A Fully Polynomial Time Approximation Scheme for Adaptive
Variable Rate Task Demand

Aaron Willcock Nathan Fisher Thidapat Chantem
willcock@wayne.com fishern@wayne.edu tchantem@vt.edu
Wayne State University Wayne State University Virginia Tech

Detroit, MI, USA

ABSTRACT

The Adaptive Variable Rate (AVR) task model defines a task where
job WCET and period are a function of engine speed. Motivated
by a lack of tractable AVR task demand methods, this work uses
predefined job sequences for the Bounded Precedence Constraint
Knapsack Problem inherent in AVR task demand calculation in-
stead of enumerating all considered speeds as in existing work.
A new, exact approach is proposed and approximated, enabling
the derivation of a Fully Polynomial Time Approximation Scheme
that outperforms the state-of-the-art in runtime (7,800x improve-
ment) and RAM use (99% reduction) with less than 8% demand
overestimate.

CCS CONCEPTS

« Computer systems organization — Embedded software;
Real-time system specification.

KEYWORDS

Adaptive variable rate, task demand, bounded precedence constraint
knapsack problem, fully polynomial time approximation scheme

ACM Reference Format:

Aaron Willcock, Nathan Fisher, and Thidapat Chantem. 2024. A Fully Poly-
nomial Time Approximation Scheme for Adaptive Variable Rate Task De-
mand. In The 32nd International Conference on Real-Time Networks and
Systems (RTINS 2024), November 7-8, 2024, Porto, Portugal. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3696355.3696367

1 INTRODUCTION AND MOTIVATION

This research aims to add demand characterization tools to the real-
time community toolbox for the effective deployment of real-time,
safety-critical cyber-physical systems (CPSs). CPSs are defined by
the tight integration of physical dynamics, computation, and control
[46]. In these systems, Model Based Systems Engineering (MBSE) is
used to construct a system model and implementation [41, 51]. Ex-
ample MBSE tools include PRISM [40] and UPPAAL [2, 53]. When
mapping computational loads to real-time tasks, conventional task
models (e.g., periodic and sporadic [42, 45]) do not always align
with the modeled CPS and cause overprovisioning. Consider vari-
able sampling rate systems like wearable devices which increase

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

RTNS 2024, November 7-8, 2024, Porto, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1724-6/24/11.

https://doi.org/10.1145/3696355.3696367

Detroit, MI, USA

Arlington, VA, USA

Spark
Plug Exhaust
Valve

77 /7 <

| —]

Intake
Valve
7 Fuel/Air

——— | Mix

Piston
._.!_. o

i T Y
Crank \ \ O
Angle y/

C/ 6 =180°] 0=0°

Intake Compression

Piston

Rod

~

Crankshaft

Combustion Exhaust
Top Dead Center (TDC)

Figure 1: Relevant piston/crankshaft angles for AVR tasks

sampling frequency when user activity is detected [3, 16, 18], Brush-
less DC (BLDC) motors whose control sampling increases with
speed [30-32, 35], or satellite magnetorquers whose actuation fre-
quency increases with positional error [14, 15]. Using a periodic
task to model the workload with the highest possible frequency
(e.g., during activity in the wearable, at high speed in the BLDC
motor controller, or high positional error in the satellite) is a safe,
valid configuration. However, this results in overprovisioning when
the actual sampling frequency is smaller. This inefficiency mani-
fests whenever the system is not operating at maximum frequency.
Ideally, custom task models are created during MBSE to mitigate
overprovisioning. These models require specialized schedulability
analysis tools (e.g., response time analysis, utilization bounds) to
allow predictable mingling with other tasks. One tool is the demand
bound function, which offers an algorithm-agnostic upper bound
on computational workload.

Consider an Engine Control Unit (ECU) in modern internal com-
bustion engine (ICE) vehicles in which a task releases a job each
time the piston reaches Top Dead Center within the cylinder bore,
as illustrated in Figure 1. In an ICE, pistons are connected to a
crankshaft rotating at a given speed (hereafter engine speed). As
engine speed increases, release frequency increases and vice versa.
Each job has an associated Worst-Case Execution Time (WCET)
which corresponds with engine speed as illustrated in Figure 2.
Finding the maximum computational workload over some time
interval using this model is inherently difficult since engine accel-
eration (and deceleration) allow an infinite number of job release
sequences [8]. This problem is further complicated by changing
task parameters [43, 47] where demand recharacterization occurs
repeatedly during operation or where Design Space Exploration
(DSE) is performed offline, testing hardware-software combinations
for feasible systems (e.g., [1, 26, 37]).

https://orcid.org/0000-0002-0516-3883
https://orcid.org/0000-0002-9733-3842
https://orcid.org/0000-0002-5688-5720
https://doi.org/10.1145/3696355.3696367
https://doi.org/10.1145/3696355.3696367

RTNS 2024, November 7-8, 2024, Porto, Portugal

1.1 Related Work

The original engine model was proposed as the Rhythmic Task
Model [39]. Further investigation was spurred by Buttle [13]. The
Rhythmic Task Model was then adopted via Adaptive Variable Rate
(AVR) [6, 11] and Variable Rate Behavior (VRB) [17, 22] models.

Varied task models and parameter assumptions can be reviewed
in Feld et al. [20] and Shambharkar et al. [50]. Since job interarrival
time depends on engine speed and acceleration, different accelera-
tion assumptions are explored (e.g., constant acceleration between
speeds [8, 9, 11], maximum acceleration between modes [25], and
variable acceleration between speeds [5, 44]).

Existing analysis for variable-rate tasks cover utilization [12, 25],
response time [9, 10, 19, 21, 23, 48], interference [22, 49] and demand
characterization [5, 8, 44]. Existing works also examine variable-rate
tasks under EDF [8, 12, 25, 29, 44], Fixed Priority [11, 19, 21-23, 48],
and Dynamic Priority [7].

To our knowledge, the only exact demand characterizations for
variable period engine models are Biondi et al. [8], Mohaqeqi et
al. [44] and Bijinemula et al. [5]. All other works provide a dif-
ferent analysis (see above). Of the near-peer, exact demand char-
acterization works, only two allow variable acceleration between
job releases: Mohageqi et al. [44] and Bijinemula et al. [5] - both
AVR-based works. The former uses a search technique based on
the Digraph Real-Time model [52] while the latter formulates and
solves the problem as a Bounded Precedence Constraint Knapsack
Problem (BPCKP) [24, 36] - yielding faster runtimes.

Despite its relative speed, the BPCKP approach is a precision-
sensitive, numeric method (i.e., increasing precision greatly in-
creases runtime and memory use), making it intractable when task
parameters change online and demand must be recalculated fre-
quently (e.g., Connected Autonomous Vehicles changing WCET
to engine speed ratios online [43, 47]) or when system designers
employ DSE to quickly generate hardware-software combinations
to test feasibility in advance (e.g., [1, 26, 37]). To provide a more
tractable solution, we seek an approximation of AVR task demand.

Fortunately, existing approximations of AVR demand via utiliza-
tion are found in Guo and Baruah [25] and by applying Stigge et
al’s concept of the “most dense cycle” [52]. Guo and Baruah offer a
speedup factor proof to bound the maximum “wasted” processor
capacity at 13% for AVR tasks. However, this bound does not hold
when the maximum AVR task utilization is large. Moreover, a linear
approximation using Stigge et al’s digraph-based “most dense cycle”
can result in over 40% overestimation (see Appendix for both ex-
amples). To mitigate overestimation and pursue tractable runtime,
we consult existing BPCKP approximations.

Given that the BPCKP approach offered by Bijinemula et al. is a
knapsack problem variant [5], existing knapsack approximations
appear as obvious solutions. For context, Keller et al. cover the
knapsack problem and variants thereof [38]. Ibarra and Kim [33]
give a Fully Polynomial Time Approximation Scheme (FPTAS) for
the 0-1 knapsack problem for which Vazirani [54] offers a simplified
version. Ibarra and Kim [34] also define and solve the MAXPROFIT
problem, a knapsack variant where precedence-constrained pro-
cesses must be scheduled to maximize profit over a time interval.
Already, the MAXPROFIT problem is very similar to computing
maximum AVR task demand. Garey and Johnson formalize this

Willcock et al.

WCET

t
1
wy W] wp w3 Wy wp oo wm
Engine Speed (w)

Figure 2: WCET vs. Engine Speed adapted from [11]

MAXPROFIT problem generally as the Partially Ordered Knapsack
(POK) and prove its NP-Completeness [24]. Although NP-Complete,
POK with precedence constraints in tree form admits pseudopolyno-
mial runtime per Johnson and Niemi’s [36]. Thankfully, the BPCKP
approach does produce a precedence graph as an out-tree. However,
the approach leaves input parameters in terms of kinematic values
(e.g., engine speed, acceleration). In other words: the BPCKP out-
tree is not bounded by the problem size (i.e., the number of modes).
Instead, the out-tree is bounded by the engine speed, acceleration,
and interval size values. Thus, the FPTAS offered by Johnson and
Niemi is insufficient without a kinematic-independent approach.

1.2 Contributions and Outline
To improve AVR task demand tractability, this work contributes:

(1) a BPCKP AVR task demand formulation which is polynomial
in kinematic parameters (Sections 3 and 4),

(2) an exact dynamic programming solution and FPTAS for the
above demand formulation (Section 5 and 6), and

(3) a comparison of the proposed FPTAS against the state-of-the-
art, exact AVR task demand approach (Section 7) yielding
over 7800x runtime improvement with less than 8% demand
overestimate and 99% RAM usage reduction.

The following section covers the preliminary background, a formal
problem statement, and a solution overview. The remaining sections
cover the contributions above in the order listed.

2 PRELIMINARY BACKGROUND

This section presents the fundamentals of the AVR task model,
relevant kinematic equations, and the BPCKP. It concludes with a
formal problem definition and solution overview.

