
A Fully Polynomial Time Approximation Scheme for Adaptive
Variable Rate Task Demand

Aaron Willcock

willcock@wayne.com

Wayne State University

Detroit, MI, USA

Nathan Fisher

fishern@wayne.edu

Wayne State University

Detroit, MI, USA

Thidapat Chantem

tchantem@vt.edu

Virginia Tech

Arlington, VA, USA

ABSTRACT
The Adaptive Variable Rate (AVR) task model defines a task where

job WCET and period are a function of engine speed. Motivated

by a lack of tractable AVR task demand methods, this work uses

predefined job sequences for the Bounded Precedence Constraint

Knapsack Problem inherent in AVR task demand calculation in-

stead of enumerating all considered speeds as in existing work.

A new, exact approach is proposed and approximated, enabling

the derivation of a Fully Polynomial Time Approximation Scheme

that outperforms the state-of-the-art in runtime (7,800x improve-

ment) and RAM use (99% reduction) with less than 8% demand

overestimate.

CCS CONCEPTS
• Computer systems organization → Embedded software;
Real-time system specification.

KEYWORDS
Adaptive variable rate, task demand, bounded precedence constraint

knapsack problem, fully polynomial time approximation scheme

ACM Reference Format:
Aaron Willcock, Nathan Fisher, and Thidapat Chantem. 2024. A Fully Poly-

nomial Time Approximation Scheme for Adaptive Variable Rate Task De-

mand. In The 32nd International Conference on Real-Time Networks and
Systems (RTNS 2024), November 7–8, 2024, Porto, Portugal. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3696355.3696367

1 INTRODUCTION AND MOTIVATION
This research aims to add demand characterization tools to the real-

time community toolbox for the effective deployment of real-time,

safety-critical cyber-physical systems (CPSs). CPSs are defined by

the tight integration of physical dynamics, computation, and control

[46]. In these systems, Model Based Systems Engineering (MBSE) is

used to construct a system model and implementation [41, 51]. Ex-

ample MBSE tools include PRISM [40] and UPPAAL [2, 53]. When

mapping computational loads to real-time tasks, conventional task

models (e.g., periodic and sporadic [42, 45]) do not always align

with the modeled CPS and cause overprovisioning. Consider vari-

able sampling rate systems like wearable devices which increase

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

RTNS 2024, November 7–8, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1724-6/24/11.

https://doi.org/10.1145/3696355.3696367

Figure 1: Relevant piston/crankshaft angles for AVR tasks

sampling frequency when user activity is detected [3, 16, 18], Brush-

less DC (BLDC) motors whose control sampling increases with

speed [30–32, 35], or satellite magnetorquers whose actuation fre-

quency increases with positional error [14, 15]. Using a periodic

task to model the workload with the highest possible frequency

(e.g., during activity in the wearable, at high speed in the BLDC

motor controller, or high positional error in the satellite) is a safe,

valid configuration. However, this results in overprovisioning when

the actual sampling frequency is smaller. This inefficiency mani-

fests whenever the system is not operating at maximum frequency.

Ideally, custom task models are created during MBSE to mitigate

overprovisioning. These models require specialized schedulability

analysis tools (e.g., response time analysis, utilization bounds) to

allow predictable mingling with other tasks. One tool is the demand

bound function, which offers an algorithm-agnostic upper bound

on computational workload.

Consider an Engine Control Unit (ECU) in modern internal com-

bustion engine (ICE) vehicles in which a task releases a job each

time the piston reaches Top Dead Center within the cylinder bore,

as illustrated in Figure 1. In an ICE, pistons are connected to a

crankshaft rotating at a given speed (hereafter engine speed). As
engine speed increases, release frequency increases and vice versa.

Each job has an associated Worst-Case Execution Time (WCET)

which corresponds with engine speed as illustrated in Figure 2.

Finding the maximum computational workload over some time

interval using this model is inherently difficult since engine accel-

eration (and deceleration) allow an infinite number of job release

sequences [8]. This problem is further complicated by changing

task parameters [43, 47] where demand recharacterization occurs

repeatedly during operation or where Design Space Exploration

(DSE) is performed offline, testing hardware-software combinations

for feasible systems (e.g., [1, 26, 37]).

https://orcid.org/0000-0002-0516-3883
https://orcid.org/0000-0002-9733-3842
https://orcid.org/0000-0002-5688-5720
https://doi.org/10.1145/3696355.3696367
https://doi.org/10.1145/3696355.3696367

RTNS 2024, November 7–8, 2024, Porto, Portugal Willcock et al.

1.1 Related Work
The original engine model was proposed as the Rhythmic Task

Model [39]. Further investigation was spurred by Buttle [13]. The

Rhythmic Task Model was then adopted via Adaptive Variable Rate

(AVR) [6, 11] and Variable Rate Behavior (VRB) [17, 22] models.

Varied task models and parameter assumptions can be reviewed

in Feld et al. [20] and Shambharkar et al. [50]. Since job interarrival

time depends on engine speed and acceleration, different accelera-

tion assumptions are explored (e.g., constant acceleration between

speeds [8, 9, 11], maximum acceleration between modes [25], and

variable acceleration between speeds [5, 44]).

Existing analysis for variable-rate tasks cover utilization [12, 25],

response time [9, 10, 19, 21, 23, 48], interference [22, 49] and demand

characterization [5, 8, 44]. Existingworks also examine variable-rate

tasks under EDF [8, 12, 25, 29, 44], Fixed Priority [11, 19, 21–23, 48],

and Dynamic Priority [7].

To our knowledge, the only exact demand characterizations for

variable period engine models are Biondi et al. [8], Mohaqeqi et

al. [44] and Bijinemula et al. [5]. All other works provide a dif-

ferent analysis (see above). Of the near-peer, exact demand char-

acterization works, only two allow variable acceleration between

job releases: Mohaqeqi et al. [44] and Bijinemula et al. [5] – both

AVR-based works. The former uses a search technique based on

the Digraph Real-Time model [52] while the latter formulates and

solves the problem as a Bounded Precedence Constraint Knapsack

Problem (BPCKP) [24, 36] - yielding faster runtimes.

Despite its relative speed, the BPCKP approach is a precision-

sensitive, numeric method (i.e., increasing precision greatly in-

creases runtime and memory use), making it intractable when task

parameters change online and demand must be recalculated fre-

quently (e.g., Connected Autonomous Vehicles changing WCET

to engine speed ratios online [43, 47]) or when system designers

employ DSE to quickly generate hardware-software combinations

to test feasibility in advance (e.g., [1, 26, 37]). To provide a more

tractable solution, we seek an approximation of AVR task demand.

Fortunately, existing approximations of AVR demand via utiliza-

tion are found in Guo and Baruah [25] and by applying Stigge et

al.’s concept of the “most dense cycle” [52]. Guo and Baruah offer a

speedup factor proof to bound the maximum “wasted” processor

capacity at 13% for AVR tasks. However, this bound does not hold

when the maximum AVR task utilization is large. Moreover, a linear

approximation using Stigge et al.’s digraph-based “most dense cycle”

can result in over 40% overestimation (see Appendix for both ex-

amples). To mitigate overestimation and pursue tractable runtime,

we consult existing BPCKP approximations.

Given that the BPCKP approach offered by Bijinemula et al. is a

knapsack problem variant [5], existing knapsack approximations

appear as obvious solutions. For context, Keller et al. cover the

knapsack problem and variants thereof [38]. Ibarra and Kim [33]

give a Fully Polynomial Time Approximation Scheme (FPTAS) for

the 0-1 knapsack problem for which Vazirani [54] offers a simplified

version. Ibarra and Kim [34] also define and solve the MAXPROFIT

problem, a knapsack variant where precedence-constrained pro-

cesses must be scheduled to maximize profit over a time interval.

Already, the MAXPROFIT problem is very similar to computing

maximum AVR task demand. Garey and Johnson formalize this

Figure 2: WCET vs. Engine Speed adapted from [11]

MAXPROFIT problem generally as the Partially Ordered Knapsack

(POK) and prove its NP-Completeness [24]. Although NP-Complete,

POK with precedence constraints in tree form admits pseudopolyno-

mial runtime per Johnson and Niemi’s [36]. Thankfully, the BPCKP

approach does produce a precedence graph as an out-tree. However,

the approach leaves input parameters in terms of kinematic values

(e.g., engine speed, acceleration). In other words: the BPCKP out-

tree is not bounded by the problem size (i.e., the number of modes).

Instead, the out-tree is bounded by the engine speed, acceleration,

and interval size values. Thus, the FPTAS offered by Johnson and

Niemi is insufficient without a kinematic-independent approach.

1.2 Contributions and Outline
To improve AVR task demand tractability, this work contributes:

(1) a BPCKP AVR task demand formulation which is polynomial

in kinematic parameters (Sections 3 and 4),

(2) an exact dynamic programming solution and FPTAS for the

above demand formulation (Section 5 and 6), and

(3) a comparison of the proposed FPTAS against the state-of-the-

art, exact AVR task demand approach (Section 7) yielding

over 7800x runtime improvement with less than 8% demand

overestimate and 99% RAM usage reduction.

The following section covers the preliminary background, a formal

problem statement, and a solution overview. The remaining sections

cover the contributions above in the order listed.

2 PRELIMINARY BACKGROUND
This section presents the fundamentals of the AVR task model,

relevant kinematic equations, and the BPCKP. It concludes with a

formal problem definition and solution overview.

2.1 The AVR Task Model
First introduced by Biondi et al. [11], the Adaptive Variable Rate task

model defines a real-time task with a variable period designed for

engine control. In ICEs, linearly traveling pistons drive a rotating

crankshaft [27, 28]. Shown in Figure 1, a piston reaches Top Dead

Center (TDC) when the crankshaft angle is 𝜃 = 0
◦
. In the AVR

model, jobs are released each time the piston reaches TDC — once

per revolution. Thus, engine speed dictates release frequency such

that lower speed increases job interarrival time and higher speed

decreases job interarrival time. The AVR model also has discrete

A Fully Polynomial Time Approximation Scheme for Adaptive Variable Rate Task Demand RTNS 2024, November 7–8, 2024, Porto, Portugal

Figure 3: Speed pattern not limited by 𝜔𝑚 , adapted from [5]

modes with job WCET non-increasing with engine speed given by:

C = {𝑐1, 𝑐2, . . . , 𝑐𝑚} | 𝑐𝑖 ∈ Z+1 , 𝑐𝑖 > 𝑐𝑖+1∀𝑖 ∈ Z
𝑚
1

(1)

where 𝑐𝑖 is the WCET in microseconds (𝜇𝑠), 𝑐1 is the largest WCET

of any mode as shown in Figure 2, and𝑚 = |C| is the number of

modes
1
. The boundary speeds at which the modes change are:

Ω = {𝜔0, 𝜔1, 𝜔2, . . . 𝜔𝑚} (2)

where 𝜔𝑚 is the maximum speed. The WCET of any speed is then:

𝐶 (𝑠) =
{
𝑐1 if 𝑠 = 𝜔0

𝑐𝑖 if 𝜔𝑖−1 < 𝑠 ≤ 𝜔𝑖
(3)

where 𝑠 is the speed in revolutions per minute (rpm). Note the first

case handles the slowest possible speed, 𝜔0, which has WCET 𝑐1.

To properly calculate the minimum interarrival time (MIAT)

for an AVR task, the maximum acceleration, 𝛼+, and maximum
deceleration, 𝛼− , of the engine must be defined. These values may

be symmetric (i.e., in Bijinemula et al. [5]) or asymmetric (i.e., in

Mohaqeqi et al. [44]). For this work, the AVR task parameters are:

𝑇𝑎𝑣𝑟 = (𝑚,C,Ω, 𝛼+, 𝛼−) (4)

where acceleration is symmetric (𝛼+ = −𝛼−) 2.

2.2 Kinematic Definitions
In the AVR model, engine speed is measured and jobs are released

at TDC. Since the piston is TDC once per revolution, the rotational

distance between two consecutive job releases is strictly 𝜃 = 1

revolution. The following kinematic equations relate MIAT, engine

speed, and distance. The equations are provided in Mohaqeqi et al.

and Bijinemula et al. [5, 44] and derivable from kinematic equations

(e.g., [56]). Figures 3 and 4 illustrate the two possible speed versus

time graphs of variable acceleration producing MIAT as calculated

by equations below. In these figures, the green, yellow, and red lines

have slopes 𝛼+, zero, and 𝛼− respectively.

