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Abstract1

Double Electron–Electron Resonance (DEER)2

spectroscopy measures distance distributions3

between spin labels in proteins, yielding im-4

portant structural and energetic information5

about conformational landscapes. Analysis of6

an experimental DEER signal in terms of a dis-7

tance distribution is a nontrivial task due to the8

ill-posed nature of the underlying mathemat-9

ical inversion problem. This work introduces10

a Bayesian probabilistic inference approach to11

analyze DEER data, assuming a nonparametric12

distance distribution with a Tikhonov smooth-13

ness prior. The method uses Markov Chain14

Monte Carlo (MCMC) sampling with a compo-15

sitional Gibbs sampler to determine a posterior16

probability distribution over the entire param-17

eter space, including the distance distribution,18

given an experimental dataset. This posterior19

contains all the information available from the20

data, including a full quantification of the un-21

certainty about the model parameters. The cor-22

responding uncertainty about the distance dis-23

tribution is captured via an ensemble of poste-24

rior predictive distributions. Several examples25

are presented to illustrate the method. Com-26

pared to bootstrapping, it performs faster and27

provides slightly larger uncertainty intervals.28

1 Introduction29

Double Electron–Electron Resonance (DEER)30

spectroscopy is a pulse Electron Paramagnetic31

Resonance (EPR) technique utilized for deter-32

mining distances between electron spin centers33

on a nanometer scale,1,2 predominantly on pro-34

teins. DEER resolves the full distribution of35

distances in an ensemble of proteins, making36

it possible to directly quantify conformational37

ensembles and the underlying conformational38

landscapes.3–5 DEER measures an oscillatory39

time-domain signal that depends on the magni-40

tude of the magnetic dipole–dipole interactions41

between the spin centers, which in turn depends42

on the inverse cube of the distance r. In the43

analysis, this signal is fitted with a model that44

includes a distance distribution P (r). Mathe-45

matically, this constitutes an ill-posed inversion46

problem. Assessment of uncertainty in the fit-47

ted distance distribution is therefore challeng-48

ing, but is crucial for making sound conclusions49

about the conformational landscape of the pro-50

tein.51

Analysis approaches for obtaining a distance52

distribution from a measured DEER signal53

range from analytical solutions6 to neural net-54

works.7,8 The least-squares fitting methods that55

have seen the widest practical application uti-56

lize one of two models for P (r): either a Gaus-57

sian mixture model, or a non-parametric rep-58

resentation combined with Tikhonov regular-59
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ization.9–16 Gaussian mixture models are para-60

metric and represent the distribution as a lin-61

ear combination of several Gaussian functions.62

Non-parametric models represent P (r) as a his-63

togram over a discretized distance range, com-64

bined with Tikhonov regularization that in-65

cludes a roughness penalty for the distribution66

into the fitting objective function. Both Gaus-67

sian mixture models and non-parametric mod-68

els with Tikhonov regularization can be fit di-69

rectly to the raw data in a single step.17 In both70

approaches, however, correctly quantifying and71

visualizing uncertainty is challenging.72

For Gaussian mixture models, uncertainty73

analysis relies primarily on parameter confi-74

dence intervals, which are obtained from the75

covariance matrix or by explicitly exploring76

the sensitivity of the objective function on the77

parameter values.12–14,18 The parameter confi-78

dence intervals are then propagated to the dis-79

tance domain to yield error bands on the dis-80

tribution. This method assumes that the error81

surface is quadratic and that the parameters82

are unbounded, neither of which is generally83

true. Our previous work extended the avail-84

able uncertainty analysis methods for Gaussian85

mixture models by implementing a Bayesian86

inference approach.16 The method models the87

raw DEER data directly and yields a full joint88

probability distribution over all model parame-89

ters, thereby fully quantifying their uncertain-90

ties. Similar Bayesian data analysis methods91

have been implemented previously for NMR92

and EPR.16,19–2393

For non-parametric distribution models with94

Tikhonov regularization, partial uncertainty95

analysis is commonly conducted by manually96

varying some parameters in the analysis (in-97

termolecular background parameters, modula-98

tion depth, noise) and summarizing the sensi-99

tivity of the extracted distance distribution to100

these parameters into error bands around the101

fitted distribution.11,24 Another method to ob-102

tain confidence intervals for both approaches is103

bootstrapping. As implemented in DeerLab,17104

it generates an ensemble of distributions by an-105

alyzing a large number of synthetically gen-106

erated hypothetical signals based on the fit-107

ted model. In previous work, we introduced108

a partial approach based on Bayesian infer-109

ence to quantify the uncertainty in the distri-110

bution due to the noise in the signal.22 Unfor-111

tunately, this work required prior processing to112

remove the intermolecular background contri-113

bution and could not incorporate parameters114

beyond noise.115

In this paper, we present a Bayesian infer-116

ence approach for analyzing a DEER trace us-117

ing a non-parametric distance distribution with118

Tikhonov smoothing. It extends our previous119

work22 and models the raw DEER data directly120

without prior background correction. It yields121

a full probability distribution for all model pa-122

rameters, providing complete quantitative in-123

formation about uncertainty and correlations124

for all parameters, without any implicit limit-125

ing assumptions. We also introduce distribu-126

tion ensembles as a visual tool to effectively rep-127

resent uncertainty about the distance distribu-128

tion, including correlations which are neglected129

when using visualizations based on error bands.130

The paper is structured as follows. Section 2131

presents the model and section 3 outlines the132

inference methodology. Section 4 shows exam-133

ples using synthetic and experimental data, in-134

cluding a comparison between parametric and135

nonparametric P (r) models, an analysis of the136

dependence on the distance range, and a com-137

parison of the quantified uncertainty with that138

obtained from bootstrapping. Finally, section 5139

discusses the merits of this method in compar-140

ison to others.141

2 Probabilistic DEERmodel142

To model the DEER data, we start from143

the general noise-free continuous-time physical144

model17,25145

VM(t) = V0

∫ ∞
0

K(t, r)P (r)dr (1)