2.1 The AVR Task Model

First introduced by Biondi et al. [11], the Adaptive Variable Rate task
model defines a real-time task with a variable period designed for
engine control. In ICEs, linearly traveling pistons drive a rotating
crankshaft [27, 28]. Shown in Figure 1, a piston reaches Top Dead
Center (TDC) when the crankshaft angle is 6§ = 0°. In the AVR
model, jobs are released each time the piston reaches TDC — once
per revolution. Thus, engine speed dictates release frequency such
that lower speed increases job interarrival time and higher speed
decreases job interarrival time. The AVR model also has discrete

A Fully Polynomial Time Approximation Scheme for Adaptive Variable Rate Task Demand

wp(wi7wj).

&
[

Engine Speed (rpm)

£

Minimum Interarrival Time (s) T (w;, C«Jj)

Figure 3: Speed pattern not limited by v, adapted from [5]

modes with job WCET non-increasing with engine speed given by:
C=A{c,co,....,cm} | ci EZT,C,- >cipVi € Z7 (1)

where ¢; is the WCET in microseconds (us), ¢1 is the largest WCET
of any mode as shown in Figure 2, and m = |C| is the number of
modes 1. The boundary speeds at which the modes change are:

Q = {wo, w1, w2, ...0m} (2)

where wp, is the maximum speed. The WCET of any speed is then:

(s) = {cl if s = wo 3)

c¢i fwj-1<s<w;

where s is the speed in revolutions per minute (rpm). Note the first
case handles the slowest possible speed, wg, which has WCET c;.
To properly calculate the minimum interarrival time (MIAT)
for an AVR task, the maximum acceleration, a*, and maximum
deceleration, a~, of the engine must be defined. These values may
be symmetric (i.e., in Bijinemula et al. [5]) or asymmetric (i.e., in
Mohagqeqi et al. [44]). For this work, the AVR task parameters are:

Taor = (m,C,Q, 0(+, a”) 4

where acceleration is symmetric (ot = —a7) 2.

2.2 Kinematic Definitions

In the AVR model, engine speed is measured and jobs are released
at TDC. Since the piston is TDC once per revolution, the rotational
distance between two consecutive job releases is strictly § = 1
revolution. The following kinematic equations relate MIAT, engine
speed, and distance. The equations are provided in Mohageqi et al.
and Bijinemula et al. [5, 44] and derivable from kinematic equations
(e.g., [56]). Figures 3 and 4 illustrate the two possible speed versus
time graphs of variable acceleration producing MIAT as calculated
by equations below. In these figures, the green, yellow, and red lines
have slopes a*, zero, and o~ respectively.

The distance traveled under uniform acceleration from starting
speed, w;, to ending speed, w;, using acceleration atis:

w? -

- (5)

0(wi, wj) =]2a

WeletZb ={x€Z|a<x <b},Z,=Z: andRE = {x eR|a < x < b}
2 Assuming symmetry simplifies underlying kinematics, maintains problem intuition,
and allows FPTAS comparison without converting extant work to support asymmetry.

RTNS 2024, November 7-8, 2024, Porto, Portugal

Wp(WisWj)g = = = = = === o

Engine Speed (rpm)

1
1
1
L
Minimum Interarrival Time (s) Tp (UJ~;7 wj‘)

Figure 4: Speed pattern limited by w,,, adapted from [5]

The MIAT between two speeds with variable acceleration is:

2 + 2 _ .
,I2wj+4a +2wi Wj — wj

at

T(wi, @j) = (6)
During variable acceleration (e.g., Figure 3), a peak speed is reached
while accelerating from w; to w; and is given by:
(ul.z +2at + w?
wp(wi, @) = — 7)
When peak speed exceeds w,, Equation 6 is unusable (v, cannot
be exceeded). Instead, the speed pattern in Figure 4 with MIAT:

2 2 2
wi—2a)m+wj 1 Om =) (g
+—+———7 (¥
at 20t wm, Wm at

m — Wi

@
Tp (w5, @)) =

is used. Incorporating the dependency on peak speed gives the
MIAT between any two speeds in microseconds 3:

T(wi, wj) - 6.0 X 107 if wp(wi, 0j) < Om
Tp (@i, wj) - 6.0 X 107 otherwise.

T(wp,w)) = { ©)
Note these equations require speeds to be within one revolution of
one another (ie., f(w;, wj) < 1).

2.3 Speed Sequences and Demand

Since WCET is determined by engine speed measured at TDC (when
jobs are released), an in-order WCET sequence is equivalent to a
sequence of engine speeds, a speed sequence, written as:

S=(s1.52.....50) | si e Rg™ Vi € Z} (10)

where s; is the starting speed and s, the ending speed.

Recall our goal is to maximize the demand (and thus WCET)
over some interval. With speed sequences, our goal is now to find
the speed sequence which maximizes WCET over some interval.
However, engines have minimum and maximum accelerations (o~
and o) meaning not every speed is reachable in one revolution from
every other speed. To explain, we simplify the reachable definition

in Bijinemula et al. [5]: s}, is reachable from s, if 4/s2 + 2a~ <
sp < /s + 2a*. By definition, a speed is reachable from itself.

Putting our original goal in context: since not every pair of speeds
is reachable, not every speed sequence is kinematically feasible (i.e.,
not every sequence can be produced by an ICE without exceeding
acceleration limits). If we let S be the set of all speed sequences,

30ne minute is 6.0 X 107 ys

RTNS 2024, November 7-8, 2024, Porto, Portugal

then Sp C S is the set of all kinematically feasible sequences such
that any two consecutive speeds in S € Sg is reachable:

SeSp = 1lsl.2—20(+ < sy < 1lsl.z+20:+

Thus, we are only interested in finding a feasible sequence that
maximizes demand over an interval. If we restrict our analysis to
Sk, then the MIAT of S € Sf (as derived in previous works) is:

ViezZ!™' (11)

S T (s, 541) + T(sisp, §jsp) i 151> 1
T(S) = T(S|5|,§|5|) if S| =1 (12)

0 if [S] = 0

where §|5| = min(@m, ,S|ZS\ + 2at) and the term T(3|5|, 3|s)) gives

the MIAT of the last job release while accelerating maximally.
To conclude this section, we restate the demand of S € Sg:

. {zsescu) if 1] 2 1

13
0 if |S] = 0. (13)

In this work, we assume D(S) < T(S) V S. Practically, this means
WCET values are such that utilization cannot exceed one - an
assumption consistent with existing AVR task sets [5, 11, 44, 49]. We
now describe the AVR task demand problem, the existing BPCKP-
based approach, and present our solution.

2.4 The AVR Task Demand Problems
The AVR task demand problem covered in prior works is as follows:

e Given an AVR task, Ty, with m modes and an interval, §,
find an algorithm, E, to calculate the exact maximum demand
that can be generated over an interval of size §.

In this work, we focus on the approximation variation:

e Given an AVR task, Ty, with m modes and an interval, 8,
find an FPTAS, A, to approximate the exact maximum demand
that can be generated over an interval of size §.

To be an FPTAS, A, given a fixed € > 0, must have a runtime polyno-
mially bounded in the number of modes, m, and % while producing
demand at most (1 — €) times the exact maximum demand.

2.5 AVR Task Demand as a BPCKP

Bijinemula et al. view AVR task demand as a BPCKP [5] since not
all speeds are reachable from one another - creating precedence
constraints among speeds. These constraints are represented as
an out-tree with vertices as speeds and edges linking reachable
speeds. Figure 5 illustrates one such tree. In the BPCKP approach,
interarrival times are viewed as “weight”, WCET as “profit”, and
the demand window § as “capacity”. The resulting formulation has
O(j-Msg) decision variables where j is the number of unique speeds
and M the maximum number of jobs over interval §. Per [5, 44],

2 _ 2

j=0(m- %) unique speeds must be considered. Furthermore,

since utilization cannot exceed one and the smallest WCET ¢;;, = 1,
w2 —(A)S

we know Mg = O(6). Therefore, O(m- ';w 0) decision variables
exist. This is dependent on values of kinematic parameters (wo, wm.,
and a*) — making an FPTAS for this BPCKP impossible since an

FPTAS must be polynomial in only the problem size (m) and 1/e.

Willcock et al.

2.6 Solution Overview

To solve the approximation AVR task demand problem, we provide
an exact dynamic programming solution dependent on m and §. An
FPTAS of the exact solution is then provided without pseudopoly-
nomial dependence on § using three components:

(1) a BPCKP formulation using predefined speed sequences that
is polynomial in m and §,

(2) an exact dynamic programming solution pseudopolynomial
in m and 8, and

(3) athree-part approximation of the exact solution that is poly-
nomial in m, 8, and %

This gives the desired FPTAS polynomially bounded in m and %

3 PREDEFINED SEQUENCES

To cover predefined speed sequences (PDSes), we differentiate the
set and sequence notation. Unordered sets use conventional nota-
tion (e.g., S = {a, b, c}) and operators (e.g., U and N). Sequences use
parenthesis and a concatenation operator (+) as follows:

Let a sequence be given by S = (s1,s2,...,5,) or by iterative
construction as in S = (k)]’C’ZO =(s1=0,52 =1,...,5.41 = n)
Furthermore, let us define a concatenation operation, +, as follows:
Sa + Sb = (al, as, bl, bz) — Sa = (al, ag),sb = (bl, bg) which
also functions iteratively as: +;:15x =514 S #- - -+ S,,. With this
notation, we now cover predefined speed sequences.

Recall that our goal is to find the speed sequence S which maxi-
mizes demand D(S) over the interval § (i.e., T(S) < §). Given an
AVR task, Tyyr, there are infinitely many sequences to consider [43].
Fortunately, previous works identify dominant sequences [5, 8, 10],
a subset of Sp which provably maximize demand compared to peers.
Thus, these are the only sequences that must be searched to find
one maximizing demand. A dominant sequence S must:

(1) begin at a boundary speed (i.e., s; € S € Q), AND
(2) use variable acceleration to reach a boundary speed OR use
constant maximum acceleration to reach the next speed (i.e.,

(si+1 € Q) V (si+1 = 31-2 +2at)).

