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Abstract

Double Electron-Electron Resonance (DEER)
spectroscopy measures distance distributions
between spin labels in proteins, yielding im-
portant structural and energetic information
about conformational landscapes. Analysis of
an experimental DEER signal in terms of a dis-
tance distribution is a nontrivial task due to the
ill-posed nature of the underlying mathemat-
ical inversion problem. This work introduces
a Bayesian probabilistic inference approach to
analyze DEER data, assuming a nonparametric
distance distribution with a Tikhonov smooth-
ness prior. The method uses Markov Chain
Monte Carlo (MCMC) sampling with a compo-
sitional Gibbs sampler to determine a posterior
probability distribution over the entire param-
eter space, including the distance distribution,
given an experimental dataset. This posterior
contains all the information available from the
data, including a full quantification of the un-
certainty about the model parameters. The cor-
responding uncertainty about the distance dis-
tribution is captured via an ensemble of poste-
rior predictive distributions. Several examples
are presented to illustrate the method. Com-
pared to bootstrapping, it performs faster and
provides slightly larger uncertainty intervals.
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1 Introduction

Double Electron-Electron Resonance (DEER)
spectroscopy is a pulse Electron Paramagnetic
Resonance (EPR) technique utilized for deter-
mining distances between electron spin centers
on a nanometer scale,? predominantly on pro-
teins. DEER resolves the full distribution of
distances in an ensemble of proteins, making
it possible to directly quantify conformational
ensembles and the underlying conformational
landscapes.®® DEER measures an oscillatory
time-domain signal that depends on the magni-
tude of the magnetic dipole—dipole interactions
between the spin centers, which in turn depends
on the inverse cube of the distance r. In the
analysis, this signal is fitted with a model that
includes a distance distribution P(r). Mathe-
matically, this constitutes an ill-posed inversion
problem. Assessment of uncertainty in the fit-
ted distance distribution is therefore challeng-
ing, but is crucial for making sound conclusions
about the conformational landscape of the pro-
tein.

Analysis approaches for obtaining a distance
distribution from a measured DEER signal
range from analytical solutions® to neural net-
works.”® The least-squares fitting methods that
have seen the widest practical application uti-
lize one of two models for P(r): either a Gaus-
sian mixture model, or a non-parametric rep-
resentation combined with Tikhonov regular-
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ization.? 10 Gaussian mixture models are para- 10
metric and represent the distribution as a lin- 10
ear combination of several Gaussian functions. i
Non-parametric models represent P(r) as a his- u2
togram over a discretized distance range, com- 13
bined with Tikhonov regularization that in- ua
cludes a roughness penalty for the distribution us
into the fitting objective function. Both Gaus- 16
sian mixture models and non-parametric mod- ur
els with Tikhonov regularization can be fit di- us
rectly to the raw data in a single step.'” In both 11
approaches, however, correctly quantifying and 12
visualizing uncertainty is challenging. 121

For Gaussian mixture models, uncertainty i
analysis relies primarily on parameter confi- 123
dence intervals, which are obtained from the 12
covariance matrix or by explicitly exploring is
the sensitivity of the objective function on the 1
parameter values.? %1% The parameter confi- 1
dence intervals are then propagated to the dis- 12
tance domain to yield error bands on the dis- 12
tribution. This method assumes that the error 1z
surface is quadratic and that the parameters i
are unbounded, neither of which is generally 13
true. Our previous work extended the avail- 133
able uncertainty analysis methods for Gaussian 13
mixture models by implementing a Bayesian s
inference approach.'® The method models the 13
raw DEER data directly and yields a full joint s
probability distribution over all model parame- 13
ters, thereby fully quantifying their uncertain- iz
ties. Similar Bayesian data analysis methods o
have been implemented previously for NMR ia
and EPR.16:19-23

For non-parametric distribution models with
Tikhonov regularization, partial uncertainty 42
analysis is commonly conducted by manually
varying some parameters in the analysis (in-
termolecular background parameters, modula-
tion depth, noise) and summarizing the sensi-
tivity of the extracted distance distribution to
these parameters into error bands around the
fitted distribution.'’?* Another method to ob-
tain confidence intervals for both approaches is 14
bootstrapping. As implemented in DeerLab,!7” 147
it generates an ensemble of distributions by an- 14s
alyzing a large number of synthetically gen- 14
erated hypothetical signals based on the fit- 1s0
ted model. In previous work, we introduced 1

a partial approach based on Bayesian infer-
ence to quantify the uncertainty in the distri-
bution due to the noise in the signal.?? Unfor-
tunately, this work required prior processing to
remove the intermolecular background contri-
bution and could not incorporate parameters
beyond noise.

In this paper, we present a Bayesian infer-
ence approach for analyzing a DEER trace us-
ing a non-parametric distance distribution with
Tikhonov smoothing. It extends our previous
work?? and models the raw DEER data directly
without prior background correction. It yields
a full probability distribution for all model pa-
rameters, providing complete quantitative in-
formation about uncertainty and correlations
for all parameters, without any implicit limit-
ing assumptions. We also introduce distribu-
tion ensembles as a visual tool to effectively rep-
resent uncertainty about the distance distribu-
tion, including correlations which are neglected
when using visualizations based on error bands.

