2038726, and by the Commonwealth Cyber
Initiative, an investment in the advancement of cyber R&D, innovation,
and workforce development. For more information about CCI, visit www.
cyberinitiative.org.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are consolidated systems

where a mixture of computational elements and sensors are

tasked with the monitoring, logging, and regulation of phys-

ical objects in real time. Over the years, such systems have

been deployed to control critical infrastructure, some of which

have recently been found to have several vulnerabilities,

such as Supervisory Control and Data Acquisition (SCADA)

systems [1], smart grids [2], and automobiles [3]. [4] shows

the terrifying potential of such attacks with hospitals, power-

plants , and oil pipelines all being targeted. This work looks at

such a Real-Time CPS (i.e., CPS with timing constraints), that

has been crafted using common sensors utilized in Internet of

Things(IoT) networks, which communicate over Wi-Fi as is

common in several applications. Thereafter, some common

security challenges that such a system faces are analyzed

and a Moving Target Defense (MTD) based approach is

employed to help secure it. Security in such systems can

be imagined to be similar to a constant game of hide-and-

seek, where the network is trying its best to hide the true

details of its configuration layout and schematics, while the

attacker is always chasing down different pathways to glean

more details. [5] best describes MTD as a method to increase

the “uncertainty and unpredictability” of a system in a way

that improves its security while still allowing it to maintain

a similar level of utility. Previous work in this domain [6]

have noted how MTD approaches can be broadly classified

under shuffling, redundancy and diversity. While there have

been approaches discussing IP randomization [7], SDN based

MTD approaches [8], virtualization based techniques [9], and

even IPv6 based approaches [10], there has been a dearth of

research specifically looking at device level implementations

for IoT networks. This research is an attempt to showcase the

feasibility of having an MTD based approach on a realistic

test-bed to tackle a real world threat model, and assess

its benefits in contrast to the costs it imposes on system

resources.

This work falls squarely under the shuffling category of

MTD techniques. By continuously varying and hence hiding

the system parameters, the aim is to show that by creating a979-8-3315-4090-6/24/$31.00 ©2024 IEEE

www.cyberinitiative.org
www.cyberinitiative.org

continually moving target for attackers, the overall difficulty

of breaking into a system is significantly increased. The

primary focus of this paper is to emphasize how projects both

small and big in scale need to implement robust and proactive

defense techniques to repel bad actors. These projects also

include real-time CPS where overhead due to MTD must be

accounted for in order to guarantee performance. In our CPS,

for instance, data that is delivered to the system late may be of

limited use and might be discarded. Thereby, any attacker who

can even slightly delay the transmission of accurate data, can

end up causing several missed deadlines, and significantly re-

duce performance. To that end, the total overhead introduced

by this approach, compared to a defenseless network, reflects

the costs associated with implementing an MTD setup in such

a system. This work helps show how such a defense technique

can easily be adopted on any general connected system that

involves sensors communicating over commonly intercepted

media such as Wi-Fi, and the benefits derived from having

such a proactive approach to system design.

II. TARGETED THREAT VECTORS

In this section, the primary threat types dealt with are

examined, alongside a discussion on how a bad actor might

carry out such attacks on a network in order to hamstring its

ability to communicate reliably.

A. ARP spoofing

When devices on the same local network need to differen-

tiate amongst each other, they do so on the basis of a 48 bit

12 digit hexadecimal number popularly known as the Media

Access Control (MAC) address. By design, these addresses

could potentially be thought of to be specific to a given

device or computer, and something that is encoded into the

hardware by the device manufacturer. However, there do exist

several tools and software programs that allow individuals the

ability to change their MAC addresses to any desired address,

a fact which opens up the potential of spoofing a known

device’s MAC address and essentially taking the place of the

target device in a network. On the other hand, when devices

want to communicate globally on the internet across multiple

networks, they require an Internet Protocol (IP) address to

help enable communication. Assuming that the IP addresses

of two devices are known, when communication between the

two is attempted, a secondary protocol is required to resolve

which physical device has been assigned a particular network

address. To that end, the Address Resolution Protocol (ARP)

is utilized to help the devices finally achieve communication

[11].