where VM(t) represents the DEER signal as146

a function of dipolar evolution time t, V0 is147

an overall amplitude factor, P (r) is the dis-148

tribution of intramolecular inter-spin distances149

r normalized such that
∫∞
0
P (r)dr = 1, and150

K(t, r) is the kernel function that provides the151
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DEER signal as a function of t and r. In this152

work, we use153

K(t, r) = [(1− λ) + λK0(t, r)] ·B(t) (2)

with the modulation depth λ, the elementary154

kernel function155

K0(t, r) =

∫ 1

0

cos
[
(1− 3 cos2 θ)Dr−3t

]
dcos θ

(3)
and the constant D = (µ0/4π)g2µ2

B/~, with the156

electron g factor g, the spin concentration c,157

the Bohr magneton µB, the reduced Planck con-158

stant ~, and the magnetic constant µ0. θ is the159

angle between the applied magnetic field and160

the inter-spin direction.161

The first factor in Eq. (2) represents the in-162

tramolecular contribution. The second factor,163

B(t), represents the intermolecular contribu-164

tion, also called the background and sometimes165

denoted as Vinter(t). Here, we use an expo-166

nential decay corresponding to a homogeneous167

three-dimensional distribution of spins168

B(t) = exp (−k|t|) (4)

with k = (8π2/9
√

3)Dcλ. More extended169

background models that incorporate fractal di-170

mensions or volume exclusions are occasionally171

needed and can be incorporated easily,26 al-172

though they will increase the number of model173

parameters. We will use the value of the back-174

ground function at the end of the DEER time175

trace176

Bend = B(tend) (5)

as an alternate way to specify the background177

decay rate, via k = − log(Bend)/tend.178

Experimentally, the DEER signal is mea-179

sured at a set of linearly spaced discrete time180

points t = ti and is therefore represented181

as a nt-element vector V with elements Vi.182

The measured values typically include normally183

distributed noise εi with mean zero and t-184

independent variance σ2.22 This is represented185

as186

Vi = VM(ti) + εi with εi ∼ normal(0, σ2)
(6)

or, equivalently,187

Vi ∼ normal(VM(ti), τ
−1) (7)

The tilde ∼ indicates that the quantity on the188

left is distributed according to the probability189

distribution on the right. The precision τ is the190

inverse of the variance, τ = 1/σ2.191

While it is possible to use a closed-form ex-192

pression for the angular integral in Eq. (3), the193

integral over the distance distribution in Eq. (1)194

can only be approximated numerically. We do195

this by discretizing P (r) at a set of equidistant196

distances r = rj, giving the nr-element vector197

P . This gives198

V = V M + ε = KP + ε (8)

with the kernel matrix K with elements Ki,j =199

V0K(ti, rj)∆r, where ∆r = rj+1 − rj is the in-200

crement in the r domain. ε is the noise vector201

with elements εi.202

Extracting the distance distribution from203

Eq. (8) using Tikhonov regularization is done204

by minimizing an objective function that in-205

cludes a misfit term and a Tikhonov regular-206

ization term,207

P α = min
P≥0

(||V −KP ||2 + α2||LP ||2) (9)

Here, α is the Tikhonov regularization param-208

eter and L is an operator matrix, most com-209

monly the (nr− 2)×nr second-order difference210

matrix211

L =


1 −2 1 0

1 −2 1
. . . . . . . . .

0 1 −2 1

 (10)

With L as defined, the endpoints of the dis-212

tance range are neglected in this penalty term.213

They can be included by extending L with an214

additional first row with −2 and 1 as the first215

elements and with an additional last row with216

1 and −2 as the last two elements.217

The model specified above depends on a set218

of parameters: the distance distribution vec-219

tor penalized for roughness P α, the modulation220

depth λ, the end point Bend of the intermolec-221
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ular background decay, the noise precision τ ,222

and the overall amplitude V0. We indicate the223

parameter set as224

θ = {P α, λ, Bend, τ, V0} (11)

Although the model is formulated here in terms225

of Bend and τ for more efficient numerical sam-226

pling, we will show the results in terms of k227

and σ to remain consistent with the standard228

practices in DEER data analysis.229

The goal of analyzing V given the chosen230

model is to determine the range of values for the231

model parameters that are consistent with the232

data. Now, since V is an incomplete represen-233

tation of V (t) due to time truncation, time dis-234

cretization, amplitude discretization, and am-235

plitude noise, there will be uncertainty associ-236

ated with these parameters. It is important to237

quantify this uncertainty as well. Therefore, the238

goal of the analysis is to determine the full joint239

probability distribution of all parameters, given240

the data V , symbolically written as241

p(θ|V ) (12)