The paper is structured as follows. Section 2
presents the model and section 3 outlines the
inference methodology. Section 4 shows exam-
ples using synthetic and experimental data, in-
cluding a comparison between parametric and
nonparametric P(r) models, an analysis of the
dependence on the distance range, and a com-
parison of the quantified uncertainty with that
obtained from bootstrapping. Finally, section 5
discusses the merits of this method in compar-
ison to others.

2 Probabilistic DEER model

To model the DEER data, we start from
the general noise-free continuous-time physical
model 172

Val(t) = VO/ K(t,r)P(r)dr (1)

0

where Vjy(t) represents the DEER signal as
a function of dipolar evolution time ¢, Vj is
an overall amplitude factor, P(r) is the dis-
tribution of intramolecular inter-spin distances

r normalized such that [ P(r)dr = 1, and
K (t,r) is the kernel function that provides the
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DEER signal as a function of ¢ and r. In this s
work, we use

K(t,r)=[(1—=X)+ AKy(t,r)] - B(t) (2)

188
with the modulation depth A, the elementary iso
kernel function 190

191

1
Ko(t,r) = / cos [(1 — 3cos? ) Dr—%t] decos§ 12
0

(3) 193
and the constant D = (uo/47)g*u3 /h, with the o
electron g factor g, the spin concentration c,
the Bohr magneton ug, the reduced Planck con-
stant A, and the magnetic constant pg. 6 is the
angle between the applied magnetic field and
the inter-spin direction.

The first factor in Eq. (2) represents the in-
tramolecular contribution. The second factor, 10
B(t), represents the intermolecular contribu- a0
tion, also called the background and sometimes 2
denoted as Viper(t). Here, we use an expo- xe
nential decay corresponding to a homogeneous s
three-dimensional distribution of spins 204

(4) 200

with & = (872/9v/3)Dc)A. More extended
background models that incorporate fractal di-
mensions or volume exclusions are occasionally
needed and can be incorporated easily,?® al-
though they will increase the number of model
parameters. We will use the value of the back-
ground function at the end of the DEER time
trace

(5)

as an alternate way to specify the background
decay rate, via k = —10g(Bend)/tend-
Experimentally, the DEER signal is mea-
sured at a set of linearly spaced discrete time
points ¢ = t; and is therefore represented 212
as a ns-element vector V' with elements V. 213
The measured values typically include normally 24
distributed noise ¢; with mean zero and ¢- 25
independent variance 02.%?2 This is represented 2
as 217

B(t) = exp (—klt)

Bend - B(tend)

218
Vi=Vu(t) + e with e ~normal(0,0%)
(6) 220

221

or, equivalently,

Vi ~ normal(Vay (), 771) (7)
The tilde ~ indicates that the quantity on the
left is distributed according to the probability
distribution on the right. The precision 7 is the
inverse of the variance, 7 = 1/52.

While it is possible to use a closed-form ex-
pression for the angular integral in Eq. (3), the
integral over the distance distribution in Eq. (1)
can only be approximated numerically. We do
this by discretizing P(r) at a set of equidistant
distances r = r;, giving the n,-element vector
P. This gives

V=Vu+e=KP+e (8)
with the kernel matrix K with elements K ; =
VoK (t;,rj)Ar, where Ar = r; ; — r; is the in-
crement in the » domain. € is the noise vector
with elements ;.

Extracting the distance distribution from
Eq. (8) using Tikhonov regularization is done
by minimizing an objective function that in-
cludes a misfit term and a Tikhonov regular-
ization term,

P, =min(|V — KP|?+?|LP|?) (9)
P>0

Here, « is the Tikhonov regularization param-
eter and L is an operator matrix, most com-
monly the (n, — 2) x n, second-order difference
matrix

(10)

-2 1
With L as defined, the endpoints of the dis-
tance range are neglected in this penalty term.
They can be included by extending L with an
additional first row with —2 and 1 as the first
elements and with an additional last row with

1 and —2 as the last two elements.
The model specified above depends on a set
of parameters: the distance distribution vec-

tor penalized for roughness P, the modulation
depth A, the end point Be,q of the intermolec-
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ular background decay, the noise precision 7, 2ss
and the overall amplitude V. We indicate the s
parameter set as 260

261

(11) 262

Although the model is formulated here in terms 263

of Beng and 7 for more efficient numerical sam- ses
pling, we will show the results in terms of k -
and ¢ to remain consistent with the standard -
practices in DEER data analysis. ,
The goal of analyzing V' given the chosen
model is to determine the range of values for the
model parameters that are consistent with the
data. Now, since V is an incomplete represen- 260
tation of V() due to time truncation, time dis- 27
cretization, amplitude discretization, and am- on
plitude noise, there will be uncertainty associ-
ated with these parameters. It is important to
quantify this uncertainty as well. Therefore, the i
goal of the analysis is to determine the full joint ”
probability distribution of all parameters, given o
the data V', symbolically written as "

0= {PaaAvBendaTa%}

64

68

2

276

(12) 277

278

p(0|V)

This distribution is called the posterior distri- 27
bution, or simply posterior. It is posterior in 280
the sense that it represents the probability dis- 2
tribution of the parameters after the data are 22
taken into account. Once calculated, the poste-
rior can be visualized or used to obtain statistics
on the parameters, such as means and spreads.
Using Bayes’ theorem, the posterior can be