ARP works on the basis of requests and replies, where

the sending device first broadcasts an ARP request across the

network containing the IP address of the intended recipient

and requests its associated MAC address. The receiving

device assigned to that IP address then posts an ARP reply,

containing its MAC address, in turn verifying its identity. This

communication is generally unencrypted and is hence highly

prone to spoofing or poisoning attacks [12]. In practice, an

attacker with access to a network could use several tools to

eavesdrop upon the ARP requests and replies to ascertain the

addresses of the devices communicating on it. Therein, they

could choose to assume the identity of one of these devices by

spoofing their MAC address. This opens up a lot of channels

of attacks [13] where attackers could choose to listen in on

privileged communication, assume the identity of a chosen

device and inject fake data, or stop the chosen device from

communicating freely.

B. DoS attack

Denial of service attacks, as the name suggests, attempt

to prevent a machine or a network node from providing its

regular service by overwhelming its capabilities through a

constant barrage of directed requests. DoS attacks are similar

to a battering ram, and they come in with the sole intention

to completely overcome a target’s ability to deal with the

traffic directed their way, and thus degrade the performance

of entire systems. IoT systems with their scarce resources

offer a lucrative target for bad actors to launch DoS attacks

on. DoS attacks are also commonly used in conjunction with

a spoofing attack to block actual data from being transmitted

while the attacker can inject manipulated data in its stead.

C. System specifications

For evaluations three ESP 8266 NodeMCU devices are

used, with each simulating a sensor in a network. Each

NodeMCU has an Xtensa LX106 microcontroller, with 4

MB of flash memory, and an on-board Wi-Fi module. The

low-cost nature of these boards, along with their ability to

communicate over both bluetooth and Wi-Fi, makes them an

ideal choice for several Internet of Things (IoT) applications.

A Mosquitto server is deployed on a Linux based Raspberry

Pi 4 Model B (quad core ARM Cortex-A72 processor, 2GB

RAM), and set up with a Message Queue Telemetry Transport

(MQTT) based communication network to best mimic an

actual IoT application. MQTT is a popular and lightweight

communication protocol that is preferred for many resource-

constrained applications. It operates on a publisher-subscriber

model where devices can communicate on topics or channels.

Every ESP8266 device on the network functions as a sensor

that communicates to the Mosquitto broker over individual

topics dedicated to the readings from that sensor. The broker

processes these readings and channels them to the designated

destinations. This choice of a test-bed to evaluate these

techniques on is based on a desire to show the validity of

a similar MTD approach on an easily reproducible setup.

III. THREAT MODEL

In a wastewater treatment facility, various IoT sensors are

deployed to measure different quality indicators such as pH

levels, turbidity, and chlorine levels. These sensors are dis-

tributed across multiple water tanks and send their readings to

a central control system via the MQTT protocol. The Human-

Machine Interface (HMI) screens display these readings to

the operators for monitoring and controlling the facility. The

Fig. 1. The threat model showing the attacker, the sensors, the server and
the human machine interface.

attacker aims to manipulate the pH level readings without

changing the displayed values on the HMI screens. This can

cause potential safety and compliance issues. To achieve this,

the attacker performs a Man-in-the-Middle (MiTM) attack

using ARP spoofing and then launches a Denial of Service

(DoS) attack to disrupt the legitimate sensor data stream.

It can be assumed that the attacker has good knowledge of

the facility’s network to identify the IP and MAC addresses

of the sensors responsible for measuring pH levels and

the MQTT broker. The attacker performs ARP spoofing to

intercept the traffic between one of the pH sensors and the

MQTT broker to understand the conversation and capture

the MQTT Topic and the data stream format. The attacker

records the normal pH levels reported by the actual sensor to

facilitate future replay attacks. The communication between

the sensor and the MQTT broker uses the MAC address of

the sensor as a unique sensor identifier. By sending malicious

ARP replies, the attacker tricks the MQTT broker into trusting

the compromised node. The attacker can then easily replay

an old, captured message showing a normal pH reading. The

facility is assumed to not have any encryption for the sensor

data, a situation unfortunately common in closed, isolated,

and presumably physically secure networks.