The distance traveled under uniform acceleration from starting

speed, 𝜔𝑖 , to ending speed, 𝜔 𝑗 , using acceleration 𝛼+ is:

𝜃 (𝜔𝑖 , 𝜔 𝑗) =
𝜔2

𝑗
− 𝜔2

𝑖

2𝛼+
(5)

1
We let Z𝑏𝑎 = {𝑥 ∈ Z | 𝑎 ≤ 𝑥 ≤ 𝑏}, Z+𝑎 = Z+∞𝑎 , and R𝑏𝑎 = {𝑥 ∈ R | 𝑎 ≤ 𝑥 ≤ 𝑏}
2
Assuming symmetry simplifies underlying kinematics, maintains problem intuition,

and allows FPTAS comparison without converting extant work to support asymmetry.

Figure 4: Speed pattern limited by 𝜔𝑚 , adapted from [5]

The MIAT between two speeds with variable acceleration is:

𝑇 (𝜔𝑖 , 𝜔 𝑗) =

√︃
2𝜔2

𝑗
+ 4𝛼+ + 2𝜔2

𝑖
− 𝜔 𝑗 − 𝜔𝑖

𝛼+
(6)

During variable acceleration (e.g., Figure 3), a peak speed is reached

while accelerating from 𝜔𝑖 to 𝜔 𝑗 and is given by:

𝜔𝑝 (𝜔𝑖 , 𝜔 𝑗) =

√︄
𝜔2

𝑖
+ 2𝛼+ + 𝜔2

𝑗

2

. (7)

When peak speed exceeds 𝜔𝑚 , Equation 6 is unusable (𝜔𝑚 cannot

be exceeded). Instead, the speed pattern in Figure 4 with MIAT:

𝑇𝑝 (𝜔𝑖 , 𝜔 𝑗) =
𝜔𝑚 − 𝜔𝑖
𝛼+

+
𝜔2

𝑖
− 2𝜔2

𝑚 + 𝜔2

𝑗

2𝛼+𝜔𝑚
+ 1

𝜔𝑚
+
𝜔𝑚 − 𝜔 𝑗
𝛼+

(8)

is used. Incorporating the dependency on peak speed gives the

MIAT between any two speeds in microseconds
3
:

𝑇 (𝜔𝑖 , 𝜔 𝑗) =
{
𝑇 (𝜔𝑖 , 𝜔 𝑗) · 6.0 × 107 if 𝜔𝑝 (𝜔𝑖 , 𝜔 𝑗) ≤ 𝜔𝑚
𝑇𝑝 (𝜔𝑖 , 𝜔 𝑗) · 6.0 × 107 otherwise.

(9)

Note these equations require speeds to be within one revolution of

one another (i.e., 𝜃 (𝜔𝑖 , 𝜔 𝑗) ≤ 1).

2.3 Speed Sequences and Demand
SinceWCET is determined by engine speedmeasured at TDC (when

jobs are released), an in-order WCET sequence is equivalent to a

sequence of engine speeds, a speed sequence, written as:

𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛) | 𝑠𝑖 ∈ R𝜔𝑚

0
∀ 𝑖 ∈ Z𝑛

1
(10)

where 𝑠1 is the starting speed and 𝑠𝑛 the ending speed.

Recall our goal is to maximize the demand (and thus WCET)

over some interval. With speed sequences, our goal is now to find

the speed sequence which maximizes WCET over some interval.

However, engines have minimum and maximum accelerations (𝛼−

and𝛼+) meaning not every speed is reachable in one revolution from
every other speed. To explain, we simplify the reachable definition

in Bijinemula et al. [5]: 𝑠𝑏 is reachable from 𝑠𝑎 if

√︃
𝑠2𝑎 + 2𝛼− ≤

𝑠𝑏 ≤
√︃
𝑠2𝑎 + 2𝛼+. By definition, a speed is reachable from itself.

Putting our original goal in context: since not every pair of speeds

is reachable, not every speed sequence is kinematically feasible (i.e.,
not every sequence can be produced by an ICE without exceeding

acceleration limits). If we let S be the set of all speed sequences,

3
One minute is 6.0 × 10

7 𝜇𝑠

RTNS 2024, November 7–8, 2024, Porto, Portugal Willcock et al.

then SF ⊂ S is the set of all kinematically feasible sequences such

that any two consecutive speeds in 𝑆 ∈ SF is reachable:

𝑆 ∈ SF =⇒
√︃
𝑠2
𝑖
− 2𝛼+ ≤ 𝑠𝑖+1 ≤

√︃
𝑠2
𝑖
+ 2𝛼+ ∀ 𝑖 ∈ Z𝑛−1

1
(11)

Thus, we are only interested in finding a feasible sequence that

maximizes demand over an interval. If we restrict our analysis to

SF, then the MIAT of 𝑆 ∈ SF (as derived in previous works) is:

𝑇 (𝑆) =


∑ |𝑆 |−1
𝑥=1

𝑇 (𝑠𝑥 , 𝑠𝑥+1) +𝑇 (𝑠 |𝑆 | , 𝑠 |𝑆 |) if |𝑆 | > 1

𝑇 (𝑠 |𝑆 | , 𝑠 |𝑆 |) if |𝑆 | = 1

0 if |𝑆 | = 0

(12)

where 𝑠 |𝑆 | = min(𝜔𝑚,
√︃
𝑠2|𝑆 | + 2𝛼

+) and the term 𝑇 (𝑠 |𝑆 | , 𝑠 |𝑆 |) gives
the MIAT of the last job release while accelerating maximally.

To conclude this section, we restate the demand of 𝑆 ∈ SF:

𝐷 (𝑆) =
{∑

𝑠∈𝑆 𝐶 (𝑠) if |𝑆 | ≥ 1

0 if |𝑆 | = 0.
(13)

In this work, we assume 𝐷 (𝑆) ≤ 𝑇 (𝑆) ∀ 𝑆 . Practically, this means

WCET values are such that utilization cannot exceed one - an

assumption consistent with existing AVR task sets [5, 11, 44, 49]. We

now describe the AVR task demand problem, the existing BPCKP-

based approach, and present our solution.

2.4 The AVR Task Demand Problems
The AVR task demand problem covered in prior works is as follows:

• Given an AVR task, 𝑇𝑎𝑣𝑟 , with𝑚 modes and an interval, 𝛿 ,

find an algorithm, E, to calculate the exact maximum demand

that can be generated over an interval of size 𝛿 .

In this work, we focus on the approximation variation:

• Given an AVR task, 𝑇𝑎𝑣𝑟 , with𝑚 modes and an interval, 𝛿 ,

find an FPTAS,A, to approximate the exact maximum demand

that can be generated over an interval of size 𝛿 .

To be an FPTAS,A, given a fixed 𝜖 > 0, must have a runtime polyno-

mially bounded in the number of modes,𝑚, and
1

𝜖 while producing

demand at most (1 − 𝜖) times the exact maximum demand.

2.5 AVR Task Demand as a BPCKP
Bijinemula et al. view AVR task demand as a BPCKP [5] since not

all speeds are reachable from one another – creating precedence

constraints among speeds. These constraints are represented as

an out-tree with vertices as speeds and edges linking reachable

speeds. Figure 5 illustrates one such tree. In the BPCKP approach,

interarrival times are viewed as “weight”, WCET as “profit”, and

the demand window 𝛿 as “capacity”. The resulting formulation has

𝑂 (𝑗 ·𝑀𝛿) decision variables where 𝑗 is the number of unique speeds

and𝑀𝛿 the maximum number of jobs over interval 𝛿 . Per [5, 44],

𝑗 = 𝑂 (𝑚 · 𝜔
2

𝑚−𝜔2

0

2𝛼+) unique speeds must be considered. Furthermore,

since utilization cannot exceed one and the smallest WCET 𝑐𝑚 = 1,

we know𝑀𝛿 = 𝑂 (𝛿). Therefore,𝑂 (𝑚 · 𝜔
2

𝑚−𝜔2

0

2𝛼+ ·𝛿) decision variables
exist. This is dependent on values of kinematic parameters (𝜔0, 𝜔𝑚 ,

and 𝛼+) — making an FPTAS for this BPCKP impossible since an

FPTAS must be polynomial in only the problem size (𝑚) and 1/𝜖 .

2.6 Solution Overview
To solve the approximation AVR task demand problem, we provide

an exact dynamic programming solution dependent on𝑚 and 𝛿 . An

FPTAS of the exact solution is then provided without pseudopoly-

nomial dependence on 𝛿 using three components:

(1) a BPCKP formulation using predefined speed sequences that

is polynomial in𝑚 and 𝛿 ,

(2) an exact dynamic programming solution pseudopolynomial

in𝑚 and 𝛿 , and

(3) a three-part approximation of the exact solution that is poly-

nomial in𝑚, 𝛿 , and 1

𝜖 .

This gives the desired FPTAS polynomially bounded in𝑚 and
1

𝜖 .

3 PREDEFINED SEQUENCES
To cover predefined speed sequences (PDSes), we differentiate the

set and sequence notation. Unordered sets use conventional nota-

tion (e.g., 𝑆 = {𝑎, 𝑏, 𝑐}) and operators (e.g., ∪ and ∩). Sequences use
parenthesis and a concatenation operator (++) as follows:

Let a sequence be given by 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑛) or by iterative

construction as in 𝑆 = (𝑘)𝑛
𝑘=0

= (𝑠1 = 0, 𝑠2 = 1, . . . , 𝑠𝑛+1 = 𝑛)
Furthermore, let us define a concatenation operation, ++, as follows:
𝑆𝑎 ++ 𝑆𝑏 = (𝑎1, 𝑎2, 𝑏1, 𝑏2) ⇐⇒ 𝑆𝑎 = (𝑎1, 𝑎2), 𝑆𝑏 = (𝑏1, 𝑏2) which
also functions iteratively as: ++𝑛

𝑥=1
𝑆𝑥 = 𝑆1 ++ 𝑆2 ++ · · · ++ 𝑆𝑛 . With this

notation, we now cover predefined speed sequences.

Recall that our goal is to find the speed sequence 𝑆 which maxi-

mizes demand 𝐷 (𝑆) over the interval 𝛿 (i.e., 𝑇 (𝑆) ≤ 𝛿). Given an

AVR task,𝑇𝑎𝑣𝑟 , there are infinitely many sequences to consider [43].

Fortunately, previous works identify dominant sequences [5, 8, 10],
a subset of SF which provably maximize demand compared to peers.

Thus, these are the only sequences that must be searched to find

one maximizing demand. A dominant sequence 𝑆 must:

(1) begin at a boundary speed (i.e., 𝑠1 ∈ 𝑆 ⊂ Ω), AND
(2) use variable acceleration to reach a boundary speed OR use

constant maximum acceleration to reach the next speed (i.e.,

(𝑠𝑖+1 ∈ Ω) ∨ (𝑠𝑖+1 =
√︃
𝑠2
𝑖
+ 2𝛼+)).

Hereafter, let SD ⊂ SF be the set of all dominant sequences.

The BPCKP approach models dominant sequences as an out-tree

- shown in Figure 5. Note for simplicity of presentation, any node

in this tree representation may act as a terminal node as in [5].

Unfortunately, this representation makes the number of nodes

pseudopolynomial in kinematic parameters (i.e., 𝑂 (𝑚 · 𝜔
2

𝑚−𝜔2

0

2𝛼+ · 𝛿)
from earlier), preventing the formation of an FPTAS.

To avoid this, consider condensing the out-tree from Figure 5

into the recursive tree in Figure 6. Consecutive nodes with the same

speed (e.g., 𝜔𝑖) could be combined into a single node representing

a desired number of repetitions. For example, let:

(𝜔𝑖)𝑟⟳ =

{
(𝜔𝑖)𝑟𝑘=1 if 𝑟 > 0

∅ otherwise

(14)

give a repeating sequence of 𝜔𝑖 , a Repeating Boundary (RB) se-

quence. We then condense repeating 𝜔𝑖 into a set of (𝜔𝑖)𝑟⟳ nodes -

one for each possible value of 𝑟 .