. 284
calculated via
285

(13) 286

287

p(0|V) x p(V'0) - p(0)

The first term on the right provides the prob- 28
ability of the data given specific values for the
model parameters. If seen as a function of the
parameters, it is called the likelihood function.
Based on Egs. (8) & (9), it is

p(V|60) = normal(V; KP,77") 2
1 14 290

o 7/ 2exp <—§THV — KPH2> (14) 201

292

293

The second term on the right in Eq. (13) is the
prior distribution or simply prior. It represents ***

the probability distribution of the parameters
prior to taking the data into account, summa-
rizing information about the parameters that
is available independently of the given dataset.
For example, we know without any data that
P; is nonnegative, that A is between 0 and 1,
that Vj is around 1 (assuming the experimental
trace is normalized to maximum 1), and that
Bena is between 0 and 1. We take the prior
as a product of independent distributions over
individual parameters:

p(8) = p(P,8)p(N)p(Vo)p(T)p(Bena)  (15)

with the smoothness hyperparameter § that is
related to the Tikhonov regularization parame-
ter a by??

(16)

§ =a’r

We include ¢ as an additional parameter in 6.
Note that we treat Be,q (or k) as an indepen-
dent parameter, even though it depends on A
(see Eq. 4). Alternatively, the concentration ¢
could be used as a model parameter instead of
k or Bgpq.

As prior for P, we encode our knowledge
that P is element-wise non-negative, normal-
ized, and expected to be smooth, i.e. F; and P,
should be similar if the distances r; and r; are
similar. For this, we write

p(P,6) = p(Po)p(d) f(P)

The function f(P) in Eq. (17) is an indicator
function that equals one if all elements of P are
non-negative and P integrates to 1, and zero
otherwise.

For the smoothness prior, we assume a normal
distribution

(17)

p(P|6) = normal (P;0, (5LTL)_1)

1 18
o 0™ 2exp (—§5||LP||2> (18)

where n is the number of non-zero elements in
P (to ensure proper normalization?"?®). This
distribution assigns high prior probabilities to
smooth distributions (where |[LP|* is small)
and low prior probabilities to rough distribu-
tions (where ||LPJ? is large). This is motivated
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physically by the flexibility of the spin labels 3
and the biomacromolecule to which the pair of
spin labels is attached. This corresponds to the
penalty term in Eq. (9).

For the hyperprior for the regularization pa- 3

rameter 0, we select a gamma distribution?? 3%
331

p(d) = gamma(d; as, bs) (19) 33
with as = 1 and bs = 107%. This gives a very
broad distribution function that decays expo- 333
nentially with increasing d.

For the priors for the other parameters, we **
use the same broad distributions as used in our **®

earlier work on parametric P models!® 336
337

p(\) beta(A; 1.3, 2) (20) 33
P(Bena) = beta(Beng; 1.0, 1.51s) (21) >
p(Vo) = bnd(normal(Vp;1,0.2%),0)(22)
p(t) = gamma(T;a,,b,) (23) ..,

with a, = 1 and b, = 10~*. However, the priors 343

do not necessarily need to follow these distribu- »
tions. Instead, they should be chosen based on e
the known information about the system and .
setup. The same applies for the hyperparame- »
ter 0 which will be reported as lg(a) through-
out using Eq. (16). The estimation of poste-
rior probabilities from prior probabilities and -
observed data through Bayesian inference is vi- -
sualized in Fig. 1. o
With the above expressions, the posterior -
p(0]V) is fully defined. It has some struc- »
ture that is important to recognize. (a) It is _

a gamma distribution in 7 -

(24) 358

359

p(7|V,0_;) = gamma(r; a,, b,)

where 0_. indicates the set of all parameters 3%
except 7. The distribution parameters are a, = 3%
ar +ny/2 and b, = b, + |V — K P|?/2, where
n; is the number of elements in V. (b) It is a @

gamma distribution in § 364
365

(25) 366
~ 367
with as = as+mn/2 and bs = bs + | LP||*/2. (c) 3s
It is a truncated multivariate normal distribu- e

p(0|V,0_5) = gamma(0; ag, bs)

370

tion in P
p(P|V,0_p) =normal (P; P, X) f(P) (26)

with center P = XK'V and covariance ma-
trix X = (tK"K+5L"L)™!. We will make use
of these structures for the sampling methodol-
ogy in the next section.

3 Inference

The analytical form of the posterior distribu-
tion p(@|V') is intractable. In particular, it is
not possible to evaluate integrals required to de-
termine the mean, the variance, or marginalized
distributions of individual parameters. There-
fore, we resort to representing the distribution
by a finite set of samples generated numeri-
cally, such that the density of samples in vari-
ous regions in parameter space is proportional
to the local probability density (see Fig. 2).
These samples are then used to evaluate (ap-
proximately) the aforementioned integrals and
to construct visualizations.

We use Markov Chain Monte Carlo (MCMC)
sampling to generate a Markov chain of sam-
ples from the posterior,? where each sample
i, containing (P;, 7, 6;, Vo.i, Bend,is \i), 1S gener-
ated from the previous sample ¢ — 1, containing
(Pi—1,Ti—1,0i—1, Vo,i—1, Bend,i—1, Ai=1). A sim-
plified example of the MCMC sampling process
is shown in Fig. 2.