This distribution is called the posterior distri-242

bution, or simply posterior. It is posterior in243

the sense that it represents the probability dis-244

tribution of the parameters after the data are245

taken into account. Once calculated, the poste-246

rior can be visualized or used to obtain statistics247

on the parameters, such as means and spreads.248

Using Bayes’ theorem, the posterior can be249

calculated via250

p(θ|V ) ∝ p(V |θ) · p(θ) (13)

The first term on the right provides the prob-251

ability of the data given specific values for the252

model parameters. If seen as a function of the253

parameters, it is called the likelihood function.254

Based on Eqs. (8) & (9), it is255

p(V |θ) = normal
(
V ;KP , τ−1

)
∝ τnt/2exp

(
−1

2
τ‖V −KP ‖2

)
(14)

The second term on the right in Eq. (13) is the256

prior distribution or simply prior. It represents257

the probability distribution of the parameters258

prior to taking the data into account, summa-259

rizing information about the parameters that260

is available independently of the given dataset.261

For example, we know without any data that262

Pi is nonnegative, that λ is between 0 and 1,263

that V0 is around 1 (assuming the experimental264

trace is normalized to maximum 1), and that265

Bend is between 0 and 1. We take the prior266

as a product of independent distributions over267

individual parameters:268

p(θ) = p(P , δ)p(λ)p(V0)p(τ)p(Bend) (15)

with the smoothness hyperparameter δ that is269

related to the Tikhonov regularization parame-270

ter α by22
271

δ = α2τ (16)

We include δ as an additional parameter in θ.272

Note that we treat Bend (or k) as an indepen-273

dent parameter, even though it depends on λ274

(see Eq. 4). Alternatively, the concentration c275

could be used as a model parameter instead of276

k or Bend.277

As prior for P , we encode our knowledge278

that P is element-wise non-negative, normal-279

ized, and expected to be smooth, i.e. Pi and Pj280

should be similar if the distances ri and rj are281

similar. For this, we write282

p(P , δ) = p(P |δ)p(δ)f(P ) (17)

The function f(P ) in Eq. (17) is an indicator283

function that equals one if all elements of P are284

non-negative and P integrates to 1, and zero285

otherwise.286

For the smoothness prior, we assume a normal287

distribution288

p(P |δ) = normal
(
P ;0, (δLTL)−1

)
∝ δn/2exp

(
−1

2
δ‖LP ‖2

)
(18)

where n is the number of non-zero elements in289

P (to ensure proper normalization27,28). This290

distribution assigns high prior probabilities to291

smooth distributions (where ‖LP ‖2 is small)292

and low prior probabilities to rough distribu-293

tions (where ‖LP ‖2 is large). This is motivated294

4



physically by the flexibility of the spin labels295

and the biomacromolecule to which the pair of296

spin labels is attached. This corresponds to the297

penalty term in Eq. (9).298

For the hyperprior for the regularization pa-299

rameter δ, we select a gamma distribution22
300

p(δ) = gamma(δ; aδ, bδ) (19)

with aδ = 1 and bδ = 10−6. This gives a very301

broad distribution function that decays expo-302

nentially with increasing δ.303

For the priors for the other parameters, we304

use the same broad distributions as used in our305

earlier work on parametric P models16306

p(λ) = beta(λ; 1.3, 2) (20)

p(Bend) = beta(Bend; 1.0, 1.5 µs) (21)

p(V0) = bnd(normal(V0; 1, 0.22), 0)(22)

p(τ) = gamma(τ ; aτ , bτ ) (23)

with aτ = 1 and bτ = 10−4. However, the priors307

do not necessarily need to follow these distribu-308

tions. Instead, they should be chosen based on309

the known information about the system and310

setup. The same applies for the hyperparame-311

ter δ which will be reported as lg(α) through-312

out using Eq. (16). The estimation of poste-313

rior probabilities from prior probabilities and314

observed data through Bayesian inference is vi-315

sualized in Fig. 1.316

With the above expressions, the posterior317

p(θ|V ) is fully defined. It has some struc-318

ture that is important to recognize. (a) It is319

a gamma distribution in τ320

p(τ |V ,θ−τ ) = gamma(τ ; ãτ , b̃τ ) (24)

where θ−τ indicates the set of all parameters321

except τ . The distribution parameters are ãτ =322

aτ + nt/2 and b̃τ = bτ + ‖V −KP ‖2/2, where323

nt is the number of elements in V . (b) It is a324

gamma distribution in δ325

p(δ|V ,θ−δ) = gamma(δ; ãδ, b̃δ) (25)

with ãδ = aδ +n/2 and b̃δ = bδ + ‖LP ‖2/2. (c)326

It is a truncated multivariate normal distribu-327

tion in P328

p(P |V ,θ−P ) = normal
(
P ; P̄ ,Σ

)
f(P ) (26)