Hereafter, let Sp C Sf be the set of all dominant sequences.
The BPCKP approach models dominant sequences as an out-tree
- shown in Figure 5. Note for simplicity of presentation, any node
in this tree representation may act as a terminal node as in [5].
Unfortunately, this representation makes the number of nodes

“h-ei s
2at

pseudopolynomial in kinematic parameters (i.e., O(m -
from earlier), preventing the formation of an FPTAS.

To avoid this, consider condensing the out-tree from Figure 5
into the recursive tree in Figure 6. Consecutive nodes with the same
speed (e.g., w;) could be combined into a single node representing
a desired number of repetitions. For example, let:

(wi)?_ ifr>0
N — k=1 14
(wl)o {(D otherwise (49

give a repeating sequence of w;, a Repeating Boundary (RB) se-
quence. We then condense repeating w; into a set of (w;)7, nodes -
one for each possible value of r.

A Fully Polynomial Time Approximation Scheme for Adaptive Variable Rate Task Demand

Figure 5: An example BPCKP out-tree adapted from [5]
with root w1 where wy/ is the yth speed reached via max

acceleration (ie., w) = A% + 2aty where 02 = wy), k; is defined
such that w; is reachable from wfz (e.g. a sequence accelerating

from boundary wj to wz is S = (w?, w%, .. .,wfz)), and a* denotes

max acceleration while a® denotes variable acceleration.

Re(ursive ___

Root Repeating Boundary

Sequences via o)

Next Maximum

Boundary Acceleration

Sequences (w1)3) - Sequences
(via o)

((via o, a*

<— Additional Recursive Roots

Figure 6: A condensed, recursive speed sequence tree

Similarly, consecutive nodes representing maximum acceleration
could also be combined. We could let:

f
2 + _
(wi); _ (,lwi +2at(k l))k:1

0 otherwise

R(i,m)

if f € Z] ANiezprl

(15)
give a speed sequence generated by accelerating maximally for
f revolutions (i.e., job releases), a Maximum Acceleration (MA)
sequence. Note that no speed is returned when i = m as speeds
cannot exceed wy, and (a)m)g) can produce any number of repeated
wm speeds, if necessary. R(i, j), defined below, gives the number

of job releases required to accelerate maximally from w; to wj.

Requiring f < R(i,m) prevents sequences exceeding wp from

being produced. The subtraction by one makes the sequences start

with w; in the MA PDS definition. The release count is then:
O(wi,wj)| f0<i<j<m

R(i.j) = {[(0] J (16

0 otherwise

An MA sequence may also end such that another boundary speed

is reachable from the last MA sequence speed (e.g., wfz in Figure 5).

We refer to this special case of MA sequence as a Next Boundary
sequence in Figure 6 and represent it as:

(0i)§ = i+l (17)

(a),)R(lZ) ifi e Z"~ Ihzez™
otherwise .

RTNS 2024, November 7-8, 2024, Porto, Portugal

Finally, to simplify presentation we define a PDS combining RB
and MA sequences (hereafter RB-MA sequences):

= ()}, + (o), (18)

Note that when f = R(i, z) the MA sequence is equivalent to (w;)5
per Equation 17. Thus, any dominant sequence producible by the
BPCKP out-tree (Figure 5) is producible by the condensed, recursive
out-tree (Figure 6) and representable as series of Q;’f PDSes.
To illustrate why, consider the following cases. The pink path in
the BPCKP tree produces the sequence S = (w1, @ 1, el a)lfz). In the
condensed, recursive tree, an equivalent path is highlighted in pink.

Using the RB-MA definition, this equivalent sequence is: QO R(L2) _

(@) + (@)% = 0+ (0] = (w1,0},...,0}). Note that

although the pink path in the BPCKP tree stops at w]fz, alternatively
it could expand to include w, as an RB sequence or may continue
as an MA sequence. The same property is true for the recursive tree
representation in which the recursive root 0, is highlighted as the
recursive roots alow for another RB-MA sequence beginning at ws

1
Wisenes

to follow. This mapping of the a)fz speeds to recursive roots allows
for the concatenation of multiple RB-MA sequences in the recursive
tree just as the original BPCKP tree representation allows sequences
to arrive at and then proceed from new boundary speeds. This
concatenation uses the variable acceleration referenced in Figure 5
and visualized in Figures 3 and 4 thus allowing the condensed tree
to incorporate variable acceleration.

The gold path in the BPCKP tree produces the sequence S =
(w1, w1, ® 1’ 1) In the condensed, recursive tree, an equivalent
path is highlighted in gold as well. This equivalent sequence can be
described with the RB-MA definition as: Qf’z = (a)l)é + (a)l)z/ =

(01, 01,0
w}. This is also true in the recursive tree where the sequence ends
at a terminal leaf (instead of a recursive root).

The demand and MIAT of Q;’f is then D(Q;’f) and T(Qir’f),
respectively. With this condensed representation, we now create
the PDS-based BPCKP.

w%) Unlike the pink path, this sequence terminates at

4 AVR TASK DEMAND WITH PDSES

A new AVR Task Demand BPCKP is now presented where decision
variables represent PDSes and a solution gives our desired result:
the maximum demand over an interval §. The function B(x), defined
later, constructs a speed sequence producing maximum demand.
Let Gp = (Vp, Ap) be a precedence constraint graph where Vp
represents the set of all Q;’f for all possible combinations of i, r, f
as vertices and Ap represents the set of all PDS pairs that form valid,
dominant sequences as edges. That is, let ((i, 7y, f;), (j, 7}, fj)) € Ap

RTNS 2024, November 7-8, 2024, Porto, Portugal

indicate § = (Q]* + Q777) € Sp. The new BPCKP is then:

m Rs Fs

- r.f r.f
maximize Z Z Z D(Q;”) - x; (19)
i=1 r=0 f=0
subjectto T(B(x)) <& (20)
Rs Fs
Zin”f51 Viezn 1)
r=0 f:O
(G.ris fi), (o 7ju f5)) € Ap
vaehi o er.j’fj =NEH. (@)
where xir’f indicates whether Q:’f is in the solution sequence, B(x),

defined later, concatenates selected PDSes into one, contiguous

speed sequence, and N (xir’f) gives the next selected PDS in order
of index i. Formally, N(xl.r’f) = x;j’fj |j>iA x;j’fj =1ARk|i<
k <ij£k’fk =1

The objective function, Equation 19, specifies maximal demand
where the terms Rg and Fg refer to the maximum RB and MA se-
quence length in time &, respectively. Since § and C are expressed in
microseconds (us) and the smallest WCET is ¢y, the maximum num-
ber of job releases that fit in any interval of size § is | §/cp,|. Thus,
Rs = Fs5 = |8/cm]. Since the smallest ¢, value is one, Rs = F5 = §
is a safe upper bound #. Equation 20 requires all jobs have deadlines
within §. Equation 21 requires at most one PDS per mode to enforce
condensing repeating boundaries (e.g., a solution having xf’o =1
and xf’o = 1 is equivalent to xf’o = 1 since Qf’o + Q‘;’O = Q?’O).
Equation 22 requires solutions to honor precedence constraints
from graph Gp (i.e., the solution is a dominant sequence). Specifi-
cally, the N (xir’f) term forces selected PDSes, concatenated in order
of index, to honor precedence constraints of Ap.

To construct the solution, let x be the array xl.r’f . The sequence
formed from the x is:

S e nf
m 5 & rf rf o itk =1
B = 4+ + + b(x. b(x. = t l 23
(x) i=1r=0 f=0 (™) 1h6) {(2) otherwise. @)

Since this formulation uses PDSes represented by Q;’f , the number
of unique PDSes (i.e., vertices of Gp) is O(m&?) as i is at most m
while r and f are at most §. We now have a BPCKP independent
of kinematic terms (e.g., wo, a*, or) — a foundation for the FP-
TAS. Moreover, this formulation does not require pre-computation
of PDSes - simply iteration through i, r, f values (as opposed to
individual speeds as in [5]).

5 AN EXACT DEMAND CALCULATION

This section begins with notation for sets of PDSes. We then es-
tablish the AVR task demand calculation’s optimal substructure.
An exact, recursive dynamic programming solution with pseudo-
polynomial runtime is then introduced.

4A large § greatly increases problem size. This is true for prior work [5] (as evident by
the experiments section) and a necessary weakness for a kinematic-agnostic BPCKP.
Practical limitations (e.g., ¢, » 1) make execution tractable without approximation.

Willcock et al.

5.1 PDS Subset Notation

To discuss optimal substructure, we introduce restricted set nota-
tion. Let Sq j be the set of PDSes which begin with speed w; (i.e.,
Sqi C Sp | VS € Sqi.s1 = wi), Slg’2 be the set of PDSes which
produce at least b demand (Slg’2 c Sp | VS € P, D(S) > b), and Slg)z,i
be the set of PDSes which begin w; and produce at least b demand
(s‘;li C (Sginsh) | Vs e s‘;li, S € (Sg,i NSY)).

5.2 Proof of Optimal Substructure

To provide a foundation for the dynamic programming solution,
proof of the demand calculation’s optimal substructure is presented.
In the following proof, S;f , denotes an optimal speed sequence
(i.e., Szb gives the MIAT of all PDSes beginning with w; and pro-

i) <
T(S") VS € S?),i)' Additionally, the symbol ~» denotes any addi-

tional PDSes that may or may not be present (i.e., the trailing end
of a sequence not relevant to the proof).