We investigated two separate MCMC sam-
pling strategies. The first strategy involves a
compositional Gibbs sampling approach that
utilizes independent draws for the three param-
eters that have simple analytical conditional
posterior distributions (7, 4, and P) and Hamil-
tonian Monte Carlo (HMC) draws for the re-
maining three (Vg, Beng, A). The second one
utilizes HMC sampling for all model parame-
ters.

The compositional Gibbs sampling approach
is based on our previous work.?? After choos-
ing a starting point, it proceeds iteratively as
follows:

(1) Generate the i-th random sample of the
precision 7 from its full conditional posterior
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0.0 0.5 10 O 1 2 0.0 0.5 1.0 O 1 2
A Vo A Vo
[\ /L 0 1 > 3 t
. : . t(us) . . .
0.0 0.2 0.4 0.00 0.05 0.0 0.2 0.4 0.00 0.05
Kk (us™1) o 1 K (us~1) o
j\ A A ¢
-5 0 5 2 4 6 -5 0 5 2 4 6
lg(a) P (nm) lg(a) P (nm)

Figure 1: Visualization of Bayesian inference. Prior distributions for model parameters (modu-
lation depth (A), echo amplitude (1), background decay constant (k = —log(Bend)/tena), noise
(¢ = 1//7), Tikhonov smoothness parameter (a = +/5/7), and the distance distribution (P)
are combined with the data V' to yield a posterior probability distribution, with the marginalized
posterior distributions for individual parameters shown. An ensemble of 5 distance distributions
are shown for the prior and posterior of P.

A B c D /\

0.56 0.56 0.56 0.56
-  (Kn An) ~ plk, Alkn—1, An— 54 .
0549 i pk.AlkoAo) 0.54 - (kn, An) .\p(~ kn-1, An-1) 0.54 0.54
~< . ~< . ~ ~ %
0.52 4 0.52 4 P 0.52 4 0.52 = A
\. TS, YB
0.50 - (Ko, Ao) 0.50 - 0.50 : 0.50 1
0.02 0.03 0.04 0.05 0.06 0.02 0.03 0.04 0.05 0.06 0.02 0.03 0.04 0.05 0.06 0.02 0.03 0.04 0.05 0.06
k (us™1) k (us™1) k (us™1) k (pus™1)

Figure 2: Principle of MCMC sampling of the posterior distribution. A. A random starting value
is chosen from the joint posterior of k& and A (blue). The next random sample is chosen from
the probability distribution of k and A given the starting value (black), and thus every step is
dependent upon the previous step. B. This process continues, where each new step is a random
draw from a probability distribution for & and X\ given the position of the last step. C. Regions of
higher probability are sampled more frequently until the chain converges. Multiple chains are run,
indicated by color, to obtain inter- and intra-chain convergence. D. The result of the sampling is a
representation of the full posterior distribution of the parameters. Shown here are the 1D and 2D
marginal posteriors for £ and .
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distribution Eq. (24) using the values of all 0
other parameters from sample ¢ — 1. o
(2) Generate the i-th random sample of the
regularization parameter ¢ from its posterior s
distribution Eq. (25) using the new value for 7
and the previous values of all other parameters.

(3) Generate the i-th random sample of P
from its full conditional posterior distribution *
Eq. (26) with the new values for 7 and § and the **
previous values for all other parameters from **°
sample i—1. To generate a random sample from **’
this distribution, we use the fast non-negative **
least-squares (FNNLS) algorithm by Bro and **
De Jong3® to enforce the non-negativity and **
normalization constraints imposed by f(P).**
Other algorithms for generating samples from a **
truncated multivariate normal distribution are **
available in the literature.3!:32 43

For the remaining three parameters, since **
their posteriors are not of a form for which *°
independent sampling is possible, we use an *’
HMC algorithm known as the no-U-turn sam- **
pler (NUTS)?? to simultaneously generate the **°
next samples of these parameters:

(4) Generate the i-th random sample of the
remaining parameters (Vj, Benq, and \) with *?
the NUTS sampler, using the new values of P, **
7 and ¢ and the previous values of Vj, Benq and **
)\. 445

HMC methods take the negative logarithm *
of the posterior distribution to draw from as *’
a potential-energy landscape and the parame- **
ters as position variables of fictitious particles. **°
Samples are then generated by simulating par- **
ticle trajectories on this landscape with classi- **
cal Hamiltonian dynamics using momenta that *?
are drawn from a multivariate normal distribu- ***
tion. 343> NUTS auto-tunes the step size and the **
number of steps used in the integration of the **°
Hamiltonian dynamics.

The second sampling approach we investi- *’
gated samples all six parameters simultane- ***
ously with the NUTS sampler. However, since **°
Eq. (18) would yield negative values for P *®°
when sampled with NUTS, we represent P as a **!
uniform Dirichlet distribution Dir(P;1) to en- **
code the non-negativity and normalization con- **
straints from f(P) in Eq. (17). To accommo- **
date the smoothness prior in this implementa-

4

440

441

456

tion, we add the p(P|d) term from Eq. (18) di-
rectly as an additional term to the potential-
energy function of the NUTS sampler. Thus,
Eq. (17) becomes:

p(P,0) o< p(P|0)p(d)Dir(P;1)  (27)
We continue to use Egs. (19) to (23) as our
priors for the other parameters.