with center P̄ = τΣKTV and covariance ma-329

trixΣ = (τKTK+δLTL)−1. We will make use330

of these structures for the sampling methodol-331

ogy in the next section.332

3 Inference333

The analytical form of the posterior distribu-334

tion p(θ|V ) is intractable. In particular, it is335

not possible to evaluate integrals required to de-336

termine the mean, the variance, or marginalized337

distributions of individual parameters. There-338

fore, we resort to representing the distribution339

by a finite set of samples generated numeri-340

cally, such that the density of samples in vari-341

ous regions in parameter space is proportional342

to the local probability density (see Fig. 2).343

These samples are then used to evaluate (ap-344

proximately) the aforementioned integrals and345

to construct visualizations.346

We use Markov Chain Monte Carlo (MCMC)347

sampling to generate a Markov chain of sam-348

ples from the posterior,29 where each sample349

i, containing (P i, τi, δi, V0,i, Bend,i, λi), is gener-350

ated from the previous sample i− 1, containing351

(P i−1, τi−1, δi−1, V0,i−1, Bend,i−1, λi−1). A sim-352

plified example of the MCMC sampling process353

is shown in Fig. 2.354

We investigated two separate MCMC sam-355

pling strategies. The first strategy involves a356

compositional Gibbs sampling approach that357

utilizes independent draws for the three param-358

eters that have simple analytical conditional359

posterior distributions (τ , δ, and P ) and Hamil-360

tonian Monte Carlo (HMC) draws for the re-361

maining three (V0, Bend, λ). The second one362

utilizes HMC sampling for all model parame-363

ters.364

The compositional Gibbs sampling approach365

is based on our previous work.22 After choos-366

ing a starting point, it proceeds iteratively as367

follows:368

(1) Generate the i-th random sample of the369

precision τ from its full conditional posterior370
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Figure 1: Visualization of Bayesian inference. Prior distributions for model parameters (modu-
lation depth (λ), echo amplitude (V0), background decay constant (k = − log(Bend)/tend), noise
(σ = 1/

√
τ), Tikhonov smoothness parameter (α =

√
δ/τ), and the distance distribution (P )

are combined with the data V to yield a posterior probability distribution, with the marginalized
posterior distributions for individual parameters shown. An ensemble of 5 distance distributions
are shown for the prior and posterior of P .

Figure 2: Principle of MCMC sampling of the posterior distribution. A. A random starting value
is chosen from the joint posterior of k and λ (blue). The next random sample is chosen from
the probability distribution of k and λ given the starting value (black), and thus every step is
dependent upon the previous step. B. This process continues, where each new step is a random
draw from a probability distribution for k and λ given the position of the last step. C. Regions of
higher probability are sampled more frequently until the chain converges. Multiple chains are run,
indicated by color, to obtain inter- and intra-chain convergence. D. The result of the sampling is a
representation of the full posterior distribution of the parameters. Shown here are the 1D and 2D
marginal posteriors for k and λ.
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distribution Eq. (24) using the values of all371

other parameters from sample i− 1.372

(2) Generate the i-th random sample of the373

regularization parameter δ from its posterior374

distribution Eq. (25) using the new value for τ375

and the previous values of all other parameters.376

(3) Generate the i-th random sample of P377

from its full conditional posterior distribution378

Eq. (26) with the new values for τ and δ and the379

previous values for all other parameters from380

sample i−1. To generate a random sample from381

this distribution, we use the fast non-negative382

least-squares (FNNLS) algorithm by Bro and383

De Jong30 to enforce the non-negativity and384

normalization constraints imposed by f(P ).385

Other algorithms for generating samples from a386

truncated multivariate normal distribution are387

available in the literature.31,32388

For the remaining three parameters, since389

their posteriors are not of a form for which390

independent sampling is possible, we use an391

HMC algorithm known as the no-U-turn sam-392

pler (NUTS)33 to simultaneously generate the393

next samples of these parameters:394

(4) Generate the i-th random sample of the395

remaining parameters (V0, Bend, and λ) with396

the NUTS sampler, using the new values of P ,397

τ and δ and the previous values of V0, Bend and398

λ.399

HMC methods take the negative logarithm400

of the posterior distribution to draw from as401

a potential-energy landscape and the parame-402

ters as position variables of fictitious particles.403

Samples are then generated by simulating par-404

ticle trajectories on this landscape with classi-405

cal Hamiltonian dynamics using momenta that406

are drawn from a multivariate normal distribu-407

tion.34,35 NUTS auto-tunes the step size and the408

number of steps used in the integration of the409

Hamiltonian dynamics.410

The second sampling approach we investi-411

gated samples all six parameters simultane-412

ously with the NUTS sampler. However, since413

Eq. (18) would yield negative values for P414

when sampled with NUTS, we represent P as a415

uniform Dirichlet distribution Dir(P ;1) to en-416

code the non-negativity and normalization con-417

straints from f(P ) in Eq. (17). To accommo-418

date the smoothness prior in this implementa-419

tion, we add the p(P |δ) term from Eq. (18) di-420

rectly as an additional term to the potential-421

energy function of the NUTS sampler. Thus,422

Eq. (17) becomes:423

p(P , δ) ∝ p(P |δ)p(δ)Dir(P ;1) (27)