: b
ducing demand at least b). More formally, S;"b € SQ,i | T(S

LEmMA 1 (AVR Task DEMAND OPTIMAL SUBSTRUCTURE). Given
an AVR task Taor with m modes and boundary speeds Q, if S, =

(QII’;,R(I',X)
1
(Q;x’f") = S;,b, whereb, = b — D(Q?”’R(l’x)))‘

+ Q;x’fx ~), then (Q,rcx’fx ~») is necessarily optimal (i.e.,

ri,R(i,x)

Proor. Suppose SZb =(Q; + Q;xsfx ~»). We claim the

subsequence (Q;x’fx ~») is also optimal (i.e., (Q;"’fx ~w) = S;b

where b, = b - D(Q;i’R(i’x))). To prove so, suppose 35’ = Q;’f"fxl
such that D(8') > b-D(Q"F ¥) AT(QPR) 457) < T(S7,).
We have a contradiction, since either Si* b is optimal or Q;"’R(i’x/) +S’
is optimal. Thus, there is an optimal substructure in which S} p may
be constructed with S, where x > i. m]

By this lemma, an optimal speed sequence having MIAT with de-
mand at least b may be constructed only by considering all possible
subsequent PDSes beginning with indices from i + 1 to m as part
of the sequence Szb. That is, to produce Si*, » Tequires solving S;,b,

where b, = b — D(Q;i’R(i’x)) for all x € Zf},. Using this strategy,
the dynamic programming solution is presented.

5.3 Dynamic Programming Solution

To make the dynamic programming solution, let T'(i,) be:

i
T(i,b) = min T(S SGb)=| |sh 24
(1b)= min T(S) | SG.b) H . (24)

where T (i, b) gives the MIAT of all sequences in S(i, b). The function
combines sets of SE > Sequences which begin with w; and produce
demand at least b, ’by iterating through all boundary speeds. It-
erating through all boundary speeds starting with w; tests each
boundary as a possible starting point when generating demand b.
With all sets aggregated, T (i, b) finds the sequence with MIAT and
demand at least b.

A Fully Polynomial Time Approximation Scheme for Adaptive Variable Rate Task Demand

We now recursively define Slg’z’i for dynamic programming:

0 ifb<0

o lr=T8 ifb>0Ai=m

[b/em] r’f O,f .)
S?},i: {fL:Jo (Qid)Ird:b—D(Qi) ifb>0Ai<m

57 By (ke u
r=0 j=itl geghr !
-

where b, = b — D(Q:’R(l’])). The cases are as follows:

In the first case, requested demand b < 0 so no sequence is
returned since D(0) = 0 > b.

In the second case, requested demand b > 0 and i = m. Since

i = m, no PDS Q;j of with j > m will be concatenated afterward,

and no subsequent PDSes are considered. Moreover, (wm)f/. =0Vf
so no f values other than f = 0 are needed. This leaves only a value
of r to produce D(S) > b. Thus, [b/c;] gives the minimum r to
produce demand b.

In the third case, requested demand b > 0, and the sequence must
start at a boundary speed less than w,, (i.e., i < m).In this case, the
terms before the big union (|J) iterate through all combinations of
f and ry4 in which the single PDS Q:d’f produces at least demand
b (e.g., the right side of the condensed, recursive tree in Figure 6).
Note, the term ry is selected to make up the difference between the
requested demand b and the demand produced by the f term alone
(e, D(QPT)).

The terms after the union () iterate through all combinations of
r and possible subsequent PDSes (e.g., the left side of the condensed,
recursive tree in Figure 6). The j term iterates through all bound-
aries from which subsequent PDSes must be considered. Replacing
f with R(i, j) ensures that Q:’R(l’]) produces only sequences which
are feasible when concatenated with a subsequent PDS starting
at ;. Lastly, the union with term S € s 'J iterates through every
possible dominant sequence beginning with »; and generating at
least demand b, = b — D(Q.r’ R(L])) (i.e., the remaining demand

to generate after the demand from Qr’ R(D) is subtracted from
the total requested demand). This term implements the dynamic
programming property.

Informally, Slc)z,i enumerates all dominant sequences starting with
w; producing demand at least b. S(i, b) aggregates Sg , through SE ;
Finally, T (i, b) finds the sequence in S(i, b) with MIAT, giving the
MIAT to generate demand b.

We now cover the dynamic programming algorithm for exact
AVR task demand which we call Algorithm E, given below:

The overall runtime is O(lg § - m - §2) as follows. The primary
loop in Algorithm 1 is O(5). However, this may be improved with
a binary search to build results in the MIAT([] table making the
primary loop runtime O(lg §). Inside this loop, each call to T'(m, b)
is a single call to S(m, b) (Equation 24). This single call to S(m, b)

uses S?)i to calculate Q;’f for every combination of i, r, and f.

With memoization, Algorithm E only needs to compute Q;’f once
for every i,r, f combination. Given that i is O(m) while r and f
are O(b), we know S(m, b) (and thus T (rm, b)) has runtime O(mb?).

RTNS 2024, November 7-8, 2024, Porto, Portugal

Algorithm 1 Exact DP T(i, b) (Algorithm E)

function AVR-DEMAND-EXACT(Tyyr,9):
MIAT[0, 1,...,5] « oo
for b < 0to 6 do:
MIAT[b] « T(m,b)
end for
return max{b | MIAT[b] < 6}
end function

> Init. MIAT table
> Iterate through all demands
> Save MIAT

> Return max demand

—

ol

_—
)

Exact —~

o |

......................... Q0 @ @

? Approximated to

Approximated r value
e

Exact r value

Figure 7: Example Approximation of »; Repetition Quantity

Recalling that b is at most §, we now have a primary loop with
runtime O(lg §) and loop contents, T (m, b), with runtime O(md?).
This gives the overall runtime: O(lg § - m - §2).

6 DEMAND APPROXIMATIONS

Algorithm E’s runtime is pseudopolynomial in 8. To build an FP-
TAS, we must shed the pseudopolynomial dependence on § (e.g, by
replacing it with In § which is polynomial in the size of the input §
when represented in bits). This requires changing the implementa-
tion of Sb - the function contributing 82 to overall runtime.

This sectlon covers the approximation of § for r and f and an
accompanying Algorithm A — the FPTAS. An approximation ratio
proof is then presented along with a definition of safe demand, Dg,fe

— the demand a user may safely rely on after approximation.

6.1 RB Sequence Approximation

The dynamic programming function Sl(’z’i relies on b to quantify the
maximum repeated jobs at boundary w;. Since b is at most §, this
means 6 unique values of r. To facilitate an FPTAS, let €, > 0 be the
basis for a log scale representation of r at a given w;. Specifically,
let the set of values for r instead be:

r'(b,i, &) = {Hcﬁ} S(1- €r)kJ Vk € Z(L)t’rjﬂ} (25)

where #, is the value of k at which L%] S(1- er)k =1

mm-m[2] w[2] .,
= < —
In(1-¢) ln(l —€r)
Figure 7 illustrates this approximation. This approach creates a
smaller set of searched repetitions at each boundary, bounded poly-

(26)

r =

nomially in the problem size as there are at most l“ ‘S unique values

RTNS 2024, November 7-8, 2024, Porto, Portugal

of r to test when b = §, as opposed to [Cé-l To explain the effect on
MIAT calculation by T(i, b), consider the following lemma.
LEMMA 2. Ifq is the repetition quantity r selected at any boundary

by S(i, b), when approximating the set of repetitions with €,, then
q> (1-¢) - OPT,.

Proor. Let OPT, be the optimal number of repetitions at some
boundary w; and q be the approximated number of repetitions.

Furthermore, let OPT, be defined such that Lé-l (11—)t <
OPT, < [%-‘ - (1—-¢&)* (ie., OPT; is between two repetition values
of the approximated version). If index x + 1 is selected (i.e., ¢ =
[C%-‘ - (1 = &)%), OPT, is at most [%1 - (1 = &)*. The maximum

underestimate, therefore, is given by:

[]-0-r)
[eTo-e)

The lemma is proven. O

=(1-¢)=>q=(1-¢)-OPT,

A similar approximation, covered below, may be applied to the
set of values for f to limit the number of MA sequences to search.

6.2 MA Sequence Approximation
In Equation 25, f is used to search all possible consecutive release
quantities via (wi)j;. Like r, f is bounded by b (i.e., there are b

unique values of f). Let €y > 0 be the basis for a log-scale repre-
sentation of f. Then, the set of approximated values for f is:

/ _ i . _ k I.ffJ"'1
f(b,ef)—{Hcmw (1-¢p) J Vkez; 27)
where £y is the value of k at which [%-‘ -(1- ef)k =1

ln[%-‘ M

_ln(l —€f) €f (28)

fp =
We then establish a similar lemma for approximation of f. The
proof is identical in form to Lemma 2 and omitted for space.

LEMMA 3. Ifq is the number of consecutive job releases at maxi-
mum acceleration at any boundary by S(i, b) when approximating
consecutive releases with e¢, then ¢ > (1 - €f) - OPTy.

The terms r and f, which individually contribute O(b) time
in the exact case, are now O(Inb/e,) and O(Inb/ef) respectively.
The final approximation below will remove the MIAT table size
dependence on § shown in Algorithm E.