We implemented both sampling algorithms in
the Python package PyMC 5.10.4,3% which uses
autodifferentiation for the calculation of the
gradient necessary for calculating the Hamil-
tonian trajectories in NUTS sampling. For
each analysis, 4 chains containing several thou-
sand to several tens of thousands of samples
are run. These chains are then assessed for
convergence using the rank-normalized split R
statistic, which compares intra- and inter-chain
variances.3” % Values of R very close to 1 in-
dicate that the chains are stationary and simi-
lar; such as in the example in Fig. 2C. Chains
in this work are considered converged when
R < 1.05. Although convergence is essential to
proper analysis, some runs take impracticably
long to converge. When this occurs, we exclude
chains one by one and observe the effect on R,
and then remove the chain that leads to the
largest reduction in R when excluded. In prac-
tice, we did not need to remove more than one
chain to attain convergence, but this process
can be repeated. All code used for modeling
and sampling in this paper was run within our
Python package dive, which can be accessed at
https://github.com/StollLab/dive.

After convergence, the pooled samples from
all chains represent the full N-dimensional pos-
terior p(@|V'). Due to its large dimensionality,
it is not possible to visualize it directly. Instead,
we examine each parameter individually using
its marginalized posterior, which is obtained
by integrating the full posterior over all other
parameters. This integral is approximated by
generating a histogram of the parameter val-
ues from all samples, smoothed with a Gaussian
with a line width of 1/5 of the standard devia-
tion of the parameter values. This results in a
one-dimensional distribution that can easily be
plotted. On the right of Fig. 1, the marginal-
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ized posteriors are shown in color, together with sis
the priors in less saturated color. In this case, s
the posteriors are much narrower than the cor- siz
responding priors. The spread of the posterior sis
distribution is a quantitative measure of infer- s
ential uncertainty, and its narrowing compared s
to the prior is a direct measure of information sa
content of the data. 522
However, marginalization discards all infor- s
mation about correlation between parameters. s
It is also possible to display and examine two- s
dimensional marginalized posteriors between s
pairs of parameters, which is particularly help- s
ful for assessing issues of convergence often s
caused by highly correlated parameters. FEx- s
amples of 1D and 2D marginalized posteriors sso
are shown in Fig. 2D. 531
We additionally visualize the results of the s
Bayesian inference using posterior predictive s
samples for V(¢) and P(r). For this, we ran- ssu
domly pick a small set of samples (about 50- s
100) of the parameters, including the distance s
distribution, from the pooled MCMC samples. s
An ensemble of noise-free time-domain signals sss
and background decays is then generated from sso
the sampled parameters. Plotting these poste- s
rior predictive samples of the time-domain trace sa
and the distance distribution allows for a visual sa
assessment of fit quality and of uncertainty in sas
the inferred distance distribution. 544
When visualized, we found that the two ss
MCMC methods we investigated did have some sas
differences. Specifically, when using the NUTS s«
sampler for all parameters, the sampled dis- s
tance distributions differ from those of the ssw
compositional Gibbs—NUTS sampler: whereas sso
the compositional sampler generates P vectors ss:
with a significant number of points equal to ex-
actly 0, the NUTS sampler never generates P
with points equalling 0. 552
This difference arises from the use of the
FNNLS algorithm to generate non-negative P 553
draws in the compositional sampling approach. e
The FNNLS algorithm initially sets all points s
in P to zero in a non-negativity constrained -
“active set” and improves the fit by iteratively wor
moving points to an unconstrained “passive S
set” until the fit can no longer be improved.?3° oo
At this point, P consists of some positive points

and some zero points, meaning that the proba-
bility of points in P being equal to 0 is signif-
icant. This is similar to a spike-and-slab prior,
a common distribution in Bayesian inference
involving a discontinuity at 0 in an otherwise
smooth distribution to increase the probabil-
ity of 0.2 Spike-and-slab priors are examples
of priors that encourage sparse distributions;
the continuous Laplace, double Pareto, and
horseshoe priors are other examples of sparsity-
inducing priors.*’ Thus, the FNNLS algorithm
effectively adds an implicit sparsity-inducing
term to Eq. (17) that encourages points in P to
be 0, representing our knowledge (or assump-
tion) that there are many distances that the
spin label pair does not populate. Although a
similar effect could be achieved in the NUTS
sampler by using an explicit sparsity-inducing
prior for P in Eq. (27), few multidimensional,
non-negative, constant-sum, sparsity-inducing
priors are available in the literature.

Furthermore, in our implementation, the
NUTS sampler runs more slowly than the
Gibbs-NUTS sampler due to the larger num-
ber of parameters that are included in the cal-
culation of the potential-energy landscape. We
also found that the additional complexity of
this landscape leads to a greater frequency of
undesirable divergences, which occur when the
NUTS sampler, which takes discrete steps, en-
counters regions that are too steep to sample
accurately. For these reasons, we choose to
use the compositional Gibbs-NUTS sampling
method for the rest of this discussion, taking
note of the implicit sparsity bias. However, the
NUTS sampling approach remains as an alter-
native.