We continue to use Eqs. (19) to (23) as our424

priors for the other parameters.425

We implemented both sampling algorithms in426

the Python package PyMC 5.10.4,36 which uses427

autodifferentiation for the calculation of the428

gradient necessary for calculating the Hamil-429

tonian trajectories in NUTS sampling. For430

each analysis, 4 chains containing several thou-431

sand to several tens of thousands of samples432

are run. These chains are then assessed for433

convergence using the rank-normalized split R̂434

statistic, which compares intra- and inter-chain435

variances.37–39 Values of R̂ very close to 1 in-436

dicate that the chains are stationary and simi-437

lar, such as in the example in Fig. 2C. Chains438

in this work are considered converged when439

R̂ < 1.05. Although convergence is essential to440

proper analysis, some runs take impracticably441

long to converge. When this occurs, we exclude442

chains one by one and observe the effect on R̂,443

and then remove the chain that leads to the444

largest reduction in R̂ when excluded. In prac-445

tice, we did not need to remove more than one446

chain to attain convergence, but this process447

can be repeated. All code used for modeling448

and sampling in this paper was run within our449

Python package dive, which can be accessed at450

https://github.com/StollLab/dive.451

After convergence, the pooled samples from452

all chains represent the full N -dimensional pos-453

terior p(θ|V ). Due to its large dimensionality,454

it is not possible to visualize it directly. Instead,455

we examine each parameter individually using456

its marginalized posterior, which is obtained457

by integrating the full posterior over all other458

parameters. This integral is approximated by459

generating a histogram of the parameter val-460

ues from all samples, smoothed with a Gaussian461

with a line width of 1/5 of the standard devia-462

tion of the parameter values. This results in a463

one-dimensional distribution that can easily be464

plotted. On the right of Fig. 1, the marginal-465
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ized posteriors are shown in color, together with466

the priors in less saturated color. In this case,467

the posteriors are much narrower than the cor-468

responding priors. The spread of the posterior469

distribution is a quantitative measure of infer-470

ential uncertainty, and its narrowing compared471

to the prior is a direct measure of information472

content of the data.473

However, marginalization discards all infor-474

mation about correlation between parameters.475

It is also possible to display and examine two-476

dimensional marginalized posteriors between477

pairs of parameters, which is particularly help-478

ful for assessing issues of convergence often479

caused by highly correlated parameters. Ex-480

amples of 1D and 2D marginalized posteriors481

are shown in Fig. 2D.482

We additionally visualize the results of the483

Bayesian inference using posterior predictive484

samples for V (t) and P (r). For this, we ran-485

domly pick a small set of samples (about 50-486

100) of the parameters, including the distance487

distribution, from the pooled MCMC samples.488

An ensemble of noise-free time-domain signals489

and background decays is then generated from490

the sampled parameters. Plotting these poste-491

rior predictive samples of the time-domain trace492

and the distance distribution allows for a visual493

assessment of fit quality and of uncertainty in494

the inferred distance distribution.495

When visualized, we found that the two496

MCMC methods we investigated did have some497

differences. Specifically, when using the NUTS498

sampler for all parameters, the sampled dis-499

tance distributions differ from those of the500

compositional Gibbs–NUTS sampler: whereas501

the compositional sampler generates P vectors502

with a significant number of points equal to ex-503

actly 0, the NUTS sampler never generates P504

with points equalling 0.505

This difference arises from the use of the506

FNNLS algorithm to generate non-negative P507

draws in the compositional sampling approach.508

The FNNLS algorithm initially sets all points509

in P to zero in a non-negativity constrained510

“active set” and improves the fit by iteratively511

moving points to an unconstrained “passive512

set” until the fit can no longer be improved.30513

At this point, P consists of some positive points514

and some zero points, meaning that the proba-515

bility of points in P being equal to 0 is signif-516

icant. This is similar to a spike-and-slab prior,517

a common distribution in Bayesian inference518

involving a discontinuity at 0 in an otherwise519

smooth distribution to increase the probabil-520

ity of 0.28 Spike-and-slab priors are examples521

of priors that encourage sparse distributions;522

the continuous Laplace, double Pareto, and523

horseshoe priors are other examples of sparsity-524

inducing priors.40 Thus, the FNNLS algorithm525

effectively adds an implicit sparsity-inducing526

term to Eq. (17) that encourages points in P to527

be 0, representing our knowledge (or assump-528

tion) that there are many distances that the529

spin label pair does not populate. Although a530

similar effect could be achieved in the NUTS531

sampler by using an explicit sparsity-inducing532

prior for P in Eq. (27), few multidimensional,533

non-negative, constant-sum, sparsity-inducing534

priors are available in the literature.535

Furthermore, in our implementation, the536

NUTS sampler runs more slowly than the537

Gibbs–NUTS sampler due to the larger num-538

ber of parameters that are included in the cal-539

culation of the potential-energy landscape. We540

also found that the additional complexity of541

this landscape leads to a greater frequency of542

undesirable divergences, which occur when the543

NUTS sampler, which takes discrete steps, en-544

counters regions that are too steep to sample545

accurately. For these reasons, we choose to546

use the compositional Gibbs–NUTS sampling547

method for the rest of this discussion, taking548

note of the implicit sparsity bias. However, the549

NUTS sampling approach remains as an alter-550

native.551

4 Results & Discussion552

4.1 Basic illustrations553

We first illustrate the probabilistic analysis554

method on synthetic data, using the large sim-555

ulated T4 lysozyme (T4L) test data set pub-556

lished by Edwards et al.15,41 The distributions557

in this test data set were generated computa-558

tionally from an in silico spin-labeled crystal559
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structure of T4L. Distribution 3992 from the560