6.3 Approximation of MIAT Table Size

Recall that in Algorithm E, T(m, b) must calculated for b € Zg
(ignoring binary search). Since demand is at most b = §, this ap-
proximation is required to remove dependence on §. To remove the
dependency, we propose scaling PDS WCET (and thus the maxi-
mum demand we must search) via a scaling factor K and scaling

Willcock et al.

function Dk (S) — just as the 0-1 knapsack utilizes a scaling factor
[54]. Let a scaling function and factor, K, be defined as:

D(S)
TJ

k=2t (29)

Dk(S) = { -

where €, > 0 and Dk (S) is a scaled version of D(S) which scales
demand by K for use in the approximation of Algorithm E. Note

€}, scales the maximum value of b (i.e., §) that must be searched.
The maximum MIAT table size is now b’ = l%J = %. We now

incorporate all three approximations of r, f, and b as:

0 ifb<0
u (Q;’O) | D () > b
rer

b r.f r.f . .
§h, = {rgr,fgf/ (Qi) | Dk () = b} ifb>0ni<m

ifb>0Ai=m

m
Us u u U

rer’ j=i+l Sesﬂg‘

2)

(@ 4 5)

where ' =/ (b,i,¢), ' = f'(b.i,€5), and by = b — D (),
We then use the apostrophe to denote approximated function vari-
ants as: T’ (m, b) = mingeg ;) T(S),and 8’ (i, b) = U, S’lg’zi.The

i=

approximation, Algorithm A is then Algorithm E with T(m, b) re-
placed by T’ (m, b”). We now prove Algorithm A’s results are within
(1 — €p) of optimal.

LEMMA 4. If S gives MIAT T’ (m, b) and O gives MIAT T(m, D),
S > (1-ep) - OPT | OPT = T(m, b)
Proor. Let us define S | T(S) = T’(m,b) and O | T(O) =
T(m,b). We assert:
D(S) = K-D’(S) » By Equation 29
D’'(S) 2D'(0) = K-D'(S) 2K-D’(0) » By construction
D(0) —KD'(0) < mK
= K-D’(0) 2 D(O) —mK » By scaling at most m times
Combining the above inequalities gives:
D(S)2K-D'(S) 2K -D’(0) 2 D(O) —m-K » Byabove

& D(S) > D(0) -y & »ByK:e”T"s

& D(S) > OPT — ¢, - OPT = (1 - €,)OPT » By 8 > OPT
where D(O) = OPT. Thus, the lemma is proven. o

6.4 Overall Approximation Ratio
Since the approximation of MIAT table size (i.e., b =) applies to

the sequences after approximating quantities r and f for Q;’f , the
overall approximation is given by:

(1-¢) < (1-e)(1-ep)(1-ep) (30)

where € is the overall approximation value, €, is the approximation
factor for unique values of r, €f is the approximation factor for
unique values of r, and ¢, is the approximation factor for MIAT
table size (i.e., for b = 6). Since (1 - &), (1 - €f), (1 — €) must all
exceed (1 — €), a simple solution for selecting values of ¢, Ef, and
€p given a desired overall € is: €, = €5 = €, = €/3.

A Fully Polynomial Time Approximation Scheme for Adaptive Variable Rate Task Demand

6.5 Approximation Runtime

With bounded search quantities for r and f, we derive a runtime
for Algorithm A. The worst-case runtime of the exact approach,
Algorithm E, is O(lg § - m6?). The approximation of r gives a bound
of O(%) and approximation of f gives a bound of O(%). The
approximation of b, gives |§/K| = | m/ep,| = O(m/ep). Since b =
O(6), the runtime is: O (lg(m/eb) -m-(Ind/er) - (In 5/ef)).

6.6 Deriving a Safe Demand

Approximated demand is only guaranteed to exceed (1 — ¢€) - OPT.
However, it may be lower than the exact maximum demand (i.e.,
unsafe). To convert approximated demand to a pessimistic (i.e., safe)
demand for use in real-time systems, users must instead use:

K-b
(1-e)

as the safe demand in a window of size § where K is the scaling
factor defined in Equation 29, and b is the largest value for which
T(m,b) has a MIAT less than §.

Dgare(6) =

| b=max{b | T(m,b) <65} (31)

7 EVALUATION AND RESULTS

In the absence of readily available ICEs with compatible, open-
source engine control units implementing AVR tasks, all experi-
ments are simulations as with prior works [4, 5, 44]. The source
code and publication data are available online [55].

7.1 Setup and Experiments

7.1.1 Setup. The Bijinemula et al. artifact [4] (KAVR), our nearest
peer, is used for comparison. The exact dynamic programming (EX-
ACT) and FPTAS implementations (APX) are compared with KAVR.
Linux on an AMD 7413 3.2GHz CPU and 254 GB RAM is used for
single-threaded simulation. Python 3.10.12 is used for consistency
with the KAVR artifact. The canonical (CAN) and generalized (GEN)
task sets are from literature [5, 11, 44]. APX parameters default to
€y = € = € = 0.025 with (1 - €) = 0.927 and solutions overes-
timate demand at most 7.8% (1/0.927) per Equation 30. APX and
EXACT use precision 12 for all experiments.

7.1.2 Experiment 1 - Variable Precision. In this experiment, the
CAN and GEN 6-mode task sets from the literature are used. with
simulation parameters identical to [5]. The results in Figure 8 high-
light a KAVR weakness: increasing precision increases runtime.
APX dominates runtime for all precisions, EXACT dominates when
KAVR precision exceeds five. Minimum and maximum runtime
improvement of APX to KAVR is: 6x and 7,761x respectively.

7.1.3 Experiment 2 - Varied Demand Window Sizes. In this exper-
iment, the literature task sets are used with varied values for §.
Figure 9 shows the effect of § on runtime where "-PXX" speci-
fies KAVR precision XX. Note the log scale on both axes. Around
§ = 1.3 x 10%us, APX begins to outperform KAVR. At § = 10e7,
APX is more than 6,100x faster. This is expected as KAVR is more
sensitive to § than APX given their asymptotic analysis.

Figure 10 illustrates RAM usage for the varied duration experi-
ment versus precision. APX requires 99.99% less RAM than KAVR
which also comports with the KAVR sensitivity to J.

RTNS 2024, November 7-8, 2024, Porto, Portugal

Demand Calculation Runtime vs. Precision

1x10% T T T T T T T
—A— CAN-KAVR —@— CAN-EXACT —Jll- CAN-APX
1x103 | —%— GEN-KAVR —O— GEN-EXACT —Hf— GEN-APX
S 1X10% [
Y
E1x10' |
=
2
1x100
1x10"
1% 10—2 1 1 1 1 1 1 1 1
5 6 7 8 9 10 1 12
Precision
Figure 8: Variable Precision - Runtime
Demand Calculation Runtime vs. Demand Window Size
1x103§----[——r ————r
5 F —A— CAN-KAVR-POS —A— GEN-KAVR-P05 E
I1X10° F 9~ CAN-KAVRPI2 —5— GEN-KAVR-PI2 3
Ix10! | —®@— CAN-EXACT —O— GEN-EXACT E
—~ E —- CAN-APX —3— GEN-APX
Z1x10° F E
Q E E
Eixio! | 3
=] F E
5 -2 4
2 1X10
1x103 | 3
1x10% F 1
1%10°5 Bt : L

10000 100000 1x100
Demand Window Size (us)

Figure 9: Variable Duration - Runtime

Demand Calculation Peak RAM vs. Precision

65536 T T T T T T T T

16384 A A A T
4096 - 1
1024 | g .

Peak RAM Required (MB)
=
r
T
1

| —&A— CAN-KAVR —e— GEN-EXACT
I' ' —A— GEN-KAVR —fll— CAN-APX 2]
025 | [+ CAN-EXACT E—[GEN-AP[x [.

5 6 7 8 9 10 11 12
Precision

Figure 10: Variable Duration - Peak RAM Usage

7.1.4 Experiment 3 - Varied Acceleration. In this experiment, lit-
erature task sets are used with varied a* and a~ illustrating the
effect of acceleration on runtime. Acceleration is varied in the range
[1x10%, 1x10°] rpm? with results in Figure 11. Note that low accel-
eration prevents speed sequences from reaching subsequent bound-
ary speeds, thereby reducing search complexity (and runtime). At
larger acceleration, feasible boundary speed combinations increase
(increasing runtime). APX runtime dominates for both literature
task sets. The minimum and maximum runtime improvement of
APX over KAVR is 3.91x and 7,827x respectively.

RTNS 2024, November 7-8, 2024, Porto, Portugal

Demand Calculation Runtime vs. Acceleration

1x10° [T T T I
E —— CAN-K-P05 CAN-EXACT
100000 F —— GEN-K-P05 - GEN-EXACT E
10000 b - - - CAN-KPI2 —-— CAN-APX
F - -- GEN-KPI2 —-—- GEN-APX 3
2 1000 B R
g 100 F LeTzie-oT T 1
g 10 é’ s ;:’;'T""” s
SRR]
0.1 F e e e e e e e e
0.01 é—\,,.%“’ =
0.001 E1 ! ! ! ! 1
0 200000 400000 600000 800000 1x10°
Maximum Acceleraton (rpm/secz)
Figure 11: Varied Acceleration - Runtime
Demand Calculation Runtime vs. Mode Count
10000 3 IA KA{/R-POS I I I I I =
E KAVR-P12 E
1000 ¢ S EXACT A A A
. [—[F- APX A A
2 100§r /,\.AA”A'AA
E 10]
E 1 F : E
& ot _mB-88
0.1 . e E*EI'E 3
001 | A BT .
000] L 1 | | | | | | |
2 4 6 8 10 12 14 16
Number of Modes

Figure 12: Varied Mode Count - Runtime

7.1.5 Experiment 4: Varied Mode Count. In this experiment, a ran-
domly generated AVR task with 16 modes was created. From the
16-mode task, 14 other AVR tasks are created by repeatedly merg-
ing the middle-most modes. This merging maintains the minimum
speed, maximum speeds, at = 7.5¢5 rpmz, and § = 750ms. Thus,
only mode quantity (m) changes. Figure 12 shows the results. APX
runtime dominates especially for larger m. The minimum and max-
imum improvement over KAVR is 1.955x and 2,888x respectively.
An observant reader may ask: “why does KAVR outperform EX-
ACT?” and given that KAVR does outperform EXACT, “why does
APX outperform KAVR?". Recall KAVR has O(rm - “’3;;’5 - 8) de-
cision variables where EXACT has O(In§ - m - §%). Using the
CAN task set, m = 6,0, = 6500,09 = 500,at = 6.0e5. Thus,
KAVR is O(35md) and EXACT is O(Ind - m - 6%). For a large §
and m (e.g., m = 6,5 > 10.4us), KAVR outperforms. Figures 9 and
12 illustrate this possibility. Moreover, the APX runtime with all
€r = €7 = € = 0.025, is: O (In(m/0.025) - m - (21n 6/0.025)). For a
large m and § (e.g., m = 6, § > 4.073e4us), APX outperforms. Practi-
cally, implementation alters exact m and § required to outperform.