The attacker begins injecting fake pH level readings into

the MQTT traffic. These fake readings are designed to appear

normal but slightly deviate from the actual sensor data. To

ensure their fake data remains undetected and to avoid any

suspicions due to discrepancies in the compromised sensor

data stream readings and the other sensors’ readings, the

attacker launches a Ping Flood [14] attack (a type of DoS

attack) against the actual sensor to block or delay their traffic.

This results in the legitimate sensor data being either blocked

or delayed, thereby allowing the attacker to upload their own

manipulated data-points to the HMI screens. At this point,

physical manipulation of the pH concentration will not be

easily detected, and the attacker can cause serious damage.

As the wastewater treatment facility operators rely on the

HMI screens to monitor pH levels, the fake data could cause

the system to either underdose or overdose different chemi-

cals, leading to potential safety hazards such as insufficient

disinfection or chemical overuse. The manipulation might

also cause regulatory compliance issues, resulting in fines or

operational shutdowns.

IV. MOVING TARGET DEFENSE FRAMEWORK

This section will include a discussion on the techniques

utilized to protect against the threat model discussed in the

previous section. It can be ascertained that the network has to

be reinforced against two primary scenarios. Firstly, it should

attempt to hide from an attacker’s view the true schematics

of the network including the list of its device and network

addresses. The proposed method, as described below is to

shuffle these addresses to make it difficult for an attacker

to keep up with the ever-changing parameters. Secondly, in

the event that an attacker does get a hold of legitimate and

active network parameter values and attempts to block the

actual sensor from transmitting data, an approach to remove

the attacker from the network and regain control of the

communication channel is discussed below.

A. Shuffling

In any typical IoT network, the MAC addresses, and the

IP addresses assigned to the devices on it are fixed, and

thereby offer a very convenient attack surface for a malicious

individual. The attempt here is to make any network appear as

a moving target where the MAC addresses of the NodeMCU

devices are programmatically generated and periodically up-

dated. The new MAC addresses are randomly generated and

updated at every chosen interval of time. Each time a new

MAC address is assigned, each device requests a fresh IP

address from the network router. Fig.4 shows how a single

sensor with a single device ID can have multiple MAC and

IP addresses assigned to it as per this moving target defense

methodology.

As outlined in Fig.2 , this approach involves an initial

connect by the sensor to the MQTT network using its original

manufacturer provided MAC address. It is assumed that this

initial addition of devices is carried out in a supervised

fashion where an operator manually whitelists these MAC

addresses and allows the devices to start communicating

on the network. Once a network has established its first

connection, the shuffling technique is implemented following

a pre-specified interval of time after which each sensor then

declares its newly randomized MAC address on a secure

MQTT topic. It is assumed that the attacker is under no

condition able to gain access to the messages being relayed

on this channel. Strict server rules are implemented that

only allow certain whitelisted MAC addresses to establish

connections to the server. Then the server on receiving this

broadcast adds the new MAC address to its list of whitelisted

addresses, and also checks if it is due to purge some of

Initial MQTT connection

Publishing new MAC address on mtd/whitelist

Reconnect attempt with new MAC

and IP address

Connection

approved

New MAC address

added to whitelist

Connection

approved if address

is whitelisted

Data published via MQTT if

connection approved

Sensor Server

Periodic purge of old MAC

addresses once a pre-decided
limit is reached

Fig. 2. The Moving Target Defense methodology showing the MAC address whitelist being updated and subsequent communications via MQTT.

the oldest MAC addresses from its whitelist. This limit of

how many whitelisted addresses to store is dynamic and can

be decided as per the application and the total number of

devices that might be required in the network. This move

ensures that stale addresses get removed in a timely manner,

so that any attacker that manages to get a hold of any

whitelisted MAC address has only a finite amount of time

before that address gets its approval rescinded. Subsequently,

right after broadcasting its new address value, the sensor

terminates the existing Transmission Control Protocol (TCP)

connection, gets assigned a new randomized MAC address,

requests a fresh IP address, and then attempts a reconnect

over MQTT. Once its MAC address is validated against the

approved list of addresses, the device is again allowed to

publish freely on the network till another reshuffle is initiated.