test data set is taken as ground truth and two561

DEER traces of differing quality were generated562

and then analyzed with the Bayesian inference563

method using the aforementioned nonparamet-564

ric model. The traces and the analysis results565

are shown in Fig. 3. The trace in panel A has a566

large modulation depth, a slow background de-567

cay rate, a long trace length, and a small noise568

level. Comparatively, the trace in panel B has569

less ideal values for all of these parameters, in570

particular a shorter trace length and a higher571

noise level. This provides a challenging case572

with higher inferential uncertainty.573

For both cases, the marginalized posteriors574

for all scalar parameters are shown (Fig. 3A &575

B, bottom). The gray lines indicate the ground-576

truth values used in generating the trace. There577

is no line shown for α as this is a non-physical578

parameter introduced in the analysis. For the579

longer and less noisy trace, V0 and σ are recov-580

ered accurately and with little uncertainty, as581

indicated by the narrow posterior distributions582

with modes close to the ground-truth values.583

For k and λ, the posterior modes align less with584

the ground-truth values, and the spread in the585

case of k is a bit larger. The cause for this is586

discussed in more depth below.587

The parameter posteriors most directly show588

the outcome of the Bayesian analysis and are589

useful for identifying the impact of individual590

parameters on the overall fit. However, the591

time-domain fit and the distance distribution592

are the results of primary interest. These quan-593

tities are shown via ensembles of posterior pre-594

dictive samples (Fig. 3A & B, top), as described595

in Section 3. As in our previous work, this596

visualization for uncertainty is preferred as it597

does not emphasize any particular distribution598

and more completely encompasses the range599

of fits compatible with the data. The time-600

domain plot show that the fit is excellent, and601

the distance-domain plots shows that there is602

little scatter in center, width and shape among603

the P (r) distributions. The ensemble also over-604

laps well with the ground truth, indicating that605

the Bayesian analysis recovers the distribution606

from the data with little uncertainty. There607

is somewhat elevated uncertainty at short dis-608

Figure 3: Validation of the Bayesian infer-
ence method using synthetic data generated
from distribution 3992 from the Edwards test
set.15,41 The time trace in panel A was gen-
erated using λ = 0.5, k = 0.05 µs−1, tmax =
3.2 µs, σ = 0.02, and the trace in panel B was
generated using λ = 0.2, k = 0.2 µs−1, tmax =
1.6 µs, σ = 0.05. The MCMC simulation of
each was run with 4 chains and 20,000 samples
per chain. In each panel, the top left plot shows
the time domain data (gray dots), ensembles of
fitted signals V (blue/green) and backgrounds
(1− λ)B (orange), and the residuals. The top
right plot shows an ensemble of distance distri-
butions drawn from the posterior distribution
(blue/green) and the ground-truth distance dis-
tribution (black). The bottom plots show the
marginalized parameter posteriors. The gray
lines indicate the true parameter values.
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tances and at the long-distance edge.609