4 Results & Discussion

4.1 Basic illustrations

We first illustrate the probabilistic analysis
method on synthetic data, using the large sim-
ulated T4 lysozyme (T4L) test data set pub-
lished by Edwards et al.'>% The distributions
in this test data set were generated computa-
tionally from an in silico spin-labeled crystal
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structure of T4L. Distribution 3992 from the
test data set is taken as ground truth and two
DEER traces of differing quality were generated
and then analyzed with the Bayesian inference
method using the aforementioned nonparamet-
ric model. The traces and the analysis results
are shown in Fig. 3. The trace in panel A has a
large modulation depth, a slow background de-
cay rate, a long trace length, and a small noise
level. Comparatively, the trace in panel B has
less ideal values for all of these parameters, in
particular a shorter trace length and a higher
noise level. This provides a challenging case
with higher inferential uncertainty.

For both cases, the marginalized posteriors
for all scalar parameters are shown (Fig. 3A &
B, bottom). The gray lines indicate the ground-
truth values used in generating the trace. There
is no line shown for « as this is a non-physical
parameter introduced in the analysis. For the
longer and less noisy trace, V and o are recov-
ered accurately and with little uncertainty, as
indicated by the narrow posterior distributions
with modes close to the ground-truth values.
For k and A, the posterior modes align less with
the ground-truth values, and the spread in the
case of k is a bit larger. The cause for this is
discussed in more depth below.

The parameter posteriors most directly show
the outcome of the Bayesian analysis and are
useful for identifying the impact of individual
parameters on the overall fit. However, the
time-domain fit and the distance distribution
are the results of primary interest. These quan-
tities are shown via ensembles of posterior pre-
dictive samples (Fig. 3A & B, top), as described
in Section 3. As in our previous work, this
visualization for uncertainty is preferred as it
does not emphasize any particular distribution
and more completely encompasses the range
of fits compatible with the data. The time-
domain plot show that the fit is excellent, and
the distance-domain plots shows that there is
little scatter in center, width and shape among
the P(r) distributions. The ensemble also over-
laps well with the ground truth, indicating that
the Bayesian analysis recovers the distribution
from the data with little uncertainty. There
is somewhat elevated uncertainty at short dis-

"

0.0 0.1 0202 04 0609 1.0 1.1 0.020.040.06 -10 1 2
k (ps™1) A Vo o lg(a)

151 Ptrye

P(r) (nm~1)

0.0 0.5 1.0 1.5
t (us)

| !

00 01 0202 04 0609 1.0 1.1 0.020.040.06 10 1 2
k (ps™1) A Vo o Ig(a)

Figure 3: Validation of the Bayesian infer-
ence method using synthetic data generated
from distribution 3992 from the Edwards test
set.1>4 The time trace in panel A was gen-
erated using A = 0.5,k = 0.05 ps™ ! tax =
3.2 ps, 0 = 0.02, and the trace in panel B was
generated using A = 0.2,k = 0.2 ps™!, tmax =
1.6 ps,0 = 0.05. The MCMC simulation of
each was run with 4 chains and 20,000 samples
per chain. In each panel, the top left plot shows
the time domain data (gray dots), ensembles of
fitted signals V' (blue/green) and backgrounds
(1 — \)B (orange), and the residuals. The top
right plot shows an ensemble of distance distri-
butions drawn from the posterior distribution
(blue/green) and the ground-truth distance dis-
tribution (black). The bottom plots show the
marginalized parameter posteriors. The gray
lines indicate the true parameter values.
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tances and at the long-distance edge.

Analysis of the posterior modes for the es
shorter, noisier dataset (Fig. 3B) shows that for ess
Vo and o the modes are reasonably well iden- es
tified, but the spreads are wider than for the eeo
first dataset. For k and A, the method is un- es
able to recover the ground-truth values accu- e
rately. The difficulty of recovering these pa- s
rameters is indicative of a problem inherent ees
to the underlying physical model—parameter ess
non-identifiability.*?> The signals from the in- sss
termolecular background and from intramolec- ee7
ular long distances are very similar. Given short ess
and noisy data, there is insufficient information eso
for identifying and separating the two contribu- 7o
tions, resulting in skewed and broad posterior en
distributions for £ and A. In addition, the in- e
ferred distance distribution is very broad and e
uncertain, preventing specific structural con- e
clusions. This broadness indicates that it is ers
dominated by the prior, and that the data did e
not provide significant additional information e
about P(r).

Both datasets in Fig. 3 show posterior dis- e
tributions of a. In least-squares fitting ap- eso
proaches, a single value of « is selected ad hoc e
or based on one of a series of criteria (L-curve, e
Akaike information criterion, etc.). In the in- es
ference approach presented here, the prior to- ess
gether with the data result in a distribution of es
likely o value, without the need to pick a par- es
ticular value or criterion.

656

678

687
688
4.2 Model comparison 0%
690
The rest of the examples presented utilize

the DEER data recently published as part

of a benchmark test and guidelines paper for i
DEER.* Four constructs of the Yersinia outer s
protein O (YopO) from Yersinia enterocolit- e
tca without its membrane anchor were mea- oo
sured by seven different labs. We use the data cos
from lab B. YopO contains an a-helix that is e
43 amino acids long, allowing for three site eor
pairs to be chosen that encompass the short- eos
(S585R1/Q603R1), mid- (V599R1/N624R1), 600
and long- (Y588R1/N624R1) range distances 7o
accessible by DEER. A fourth site pair was 7
chosen to include a spin label on a flexible 702

10

loop, giving rise to a very broad distribution
(S353R1/Q635R1).