A Fully Polynomial Time Approximation Scheme for Adaptive Variable Rate Task Demand RTNS 2024, November 7–8, 2024, Porto, Portugal

Figure 5: An example BPCKP out-tree adapted from [5]
with root 𝜔1 where 𝜔

𝑦
𝑥 is the 𝑦th speed reached via max

acceleration (i.e., 𝜔
𝑦
𝑥 =

√︃
𝜔2

𝑥 + 2𝛼+𝑦 where 𝜔0

𝑥 = 𝜔𝑥), 𝑘𝑧 is defined

such that 𝜔𝑧 is reachable from 𝜔
𝑘𝑧
𝑥 (e.g. a sequence accelerating

from boundary 𝜔1 to 𝜔2 is 𝑆 = (𝜔0

1
, 𝜔1

1
, . . . , 𝜔

𝑘2
1
)), and 𝛼+ denotes

max acceleration while 𝛼± denotes variable acceleration.

Figure 6: A condensed, recursive speed sequence tree

Similarly, consecutive nodes representing maximum acceleration

could also be combined. We could let:

(𝜔𝑖) 𝑓↗ =


(√︃
𝜔2

𝑖
+ 2𝛼+ (𝑘 − 1)

) 𝑓
𝑘=1

if 𝑓 ∈ Z𝑅 (𝑖,𝑚)
1

∧ 𝑖 ∈ Z𝑚−1
1

∅ otherwise

(15)

give a speed sequence generated by accelerating maximally for

𝑓 revolutions (i.e., job releases), a Maximum Acceleration (MA)

sequence. Note that no speed is returned when 𝑖 = 𝑚 as speeds

cannot exceed𝜔𝑚 and (𝜔𝑚)𝑟⟳ can produce any number of repeated

𝜔𝑚 speeds, if necessary. 𝑅(𝑖, 𝑗), defined below, gives the number

of job releases required to accelerate maximally from 𝜔𝑖 to 𝜔 𝑗 .

Requiring 𝑓 ≤ 𝑅(𝑖,𝑚) prevents sequences exceeding 𝜔𝑚 from

being produced. The subtraction by one makes the sequences start

with 𝜔𝑖 in the MA PDS definition. The release count is then:

𝑅(𝑖, 𝑗) =
{⌈
𝜃 (𝜔𝑖 , 𝜔 𝑗)

⌉
if 0 < 𝑖 < 𝑗 ≤ 𝑚

0 otherwise

(16)

AnMA sequencemay also end such that another boundary speed

is reachable from the last MA sequence speed (e.g., 𝜔
𝑘𝑧
𝑖

in Figure 5).

We refer to this special case of MA sequence as a Next Boundary
sequence in Figure 6 and represent it as:

(𝜔𝑖)𝑧Ω =

{
(𝜔𝑖)𝑅 (𝑖,𝑧)↗ if 𝑖 ∈ Z𝑚−1

1
∧ 𝑧 ∈ Z𝑚

𝑖+1
∅ otherwise .

(17)

Finally, to simplify presentation we define a PDS combining RB

and MA sequences (hereafter RB-MA sequences):

Ω
𝑟,𝑓

𝑖
= (𝜔𝑖)𝑟⟳ ++ (𝜔𝑖)

𝑓

↗ (18)

Note that when 𝑓 = 𝑅(𝑖, 𝑧) the MA sequence is equivalent to (𝜔𝑖)𝑧Ω
per Equation 17. Thus, any dominant sequence producible by the

BPCKP out-tree (Figure 5) is producible by the condensed, recursive

out-tree (Figure 6) and representable as series of Ω
𝑟,𝑓

𝑖
PDSes.

To illustrate why, consider the following cases. The pink path in

the BPCKP tree produces the sequence 𝑆 = (𝜔1, 𝜔
1

1
, . . . , 𝜔

𝑘2
1
). In the

condensed, recursive tree, an equivalent path is highlighted in pink.

Using the RB-MA definition, this equivalent sequence is: Ω
0,𝑅 (1,2)
1

=

(𝜔1)0⟳ ++ (𝜔1)𝑅 (1,2)↗ = ∅ ++ (𝜔1)2Ω = (𝜔1, 𝜔
1

1
, . . . , 𝜔

𝑘2
1
). Note that

although the pink path in the BPCKP tree stops at𝜔
𝑘2
1
, alternatively

it could expand to include 𝜔2 as an RB sequence or may continue

as an MA sequence. The same property is true for the recursive tree

representation in which the recursive root ∅2 is highlighted as the

recursive roots alow for another RB-MA sequence beginning at 𝜔2

to follow. This mapping of the 𝜔
𝑘𝑧
𝑖

speeds to recursive roots allows

for the concatenation of multiple RB-MA sequences in the recursive

tree just as the original BPCKP tree representation allows sequences

to arrive at and then proceed from new boundary speeds. This

concatenation uses the variable acceleration referenced in Figure 5

and visualized in Figures 3 and 4 thus allowing the condensed tree

to incorporate variable acceleration.

The gold path in the BPCKP tree produces the sequence 𝑆 =

(𝜔1, 𝜔1, 𝜔
0

1
, 𝜔1

1
). In the condensed, recursive tree, an equivalent

path is highlighted in gold as well. This equivalent sequence can be

described with the RB-MA definition as: Ω2,2
1

= (𝜔1)2⟳ ++ (𝜔1)2↗ =

(𝜔1, 𝜔1, 𝜔
0

1
, 𝜔1

1
). Unlike the pink path, this sequence terminates at

𝜔1

1
. This is also true in the recursive tree where the sequence ends

at a terminal leaf (instead of a recursive root).

The demand and MIAT of Ω
𝑟,𝑓

𝑖
is then 𝐷 (Ω𝑟,𝑓

𝑖
) and 𝑇 (Ω𝑟,𝑓

𝑖
),

respectively. With this condensed representation, we now create

the PDS-based BPCKP.

4 AVR TASK DEMANDWITH PDSES
A new AVR Task Demand BPCKP is now presented where decision

variables represent PDSes and a solution gives our desired result:

themaximumdemand over an interval 𝛿 . The function𝐵(x), defined
later, constructs a speed sequence producing maximum demand.

Let 𝐺𝑃 = (𝑉𝑃 , 𝐴𝑃) be a precedence constraint graph where 𝑉𝑃

represents the set of all Ω
𝑟,𝑓

𝑖
for all possible combinations of 𝑖, 𝑟 , 𝑓

as vertices and𝐴𝑃 represents the set of all PDS pairs that form valid,

dominant sequences as edges. That is, let ((𝑖, 𝑟𝑖 , 𝑓𝑖), (𝑗, 𝑟 𝑗 , 𝑓𝑗)) ∈ 𝐴𝑃

RTNS 2024, November 7–8, 2024, Porto, Portugal Willcock et al.

indicate 𝑆 = (Ω𝑟𝑖 ,𝑓𝑖
𝑖
++ Ω𝑟 𝑗 ,𝑓𝑗

𝑗
) ∈ SD. The new BPCKP is then:

maximize

𝑥

𝑚∑︁
𝑖=1

𝑅𝛿∑︁
𝑟=0

𝐹𝛿∑︁
𝑓 =0

𝐷 (Ω𝑟,𝑓
𝑖
) · 𝑥𝑟,𝑓

𝑖
(19)

subject to 𝑇 (𝐵(x)) ≤ 𝛿 (20)

𝑅𝛿∑︁
𝑟=0

𝐹𝛿∑︁
𝑓 =0

𝑥
𝑟,𝑓

𝑖
≤ 1 ∀ 𝑖 ∈ Z𝑚

1
(21)

((𝑖, 𝑟𝑖 , 𝑓𝑖), (𝑗, 𝑟 𝑗 , 𝑓𝑗)) ∈ 𝐴𝑃

∀ 𝑥𝑟𝑖 ,𝑓𝑖
𝑖

= 1 | 𝑥𝑟 𝑗 ,𝑓𝑗
𝑗

= 𝑁 (𝑥𝑟𝑖 ,𝑓𝑖
𝑖
). (22)

where 𝑥
𝑟,𝑓

𝑖
indicates whether Ω

𝑟,𝑓

𝑖
is in the solution sequence, 𝐵(x),

defined later, concatenates selected PDSes into one, contiguous

speed sequence, and 𝑁 (𝑥𝑟,𝑓
𝑖
) gives the next selected PDS in order

of index 𝑖 . Formally, 𝑁 (𝑥𝑟,𝑓
𝑖
) = 𝑥𝑟 𝑗 ,𝑓𝑗

𝑗
| 𝑗 > 𝑖 ∧ 𝑥𝑟 𝑗 ,𝑓𝑗

𝑗
= 1 ∧ �𝑘 | 𝑖 <

𝑘 < 𝑗 ∧ 𝑥𝑟𝑘 ,𝑓𝑘
𝑘

= 1.

The objective function, Equation 19, specifies maximal demand

where the terms 𝑅𝛿 and 𝐹𝛿 refer to the maximum RB and MA se-

quence length in time 𝛿 , respectively. Since 𝛿 and C are expressed in

microseconds (𝜇𝑠) and the smallestWCET is 𝑐𝑚 , the maximum num-

ber of job releases that fit in any interval of size 𝛿 is ⌊𝛿/𝑐𝑚⌋. Thus,
𝑅𝛿 = 𝐹𝛿 = ⌊𝛿/𝑐𝑚⌋. Since the smallest 𝑐𝑚 value is one, 𝑅𝛿 = 𝐹𝛿 = 𝛿

is a safe upper bound
4
. Equation 20 requires all jobs have deadlines

within 𝛿 . Equation 21 requires at most one PDS per mode to enforce

condensing repeating boundaries (e.g., a solution having 𝑥
2,0
1

= 1

and 𝑥
4,0
1

= 1 is equivalent to 𝑥
6,0
1

= 1 since Ω2,0
1
++ Ω4,0

1
= Ω6,0

1
).

Equation 22 requires solutions to honor precedence constraints

from graph 𝐺𝑃 (i.e., the solution is a dominant sequence). Specifi-

cally, the 𝑁 (𝑥𝑟,𝑓
𝑖
) term forces selected PDSes, concatenated in order

of index, to honor precedence constraints of 𝐴𝑃 .

To construct the solution, let x be the array 𝑥
𝑟,𝑓

𝑖
. The sequence

formed from the x is:

𝐵(x) = 𝑚++
𝑖=1

𝛿++
𝑟=0

𝛿++
𝑓 =0
𝑏 (𝑥𝑟,𝑓

𝑖
) | 𝑏 (𝑥𝑟,𝑓

𝑖
) =

{
Ω
𝑟,𝑓

𝑖
if 𝑥

𝑟,𝑓

𝑖
= 1

∅ otherwise.

(23)

Since this formulation uses PDSes represented by Ω
𝑟,𝑓

𝑖
, the number

of unique PDSes (i.e., vertices of 𝐺𝑃) is 𝑂 (𝑚𝛿2) as 𝑖 is at most𝑚

while 𝑟 and 𝑓 are at most 𝛿 . We now have a BPCKP independent

of kinematic terms (e.g., 𝜔0, 𝛼
+
, or 𝜔𝑚) — a foundation for the FP-

TAS. Moreover, this formulation does not require pre-computation

of PDSes - simply iteration through 𝑖, 𝑟 , 𝑓 values (as opposed to

individual speeds as in [5]).

5 AN EXACT DEMAND CALCULATION
This section begins with notation for sets of PDSes. We then es-

tablish the AVR task demand calculation’s optimal substructure.

An exact, recursive dynamic programming solution with pseudo-

polynomial runtime is then introduced.

4
A large 𝛿 greatly increases problem size. This is true for prior work [5] (as evident by

the experiments section) and a necessary weakness for a kinematic-agnostic BPCKP.

Practical limitations (e.g., 𝑐𝑚 » 1) make execution tractable without approximation.

5.1 PDS Subset Notation
To discuss optimal substructure, we introduce restricted set nota-

tion. Let SΩ,i be the set of PDSes which begin with speed 𝜔𝑖 (i.e.,

SΩ,i ⊂ SD | ∀𝑆 ∈ SΩ,i, 𝑠1 = 𝜔𝑖), SbΩ be the set of PDSes which

produce at least 𝑏 demand (SbΩ ⊂ SD | ∀𝑆 ∈ SbΩ, 𝐷 (𝑆) ≥ 𝑏), and S
b
Ω,i

be the set of PDSes which begin 𝜔𝑖 and produce at least 𝑏 demand

(SbΩ,i ⊂ (SΩ,i ∩ S
b
Ω) | ∀𝑆 ∈ S

b
Ω,i, 𝑆 ∈ (SΩ,i ∩ S

b
Ω)).