Analysis of the posterior modes for the610

shorter, noisier dataset (Fig. 3B) shows that for611

V0 and σ the modes are reasonably well iden-612

tified, but the spreads are wider than for the613

first dataset. For k and λ, the method is un-614

able to recover the ground-truth values accu-615

rately. The difficulty of recovering these pa-616

rameters is indicative of a problem inherent617

to the underlying physical model—parameter618

non-identifiability.42 The signals from the in-619

termolecular background and from intramolec-620

ular long distances are very similar. Given short621

and noisy data, there is insufficient information622

for identifying and separating the two contribu-623

tions, resulting in skewed and broad posterior624

distributions for k and λ. In addition, the in-625

ferred distance distribution is very broad and626

uncertain, preventing specific structural con-627

clusions. This broadness indicates that it is628

dominated by the prior, and that the data did629

not provide significant additional information630

about P (r).631

Both datasets in Fig. 3 show posterior dis-632

tributions of α. In least-squares fitting ap-633

proaches, a single value of α is selected ad hoc634

or based on one of a series of criteria (L-curve,635

Akaike information criterion, etc.). In the in-636

ference approach presented here, the prior to-637

gether with the data result in a distribution of638

likely α value, without the need to pick a par-639

ticular value or criterion.640

4.2 Model comparison641

The rest of the examples presented utilize642

the DEER data recently published as part643

of a benchmark test and guidelines paper for644

DEER.43 Four constructs of the Yersinia outer645

protein O (YopO) from Yersinia enterocolit-646

ica without its membrane anchor were mea-647

sured by seven different labs. We use the data648

from lab B. YopO contains an α-helix that is649

43 amino acids long, allowing for three site650

pairs to be chosen that encompass the short-651

(S585R1/Q603R1), mid- (V599R1/N624R1),652

and long- (Y588R1/N624R1) range distances653

accessible by DEER. A fourth site pair was654

chosen to include a spin label on a flexible655

loop, giving rise to a very broad distribution656

(S353R1/Q635R1).657

The results of using the Bayesian inference658

approach with both the nonparametric model659

for P (r) described in this paper and the para-660

metric multi-Gauss model from our previous661

work16 are shown in Fig. 4. For each panel,662

the darker colored, top ensembles are the re-663

sults of using the nonparametric model and the664

lighter colored, bottom ensembles are the pa-665

rameteric model results with number of Gaus-666

sians indicated. For all four samples, con-667

vergence is achieved for both models and the668

distance distributions show good agreement to669

those previously published.43 The uncertainty670

is relatively low given the small scatter of the671

posterior predictive distributions. Uncertainty672

increases at long distances, but does not af-673

fect interpretation of the primary features. The674

parametric results for all site pairs show good675

agreement with the nonparametric results. The676

presence of peaks with high uncertainty in the677

parametric models in Fig. 4A, B & C is in-678

dicative of limitations of the parametric ap-679

proach, namely, imposing an underlying shape680

to the distance distribution. The multi-Gauss681

parametric model has more difficulty recovering682

distributions that have multiple, overlapping683

peaks of similar width or intensity. Distribu-684

tions of this nature show larger correlations be-685

tween distribution parameters, making explor-686

ing the parameter space significantly less effi-687

cient and convergence more difficult to achieve.688

This was shown previously when analyzing syn-689

thetic data.16690

4.3 Dependence on distance axis691

A non-parametric P (r) is not entirely free of692

parameters—it depends on the fixed parame-693

ters that define the distance axis. These are the694

minimum distance rmin, the maximum distance,695

rmax, and, for a linear axis, the resolution ∆r.696

This forces the distribution to be zero outside697

the distance range, and imposes a fixed resolu-698

tion within the range. Figure 5 shows a series of699

results for the mid-range YopO dataset with dif-700

ferent rmax at a constant resolution ∆r. Two ef-701

fects of rmax can be discerned. First, as the rmax702
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Figure 4: Bayesian inference using a nonparametric model with Tikhonov regularization and a
multi-Gauss parametric model on DEER data obtained for four constructs of YopO.43,44 Most
MCMC data shown were run with 4 chains of 20,000 samples per chain from which 100 samples
were randomly selected. The nonparametric models for panels B, C, and D were run with 4 chains
of 100,000 samples to achieve convergence according to R̂ < 1.05. For the nonparametric model
for panel B and the parametric models for panels A, B, and D, one chain was dropped due to non-
convergence. The raw experimental data are shown in gray overlaid with the time-domain full and
intermolecular fits for the nonparametric model (top, dark) and the parametric multi-Gauss model
(bottom, light). Beneath the time-domain data are the residuals from the posterior predictive
ensemble. The distance distributions for each are shown according to the same color scheme.
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is decreased, the uncertainty in the region near703