This approach aims to make it significantly more challenging

for an attacker to burrow into a network, reduces the window

during which a network can be successfully scanned, and thus

aims to mitigate some of the common problems that plague

IoT networks. Additionally, certain modifications are made to

address specific concerns that arise when the system has been

actively breached, as demonstrated below.

1) Periodic polling of existing connections: A potential

problem still exists where should an attacker be able to

infiltrate the network by spoofing a whitelisted MAC address,

the approach described above would not be able to terminate

an existing MQTT connection, since no checks are performed

after the initial connection is established. To that end, a

background task on the server is used that can be scheduled

to run periodically every few minutes. As shown in Fig. 3, the

script goes ahead and first retrieves a list of all active MAC

addresses connected to the network. Then, all these addresses

get verified against the present whitelist, which has been

gradually updated by the valid devices on the network, and

every connection with a MAC address which is not present in

the whitelist is immediately flagged as an unauthorized device

and the connection is terminated. After the flagged connection

is terminated, the firewall rules are updated to ensure that

a legitimate sensor is still able to connect using that MAC

address at a later stage. Thus, even if the attacker does spoof

a legitimate MAC address and is able to establish an MQTT

connection, they would only be allowed to transmit data for a

finite amount of time before they are shut out of the system,

Start



Loop through all addresses

Is MAC in

whitelist? Add DROP rule for address

Remove DROP rule for address

Last active MAC

address?

No

YesYes No
Stop

Fig. 3. Flowchart showing the technique to purge old connections periodi-
cally.

and they have to go through the procedure of obtaining a fresh

and valid MAC address all over again. The frequency of this

polling methodology can be dynamically altered depending

on the needs of the system, the nature of the attacker, and the

type of timing constraints under consideration.

2) Maintaining a ledger of whitelisted MAC addresses on

sensors: Now, to address the second issue that was broached

earlier, about the scenario where an attacker gets a hold of

the details of the devices on the network and chooses to block

off or delay a sensor from reporting its readings using a ping

flood attack on a device’s IP address. Such an attack would

drastically reduce performance and might even prevent any

traffic from going from the affected sensor to the server. This

means, that there might be a scenario such that, when the

sensor attempts to reshuffle its MAC and IP addresses, it

might be unable to establish a stable enough connection to

publish those details on the whitelist topic. To that end, a very

simple mechanism is proposed where each sensor internally

maintains a ledger of the last few MAC addresses that it had

successfully been allowed to broadcast with. It is assumed that

at the time of the attack, the sensor had been broadcasting for

a while to have these ledgers already populated. Subsequently

a routine is added to the regular MQTT reconnect procedure

where should a sensor fail to connect a few times in a row, as

can be expected in case it hasn’t been able to communicate

its new MAC address yet, the sensor will attempt reconnects

with the old MAC address values stored in its ledger. Multiple

addresses are stored to account for scenarios where either the

attacker has ping flooded other IP addresses that might still be

associated with an old physical address, or in case the oldest

MAC addresses already got purged from the whitelist. Using

a pre-vetted MAC address, the sensor can now reconnect, and

quickly initiate another shuffle before the attacker can catch

on. This ensures that even when the attacker has identified

and blocked off several physical and network addresses that

have been used previously by a sensor, the network has an

inherent ability to rebound from this attack and try to continue

to broadcast information.

MAC Address 2

MAC Address 1

Device ID Network

Address

MAC Address

xyz 192.158.12.2 MAC Address 1

xyz 192.158.12.4 

xyz 192.158.12.8 

xyz 192.158.12.n 

MAC Address n

MAC Address 3

Fig. 4. A single sensor in a network can assume multiple MAC and IP
addresses.

B. Summary of Framework

In summary, this framework can be described as:

• Dynamically changing the MAC and IP addresses of the

sensors on the network.

• Maintaining a whitelist of approved MAC addresses that

gets routinely updated and maintained.

• Periodically checking to ensure the existence of only

approved devices on the network.

• Maintaining a short local ledger on sensors to attempt

reconnects with in the event of a DoS attack.