5.2 Proof of Optimal Substructure
To provide a foundation for the dynamic programming solution,

proof of the demand calculation’s optimal substructure is presented.

In the following proof, 𝑆∗
𝑖,𝑏

denotes an optimal speed sequence

(i.e., 𝑆∗
𝑖,𝑏

gives the MIAT of all PDSes beginning with 𝜔𝑖 and pro-

ducing demand at least 𝑏). More formally, 𝑆∗
𝑖,𝑏
∈ SbΩ,i | 𝑇 (𝑆

∗
𝑖,𝑏
) ≤

𝑇 (𝑆 ′) ∀𝑆 ′ ∈ SbΩ,i). Additionally, the symbol⇝ denotes any addi-

tional PDSes that may or may not be present (i.e., the trailing end

of a sequence not relevant to the proof).

Lemma 1 (AVR Task Demand Optimal Substructure). Given
an AVR task 𝑇𝑎𝑣𝑟 with 𝑚 modes and boundary speeds Ω, if 𝑆∗

𝑖,𝑏
=

(Ω𝑟𝑖 ,𝑅 (𝑖,𝑥)
𝑖

++ Ω𝑟𝑥 ,𝑓𝑥𝑥 ⇝), then (Ω𝑟𝑥 ,𝑓𝑥𝑥 ⇝) is necessarily optimal (i.e.,

(Ω𝑟𝑥 ,𝑓𝑥𝑥 ⇝) = 𝑆∗
𝑥,𝑏𝑟

where 𝑏𝑟 = 𝑏 − 𝐷 (Ω𝑟𝑖 ,𝑅 (𝑖,𝑥)𝑖
)).

Proof. Suppose 𝑆∗
𝑖,𝑏

= (Ω𝑟𝑖 ,𝑅 (𝑖,𝑥)
𝑖

++ Ω𝑟𝑥 ,𝑓𝑥𝑥 ⇝). We claim the

subsequence (Ω𝑟𝑥 ,𝑓𝑥𝑥 ⇝) is also optimal (i.e., (Ω𝑟𝑥 ,𝑓𝑥𝑥 ⇝) = 𝑆∗
𝑥,𝑏𝑟

where 𝑏𝑟 = 𝑏 − 𝐷 (Ω𝑟𝑖 ,𝑅 (𝑖,𝑥)𝑖
)). To prove so, suppose ∃𝑆 ′ = Ω

𝑟𝑥 ′ ,𝑓𝑥 ′
𝑥 ′

such that 𝐷 (𝑆 ′) ≥ 𝑏 −𝐷 (Ω𝑟𝑖 ,𝑅 (𝑖,𝑥
′)

𝑖
) ∧𝑇 (Ω𝑟𝑖 ,𝑅 (𝑖,𝑥

′)
𝑖

++𝑆 ′) < 𝑇 (𝑆∗
𝑖,𝑏
).

We have a contradiction, since either 𝑆∗
𝑖,𝑏

is optimal orΩ
𝑟𝑖 ,𝑅 (𝑖,𝑥 ′)
𝑖

++𝑆 ′
is optimal. Thus, there is an optimal substructure in which 𝑆∗

𝑖,𝑏
may

be constructed with 𝑆∗
𝑥,𝑏𝑟

where 𝑥 > 𝑖 . □

By this lemma, an optimal speed sequence having MIAT with de-

mand at least 𝑏 may be constructed only by considering all possible

subsequent PDSes beginning with indices from 𝑖 + 1 to𝑚 as part

of the sequence 𝑆∗
𝑖,𝑏
. That is, to produce 𝑆∗

𝑖,𝑏
requires solving 𝑆∗

𝑥,𝑏𝑟

where 𝑏𝑟 = 𝑏 − 𝐷 (Ω𝑟𝑖 ,𝑅 (𝑖,𝑥)
𝑖

) for all 𝑥 ∈ Z𝑚
𝑖+1. Using this strategy,

the dynamic programming solution is presented.

5.3 Dynamic Programming Solution
To make the dynamic programming solution, let 𝑇 (𝑖, 𝑏) be:

𝑇 (𝑖, 𝑏) = min

𝑆∈𝑆 (𝑖,𝑏)
𝑇 (𝑆) | 𝑆 (𝑖, 𝑏) =

𝑖⋃
𝑥=1

SbΩ,x (24)

where𝑇 (𝑖, 𝑏) gives theMIAT of all sequences in 𝑆 (𝑖, 𝑏). The function
combines sets of SbΩ,x, sequences which begin with 𝜔𝑖 and produce

demand at least 𝑏, by iterating through all boundary speeds. It-

erating through all boundary speeds starting with 𝜔𝑖 tests each

boundary as a possible starting point when generating demand 𝑏.

With all sets aggregated, 𝑇 (𝑖, 𝑏) finds the sequence with MIAT and

demand at least 𝑏.

A Fully Polynomial Time Approximation Scheme for Adaptive Variable Rate Task Demand RTNS 2024, November 7–8, 2024, Porto, Portugal

We now recursively define SbΩ,i for dynamic programming:

SbΩ,i =



∅ if 𝑏 ≤ 0

Ω𝑟,0𝑚 | 𝑟 = ⌈ 𝑏𝑐𝑖 ⌉ if 𝑏 > 0 ∧ 𝑖 =𝑚{⌈𝑏/𝑐𝑚 ⌉
∪
𝑓 =0

(
Ω
𝑟𝑑 ,𝑓

𝑖

)
| 𝑟𝑑 = 𝑏 − 𝐷 (Ω0,𝑓

𝑖
)
}

if 𝑏 > 0 ∧ 𝑖 < 𝑚

⋃
⌈𝑏/𝑐𝑖 ⌉
∪
𝑟=0

𝑚
∪

𝑗=𝑖+1
∪

𝑆∈SbrΩ,j

(
Ω
𝑟,𝑅 (𝑖, 𝑗)
𝑖

++ 𝑆
)

where 𝑏𝑟 = 𝑏 − 𝐷 (Ω𝑟,𝑅 (𝑖, 𝑗)𝑖
). The cases are as follows:

In the first case, requested demand 𝑏 ≤ 0 so no sequence is

returned since 𝐷 (∅) = 0 ≥ 𝑏.
In the second case, requested demand 𝑏 > 0 and 𝑖 = 𝑚. Since

𝑖 = 𝑚, no PDS Ω
𝑟 𝑗 ,𝑓𝑗
𝑗

with 𝑗 > 𝑚 will be concatenated afterward,

and no subsequent PDSes are considered. Moreover, (𝜔𝑚) 𝑓↗ = ∅ ∀𝑓
so no 𝑓 values other than 𝑓 = 0 are needed. This leaves only a value

of 𝑟 to produce 𝐷 (𝑆) ≥ 𝑏. Thus, ⌈𝑏/𝑐𝑖 ⌉ gives the minimum 𝑟 to

produce demand 𝑏.

In the third case, requested demand𝑏 > 0, and the sequence must

start at a boundary speed less than 𝜔𝑚 (i.e., 𝑖 < 𝑚). In this case, the

terms before the big union (

⋃
) iterate through all combinations of

𝑓 and 𝑟𝑑 in which the single PDS Ω
𝑟𝑑 ,𝑓

𝑖
produces at least demand

𝑏 (e.g., the right side of the condensed, recursive tree in Figure 6).

Note, the term 𝑟𝑑 is selected to make up the difference between the

requested demand 𝑏 and the demand produced by the 𝑓 term alone

(i.e., 𝐷 (Ω0,𝑓

𝑖
)).

The terms after the union (

⋃
) iterate through all combinations of

𝑟 and possible subsequent PDSes (e.g., the left side of the condensed,

recursive tree in Figure 6). The 𝑗 term iterates through all bound-

aries from which subsequent PDSes must be considered. Replacing

𝑓 with 𝑅(𝑖, 𝑗) ensures that Ω𝑟,𝑅 (𝑖, 𝑗)
𝑖

produces only sequences which

are feasible when concatenated with a subsequent PDS starting

at 𝜔 𝑗 . Lastly, the union with term 𝑆 ∈ SbrΩ,j iterates through every

possible dominant sequence beginning with 𝜔 𝑗 and generating at

least demand 𝑏𝑟 = 𝑏 − 𝐷 (Ω𝑟𝑖 ,𝑅 (𝑖, 𝑗)
𝑖

) (i.e., the remaining demand

to generate after the demand from Ω
𝑟𝑖 ,𝑅 (𝑖, 𝑗)
𝑖

is subtracted from

the total requested demand). This term implements the dynamic

programming property.

Informally, SbΩ,i enumerates all dominant sequences starting with

𝜔𝑖 producing demand at least 𝑏. 𝑆 (𝑖, 𝑏) aggregates SbΩ,1 through S
b
Ω,i.

Finally, 𝑇 (𝑖, 𝑏) finds the sequence in 𝑆 (𝑖, 𝑏) with MIAT, giving the

MIAT to generate demand 𝑏.

We now cover the dynamic programming algorithm for exact

AVR task demand which we call Algorithm E, given below:

The overall runtime is 𝑂 (lg𝛿 ·𝑚 · 𝛿2) as follows. The primary

loop in Algorithm 1 is 𝑂 (𝛿). However, this may be improved with

a binary search to build results in the MIAT[] table making the

primary loop runtime 𝑂 (lg𝛿). Inside this loop, each call to 𝑇 (𝑚,𝑏)
is a single call to 𝑆 (𝑚,𝑏) (Equation 24). This single call to 𝑆 (𝑚,𝑏)
uses SbΩ,i to calculate Ω

𝑟,𝑓

𝑖
for every combination of 𝑖 , 𝑟 , and 𝑓 .

With memoization, Algorithm E only needs to compute Ω
𝑟,𝑓

𝑖
once

for every 𝑖, 𝑟 , 𝑓 combination. Given that 𝑖 is 𝑂 (𝑚) while 𝑟 and 𝑓
are𝑂 (𝑏), we know 𝑆 (𝑚,𝑏) (and thus𝑇 (𝑚,𝑏)) has runtime𝑂 (𝑚𝑏2).

Algorithm 1 Exact DP 𝑇 (𝑖, 𝑏) (Algorithm E)

function AVR-Demand-Exact(𝑇𝑎𝑣𝑟 ,𝛿):

MIAT[0, 1, . . . , 𝛿] ← ∞ ⊲ Init. MIAT table

for 𝑏 ← 0 to 𝛿 do: ⊲ Iterate through all demands

MIAT[𝑏] ← 𝑇 (𝑚,𝑏) ⊲ Save MIAT

end for
return max{𝑏 | MIAT[𝑏] ≤ 𝛿} ⊲ Return max demand

end function

Figure 7: Example Approximation of 𝜔 𝑗 Repetition Quantity

Recalling that 𝑏 is at most 𝛿 , we now have a primary loop with

runtime 𝑂 (lg𝛿) and loop contents, 𝑇 (𝑚,𝑏), with runtime 𝑂 (𝑚𝛿2).
This gives the overall runtime: 𝑂 (lg𝛿 ·𝑚 · 𝛿2).

6 DEMAND APPROXIMATIONS
Algorithm E’s runtime is pseudopolynomial in 𝛿 . To build an FP-

TAS, we must shed the pseudopolynomial dependence on 𝛿 (e.g, by

replacing it with ln𝛿 which is polynomial in the size of the input 𝛿

when represented in bits). This requires changing the implementa-

tion of SbΩ,i - the function contributing 𝛿2 to overall runtime.

This section covers the approximation of 𝛿 for 𝑟 and 𝑓 and an

accompanying Algorithm A — the FPTAS. An approximation ratio

proof is then presented along with a definition of safe demand,𝐷
safe

— the demand a user may safely rely on after approximation.