The results of using the Bayesian inference
approach with both the nonparametric model
for P(r) described in this paper and the para-
metric multi-Gauss model from our previous
work !0 are shown in Fig. 4. For each panel,
the darker colored, top ensembles are the re-
sults of using the nonparametric model and the
lighter colored, bottom ensembles are the pa-
rameteric model results with number of Gaus-
sians indicated. For all four samples, con-
vergence is achieved for both models and the
distance distributions show good agreement to
those previously published.*® The uncertainty
is relatively low given the small scatter of the
posterior predictive distributions. Uncertainty
increases at long distances, but does not af-
fect interpretation of the primary features. The
parametric results for all site pairs show good
agreement with the nonparametric results. The
presence of peaks with high uncertainty in the
parametric models in Fig. 4A; B & C is in-
dicative of limitations of the parametric ap-
proach, namely, imposing an underlying shape
to the distance distribution. The multi-Gauss
parametric model has more difficulty recovering
distributions that have multiple, overlapping
peaks of similar width or intensity. Distribu-
tions of this nature show larger correlations be-
tween distribution parameters, making explor-
ing the parameter space significantly less effi-
cient and convergence more difficult to achieve.
This was shown previously when analyzing syn-
thetic data.!®

4.3 Dependence on distance axis

A non-parametric P(r) is not entirely free of
parameters—it depends on the fixed parame-
ters that define the distance axis. These are the
minimum distance r;,, the maximum distance,
max, and, for a linear axis, the resolution Ar.
This forces the distribution to be zero outside
the distance range, and imposes a fixed resolu-
tion within the range. Figure 5 shows a series of
results for the mid-range YopO dataset with dif-
ferent ryax at a constant resolution Ar. Two ef-
fects of r,a can be discerned. First, as the 7.
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Figure 4: Bayesian inference using a nonparametric model with Tikhonov regularization and a
multi-Gauss parametric model on DEER data obtained for four constructs of YopO.#344 Most
MCMC data shown were run with 4 chains of 20,000 samples per chain from which 100 samples
were randomly selected. The nonparametric models for panels B, C, and D were run with 4 chains
of 100,000 samples to achieve convergence according to R < 1.05. For the nonparametric model
for panel B and the parametric models for panels A, B, and D, one chain was dropped due to non-
convergence. The raw experimental data are shown in gray overlaid with the time-domain full and
intermolecular fits for the nonparametric model (top, dark) and the parametric multi-Gauss model
(bottom, light). Beneath the time-domain data are the residuals from the posterior predictive
ensemble. The distance distributions for each are shown according to the same color scheme.
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is decreased, the uncertainty in the region near 747
Tmax shrinks. Second, it becomes less arduous to _,,
obtain converged chains (see Fig. 5 caption) and
the resulting posteriors indicate more efficient 7
sampling and certainty around the parameters. 7
When run for 20,000 samples per chain, the 7
MCMC sampler was only able to converge for 75
the model with an 7, of 6.5 nm. The model 73
with an 7., of 8.5 nm (which is past heuris-
tic values often used for ryax, / Dtend/2TNmin,
where n,;, is the number of required dipolar os- 75
cillation periods (N, > 1/2)),% did not attain 7
convergence, as evidenced by R values much 7
greater than 1.05 even when run for 100,000 ™°
samples per chain. 760
Both effects are a consequence of the fact that ™
the models with long .« are over-specified—
there is not enough information in the data to ™
clearly distinguish between mass in this region ™
of r and the intermolecular background. The ™
marginal distributions of the background pa- ™
rameter k and the modulation depth A\ broaden ™
substantially as 7. is increased. These ef- "
fects are also noticeable in the accompany- "
ing increased spread of background fits. Note
that these effects are not a peculiarity of the ™
MCMC method, but rather an intrinsic param- "
eter non-identifiability issue of the model given
the data. Any analysis method that uses this ™
model will encounter similar difficulties in iden-
tifying unique parameter values. Based on the
posterior distributions, the Bayesian approach "
provides a direct way for diagnosing these situ- "
ations. e
Several approaches can be considered to pre- ™
vent model overspecification: (a) restrict rpax ™
to shorter values, (b) include additional infor- ™
mation that P(r) is close to zero at long dis- ™
tances, (c) include additional information that ™
P(r) is compact,?? or (d) use a less flexible
model with stronger assumptions about the
r distribution, such as a multi-Gauss model
or a model with significantly fewer distance ™
points. 4° 789
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4.4 Comparison with bootstrap-
ping

The Bayesian analysis presented here pro-
vides full quantification of uncertainty for all
model parameters, including correlations. An-
other, although conceptually different, ap-
proach is bootstrapping, a Monte Carlo resam-
pling method. In the bootstrapping variant im-
plemented in DeerLab,!” synthetic data traces
are generated by adding different noise realiza-
tions to a fitted signal obtained by least-squares
fitting. These new traces are then analyzed ac-
cording to the same procedure as the original
experimental data. This results in a number of
fitted parameter sets and distance distributions.
The distribution of fitted values compares in
nature to the posteriors output from Bayesian
inference and can be randomly sampled from to
produce ensemble plots representing the spread
of uncertainty around a particular set of data.