V. SYSTEM EVALUATION

In this section, the experimental results obtained are dis-

cussed and evaluated. Firstly, the discussion will focus on the

overhead that the MTD approach introduces into the network

as opposed to a naive system without any form of proactive

security. Secondly, the discussions will revolve around the

observations from conducting an attack on the system as

described in the threat model, and thus showcase the benefits

of using a moving target approach in such situations.

A. Overhead due to Moving Target Defense

In this experiment, the spotlight is on quantifying the

impact of a moving target defense on overall system per-

formance, specifically narrowing down on the total overhead

imposed by this dynamic shuffling technique. A message

exchange between a sensor and an actuator controller server

operating within a mission-critical RT application is simu-

lated. In this scenario, it is assumed that the system has

firm deadlines, as delays in message exchange could result in

delayed actuation, potentially leading to significant issues or

system failure. The experiments are conducted by repeatedly

transmitting a fixed set of messages over the network, first

without any shuffling, and then by gradually introducing the

defense methodology with varying shuffling intervals, and

record the resulting overhead produced. In the context of

an RTS, the messages can be considered to be periodic

tasks with fixed periods and relative deadlines. For a task

to be able to meet its deadline, it needs to successfully be

transmitted over MQTT onto a specific topic and received and

processed by the server within a required amount of time. It

is additionally considered that tasks are released, or become

ready for execution once the previous task has been published.

Fig.5 and Table I show a distinct and predictable trend

with regards to the frequency of the shuffling attempts. The

number of deadline misses and the overhead are derived for

200 messages-each having a specific deadline. Additional

overhead due to network latency, jitter, and transmission

delays are accounted for on top of the delays due to the fresh

reconnect attempts every time a new MAC and IP address

are allotted. Tasks are scheduled to be released 500 ms after

each other, and have an additional 100 ms after being released

to be processed by the server. All the timeliness calculations

occur on the server end in order to avoid issues with clock

drift which would require additional synchronization. If the

actuation server does not receive a new message from the

sensor within 600 ms of the previous one, it discards that

message and records a deadline failure. It can be observed

that with an increase in address shuffling interval from 30 to

70 seconds, the network overhead drops precipitously from

over 36000 ms to 8900 ms, and so do the number of deadline

misses from 5 down to 1. Additionally, it is observed that

when the system is not having to deal with an active attack

on any sensors (as in this case), it is able to predictably

across multiple experiments maintain a stable overhead, that

allows system designers more confidence when it comes to

guaranteeing system behavior and for the building of systems

more compliant to potential deadline misses. In order to show

the nature of the overhead observed by varying other system

parameters as well, Fig.7 can be referred to see how the

system behaves when the period of the tasks, or the inter-

arrival time between tasks is varied. By increasing the period

from 200 to 1000 ms and keeping a constant shuffling interval

of 50 seconds. The trend is complementary of the behavior

observed in Fig. 5 and can be explained as follows. As the

inter arrival time of tasks is increased, keeping the number of

tasks constant, the total time needed to transmit all of the tasks

increases as well. This leads to encountering more reshuffles

while waiting for the tasks to be released, and hence more

overhead.

30 40 50 60 70
Interval before the addresses are shuffled(s)

10000

15000

20000

25000

30000

35000

To
ta

l O
ve

rh
ea

d
(m

s)

MTD Overhead

Fig. 5. Total overhead due to MTD as a function of time between shuffling.

TABLE I
SHUFFLING FREQUENCY VS. DEADLINE MISSES AND TOTAL OVERHEAD

Shuffling Frequency (s) Deadline Misses Total Overhead (ms)
30 5 36475
40 4 26978
50 3 21800
60 2 14001
70 1 8900

B. Response to ARP spoofing and DoS attacks

Continuing with the example from above, for this exper-

iment a sensor and an actuator communicating in a time-

critical application are considered. The attacker, after attempt-

ing to and failing to connect using random or outdated MAC

addresses, finally manages to find an opportunity to connect

using a scanned MAC address which is still whitelisted. The

attacker is then able to connect, and both listen in on and

publish fake messages on the network. Since the legitimate

sensor has not been completely blocked yet, it still manages

to publish valid data on the server. However, as soon as a few

reshuffle attempts are made, and the background poller task

activates, it promptly disconnects the attacker from the net-

work due to its MAC address not being whitelisted anymore.