6.1 RB Sequence Approximation
The dynamic programming function SbΩ,i relies on 𝑏 to quantify the

maximum repeated jobs at boundary 𝜔𝑖 . Since 𝑏 is at most 𝛿 , this

means 𝛿 unique values of 𝑟 . To facilitate an FPTAS, let 𝜖𝑟 > 0 be the

basis for a log scale representation of 𝑟 at a given 𝜔𝑖 . Specifically,

let the set of values for 𝑟 instead be:

𝑟 ′ (𝑏, 𝑖, 𝜖𝑟) =
{⌊⌈

𝑏

𝑐𝑖

⌉
· (1 − 𝜖𝑟)𝑘

⌋
∀𝑘 ∈ Z⌊ℓ𝑟 ⌋+1

0

}
(25)

where ℓ𝑟 is the value of 𝑘 at which

⌈
𝑏
𝑐𝑖

⌉
· (1 − 𝜖𝑟)𝑘 = 1:

ℓ𝑟 =

ln(1) − ln
⌈
𝑏
𝑐𝑖

⌉
ln(1 − 𝜖𝑟)

= −
ln

⌈
𝑏
𝑐𝑖

⌉
ln(1 − 𝜖𝑟)

<
ln𝑏

𝜖𝑟
(26)

Figure 7 illustrates this approximation. This approach creates a

smaller set of searched repetitions at each boundary, bounded poly-

nomially in the problem size as there are at most
ln𝛿
𝜖𝑟

unique values

RTNS 2024, November 7–8, 2024, Porto, Portugal Willcock et al.

of 𝑟 to test when 𝑏 = 𝛿 , as opposed to

⌈
𝛿
𝑐𝑖

⌉
. To explain the effect on

MIAT calculation by 𝑇 (𝑖, 𝑏), consider the following lemma.

Lemma 2. If 𝑞 is the repetition quantity 𝑟 selected at any boundary
by 𝑆 (𝑖, 𝑏), when approximating the set of repetitions with 𝜖𝑟 , then
𝑞 ≥ (1 − 𝜖𝑟) ·𝑂𝑃𝑇𝑟 .

Proof. Let 𝑂𝑃𝑇𝑟 be the optimal number of repetitions at some

boundary 𝜔𝑖 and 𝑞 be the approximated number of repetitions.

Furthermore, let 𝑂𝑃𝑇𝑟 be defined such that

⌈
𝑏
𝑐𝑖

⌉
· (1 − 𝜖𝑟)𝑥+1 ≤

𝑂𝑃𝑇𝑟 ≤
⌈
𝑏
𝑐𝑖

⌉
· (1− 𝜖𝑟)𝑥 (i.e.,𝑂𝑃𝑇𝑟 is between two repetition values

of the approximated version). If index 𝑥 + 1 is selected (i.e., 𝑞 =⌈
𝑏
𝑐𝑖

⌉
· (1 − 𝜖𝑟)𝑥), 𝑂𝑃𝑇𝑟 is at most

⌈
𝑏
𝑐𝑖

⌉
· (1 − 𝜖𝑟)𝑥 . The maximum

underestimate, therefore, is given by:(⌈
𝑏
𝑐𝑖

⌉
· (1 − 𝜖𝑟)𝑥+1

)(⌈
𝑏
𝑐𝑖

⌉
· (1 − 𝜖𝑟)𝑥

) = (1 − 𝜖𝑟) ⇒ 𝑞 ≥ (1 − 𝜖𝑟) ·𝑂𝑃𝑇𝑟

The lemma is proven. □

A similar approximation, covered below, may be applied to the

set of values for 𝑓 to limit the number of MA sequences to search.

6.2 MA Sequence Approximation
In Equation 25, 𝑓 is used to search all possible consecutive release

quantities via (𝜔𝑖) 𝑓↗. Like 𝑟 , 𝑓 is bounded by 𝑏 (i.e., there are 𝑏

unique values of 𝑓). Let 𝜖𝑓 > 0 be the basis for a log-scale repre-

sentation of 𝑓 . Then, the set of approximated values for 𝑓 is:

𝑓 ′ (𝑏, 𝜖𝑓) =
{⌊⌈

𝑏

𝑐𝑚

⌉
· (1 − 𝜖𝑓)𝑘

⌋
∀ 𝑘 ∈ Z⌊ℓ𝑓 ⌋+1

0

}
(27)

where ℓ𝑓 is the value of 𝑘 at which

⌈
𝑏
𝑐𝑚

⌉
· (1 − 𝜖𝑓)𝑘 = 1:

ℓ𝑓 = −
ln

⌈
𝑏
𝑐𝑚

⌉
ln(1 − 𝜖𝑓)

<
ln𝑏

𝜖𝑓
(28)

We then establish a similar lemma for approximation of 𝑓 . The

proof is identical in form to Lemma 2 and omitted for space.

Lemma 3. If 𝑞 is the number of consecutive job releases at maxi-
mum acceleration at any boundary by 𝑆 (𝑖, 𝑏) when approximating
consecutive releases with 𝜖𝑓 , then 𝑞 ≥ (1 − 𝜖𝑓) ·𝑂𝑃𝑇𝑓 .

The terms 𝑟 and 𝑓 , which individually contribute 𝑂 (𝑏) time

in the exact case, are now 𝑂 (ln𝑏/𝜖𝑟) and 𝑂 (ln𝑏/𝜖𝑓) respectively.
The final approximation below will remove the MIAT table size

dependence on 𝛿 shown in Algorithm E.

6.3 Approximation of MIAT Table Size
Recall that in Algorithm E, 𝑇 (𝑚,𝑏) must calculated for 𝑏 ∈ Z𝛿

0

(ignoring binary search). Since demand is at most 𝑏 = 𝛿 , this ap-

proximation is required to remove dependence on 𝛿 . To remove the

dependency, we propose scaling PDS WCET (and thus the maxi-

mum demand we must search) via a scaling factor 𝐾 and scaling

function 𝐷𝐾 (𝑆) — just as the 0-1 knapsack utilizes a scaling factor

[54]. Let a scaling function and factor, 𝐾 , be defined as:

𝐷𝐾 (𝑆) =
⌊
𝐷 (𝑆)
𝐾

⌋
| 𝐾 =

𝜖𝑏 · 𝑏
𝑚

(29)

where 𝜖𝑏 > 0 and 𝐷𝐾 (𝑆) is a scaled version of 𝐷 (𝑆) which scales

demand by 𝐾 for use in the approximation of Algorithm E. Note
𝜖𝑏 scales the maximum value of 𝑏 (i.e., 𝛿) that must be searched.

The maximum MIAT table size is now 𝑏′ =
⌊
𝑏
𝐾

⌋
= 𝑚
𝜖𝑏
. We now

incorporate all three approximations of 𝑟 , 𝑓 , and 𝑏 as:

S′bΩ,i =



∅ if 𝑏 ≤ 0

∪
𝑟 ∈𝑟 ′

(
Ω𝑟,0
𝑖

)
| 𝐷𝐾 (Ω

𝑟,𝑓

𝑖
) ≥ 𝑏 if 𝑏 > 0 ∧ 𝑖 =𝑚{

∪
𝑟 ∈𝑟 ′

∪
𝑓 ∈ 𝑓 ′

(
Ω
𝑟,𝑓

𝑖

)
| 𝐷𝐾 (Ω

𝑟,𝑓

𝑖
) ≥ 𝑏

}
if 𝑏 > 0 ∧ 𝑖 < 𝑚

⋃ ∪𝑟 ∈𝑟 ′
𝑚
∪

𝑗=𝑖+1
∪

𝑆∈S′brΩ,j

(
Ω
𝑟,𝑅 (𝑖, 𝑗)
𝑖

++ 𝑆
)

where 𝑟 ′ = 𝑟 ′ (𝑏, 𝑖, 𝜖𝑟), 𝑓 ′ = 𝑓 ′ (𝑏, 𝑖, 𝜖𝑓), and 𝑏𝑟 = 𝑏 − 𝐷𝐾 (Ω
𝑟,𝑅 (𝑖, 𝑗)
𝑖

).
We then use the apostrophe to denote approximated function vari-

ants as:𝑇 ′ (𝑚,𝑏) = min𝑆∈𝑆 ′ (𝑖,𝑏) 𝑇 (𝑆), and 𝑆 ′ (𝑖, 𝑏) =
⋃𝑚
𝑖=1 S

′b
Ω,i. The

approximation, Algorithm A is then Algorithm E with 𝑇 (𝑚,𝑏) re-
placed by𝑇 ′ (𝑚,𝑏′). We now prove AlgorithmA’s results are within
(1 − 𝜖𝑏) of optimal.

Lemma 4. If 𝑆 gives MIAT 𝑇 ′ (𝑚,𝑏) and 𝑂 gives MIAT 𝑇 (𝑚,𝑏),
𝑆 ≥ (1 − 𝜖𝑏) ·𝑂𝑃𝑇 | 𝑂𝑃𝑇 = 𝑇 (𝑚,𝑏)

Proof. Let us define 𝑆 | 𝑇 (𝑆) = 𝑇 ′ (𝑚,𝑏) and 𝑂 | 𝑇 (𝑂) =

𝑇 (𝑚,𝑏). We assert:

𝐷 (𝑆) ≥ 𝐾 · 𝐷′ (𝑆) ▶ By Equation 29

𝐷′ (𝑆) ≥ 𝐷′ (𝑂) =⇒ 𝐾 · 𝐷′ (𝑆) ≥ 𝐾 · 𝐷′ (𝑂) ▶ By construction

𝐷 (𝑂) − 𝐾𝐷′ (𝑂) ≤ 𝑚𝐾
=⇒ 𝐾 · 𝐷′ (𝑂) ≥ 𝐷 (𝑂) −𝑚𝐾 ▶ By scaling at most𝑚 times

Combining the above inequalities gives:

𝐷 (𝑆) ≥ 𝐾 · 𝐷′ (𝑆) ≥ 𝐾 · 𝐷′ (𝑂) ≥ 𝐷 (𝑂) −𝑚 · 𝐾 ▶ By above

⇔ 𝐷 (𝑆) ≥ 𝐷 (𝑂) − 𝜖𝑏 · 𝛿 ▶ By 𝐾 =
𝜖𝑏 · 𝛿
𝑚

⇔ 𝐷 (𝑆) ≥ 𝑂𝑃𝑇 − 𝜖𝑏 ·𝑂𝑃𝑇 = (1 − 𝜖𝑏)𝑂𝑃𝑇 ▶ By 𝛿 ≥ 𝑂𝑃𝑇

where 𝐷 (𝑂) = 𝑂𝑃𝑇 . Thus, the lemma is proven. □

6.4 Overall Approximation Ratio
Since the approximation of MIAT table size (i.e., 𝑏 = 𝛿) applies to

the sequences after approximating quantities 𝑟 and 𝑓 for Ω
𝑟,𝑓

𝑖
, the

overall approximation is given by:

(1 − 𝜖) ≤ (1 − 𝜖𝑟) (1 − 𝜖𝑓) (1 − 𝜖𝑏) (30)

where 𝜖 is the overall approximation value, 𝜖𝑟 is the approximation

factor for unique values of 𝑟 , 𝜖𝑓 is the approximation factor for

unique values of 𝑟 , and 𝜖𝑏 is the approximation factor for MIAT

table size (i.e., for 𝑏 = 𝛿). Since (1 − 𝜖𝑟), (1 − 𝜖𝑓), (1 − 𝜖𝑏) must all

exceed (1 − 𝜖), a simple solution for selecting values of 𝜖𝑟 , 𝜖𝑓 , and

𝜖𝑏 given a desired overall 𝜖 is: 𝜖𝑟 = 𝜖𝑓 = 𝜖𝑏 = 𝜖/3.

A Fully Polynomial Time Approximation Scheme for Adaptive Variable Rate Task Demand RTNS 2024, November 7–8, 2024, Porto, Portugal

6.5 Approximation Runtime
With bounded search quantities for 𝑟 and 𝑓 , we derive a runtime

for Algorithm A. The worst-case runtime of the exact approach,

Algorithm E, is𝑂 (lg𝛿 ·𝑚𝛿2). The approximation of 𝑟 gives a bound

of 𝑂 (ln𝑏𝜖𝑟) and approximation of 𝑓 gives a bound of 𝑂 (ln𝑏𝜖𝑓). The
approximation of 𝑏, gives ⌊𝛿/𝐾⌋ = ⌊𝑚/𝜖𝑏⌋ = 𝑂 (𝑚/𝜖𝑏). Since 𝑏 =

𝑂 (𝛿), the runtime is: 𝑂

(
lg(𝑚/𝜖𝑏) ·𝑚 · (ln𝛿/𝜖𝑟) · (ln𝛿/𝜖𝑓)

)
.