rmax shrinks. Second, it becomes less arduous to704

obtain converged chains (see Fig. 5 caption) and705

the resulting posteriors indicate more efficient706

sampling and certainty around the parameters.707

When run for 20,000 samples per chain, the708

MCMC sampler was only able to converge for709

the model with an rmax of 6.5 nm. The model710

with an rmax of 8.5 nm (which is past heuris-711

tic values often used for rmax,
3
√
Dtend/2πnmin,712

where nmin is the number of required dipolar os-713

cillation periods (nmin > 1/2)),43 did not attain714

convergence, as evidenced by R̂ values much715

greater than 1.05 even when run for 100,000716

samples per chain.717

Both effects are a consequence of the fact that718

the models with long rmax are over-specified—719

there is not enough information in the data to720

clearly distinguish between mass in this region721

of r and the intermolecular background. The722

marginal distributions of the background pa-723

rameter k and the modulation depth λ broaden724

substantially as rmax is increased. These ef-725

fects are also noticeable in the accompany-726

ing increased spread of background fits. Note727

that these effects are not a peculiarity of the728

MCMC method, but rather an intrinsic param-729

eter non-identifiability issue of the model given730

the data. Any analysis method that uses this731

model will encounter similar difficulties in iden-732

tifying unique parameter values. Based on the733

posterior distributions, the Bayesian approach734

provides a direct way for diagnosing these situ-735

ations.736

Several approaches can be considered to pre-737

vent model overspecification: (a) restrict rmax738

to shorter values, (b) include additional infor-739

mation that P (r) is close to zero at long dis-740

tances, (c) include additional information that741

P (r) is compact,42 or (d) use a less flexible742

model with stronger assumptions about the743

r distribution, such as a multi-Gauss model744

or a model with significantly fewer distance745

points.45746

4.4 Comparison with bootstrap-747

ping748

The Bayesian analysis presented here pro-749

vides full quantification of uncertainty for all750

model parameters, including correlations. An-751

other, although conceptually different, ap-752

proach is bootstrapping, a Monte Carlo resam-753

pling method. In the bootstrapping variant im-754

plemented in DeerLab,17 synthetic data traces755

are generated by adding different noise realiza-756

tions to a fitted signal obtained by least-squares757

fitting. These new traces are then analyzed ac-758

cording to the same procedure as the original759

experimental data. This results in a number of760

fitted parameter sets and distance distributions.761

The distribution of fitted values compares in762

nature to the posteriors output from Bayesian763

inference and can be randomly sampled from to764

produce ensemble plots representing the spread765

of uncertainty around a particular set of data.766

In Fig. 6 we show the Bayesian analysis using767

a nonparametric model of the YopO data from768

above and compare it to the data analyzed with769

bootstrapping. Compared to our previous fig-770

ures, the distance axis resolution was doubled771

to 0.05 nm and rmax was set to 6.5 nm. For each772

panel, the darker colored, top ensembles are773

the results of using Bayesian inference and the774

lighter colored, bottom ensembles are the boot-775

strapping results. For bootstrapping, an initial776

fit was achieved using a regularization parame-777

ter selected by the Bayesian information crite-778

rion.15 This value of α was then frozen for the779

bootstrap analysis in which 1000 bootstrapped780

samples were taken, i.e., 1000 new signal traces781

were generated and fit. A set of 100 parameter782

vectors and distributions were randomly drawn783

from the 1000 samples and plotted alongside784

the Bayesian inference ensembles.785

For all the site pairs, the ensembles of distance786

distributions are very similar between Bayesian787

analysis and bootstrapping (see Fig. 6). How-788

ever, the bootstrap ensembles generally have789

less scatter, since all synthetic signals are gen-790

erated from the same initial fit, leading to less791

exploration of the combined parameter space792

compared to the Bayesian approach.793

A crucial difference between Bayesian infer-794

12



Figure 5: Effect of upper distance limit rmax on quality of fit and P (r) uncertainty. Data from the
mid-range site pair (YopO V599R1/N624R1) was evaluated for three values of rmax and a constant
resolution (∆r) of 0.1 nm, using MCMC with 4 chains and 20,000 samples (for rmax = 6.5 nm)
or 100,000 samples (rmax = 7.5 nm and 8.5 nm). One chain was then dropped from the 7.5 nm
model to attain convergence. The 8.5 nm model did not converge regardless of how many chains
were dropped, so all 4 chains were kept. From these runs, 100 distance distributions are randomly
sampled and plotted. The raw experimental data are shown in gray overlaid with the associated
time-domain fits. The saturation of the color decreases with rmax. Left: Time-domain fits and
resulting distance distributions. Right: The posterior distributions for the background decay rate
constant k and the modulation depth λ with decreasing rmax.
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Figure 6: Comparison of experimental fits and visualization of uncertainty between Bayesian infer-
ence and bootstrapping. The MCMC data shown were run with 4 chains of 100,000 samples per
chain. For both the Bayesian MCMC data and the bootstrapping fits, 100 samples were randomly
selected to plot. The raw experimental data are shown in gray overlaid with the time-domain full
and intermolecular fits for the Bayesian analysis (top, dark) and bootstrapping (bottom, light).
The distance distributions for each are shown according to the same color scheme.
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ence and bootstrapping is that in the lat-795

ter method, the Tikhonov smoothing param-796

eter α is fixed, whereas it is a floating (hy-797

per)parameter in the former. Therefore, boot-798

strapping does not incorporate the uncertainty799

due to α. Yet, the value and uncertainty of800

α are crucial components for assessing whether801

over- or under-fitting is occurring and provide802

insight into the overall shape of the resulting803

distance distribution. With Bayesian inference,804

the uncertainty of α, along with all other model805

parameters, is a direct output of the analysis.806

This is illustrated in Fig. 7, which plots the807

marginalized posterior of lg(α) in the Bayesian808

analysis against the fixed value of lg(α) used in809

the bootstrap analysis (vertical line).810

In terms of computational cost, the time811

taken to run 1,000 bootstrapped samples for the812

bootstrap analysis was similar to the time taken813

to run approximately 100,000 MCMC draws814

for the Bayesian analysis (a couple hours on a815

typical laptop computer). Thus, the Bayesian816

approach yields a more complete uncertainty817

analysis at roughly the same computational818

cost. Note, however, that computational per-819

formance depends on implementation, and that820

there is a wide range of possible bootstrap-821

ping approaches beyond the one implemented822

in DeerLab.823

5 Conclusions824

The Bayesian method outlined in this work825

presents a rigorous, complete and conceptually826

simple inference approach for analyzing DEER827

data. Given the experimental data and the828

choice of a particular physical model, it deter-829

mines the joint probability distribution of all830

model parameters. This provides, completely,831

any information that can be gleaned from the832

data under the assumption of the chosen model833

and provided prior information. If the informa-834

tion content of the data is low (noisy and trun-835

cated trace), then this method captures the re-836

sulting significant uncertainty about the model837

parameters, particularly if a Tikhonov model838

is used. Introducing additional constraints to839

the r distribution, such as by using a multi-840

Figure 7: Uncertainty assessment for the
Tikhonov smoothness parameter α. The pos-
terior distributions for lg(α) from the Bayesian
analysis are shown, maintaining the same panel
order and coloring as previous figures for the
site pairs. The single values for the lg(α) pa-
rameter from the bootstrap fits are shown as a
vertical lines.

Gaussian model, could be advantageous, at the841

expense of biasing the analysis.842

The complete uncertainty quantification pro-843

vided by Bayesian inference has advantages844

over other forms of uncertainty quantifica-845

tion. Compared to confidence intervals based846

on maximum-likelihood estimation and the847

Laplace approximation (which assumes the like-848

lihood function is Gaussian around its maxi-849

mum), it is more complete and accurate and850

can capture asymmetric uncertainty as well as851

broad areas in parameter space that lead to852

equally good model fits. Therefore, it can help853

spot identifiability problems with the model pa-854

rameters. Compared to bootstrapping, which855

can be used to determine more comprehen-856

sive confidence intervals within the maximum-857

likelihood estimation approach, Bayesian in-858

ference does not synthetically generate new859

datasets. The only dataset that is used in860

Bayesian inference is the given experimental861

dataset. From a principled standpoint, this862

is indeed the only dataset that should matter.863

Also, the Bayesian approach saves significant864

computation time on a per-sample basis. In865
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general, the logically rigorous foundation of the866

Bayesian inference approach makes it possible867

to use it as a reference method for analyzing868

dipolar EPR data.869

Although we presented the method using a870

Tikhonov model for the intramolecular dis-871

tance distribution combined with a simple ex-872

ponential decay for the intermolecular contri-873

bution, this method is very general and can874

handle more complex models. Extensions to875

use more sophisticated intermolecular models,876

to include multiple dipolar pathways, and to877

handle multiple datasets simultaneously are878

conceptually straightforward, although compu-879

tationally more demanding. Therefore, the880

Bayesian frameworks provide a robust and flex-881

ible tool for DEER data analysis, providing882

complete quantitative information about uncer-883

tainty.884
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