7.1.6 Experiment 5 - Varied Approximation Ratios. In this exper-
iment, CAN and GEN task sets are used with varied values of ¢,
ef, and €, for APX. The results in Figure 13 illustrate effects of
€r, €f, and €, on runtime. The crosshairs with labels "All ¢, = 0.1"
indicate reference runtime values where all parameters are 0.1 (i.e.,
€r = €7 = €, = 0.1). The graph plots each epsilon value varying

Willcock et al.

APX Runtime vs. Approximation Parameters

0.14 T T T T T
+ CAN-APX All €, =0.1
0.12 | CAN-APX €, -
CAN-APX &;
o1 —/A— CAN-APX g, |
—~ + GEN-APX All g, =0.1
Z 008 —3— GEN-APX ¢,
g GEN-APX &¢
2 006 |- GEN-APX g,
&
0.04 - B = + E
0.02 - |
0 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12

€ value of varied term

Figure 13: Varied Approximation Ratios - Runtime

Theoretical vs. Observed Approximation Ratio

S

T T T T
CAN-Theoretical CAN-Observed/Theoretical

—O— CAN-Observed —%— GEN-Observed/Theoretical
- —&— GEN-Theoretical
—A— GEN-Observed

=)

=N
T

Approximation Ratio
~
T

[N]
T

Observed / Theoretical Approx. Ratio

0 0.1 0.2 0.3 0.4 0.5
E=E=E

Figure 14: Solution Quality

from the baseline value 0.01 while others remain constant (e.g.,
e = [0.02,0.08] while €f =€ = 0.1). While all three contribute
equally to the approximation ratio, increases in €, yield greater run-
time reduction. This suggests users seeking faster runtimes should
increase € to maximize runtime improvement per increase in de-
mand overestimate. Results also suggest €, and ey may be decreased
with little runtime penalty to reduce maximum overestimate.

7.1.7 Experiment 6 - Solution Quality. To illustrate the ratio of
observed to theoretical approximation ratio, the CAN and GEN
literature task sets are used for demand calculation with a fixed
8 = 1.0s and varying values of equivalent €, = €f = €. Figure 14
compares the theoretical upper bound on demand overestimation
(i.e., 1/(1—¢)) to the observed overestimate (i.e., APX Dg,f. / KAVR
demand). The observed overestimate closely tracks the theoretical
upper bound with a minimum ratio of 0.91 at ¢, = €7 = ¢, = 0.5
and a maximum of 0.99 at €, = € = €, = 0.025.

8 DISCUSSION AND LIMITATIONS
8.1 Effects of K on Runtime, Demand

Unlike the 0-1 knapsack problem, the scaling factor K is not a value
we directly control. Instead, we control it via 5. As shown in Figure
13, the term €, has the greatest effect on runtime relative to €, and
€f. Per Equation 29, we know a larger ¢}, yields a larger K. This
comports with the varied approximation ratio experiment (Figure

A Fully Polynomial Time Approximation Scheme for Adaptive Variable Rate Task Demand

13) which shows that runtime decreases as ¢, increases. Accord-
ingly, runtime decreases as K increases. This behavior matches our
expectation for a scaling factor in the 0-1 knapsack.

Furthermore, an increased K also means an increased ¢, (all
other parameters constant), a larger D, (5) (Equation 31), and
larger approximation ratio (Equation 30). These relationships also
align to expected behavior of a scaling factor in the 0-1 knapsack.

8.2 Experimental Limitations

Experiments focus on two metric groupings: literature metrics
and approximation-relevant metrics. In literature, runtime versus
mode count of randomly generated tasks, Figure 12, and runtime of
literature tasks, Figure 8, were the primary distinguishing metrics.
Since this work is approximation-focused, we isolate parameters
with the greatest effect on approximation runtime: duration, Figure
9, acceleration, Figure 11, and approximation parameters, Figures
13 and 14. Additional comparison via randomly generated tasks
would be beneficial in revealing combined parameter effects outside
those revealed here (i.e., precision, duration, acceleration, mode
count) and are not included here for time and space limitations.

9 CONCLUSION AND FUTURE WORK

This work provides a BPCKP for AVR task demand calculation
based on predefined job sequences. An exact dynamic programming
solution and FPTAS are presented. Compared to the state-of-the-art,
the proposed FPTAS demonstrates a 7,800x runtime improvement
with less than 8% demand overestimate and a 99.99% reduction
in RAM usage. This approach is well-suited for modern, resource-
limited CPS with variable WCET and period behavior (e.g., wearable
devices, brushless DC motors, and satellite magnetorquers in the
introduction) as well as the original, motivating system: ICEs.
Future work includes proving NP-hardness for AVR task demand
calculation as the approximated approach hints at and replacing
the single job release with multiple job releases throughout a single
rotation to enable porting to other variable-period systems.

ACKNOWLEDGMENTS

This research was supported in part by the US National Science
Foundation (Grant Nos. CNS-2211641, CPS-2038609, CPS-2038726,
and T1S-1724227).

A RELATED WORK OVERESTIMATION

Via Speedup Factor. Equation 13 of Guo and Baruah [25], restated
here, gives a AVR task set uniprocessor speedup factor s = 1/(1-f+
B/n(w)) where f is the AVR task utilization ratio - the ratio of max
AVR utilization to the sum of AVR utilization and non-AVR task (i.e.,
periodic) utilization, and n(Q) is the ratio of the single-job MIAT
to the same boundary speed over the MIAT under maximum ac-
celeration (e.g., max;{T(w;, 0i)/T(w, [a)l.z + 2a™*)}). By this equa-
tion, if an AVR task is the only task (i.e., f = 1) and Typr =
({9.0e5 us, 600 us}, {100 rpm, 3200 rpm}, 6.0e5 rpm?, —6.0e5 rpm?)
is used, then n(Q) = 1.3620 making s = 1.3620. This indicates we
are "wasting" (1 — 1/1.3620) > 26% processor capacity.

Via Linear Approximation. If used as a linear approximation, the
"most dense cycle" (from the Digraph Real-Time approach [52])

RTNS 2024, November 7-8, 2024, Porto, Portugal

of Tyyr above gives 90% utilization. At § = 20 ms, the linearly
approximated demand would be 20 ms - 0.9 = 18 ms despite the
actual, exact demand being 0.6 ms (a 2,900% overestimate). and
d = 2s, 1.9 s despite the actual, exact demand being 0.6312 s (a 42%
overestimate). Overestimation in both cases far exceeds 8% offered
by APX, even for large 9.

REFERENCES

[1] Meena Belwal and T. S. B. Sudarshan. 2014. A survey on design space explo-
ration for heterogeneous multi-core. In 2014 International Conference on Embed-
ded Systems (ICES). IEEE, Coimbatore, India, 80-85. https://doi.org/10.1109/
EmbeddedSys.2014.6953095

[2] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
1996. UPPAAL—a tool suite for automatic verification of real-time systems. In
Proceedings of the DIMACS/SYCON workshop on Hybrid systems III : verification
and control: verification and control. Springer-Verlag, Berlin, Heidelberg, 232-243.

[3] Gerald Bieber, Thomas Kirste, and Michael Gaede. 2014. Low sampling rate for
physical activity recognition. In Proceedings of the 7th International Conference on
PErvasive Technologies Related to Assistive Environments (PETRA ’14). Association
for Computing Machinery, New York, NY, USA, 1-8. https://doi.org/10.1145/
2674396.2674446

[4] Sandeep Kumar Bijinemula, Aaron Willcock, Thidapat Chantem, and Nathan

Fisher. 2018. Code for the paper-Efficient knapsack-based approach for calculating

the worst-case demand of AVR tasks. https://github.com/bsk1410/Efficient-

Knapsack-for- AVR-tasks-RTSS2018

Sandeep Kumar Bijinemula, Aaron Willcock, Thidapat Chantem, and Nathan

Fisher. 2018. An Efficient Knapsack-Based Approach for Calculating the Worst-

Case Demand of AVR Tasks. In 2018 IEEE Real-Time Systems Symposium (RTSS).

IEEE, Nashville, TN, USA, 384-395. https://doi.org/10.1109/RTSS.2018.00053

ISSN: 2576-3172.

Alessandro Biondi and Giorgio Buttazzo. 2015. Engine control: Task modeling

and analysis. In 2015 Design, Automation & Test in Europe Conference & Exhibition

(DATE). IEEE, Grenoble, France, 525-530. https://doi.org/10.7873/DATE.2015.0147

ISSN: 1558-1101.

Alessandro Biondi and Giorgio Buttazzo. 2018. Modeling and Analysis of Engine

Control Tasks Under Dynamic Priority Scheduling. IEEE Transactions on Indus-

trial Informatics 14, 10 (Oct. 2018), 4407-4416. https://doi.org/10.1109/TIL2018.

2791939 Conference Name: IEEE Transactions on Industrial Informatics.

[8] Alessandro Biondi, Giorgio Buttazzo, and Stefano Simoncelli. 2015. Feasibility

Analysis of Engine Control Tasks under EDF Scheduling. In 2015 27th Euromicro

Conference on Real-Time Systems. IEEE, Lund, Sweden, 139-148. https://doi.org/

10.1109/ECRTS.2015.20 ISSN: 2377-5998.