6.6 Deriving a Safe Demand
Approximated demand is only guaranteed to exceed (1 − 𝜖) ·𝑂𝑃𝑇 .
However, it may be lower than the exact maximum demand (i.e.,

unsafe). To convert approximated demand to a pessimistic (i.e., safe)

demand for use in real-time systems, users must instead use:

𝐷
safe
(𝛿) = 𝐾 · 𝑏

(1 − 𝜖) | 𝑏 = max{ 𝑏 | 𝑇 (𝑚,𝑏) ≤ 𝛿} (31)

as the safe demand in a window of size 𝛿 where 𝐾 is the scaling

factor defined in Equation 29, and 𝑏 is the largest value for which

𝑇 (𝑚,𝑏) has a MIAT less than 𝛿 .

7 EVALUATION AND RESULTS
In the absence of readily available ICEs with compatible, open-

source engine control units implementing AVR tasks, all experi-

ments are simulations as with prior works [4, 5, 44]. The source

code and publication data are available online [55].

7.1 Setup and Experiments
7.1.1 Setup. The Bijinemula et al. artifact [4] (KAVR), our nearest

peer, is used for comparison. The exact dynamic programming (EX-

ACT) and FPTAS implementations (APX) are compared with KAVR.

Linux on an AMD 74f3 3.2GHz CPU and 254 GB RAM is used for

single-threaded simulation. Python 3.10.12 is used for consistency

with the KAVR artifact. The canonical (CAN) and generalized (GEN)

task sets are from literature [5, 11, 44]. APX parameters default to

𝜖𝑏 = 𝜖𝑟 = 𝜖𝑓 = 0.025 with (1 − 𝜖) = 0.927 and solutions overes-

timate demand at most 7.8% (1/0.927) per Equation 30. APX and

EXACT use precision 12 for all experiments.

7.1.2 Experiment 1 - Variable Precision. In this experiment, the

CAN and GEN 6-mode task sets from the literature are used. with

simulation parameters identical to [5]. The results in Figure 8 high-

light a KAVR weakness: increasing precision increases runtime.

APX dominates runtime for all precisions, EXACT dominates when

KAVR precision exceeds five. Minimum and maximum runtime

improvement of APX to KAVR is: 6x and 7,761x respectively.

7.1.3 Experiment 2 - Varied Demand Window Sizes. In this exper-

iment, the literature task sets are used with varied values for 𝛿 .

Figure 9 shows the effect of 𝛿 on runtime where "-PXX" speci-

fies KAVR precision XX. Note the log scale on both axes. Around

𝛿 = 1.3 × 10
6𝜇𝑠 , APX begins to outperform KAVR. At 𝛿 = 10𝑒7,

APX is more than 6,100x faster. This is expected as KAVR is more

sensitive to 𝛿 than APX given their asymptotic analysis.

Figure 10 illustrates RAM usage for the varied duration experi-

ment versus precision. APX requires 99.99% less RAM than KAVR

which also comports with the KAVR sensitivity to 𝛿 .

 1×10-2

 1×10-1

 1×100

 1×101

 1×102

 1×103

 1×104

 5 6 7 8 9 10 11 12

R
un

ti
m

e
(s

)

Precision

CAN-KAVR
GEN-KAVR

CAN-EXACT
GEN-EXACT

CAN-APX
GEN-APX

Demand Calculation Runtime vs. Precision

Figure 8: Variable Precision - Runtime

 1×10-5

 1×10-4

 1×10-3

 1×10-2

 1×10-1

 1×100

 1×101

 1×102

 1×103

 10000 100000 1x106

R
un

ti
m

e
(s

)

Demand Window Size (us)

CAN-KAVR-P05
CAN-KAVR-P12
CAN-EXACT
CAN-APX

GEN-KAVR-P05
GEN-KAVR-P12
GEN-EXACT
GEN-APX

Demand Calculation Runtime vs. Demand Window Size

Figure 9: Variable Duration - Runtime

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 5 6 7 8 9 10 11 12

P
ea

k
 R

A
M

 R
eq

u
ir

ed
 (

M
B

)

Precision

CAN-KAVR
GEN-KAVR
CAN-EXACT

GEN-EXACT
CAN-APX
GEN-APX

Demand Calculation Peak RAM vs. Precision

Figure 10: Variable Duration - Peak RAM Usage

7.1.4 Experiment 3 - Varied Acceleration. In this experiment, lit-

erature task sets are used with varied 𝛼+ and 𝛼− illustrating the

effect of acceleration on runtime. Acceleration is varied in the range

[1×104, 1×106] rpm2
with results in Figure 11. Note that low accel-

eration prevents speed sequences from reaching subsequent bound-

ary speeds, thereby reducing search complexity (and runtime). At

larger acceleration, feasible boundary speed combinations increase

(increasing runtime). APX runtime dominates for both literature

task sets. The minimum and maximum runtime improvement of

APX over KAVR is 3.91x and 7,827x respectively.

RTNS 2024, November 7–8, 2024, Porto, Portugal Willcock et al.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 0 200000 400000 600000 800000 1x106

R
u

n
ti

m
e

(s
)

Maximum Acceleraton (rpm/sec2)

CAN-K-P05
GEN-K-P05
CAN-K-P12
GEN-K-P12

CAN-EXACT
GEN-EXACT
CAN-APX
GEN-APX

Demand Calculation Runtime vs. Acceleration

Figure 11: Varied Acceleration - Runtime

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16

R
u

nt
im

e
(s

)

Number of Modes

KAVR-P05
KAVR-P12
EXACT
APX

Demand Calculation Runtime vs. Mode Count

Figure 12: Varied Mode Count - Runtime

7.1.5 Experiment 4: Varied Mode Count. In this experiment, a ran-

domly generated AVR task with 16 modes was created. From the

16-mode task, 14 other AVR tasks are created by repeatedly merg-

ing the middle-most modes. This merging maintains the minimum

speed, maximum speeds, 𝛼+ = 7.5𝑒5 rpm2
, and 𝛿 = 750ms. Thus,

only mode quantity (𝑚) changes. Figure 12 shows the results. APX

runtime dominates especially for larger𝑚. The minimum and max-

imum improvement over KAVR is 1.955x and 2,888x respectively.

An observant reader may ask: “why does KAVR outperform EX-
ACT?” and given that KAVR does outperform EXACT, “why does

APX outperform KAVR?”. Recall KAVR has 𝑂 (𝑚 · 𝜔
2

𝑚−𝜔2

0

2𝛼+ · 𝛿) de-
cision variables where EXACT has 𝑂 (ln𝛿 · 𝑚 · 𝛿2). Using the

CAN task set, 𝑚 = 6, 𝜔𝑚 = 6500, 𝜔0 = 500, 𝛼+ = 6.0𝑒5. Thus,

KAVR is 𝑂 (35𝑚𝛿) and EXACT is 𝑂 (ln𝛿 · 𝑚 · 𝛿2). For a large 𝛿

and𝑚 (e.g.,𝑚 = 6, 𝛿 ≥ 10.4us), KAVR outperforms. Figures 9 and

12 illustrate this possibility. Moreover, the APX runtime with all

𝜖𝑟 = 𝜖𝑓 = 𝜖𝑏 = 0.025, is: 𝑂 (ln(𝑚/0.025) ·𝑚 · (2 ln𝛿/0.025)). For a
large𝑚 and 𝛿 (e.g.,𝑚 = 6, 𝛿 ≥ 4.073𝑒4us), APX outperforms. Practi-

cally, implementation alters exact𝑚 and 𝛿 required to outperform.

7.1.6 Experiment 5 - Varied Approximation Ratios. In this exper-

iment, CAN and GEN task sets are used with varied values of 𝜖𝑟 ,

𝜖𝑓 , and 𝜖𝑏 for APX. The results in Figure 13 illustrate effects of

𝜖𝑟 , 𝜖𝑓 , and 𝜖𝑏 on runtime. The crosshairs with labels "All 𝜖𝑥 = 0.1"

indicate reference runtime values where all parameters are 0.1 (i.e.,

𝜖𝑟 = 𝜖𝑓 = 𝜖𝑏 = 0.1). The graph plots each epsilon value varying

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.02 0.04 0.06 0.08 0.1 0.12

R
un

ti
m

e
(s

)

ε value of varied term

CAN-APX All εx = 0.1
CAN-APX εr
CAN-APX εf
CAN-APX εb
GEN-APX All εx = 0.1
GEN-APX εr
GEN-APX εf
GEN-APX εb

APX Runtime vs. Approximation Parameters

Figure 13: Varied Approximation Ratios - Runtime

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5

 0

 1

A
p

p
ro

x
im

at
io

n
 R

at
io

O
bs

er
ve

d
 /

 T
he

o
re

ti
ca

l
A

p
p

ro
x.

 R
at

io

εr=εf=εb

CAN-Theoretical
CAN-Observed
GEN-Theoretical
GEN-Observed

CAN-Observed/Theoretical
GEN-Observed/Theoretical

Theoretical vs. Observed Approximation Ratio

Figure 14: Solution Quality

from the baseline value 0.01 while others remain constant (e.g.,

𝜖𝑟 = [0.02, 0.08] while 𝜖𝑓 = 𝜖𝑏 = 0.1). While all three contribute

equally to the approximation ratio, increases in 𝜖𝑏 yield greater run-

time reduction. This suggests users seeking faster runtimes should

increase 𝜖𝑏 to maximize runtime improvement per increase in de-

mand overestimate. Results also suggest 𝜖𝑟 and 𝜖𝑓 may be decreased

with little runtime penalty to reduce maximum overestimate.

7.1.7 Experiment 6 - Solution Quality. To illustrate the ratio of

observed to theoretical approximation ratio, the CAN and GEN

literature task sets are used for demand calculation with a fixed

𝛿 = 1.0𝑠 and varying values of equivalent 𝜖𝑟 = 𝜖𝑓 = 𝜖𝑏 . Figure 14

compares the theoretical upper bound on demand overestimation

(i.e., 1/(1−𝜖)) to the observed overestimate (i.e., APX 𝐷
safe
/ KAVR

demand). The observed overestimate closely tracks the theoretical

upper bound with a minimum ratio of 0.91 at 𝜖𝑟 = 𝜖𝑓 = 𝜖𝑏 = 0.5

and a maximum of 0.99 at 𝜖𝑟 = 𝜖𝑓 = 𝜖𝑏 = 0.025.

8 DISCUSSION AND LIMITATIONS
8.1 Effects of K on Runtime, Demand
Unlike the 0-1 knapsack problem, the scaling factor 𝐾 is not a value

we directly control. Instead, we control it via 𝜖𝑏 . As shown in Figure

13, the term 𝜖𝑏 has the greatest effect on runtime relative to 𝜖𝑟 and

𝜖𝑓 . Per Equation 29, we know a larger 𝜖𝑏 yields a larger 𝐾 . This

comports with the varied approximation ratio experiment (Figure

A Fully Polynomial Time Approximation Scheme for Adaptive Variable Rate Task Demand RTNS 2024, November 7–8, 2024, Porto, Portugal

13) which shows that runtime decreases as 𝜖𝑏 increases. Accord-

ingly, runtime decreases as 𝐾 increases. This behavior matches our

expectation for a scaling factor in the 0-1 knapsack.

Furthermore, an increased 𝐾 also means an increased 𝜖𝑏 (all

other parameters constant), a larger 𝐷
safe
(𝛿) (Equation 31), and

larger approximation ratio (Equation 30). These relationships also

align to expected behavior of a scaling factor in the 0-1 knapsack.

8.2 Experimental Limitations
Experiments focus on two metric groupings: literature metrics

and approximation-relevant metrics. In literature, runtime versus

mode count of randomly generated tasks, Figure 12, and runtime of

literature tasks, Figure 8, were the primary distinguishing metrics.

Since this work is approximation-focused, we isolate parameters

with the greatest effect on approximation runtime: duration, Figure

9, acceleration, Figure 11, and approximation parameters, Figures

13 and 14. Additional comparison via randomly generated tasks

would be beneficial in revealing combined parameter effects outside

those revealed here (i.e., precision, duration, acceleration, mode

count) and are not included here for time and space limitations.