After being unable to have any sort of long-term success

with just trying to spoof a MAC address, the attacker tries

to block the sensor from communicating with the actuator by

performing a DoS attack on an active IP address they managed

to scan. Fig.6 shows the delays or total overhead imposed on

a naive and an MTD framework equipped system, when under

DoS attack. The MTD framework can be seen to lead to a

slightly higher overhead across the first few messages, which

is primarily due to the multiple reconnect attempts made

before the sensor successfully reverts to a MAC address from

its internal ledger. These changes alongside a change in its IP

address helps repel the attempt to block communications. It

can be clearly observed how over time the MTD framework

is able to resist the DoS attack, and deliver a much lower

overhead, and hence much better performance than a naive

system. Thus, unlike a regular system, the attacker must

constantly struggle to gain the upper hand against the system’s

inherent characteristics.

0 100 200 300 400 500
Number of Messages Sent

0

50000

100000

150000

200000

250000

To
ta

l O
ve

rh
ea

d
(m

s)

Overhead observed when a sensor has a DoS attack carried out on it
MTD Technique
Naive System

Fig. 6. Comparing the overhead of MTD to a naive approach when under a
DoS attack

VI. FUTURE WORK

A. Authentication

MQTT communication can be made significantly more

secure by using the Transport Layer Security (TLS) pro-

tocol [15]. This involves using certificates to validate the

authenticity of all the clients as well as the server. Since

MQTT is a light-weight protocol, TLS helps provide security

against known network level threats by providing a layer

of encryption to the communication, and thereby makes it

200 300 400 500 600 700 800 900 1000
Period of tasks(in ms)

10000

15000

20000

25000

30000

35000

To
ta

l O
ve

rh
ea

d
(m

s)
MTD Overhead

Fig. 7. Total overhead observed due to MTD vs. varying task periods

difficult for any bad actor to decipher the contents of the

messages exchanged on the network. Due to the resource

constrained nature of IoT applications, encryption is often

forsaken for want of performance, however moving forward

the aim is to showcase a way to include encryption and still

maintain timeliness constraints. While encryption alone might

not be enough to deter determined attackers, an MTD based

approach coupled with encrypted data channels promises to

be challenging to most bad actors.

B. Multi-factor decision making algorithm

As observed in the previous sections, despite the system

having many dynamic parameters, there still remain several

key items such as the address shuffling interval, the number

of addresses to whitelist at any given time, and the period of

the background poller task, that are constant during program

execution. This work can be extended to allow for these pa-

rameters to be changed on the fly as per the circumstances of

the system. Further research will make use of modern learning

based techniques to be able to flag critical situations when the

system is under extreme duress. Under such circumstances,

the system would react by reducing the shuffling interval, and

increasing the frequency of the background poller to quickly

and efficiently gain an upper hand over most attackers. This

would allow the most judicious use of system resources due

to the ability to switch between modes of operation based on

perceived threat levels.

VII. CONCLUSION

This paper is an attempt to draw attention to the need

to develop Real-Time Cyber Physical Systems with a direct

emphasis on the security needs that may plague it. With

attackers getting smarter and better equipped, the need of

the hour is a proactive design mindset. This research has

shown how making the target mobile makes it significantly

harder to hit, and even in the scenario that the attacker

catches up to the defense technique, how their ability to cause

damage can be limited. This moving target defense method

is shown to be useful against attackers attempting to breach

a network, and the results can easily be replicated across

multiple combinations of hardware and firmware with minor

system specific changes. Additionally, this aims to give other

checks and balances that might be present in surrounding

systems, or even the humans in charge, the time to spot

irregularities in the readings and prevent the situation from

snowballing into something more serious.

REFERENCES

[1] X. Gao, T. Shang, D. Li, and J. Liu, “Quantitative risk assessment of
threats on scada systems using attack countermeasure tree,” in 2022

19th Annual International Conference on Privacy, Security & Trust

(PST), 2022, pp. 1–5.
[2] K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and

attacks including false data injection attack in smart grid using kalman
filter,” IEEE Transactions on Control of Network Systems, vol. 1, no. 4,
pp. 370–379, Dec. 2014.