Alessandro Biondi, Marco Di Natale, and Giorgio Buttazzo. 2015. Response-time

Analysis for Real-time Tasks in Engine Control Applications. In Proceedings of the

ACM/IEEE Sixth International Conference on Cyber-Physical Systems (ICCPS ’15).

ACM, New York, NY, USA, 120-129. https://doi.org/10.1145/2735960.2735963

event-place: Seattle, Washington.

Alessandro Biondi, Marco Di Natale, and Giorgio Buttazzo. 2018. Response-time

analysis of engine control applications under fixed-priority scheduling. IEEE

Trans. Comput. 67,5 (2018), 687-703. https://doi.org/10.1109/TC.2017.2777826

Publisher: IEEE.

Alessandro Biondi, Alessandra Melani, Mauro Marinoni, Marco Di Natale, and

Giorgio Buttazzo. 2014. Exact Interference of Adaptive Variable-Rate Tasks

under Fixed-Priority Scheduling. In 2014 26th Euromicro Conference on Real-Time

Systems. IEEE, Madrid, Spain, 165-174. https://doi.org/10.1109/ECRTS.2014.38

ISSN: 2377-5998.

Giorgio C. Buttazzo, Enrico Bini, Darren Buttle, Scuola Superiore, and Sant Anna.

2014. Rate-Adaptive Tasks: Model, Analysis, and Design Issues. In Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE), 2014. IEEE Conference

Publications, New Jersey, 1-6. https://doi.org/10.7873/DATE.2014.266

Darren Buttle. 2012. Real-Time in the Prime-Time. In 2012 24th Euromicro Con-

ference on Real-Time Systems. IEEE, Pisa, Italy, xii—xiii. https://doi.org/10.1109/

ECRTS.2012.7 ISSN: 2377-5998.

[14] Yi Cao and Wen-Hua Chen. 2009. Automatic differentiation based nonlinear
model predictive control of satellites using magneto-torquers. In 2009 4th IEEE
Conference on Industrial Electronics and Applications. IEEE, Xi’an, China, 913-918.
https://doi.org/10.1109/ICIEA.2009.5138329 ISSN: 2158-2297.

[15] Yi Cao and Wen-Hua Chen. 2014. Variable sampling-time nonlinear

model predictive control of satellites using magneto-torquers. Systems

Science & Control Engineering 2, 1 (Dec. 2014), 593-601. https://doi.

0rg/10.1080/21642583.2014.956841 Publisher: Taylor & Francis _eprint:

https://doi.org/10.1080/21642583.2014.956841.

Shih-Lun Chen, Jocelyn Flores Villaverde, Ho-Yin Lee, Danny Wen-Yaw Chung,

Ting-Lan Lin, Chih-Hao Tseng, and Kuei-An Lo. 2017. A Power-Efficient Mixed-

Signal Smart ADC Design With Adaptive Resolution and Variable Sampling

[5

6

—
)

—
o)

[10

[11

[12

[13

=
&

https://doi.org/10.1109/EmbeddedSys.2014.6953095
https://doi.org/10.1109/EmbeddedSys.2014.6953095
https://doi.org/10.1145/2674396.2674446
https://doi.org/10.1145/2674396.2674446
https://github.com/bsk1410/Efficient-Knapsack-for-AVR-tasks-RTSS2018
https://github.com/bsk1410/Efficient-Knapsack-for-AVR-tasks-RTSS2018
https://doi.org/10.1109/RTSS.2018.00053
https://doi.org/10.7873/DATE.2015.0147
https://doi.org/10.1109/TII.2018.2791939
https://doi.org/10.1109/TII.2018.2791939
https://doi.org/10.1109/ECRTS.2015.20
https://doi.org/10.1109/ECRTS.2015.20
https://doi.org/10.1145/2735960.2735963
https://doi.org/10.1109/TC.2017.2777826
https://doi.org/10.1109/ECRTS.2014.38
https://doi.org/10.7873/DATE.2014.266
https://doi.org/10.1109/ECRTS.2012.7
https://doi.org/10.1109/ECRTS.2012.7
https://doi.org/10.1109/ICIEA.2009.5138329
https://doi.org/10.1080/21642583.2014.956841
https://doi.org/10.1080/21642583.2014.956841

RTNS 2024, November 7-8, 2024, Porto, Portugal

[17

[18

[19]

[20

[21

[22

[23

[24

[25]

I
&

[27]

[28

[29]

[30]

[31]

Rate for Low-Power Applications. IEEE Sensors Journal 17, 11 (June 2017), 3461—
3469. https://doi.org/10.1109/JSEN.2017.2680472 Conference Name: IEEE Sensors
Journal.

Robert I. Davis, Timo Feld, Victor Pollex, and Frank Slomka. 2014. Schedulability
tests for tasks with Variable Rate-dependent Behaviour under fixed priority
scheduling. In Real-Time Technology and Applications - Proceedings, Vol. 2014-
Octob. IEEE, Berlin, Germany, 51-62. https://doi.org/10.1109/RTAS.2014.6925990
William R. Dieter, Srabosti Datta, and Wong Key Kai. 2005. Power reduction by
varying sampling rate. In Proceedings of the 2005 international symposium on Low
power electronics and design (ISLPED ’05). Association for Computing Machinery,
New York, NY, USA, 227-232. https://doi.org/10.1145/1077603.1077658

Timo Feld. 2020. Response time analyses of adaptive variable-rate-tasks. Dis-
sertation. Universitat Ulm. https://doi.org/10.18725/OPARU-24369 Accepted:
2020-01-23T13:51:11Z ISBN: 9781688526969.

Timo Feld, Alessandro Biondi, Robert I. Davis, Giorgio Buttazzo, and Frank
Slomka. 2018. A survey of schedulability analysis techniques for rate-dependent
tasks. Journal of Systems and Software 138 (April 2018), 100-107. https://doi.
org/10.1016/j.jss.2017.12.033

Timo Feld and Frank Slomka. 2015. Sufficient response time analysis considering
dependencies between rate-dependent tasks. In 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, Grenoble, France, 519-524.
https://doi.org/10.7873/DATE.2015.0150 ISSN: 1558-1101.

Timo Feld and Frank Slomka. 2018. Exact Interference of Tasks With Variable Rate-
Dependent Behavior. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37, 5 (May 2018), 954-967. https://doi.org/10.1109/TCAD.
2017.2729459 Conference Name: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems.

Timo Feld and Frank Slomka. 2019. A Sufficient Response Time Analysis Con-
sidering Angular Phases Between Rate-Dependent Tasks. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 38, 11 (Nov. 2019),
2008-2021. https://doi.org/10.1109/TCAD.2018.2878163 Conference Name: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.
Michael R. Garey and David S. Johnson. 1979. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.

Zhishan Guo and Sanjoy K. Baruah. 2015. Uniprocessor EDF scheduling of AVR
task systems. In ACM/IEEE 6th International Conference on Cyber-Physical Systems,
ICCPS 2015. Association for Computing Machinery, Inc, Seattle, Washington, 159~
168. https://doi.org/10.1145/2735960.2735976

Marius Herget, Faezeh Sadat Saadatmand, Martin Bor, Ignacio Gonzalez Alonso,
Todor Stefanov, Benny Akesson, and Andy D. Pimentel. 2022. Design Space
Exploration for Distributed Cyber-Physical Systems: State-of-the-art, Challenges,
and Directions. In 2022 25th Euromicro Conference on Digital System Design (DSD).
IEEE, Maspalomas, Spain, 632-640. https://doi.org/10.1109/DSD57027.2022.00090
ISSN: 2771-2508.

John Heywood. 1988. Internal Combustion Engine Fundamentals. McGraw-Hill
Education, New York, NY, USA. Google-Books-ID: u9FSAAAAMAA]J.

John B. Heywood. 2018. Internal Combustion Engine Fundamentals (2nd
edition ed.). McGraw-Hill Education, New York, NY, USA. https://www.
accessengineeringlibrary.com/content/book/9781260116106

Wen-Hung Huang and Jian-Jia Chen. 2015. Techniques for Schedulability Analy-
sis in Mode Change Systems under Fixed-Priority Scheduling. In 2015 IEEE 21st
International Conference on Embedded and Real-Time Computing Systems and
Applications. IEEE, Hong Kong, China, 176-186. https://doi.org/10.1109/RTCSA.
2015.36 ISSN: 2325-1301.

Chung-Wen Hung, Jhih-Han Chen, and Hsuan T. Chang. 2011. A Minimal Fuzzy
Gain Scheduling Speed Controller and Torque Compensation for the Variable
Sampling System of BLDC Motors. In 2011 Fifth International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE, Seoul,
Korea (South), 434-437. https://doi.org/10.1109/IMIS.2011.85

Chung-Wen Hung, Cheng-Tsung Lin, Chih-Wen Liu, and Jia-Yush Yen. 2007.
A Variable-Sampling Controller for Brushless DC Motor Drives With Low-
Resolution Position Sensors. IEEE Transactions on Industrial Electronics 54, 5 (Oct.
2007), 2846-2852. https://doi.org/10.1109/TIE.2007.901303 Conference Name:
IEEE Transactions on Industrial Electronics.

Chung-Wen Hung and Jia-Yush Yen. 2013. A Robust Variable Sampling Time
BLDC Motor Control Design Based upon p-Synthesis. The Scientific World Journal
2013 (Nov. 2013), 236404. https://doi.org/10.1155/2013/236404

Oscar H. Ibarra and Chul E. Kim. 1975. Fast Approximation Algorithms for
the Knapsack and Sum of Subset Problems. 7. ACM 22, 4 (Oct. 1975), 463-468.
https://doi.org/10.1145/321906.321909

Oscar H. Ibarra and Chul E. Kim. 1978. Approximation Algorithms for Certain
Scheduling Problems. Mathematics of Operations Research 3, 3 (1978), 197-204.
http://www.jstor.org/stable/3689490 Publisher: INFORMS.