9 CONCLUSION AND FUTUREWORK
This work provides a BPCKP for AVR task demand calculation

based on predefined job sequences. An exact dynamic programming

solution and FPTAS are presented. Compared to the state-of-the-art,

the proposed FPTAS demonstrates a 7,800x runtime improvement

with less than 8% demand overestimate and a 99.99% reduction

in RAM usage. This approach is well-suited for modern, resource-

limited CPSwith variableWCET and period behavior (e.g., wearable

devices, brushless DC motors, and satellite magnetorquers in the

introduction) as well as the original, motivating system: ICEs.

Future work includes proving NP-hardness for AVR task demand

calculation as the approximated approach hints at and replacing

the single job release with multiple job releases throughout a single

rotation to enable porting to other variable-period systems.

ACKNOWLEDGMENTS
This research was supported in part by the US National Science

Foundation (Grant Nos. CNS-2211641, CPS-2038609, CPS-2038726,

and IIS-1724227).

A RELATEDWORK OVERESTIMATION
Via Speedup Factor. Equation 13 of Guo and Baruah [25], restated

here, gives a AVR task set uniprocessor speedup factor 𝑠 = 1/(1−𝛽+
𝛽/𝜂 (𝜔)) where 𝛽 is the AVR task utilization ratio - the ratio of max

AVR utilization to the sum of AVR utilization and non-AVR task (i.e.,

periodic) utilization, and 𝜂 (Ω) is the ratio of the single-job MIAT

to the same boundary speed over the MIAT under maximum ac-

celeration (e.g., max𝑖 {𝑇 (𝜔𝑖 , 𝜔𝑖)/𝑇 (𝜔,
√︃
𝜔2

𝑖
+ 2𝛼+)}). By this equa-

tion, if an AVR task is the only task (i.e., 𝛽 = 1) and 𝑇𝑎𝑣𝑟 =

({9.0𝑒5 us, 600 us}, {100 rpm, 3200 rpm}, 6.0𝑒5 rpm2,−6.0𝑒5 rpm2)
is used, then 𝜂 (Ω) = 1.3620 making 𝑠 = 1.3620. This indicates we

are "wasting" (1 − 1/1.3620) > 26% processor capacity.

Via Linear Approximation. If used as a linear approximation, the

"most dense cycle" (from the Digraph Real-Time approach [52])

of 𝑇𝑎𝑣𝑟 above gives 90% utilization. At 𝛿 = 20 ms, the linearly

approximated demand would be 20 ms · 0.9 = 18 ms despite the

actual, exact demand being 0.6 ms (a 2,900% overestimate). and

𝛿 = 2 s, 1.9 s despite the actual, exact demand being 0.6312 s (a 42%

overestimate). Overestimation in both cases far exceeds 8% offered

by APX, even for large 𝛿 .

REFERENCES
[1] Meena Belwal and T. S. B. Sudarshan. 2014. A survey on design space explo-

ration for heterogeneous multi-core. In 2014 International Conference on Embed-
ded Systems (ICES). IEEE, Coimbatore, India, 80–85. https://doi.org/10.1109/

EmbeddedSys.2014.6953095

[2] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

1996. UPPAAL—a tool suite for automatic verification of real-time systems. In

Proceedings of the DIMACS/SYCON workshop on Hybrid systems III : verification
and control: verification and control. Springer-Verlag, Berlin, Heidelberg, 232–243.

[3] Gerald Bieber, Thomas Kirste, and Michael Gaede. 2014. Low sampling rate for

physical activity recognition. In Proceedings of the 7th International Conference on
PErvasive Technologies Related to Assistive Environments (PETRA ’14). Association
for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/

2674396.2674446

[4] Sandeep Kumar Bijinemula, Aaron Willcock, Thidapat Chantem, and Nathan

Fisher. 2018. Code for the paper-Efficient knapsack-based approach for calculating

the worst-case demand of AVR tasks. https://github.com/bsk1410/Efficient-

Knapsack-for-AVR-tasks-RTSS2018

[5] Sandeep Kumar Bijinemula, Aaron Willcock, Thidapat Chantem, and Nathan

Fisher. 2018. An Efficient Knapsack-Based Approach for Calculating the Worst-

Case Demand of AVR Tasks. In 2018 IEEE Real-Time Systems Symposium (RTSS).
IEEE, Nashville, TN, USA, 384–395. https://doi.org/10.1109/RTSS.2018.00053

ISSN: 2576-3172.

[6] Alessandro Biondi and Giorgio Buttazzo. 2015. Engine control: Task modeling

and analysis. In 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, Grenoble, France, 525–530. https://doi.org/10.7873/DATE.2015.0147
ISSN: 1558-1101.

[7] Alessandro Biondi and Giorgio Buttazzo. 2018. Modeling and Analysis of Engine

Control Tasks Under Dynamic Priority Scheduling. IEEE Transactions on Indus-
trial Informatics 14, 10 (Oct. 2018), 4407–4416. https://doi.org/10.1109/TII.2018.

2791939 Conference Name: IEEE Transactions on Industrial Informatics.

[8] Alessandro Biondi, Giorgio Buttazzo, and Stefano Simoncelli. 2015. Feasibility

Analysis of Engine Control Tasks under EDF Scheduling. In 2015 27th Euromicro
Conference on Real-Time Systems. IEEE, Lund, Sweden, 139–148. https://doi.org/

10.1109/ECRTS.2015.20 ISSN: 2377-5998.

[9] Alessandro Biondi, Marco Di Natale, and Giorgio Buttazzo. 2015. Response-time

Analysis for Real-time Tasks in Engine Control Applications. In Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems (ICCPS ’15).
ACM, New York, NY, USA, 120–129. https://doi.org/10.1145/2735960.2735963

event-place: Seattle, Washington.

[10] Alessandro Biondi, Marco Di Natale, and Giorgio Buttazzo. 2018. Response-time

analysis of engine control applications under fixed-priority scheduling. IEEE
Trans. Comput. 67, 5 (2018), 687–703. https://doi.org/10.1109/TC.2017.2777826

Publisher: IEEE.

[11] Alessandro Biondi, Alessandra Melani, Mauro Marinoni, Marco Di Natale, and

Giorgio Buttazzo. 2014. Exact Interference of Adaptive Variable-Rate Tasks

under Fixed-Priority Scheduling. In 2014 26th Euromicro Conference on Real-Time
Systems. IEEE, Madrid, Spain, 165–174. https://doi.org/10.1109/ECRTS.2014.38

ISSN: 2377-5998.

[12] Giorgio C. Buttazzo, Enrico Bini, Darren Buttle, Scuola Superiore, and Sant Anna.

2014. Rate-Adaptive Tasks: Model, Analysis, and Design Issues. In Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2014. IEEE Conference

Publications, New Jersey, 1–6. https://doi.org/10.7873/DATE.2014.266

[13] Darren Buttle. 2012. Real-Time in the Prime-Time. In 2012 24th Euromicro Con-
ference on Real-Time Systems. IEEE, Pisa, Italy, xii–xiii. https://doi.org/10.1109/

ECRTS.2012.7 ISSN: 2377-5998.

[14] Yi Cao and Wen-Hua Chen. 2009. Automatic differentiation based nonlinear

model predictive control of satellites using magneto-torquers. In 2009 4th IEEE
Conference on Industrial Electronics and Applications. IEEE, Xi’an, China, 913–918.
https://doi.org/10.1109/ICIEA.2009.5138329 ISSN: 2158-2297.

[15] Yi Cao and Wen-Hua Chen. 2014. Variable sampling-time nonlinear

model predictive control of satellites using magneto-torquers. Systems
Science & Control Engineering 2, 1 (Dec. 2014), 593–601. https://doi.

org/10.1080/21642583.2014.956841 Publisher: Taylor & Francis _eprint:

https://doi.org/10.1080/21642583.2014.956841.

[16] Shih-Lun Chen, Jocelyn Flores Villaverde, Ho-Yin Lee, Danny Wen-Yaw Chung,

Ting-Lan Lin, Chih-Hao Tseng, and Kuei-An Lo. 2017. A Power-Efficient Mixed-

Signal Smart ADC Design With Adaptive Resolution and Variable Sampling

https://doi.org/10.1109/EmbeddedSys.2014.6953095
https://doi.org/10.1109/EmbeddedSys.2014.6953095
https://doi.org/10.1145/2674396.2674446
https://doi.org/10.1145/2674396.2674446
https://github.com/bsk1410/Efficient-Knapsack-for-AVR-tasks-RTSS2018
https://github.com/bsk1410/Efficient-Knapsack-for-AVR-tasks-RTSS2018
https://doi.org/10.1109/RTSS.2018.00053
https://doi.org/10.7873/DATE.2015.0147
https://doi.org/10.1109/TII.2018.2791939
https://doi.org/10.1109/TII.2018.2791939
https://doi.org/10.1109/ECRTS.2015.20
https://doi.org/10.1109/ECRTS.2015.20
https://doi.org/10.1145/2735960.2735963
https://doi.org/10.1109/TC.2017.2777826
https://doi.org/10.1109/ECRTS.2014.38
https://doi.org/10.7873/DATE.2014.266
https://doi.org/10.1109/ECRTS.2012.7
https://doi.org/10.1109/ECRTS.2012.7
https://doi.org/10.1109/ICIEA.2009.5138329
https://doi.org/10.1080/21642583.2014.956841
https://doi.org/10.1080/21642583.2014.956841

RTNS 2024, November 7–8, 2024, Porto, Portugal Willcock et al.

Rate for Low-Power Applications. IEEE Sensors Journal 17, 11 (June 2017), 3461–
3469. https://doi.org/10.1109/JSEN.2017.2680472 Conference Name: IEEE Sensors

Journal.

[17] Robert I. Davis, Timo Feld, Victor Pollex, and Frank Slomka. 2014. Schedulability

tests for tasks with Variable Rate-dependent Behaviour under fixed priority

scheduling. In Real-Time Technology and Applications - Proceedings, Vol. 2014-
Octob. IEEE, Berlin, Germany, 51–62. https://doi.org/10.1109/RTAS.2014.6925990

[18] William R. Dieter, Srabosti Datta, and Wong Key Kai. 2005. Power reduction by

varying sampling rate. In Proceedings of the 2005 international symposium on Low
power electronics and design (ISLPED ’05). Association for Computing Machinery,

New York, NY, USA, 227–232. https://doi.org/10.1145/1077603.1077658

[19] Timo Feld. 2020. Response time analyses of adaptive variable-rate-tasks. Dis-

sertation. Universität Ulm. https://doi.org/10.18725/OPARU-24369 Accepted:

2020-01-23T13:51:11Z ISBN: 9781688526969.

[20] Timo Feld, Alessandro Biondi, Robert I. Davis, Giorgio Buttazzo, and Frank

Slomka. 2018. A survey of schedulability analysis techniques for rate-dependent

tasks. Journal of Systems and Software 138 (April 2018), 100–107. https://doi.

org/10.1016/j.jss.2017.12.033

[21] Timo Feld and Frank Slomka. 2015. Sufficient response time analysis considering

dependencies between rate-dependent tasks. In 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, Grenoble, France, 519–524.
https://doi.org/10.7873/DATE.2015.0150 ISSN: 1558-1101.

[22] Timo Feld and Frank Slomka. 2018. Exact Interference of TasksWith Variable Rate-

Dependent Behavior. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37, 5 (May 2018), 954–967. https://doi.org/10.1109/TCAD.

2017.2729459 Conference Name: IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems.

[23] Timo Feld and Frank Slomka. 2019. A Sufficient Response Time Analysis Con-

sidering Angular Phases Between Rate-Dependent Tasks. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 38, 11 (Nov. 2019),
2008–2021. https://doi.org/10.1109/TCAD.2018.2878163 Conference Name: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[24] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.

[25] Zhishan Guo and Sanjoy K. Baruah. 2015. Uniprocessor EDF scheduling of AVR

task systems. InACM/IEEE 6th International Conference on Cyber-Physical Systems,
ICCPS 2015. Association for Computing Machinery, Inc, Seattle, Washington, 159–

168. https://doi.org/10.1145/2735960.2735976

[26] Marius Herget, Faezeh Sadat Saadatmand, Martin Bor, Ignacio González Alonso,

Todor Stefanov, Benny Akesson, and Andy D. Pimentel. 2022. Design Space

Exploration for Distributed Cyber-Physical Systems: State-of-the-art, Challenges,

and Directions. In 2022 25th Euromicro Conference on Digital System Design (DSD).
IEEE, Maspalomas, Spain, 632–640. https://doi.org/10.1109/DSD57027.2022.00090

ISSN: 2771-2508.