[3] K. Koscher et al., “Experimental security analysis of a modern auto-
mobile,” in 2010 IEEE Symposium on Security and Privacy, Oakland,
CA, USA, 2010, pp. 447–462.

[4] W. Duso, M. Zhou, and A. Abusorrah, “A survey of cyber attacks on
cyber physical systems: Recent advances and challenges,” IEEE/CAA

Journal of Automatica Sinica, vol. 9, no. JAS-2021-1215, p. 784, 2022.
[5] J. Zheng and A. S. Namin, “A survey on the moving target defense

strategies: An architectural perspective,” Journal of Computer Science

and Technology, vol. 34, no. 1, pp. 207–233, 2019. [Online]. Available:
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1906-z

[6] Y. Magdy, M. Azab, A. Hamada, M. R. M. Rizk, and N. Sadek,
“Moving-target defense in depth: Pervasive self- and situation-
aware vm mobilization across federated clouds in presence of
active attacks,” Sensors, vol. 22, no. 23, 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/23/9548

[7] A. Clark, K. Sun, L. Bushnell, and R. Poovendran, “A game-theoretic
approach to ip address randomization in decoy-based cyber defense,”
in Decision and Game Theory for Security (GameSec 2015), November
2015, pp. 3–21.

[8] M. Azab, M. Samir, and E. Samir, ““mystify”: A proactive moving-
target defense for a resilient sdn controller in software defined
cps,” Computer Communications, vol. 189, pp. 205–220, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0140366422000949

[9] Y. Huang and A. K. Ghosh, Introducing Diversity and Uncertainty

to Create Moving Attack Surfaces for Web Services. New York,
NY: Springer New York, 2011, pp. 131–151. [Online]. Available:
https://doi.org/10.1007/978-1-4614-0977-9 8

[10] K. Zeitz, M. Cantrell, R. Marchany, and J. Tront, “Designing a micro-
moving target ipv6 defense for the internet of things,” in Proceedings

of the 2nd International Conference on Internet of Things, Big Data

and Security (IoTBDS), April 2017, pp. 179–184.
[11] R. W. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, ser.

Addison-Wesley Professional Computing Series. Addison-Wesley,
January 1994.

[12] R. Kaur, G. Singh, and S. Khurana, “A security approach to prevent arp
poisoning and defensive tools,” International Journal of Computer and

Communication System Engineering 2312- 7694, vol. 2, pp. 431–437,
07 2015.

[13] J. S. Meghana, T. Subashri, and K. Vimal, “A survey on arp cache
poisoning and techniques for detection and mitigation,” in 2017 Fourth

International Conference on Signal Processing, Communication and

Networking (ICSCN), 2017, pp. 1–6.
[14] D. Stiawan, M. E. Suryani, Susanto, M. Y. Idris, M. N. Aldalaien,

N. Alsharif, and R. Budiarto, “Ping flood attack pattern recognition
using a k-means algorithm in an internet of things (iot) network,” IEEE

Access, vol. 9, pp. 116 475–116 484, 2021.
[15] E. Rescorla, “Rfc 8446: The transport layer security (tls) protocol

version 1.3,” USA, 2018.

https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1906-z
https://www.mdpi.com/1424-8220/22/23/9548
https://www.sciencedirect.com/science/article/pii/S0140366422000949
https://www.sciencedirect.com/science/article/pii/S0140366422000949
https://doi.org/10.1007/978-1-4614-0977-9_8

	Introduction
	Targeted Threat Vectors
	ARP spoofing
	DoS attack
	System specifications

	Threat Model
	Moving Target Defense Framework
	Shuffling
	Periodic polling of existing connections
	Maintaining a ledger of whitelisted MAC addresses on sensors

	Summary of Framework

	System Evaluation
	Overhead due to Moving Target Defense
	Response to ARP spoofing and DoS attacks

	Future Work
	Authentication
	Multi-factor decision making algorithm

	Conclusion
	References