Jia-Yush Yen, Yang-Lin Chen, and M. Tomizuka. 2002. Variable sampling rate
controller design for brushless DC motor. In Proceedings of the 41st IEEE Confer-
ence on Decision and Control, 2002., Vol. 1. IEEE, Las Vegas, NV, USA, 462-467

[36]

[37

[38

(39]

[40

[41

[42

[43

S
&

[45

[46

(48

[49]

[50

o
=

[52

[53

(54

[55

Willcock et al.

vol.1. https://doi.org/10.1109/CDC.2002.1184539 ISSN: 0191-2216.
D. S. Johnson and K. A. Niemi. 1983. On Knapsacks, Partitions, and a New

Dynamic Programming Technique for Trees. Mathematics of Operations Research
8,1(1983), 1-14. http://www.jstor.org/stable/3689406 Publisher: INFORMS.
Prachi Joshi. 2018. Design Space Exploration for Embedded Systems in Automotives.
Ph. D. Dissertation. Virginia Tech, Blacksburg, Virginia. https://vtechworks.lib.
vt.edu/items/f2162aeb-b0e4-46fd-a868-3f72deaf5772

Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Knapsack Problems.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24777-7
Junsung Kim, Karthik Lakshmanan, and Ragunathan Rajkumar. 2012. Rhythmic
tasks: A new task model with continually varying periods for cyber-physical
systems. In Proceedings - 2012 IEEE/ACM 3rd International Conference on Cyber-
Physical Systems, ICCPS 2012. IEEE, Beijing, China, 55-64. https://doi.org/10.
1109/ICCPS.2012.14

Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: verifi-
cation of probabilistic real-time systems. In Proceedings of the 23rd international
conference on Computer aided verification (CAV’11). Springer-Verlag, Berlin, Hei-
delberg, 585-591.

Edward A. Lee and Sanjit A. Seshia. 2017. Introduction to Embedded Systems
(second ed.). MIT Press, Berkeley, CA, USA. https://ptolemy.berkeley.edu/books/
leeseshia/

C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. . ACM 20, 1 (Jan. 1973), 46-61.
https://doi.org/10.1145/321738.321743

Yu Liu, Chao Peng, Yecheng Zhao, Yangyang Li, and Haibo Zeng. 2020. Schedula-
bility Analysis of Engine Control Systems With Dynamic Switching Speeds. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 10
(Oct. 2020), 2067-2080. https://doi.org/10.1109/TCAD.2019.2951124 Conference
Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems.

Morteza Mohageqi, Jakaria Abdullah, Pontus Ekberg, and Wang Yi. 2017. Refine-
ment of Workload Models for Engine Controllers by State Space Partitioning.
In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017) (Leibniz In-
ternational Proceedings in Informatics (LIPIcs), Vol. 76), Marko Bertogna (Ed.).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 11:1—-
11:22. https://doi.org/10.4230/LIPIcs. ECRTS.2017.11 ISSN: 1868-8969.

A. K. Mok. 1983. FUNDAMENTAL DESIGN PROBLEMS OF DISTRIBUTED SYSTEMS
FOR THE HARD-REAL-TIME ENVIRONMENT. Technical Report. Massachusetts
Institute of Technology, USA.

National Science Foundation. 2021. Cyber-Physical Systems (CPS) | NSF - National
Science Foundation. https://new.nsf.gov/funding/opportunities/cyber-physical-
systems-cps

Chao Peng, Yecheng Zhao, and Haibo Zeng. 2018. Schedulability Analysis of
Adaptive Variable-Rate Tasks with Dynamic Switching Speeds. In 2018 IEEE
Real-Time Systems Symposium (RTSS). IEEE, Nashville, TN, USA, 396-407. https:
//doi.org/10.1109/RTSS.2018.00054 ISSN: 2576-3172.

Victor Pollex, Timo Feld, Frank Slomka, Ulrich Margull, Ralph Mader, and Gerhard
Wirrer. 2013. Sufficient real-time analysis for an engine control unit with constant
angular velocities. In 2013 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, Grenoble, France, 1335-1338. https://doi.org/10.7873/
DATE.2013.275 ISSN: 1530-1591.

Mohammadreza Sadeghi, Marco Philippi, Amir Mahdian, and Frank Slomka.
2022. MIAT Efficient analysis of adaptive variable-rate tasks. Journal of Systems
Architecture 127 (June 2022), 102472. https://doi.org/10.1016/j.sysarc.2022.102472
Prashant Giridhar Shambharkar, Siddhant Bhambri, Arnav Goel, and M. N. Doja.
2019. A Survey on Schedulability Analysis of Rate-Adaptive Tasks. In 2019
International Conference on Machine Learning, Big Data, Cloud and Parallel Com-
puting (COMITCon). IEEE, Faridabad, India, 277-282. https://doi.org/10.1109/
COMITCon.2019.8862266

Albert Solberg. 2018. Model Based Systems Engineering (MBSE). http://www.
nasa.gov/consortium/ModelBasedSystems

Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. 2011. The Digraph
Real-Time Task Model. In 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, Chicago, IL, USA, 71-80. https://doi.org/10.
1109/RTAS.2011.15

Uppsala Universitet and Aalborg University. 2024. Home | UPPAAL. https:
//uppaal.org/

Vijay Vazirani. 2003. Approximation Algorithms. Springer, New York, NY, USA.
http://link.springer.com/book/10.1007/978-3-662-04565-7

Aaron Willcock. 2024. aarontwillcock/RTNS24-AVR-FPTAS. https://github.com/
aarontwillcock/RTNS24- AVR-FPTAS original-date: 2024-08-20T13:46:19Z.
Hugh D. Young, Roger A. Freedman, A. Lewis Ford, and Hugh D. Young. 2012.
Sears and Zemansky’s University physics. Pearson Learning Solutions, San Fran-
cisco, CA, USA.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1109/JSEN.2017.2680472
https://doi.org/10.1109/RTAS.2014.6925990
https://doi.org/10.1145/1077603.1077658
https://doi.org/10.18725/OPARU-24369
https://doi.org/10.1016/j.jss.2017.12.033
https://doi.org/10.1016/j.jss.2017.12.033
https://doi.org/10.7873/DATE.2015.0150
https://doi.org/10.1109/TCAD.2017.2729459
https://doi.org/10.1109/TCAD.2017.2729459
https://doi.org/10.1109/TCAD.2018.2878163
https://doi.org/10.1145/2735960.2735976
https://doi.org/10.1109/DSD57027.2022.00090
https://www.accessengineeringlibrary.com/content/book/9781260116106
https://www.accessengineeringlibrary.com/content/book/9781260116106
https://doi.org/10.1109/RTCSA.2015.36
https://doi.org/10.1109/RTCSA.2015.36
https://doi.org/10.1109/IMIS.2011.85
https://doi.org/10.1109/TIE.2007.901303
https://doi.org/10.1155/2013/236404
https://doi.org/10.1145/321906.321909
http://www.jstor.org/stable/3689490
https://doi.org/10.1109/CDC.2002.1184539
http://www.jstor.org/stable/3689406
https://vtechworks.lib.vt.edu/items/f2162aeb-b0e4-46fd-a868-3f72deaf5772
https://vtechworks.lib.vt.edu/items/f2162aeb-b0e4-46fd-a868-3f72deaf5772
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1109/ICCPS.2012.14
https://doi.org/10.1109/ICCPS.2012.14
https://ptolemy.berkeley.edu/books/leeseshia/
https://ptolemy.berkeley.edu/books/leeseshia/
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/TCAD.2019.2951124
https://doi.org/10.4230/LIPIcs.ECRTS.2017.11
https://new.nsf.gov/funding/opportunities/cyber-physical-systems-cps
https://new.nsf.gov/funding/opportunities/cyber-physical-systems-cps
https://doi.org/10.1109/RTSS.2018.00054
https://doi.org/10.1109/RTSS.2018.00054
https://doi.org/10.7873/DATE.2013.275
https://doi.org/10.7873/DATE.2013.275
https://doi.org/10.1016/j.sysarc.2022.102472
https://doi.org/10.1109/COMITCon.2019.8862266
https://doi.org/10.1109/COMITCon.2019.8862266
http://www.nasa.gov/consortium/ModelBasedSystems
http://www.nasa.gov/consortium/ModelBasedSystems
https://doi.org/10.1109/RTAS.2011.15
https://doi.org/10.1109/RTAS.2011.15
https://uppaal.org/
https://uppaal.org/
http://link.springer.com/book/10.1007/978-3-662-04565-7
https://github.com/aarontwillcock/RTNS24-AVR-FPTAS
https://github.com/aarontwillcock/RTNS24-AVR-FPTAS

	Abstract
	1 Introduction and Motivation
	1.1 Related Work
	1.2 Contributions and Outline

	2 Preliminary Background
	2.1 The AVR Task Model
	2.2 Kinematic Definitions
	2.3 Speed Sequences and Demand
	2.4 The AVR Task Demand Problems
	2.5 AVR Task Demand as a BPCKP
	2.6 Solution Overview

	3 Predefined Sequences
	4 AVR Task Demand with PDSes
	5 An Exact Demand Calculation
	5.1 PDS Subset Notation
	5.2 Proof of Optimal Substructure
	5.3 Dynamic Programming Solution

	6 Demand Approximations
	6.1 RB Sequence Approximation
	6.2 MA Sequence Approximation
	6.3 Approximation of MIAT Table Size
	6.4 Overall Approximation Ratio
	6.5 Approximation Runtime
	6.6 Deriving a Safe Demand

	7 Evaluation and Results
	7.1 Setup and Experiments

	8 Discussion and Limitations
	8.1 Effects of K on Runtime, Demand
	8.2 Experimental Limitations

	9 Conclusion and Future Work
	Acknowledgments
	A Related Work Overestimation
	References