[27] John Heywood. 1988. Internal Combustion Engine Fundamentals. McGraw-Hill

Education, New York, NY, USA. Google-Books-ID: u9FSAAAAMAAJ.

[28] John B. Heywood. 2018. Internal Combustion Engine Fundamentals (2nd

edition ed.). McGraw-Hill Education, New York, NY, USA. https://www.

accessengineeringlibrary.com/content/book/9781260116106

[29] Wen-Hung Huang and Jian-Jia Chen. 2015. Techniques for Schedulability Analy-

sis in Mode Change Systems under Fixed-Priority Scheduling. In 2015 IEEE 21st
International Conference on Embedded and Real-Time Computing Systems and
Applications. IEEE, Hong Kong, China, 176–186. https://doi.org/10.1109/RTCSA.

2015.36 ISSN: 2325-1301.

[30] Chung-Wen Hung, Jhih-Han Chen, and Hsuan T. Chang. 2011. A Minimal Fuzzy

Gain Scheduling Speed Controller and Torque Compensation for the Variable

Sampling System of BLDC Motors. In 2011 Fifth International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE, Seoul,
Korea (South), 434–437. https://doi.org/10.1109/IMIS.2011.85

[31] Chung-Wen Hung, Cheng-Tsung Lin, Chih-Wen Liu, and Jia-Yush Yen. 2007.

A Variable-Sampling Controller for Brushless DC Motor Drives With Low-

Resolution Position Sensors. IEEE Transactions on Industrial Electronics 54, 5 (Oct.
2007), 2846–2852. https://doi.org/10.1109/TIE.2007.901303 Conference Name:

IEEE Transactions on Industrial Electronics.

[32] Chung-Wen Hung and Jia-Yush Yen. 2013. A Robust Variable Sampling Time

BLDCMotor Control Design Based upon µ-Synthesis. The ScientificWorld Journal
2013 (Nov. 2013), 236404. https://doi.org/10.1155/2013/236404

[33] Oscar H. Ibarra and Chul E. Kim. 1975. Fast Approximation Algorithms for

the Knapsack and Sum of Subset Problems. J. ACM 22, 4 (Oct. 1975), 463–468.

https://doi.org/10.1145/321906.321909

[34] Oscar H. Ibarra and Chul E. Kim. 1978. Approximation Algorithms for Certain

Scheduling Problems. Mathematics of Operations Research 3, 3 (1978), 197–204.

http://www.jstor.org/stable/3689490 Publisher: INFORMS.

[35] Jia-Yush Yen, Yang-Lin Chen, and M. Tomizuka. 2002. Variable sampling rate

controller design for brushless DC motor. In Proceedings of the 41st IEEE Confer-
ence on Decision and Control, 2002., Vol. 1. IEEE, Las Vegas, NV, USA, 462–467

vol.1. https://doi.org/10.1109/CDC.2002.1184539 ISSN: 0191-2216.

[36] D. S. Johnson and K. A. Niemi. 1983. On Knapsacks, Partitions, and a New

Dynamic Programming Technique for Trees. Mathematics of Operations Research
8, 1 (1983), 1–14. http://www.jstor.org/stable/3689406 Publisher: INFORMS.

[37] Prachi Joshi. 2018. Design Space Exploration for Embedded Systems in Automotives.
Ph. D. Dissertation. Virginia Tech, Blacksburg, Virginia. https://vtechworks.lib.

vt.edu/items/f2162aeb-b0e4-46fd-a868-3f72deaf5772

[38] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Knapsack Problems.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24777-7

[39] Junsung Kim, Karthik Lakshmanan, and Ragunathan Rajkumar. 2012. Rhythmic

tasks: A new task model with continually varying periods for cyber-physical

systems. In Proceedings - 2012 IEEE/ACM 3rd International Conference on Cyber-
Physical Systems, ICCPS 2012. IEEE, Beijing, China, 55–64. https://doi.org/10.

1109/ICCPS.2012.14

[40] Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: verifi-

cation of probabilistic real-time systems. In Proceedings of the 23rd international
conference on Computer aided verification (CAV’11). Springer-Verlag, Berlin, Hei-
delberg, 585–591.

[41] Edward A. Lee and Sanjit A. Seshia. 2017. Introduction to Embedded Systems
(second ed.). MIT Press, Berkeley, CA, USA. https://ptolemy.berkeley.edu/books/

leeseshia/

[42] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multipro-

gramming in a Hard-Real-Time Environment. J. ACM 20, 1 (Jan. 1973), 46–61.

https://doi.org/10.1145/321738.321743

[43] Yu Liu, Chao Peng, Yecheng Zhao, Yangyang Li, and Haibo Zeng. 2020. Schedula-

bility Analysis of Engine Control Systems With Dynamic Switching Speeds. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 10
(Oct. 2020), 2067–2080. https://doi.org/10.1109/TCAD.2019.2951124 Conference

Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems.

[44] Morteza Mohaqeqi, Jakaria Abdullah, Pontus Ekberg, and Wang Yi. 2017. Refine-

ment of Workload Models for Engine Controllers by State Space Partitioning.

In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017) (Leibniz In-
ternational Proceedings in Informatics (LIPIcs), Vol. 76), Marko Bertogna (Ed.).

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 11:1–

11:22. https://doi.org/10.4230/LIPIcs.ECRTS.2017.11 ISSN: 1868-8969.

[45] A. K.Mok. 1983. FUNDAMENTALDESIGN PROBLEMSOFDISTRIBUTED SYSTEMS
FOR THE HARD-REAL-TIME ENVIRONMENT. Technical Report. Massachusetts

Institute of Technology, USA.

[46] National Science Foundation. 2021. Cyber-Physical Systems (CPS) | NSF - National

Science Foundation. https://new.nsf.gov/funding/opportunities/cyber-physical-

systems-cps

[47] Chao Peng, Yecheng Zhao, and Haibo Zeng. 2018. Schedulability Analysis of

Adaptive Variable-Rate Tasks with Dynamic Switching Speeds. In 2018 IEEE
Real-Time Systems Symposium (RTSS). IEEE, Nashville, TN, USA, 396–407. https:

//doi.org/10.1109/RTSS.2018.00054 ISSN: 2576-3172.

[48] Victor Pollex, Timo Feld, Frank Slomka, UlrichMargull, RalphMader, and Gerhard

Wirrer. 2013. Sufficient real-time analysis for an engine control unit with constant

angular velocities. In 2013 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, Grenoble, France, 1335–1338. https://doi.org/10.7873/

DATE.2013.275 ISSN: 1530-1591.

[49] Mohammadreza Sadeghi, Marco Philippi, Amir Mahdian, and Frank Slomka.

2022. MIAT Efficient analysis of adaptive variable-rate tasks. Journal of Systems
Architecture 127 (June 2022), 102472. https://doi.org/10.1016/j.sysarc.2022.102472

[50] Prashant Giridhar Shambharkar, Siddhant Bhambri, Arnav Goel, and M. N. Doja.

2019. A Survey on Schedulability Analysis of Rate-Adaptive Tasks. In 2019
International Conference on Machine Learning, Big Data, Cloud and Parallel Com-
puting (COMITCon). IEEE, Faridabad, India, 277–282. https://doi.org/10.1109/

COMITCon.2019.8862266

[51] Albert Solberg. 2018. Model Based Systems Engineering (MBSE). http://www.

nasa.gov/consortium/ModelBasedSystems

[52] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. 2011. The Digraph

Real-Time Task Model. In 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, Chicago, IL, USA, 71–80. https://doi.org/10.

1109/RTAS.2011.15

[53] Uppsala Universitet and Aalborg University. 2024. Home | UPPAAL. https:

//uppaal.org/

[54] Vijay Vazirani. 2003. Approximation Algorithms. Springer, New York, NY, USA.

http://link.springer.com/book/10.1007/978-3-662-04565-7

[55] Aaron Willcock. 2024. aarontwillcock/RTNS24-AVR-FPTAS. https://github.com/

aarontwillcock/RTNS24-AVR-FPTAS original-date: 2024-08-20T13:46:19Z.

[56] Hugh D. Young, Roger A. Freedman, A. Lewis Ford, and Hugh D. Young. 2012.

Sears and Zemansky’s University physics. Pearson Learning Solutions, San Fran-

cisco, CA, USA.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1109/JSEN.2017.2680472
https://doi.org/10.1109/RTAS.2014.6925990
https://doi.org/10.1145/1077603.1077658
https://doi.org/10.18725/OPARU-24369
https://doi.org/10.1016/j.jss.2017.12.033
https://doi.org/10.1016/j.jss.2017.12.033
https://doi.org/10.7873/DATE.2015.0150
https://doi.org/10.1109/TCAD.2017.2729459
https://doi.org/10.1109/TCAD.2017.2729459
https://doi.org/10.1109/TCAD.2018.2878163
https://doi.org/10.1145/2735960.2735976
https://doi.org/10.1109/DSD57027.2022.00090
https://www.accessengineeringlibrary.com/content/book/9781260116106
https://www.accessengineeringlibrary.com/content/book/9781260116106
https://doi.org/10.1109/RTCSA.2015.36
https://doi.org/10.1109/RTCSA.2015.36
https://doi.org/10.1109/IMIS.2011.85
https://doi.org/10.1109/TIE.2007.901303
https://doi.org/10.1155/2013/236404
https://doi.org/10.1145/321906.321909
http://www.jstor.org/stable/3689490
https://doi.org/10.1109/CDC.2002.1184539
http://www.jstor.org/stable/3689406
https://vtechworks.lib.vt.edu/items/f2162aeb-b0e4-46fd-a868-3f72deaf5772
https://vtechworks.lib.vt.edu/items/f2162aeb-b0e4-46fd-a868-3f72deaf5772
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1109/ICCPS.2012.14
https://doi.org/10.1109/ICCPS.2012.14
https://ptolemy.berkeley.edu/books/leeseshia/
https://ptolemy.berkeley.edu/books/leeseshia/
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/TCAD.2019.2951124
https://doi.org/10.4230/LIPIcs.ECRTS.2017.11
https://new.nsf.gov/funding/opportunities/cyber-physical-systems-cps
https://new.nsf.gov/funding/opportunities/cyber-physical-systems-cps
https://doi.org/10.1109/RTSS.2018.00054
https://doi.org/10.1109/RTSS.2018.00054
https://doi.org/10.7873/DATE.2013.275
https://doi.org/10.7873/DATE.2013.275
https://doi.org/10.1016/j.sysarc.2022.102472
https://doi.org/10.1109/COMITCon.2019.8862266
https://doi.org/10.1109/COMITCon.2019.8862266
http://www.nasa.gov/consortium/ModelBasedSystems
http://www.nasa.gov/consortium/ModelBasedSystems
https://doi.org/10.1109/RTAS.2011.15
https://doi.org/10.1109/RTAS.2011.15
https://uppaal.org/
https://uppaal.org/
http://link.springer.com/book/10.1007/978-3-662-04565-7
https://github.com/aarontwillcock/RTNS24-AVR-FPTAS
https://github.com/aarontwillcock/RTNS24-AVR-FPTAS

	Abstract
	1 Introduction and Motivation
	1.1 Related Work
	1.2 Contributions and Outline

	2 Preliminary Background
	2.1 The AVR Task Model
	2.2 Kinematic Definitions
	2.3 Speed Sequences and Demand
	2.4 The AVR Task Demand Problems
	2.5 AVR Task Demand as a BPCKP
	2.6 Solution Overview

	3 Predefined Sequences
	4 AVR Task Demand with PDSes
	5 An Exact Demand Calculation
	5.1 PDS Subset Notation
	5.2 Proof of Optimal Substructure
	5.3 Dynamic Programming Solution

	6 Demand Approximations
	6.1 RB Sequence Approximation
	6.2 MA Sequence Approximation
	6.3 Approximation of MIAT Table Size
	6.4 Overall Approximation Ratio
	6.5 Approximation Runtime
	6.6 Deriving a Safe Demand

	7 Evaluation and Results
	7.1 Setup and Experiments

	8 Discussion and Limitations
	8.1 Effects of K on Runtime, Demand
	8.2 Experimental Limitations

	9 Conclusion and Future Work
	Acknowledgments
	A Related Work Overestimation
	References