In Fig. 6 we show the Bayesian analysis using
a nonparametric model of the YopO data from
above and compare it to the data analyzed with
bootstrapping. Compared to our previous fig-
ures, the distance axis resolution was doubled
to 0.05 nm and r,,,x Was set to 6.5 nm. For each
panel, the darker colored, top ensembles are
the results of using Bayesian inference and the
lighter colored, bottom ensembles are the boot-
strapping results. For bootstrapping, an initial
fit was achieved using a regularization parame-
ter selected by the Bayesian information crite-
rion. !> This value of o was then frozen for the
bootstrap analysis in which 1000 bootstrapped
samples were taken, i.e., 1000 new signal traces
were generated and fit. A set of 100 parameter
vectors and distributions were randomly drawn
from the 1000 samples and plotted alongside
the Bayesian inference ensembles.

For all the site pairs, the ensembles of distance
distributions are very similar between Bayesian
analysis and bootstrapping (see Fig. 6). How-
ever, the bootstrap ensembles generally have
less scatter, since all synthetic signals are gen-
erated from the same initial fit, leading to less
exploration of the combined parameter space
compared to the Bayesian approach.

A crucial difference between Bayesian infer-
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Figure 5: Effect of upper distance limit r,,, on quality of fit and P(r) uncertainty. Data from the
mid-range site pair (YopO V599R1/N624R1) was evaluated for three values of 7., and a constant
resolution (Ar) of 0.1 nm, using MCMC with 4 chains and 20,000 samples (for ry., = 6.5 nm)
or 100,000 samples (rpma.x = 7.5 nm and 8.5 nm). One chain was then dropped from the 7.5 nm
model to attain convergence. The 8.5 nm model did not converge regardless of how many chains
were dropped, so all 4 chains were kept. From these runs, 100 distance distributions are randomly
sampled and plotted. The raw experimental data are shown in gray overlaid with the associated
time-domain fits. The saturation of the color decreases with r,.x. Left: Time-domain fits and
resulting distance distributions. Right: The posterior distributions for the background decay rate
constant k£ and the modulation depth A with decreasing ..
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Figure 6: Comparison of experimental fits and visualization of uncertainty between Bayesian infer-
ence and bootstrapping. The MCMC data shown were run with 4 chains of 100,000 samples per
chain. For both the Bayesian MCMC data and the bootstrapping fits, 100 samples were randomly
selected to plot. The raw experimental data are shown in gray overlaid with the time-domain full
and intermolecular fits for the Bayesian analysis (top, dark) and bootstrapping (bottom, light).
The distance distributions for each are shown according to the same color scheme.
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ence and bootstrapping is that in the lat-
ter method, the Tikhonov smoothing param-
eter « is fixed, whereas it is a floating (hy-
per)parameter in the former. Therefore, boot-
strapping does not incorporate the uncertainty
due to a. Yet, the value and uncertainty of
« are crucial components for assessing whether
over- or under-fitting is occurring and provide
insight into the overall shape of the resulting
distance distribution. With Bayesian inference,
the uncertainty of «, along with all other model
parameters, is a direct output of the analysis.
This is illustrated in Fig. 7, which plots the
marginalized posterior of lg(«) in the Bayesian
analysis against the fixed value of 1g(a) used in
the bootstrap analysis (vertical line).

In terms of computational cost, the time
taken to run 1,000 bootstrapped samples for the
bootstrap analysis was similar to the time taken
to run approximately 100,000 MCMC draws
for the Bayesian analysis (a couple hours on a
typical laptop computer). Thus, the Bayesian
approach yields a more complete uncertainty
analysis at roughly the same computational
cost. Note, however, that computational per- !
formance depends on implementation, and that %
there is a wide range of possible bootstrap- *
ping approaches beyond the one implemented **

in DeerLab. 845

846
847
5 Conclusions

848

849
The Bayesian method outlined in this work g,

presents a rigorous, complete and conceptually g,
simple inference approach for analyzing DEER g,
data. Given the experimental data and the g,
choice of a particular physical model, it deter- g,
mines the joint probability distribution of all g
model parameters. This provides, completely, g
any information that can be gleaned from the g;
data under the assumption of the chosen model g,
and provided prior information. If the informa- g,
tion content of the data is low (noisy and trun- g,
cated trace), then this method captures the re- 4,
sulting significant uncertainty about the model 4,
parameters, particularly if a Tikhonov model g;
is used. Introducing additional constraints to g,
the r distribution, such as by using a multi- g
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Figure 7: Uncertainty assessment for the

Tikhonov smoothness parameter «. The pos-
terior distributions for lg(«) from the Bayesian
analysis are shown, maintaining the same panel
order and coloring as previous figures for the
site pairs. The single values for the lg(«) pa-
rameter from the bootstrap fits are shown as a
vertical lines.

Gaussian model, could be advantageous, at the
expense of biasing the analysis.

The complete uncertainty quantification pro-
vided by Bayesian inference has advantages
over other forms of uncertainty quantifica-
tion. Compared to confidence intervals based
on maximum-likelihood estimation and the
Laplace approximation (which assumes the like-
lihood function is Gaussian around its maxi-
mum), it is more complete and accurate and
can capture asymmetric uncertainty as well as
broad areas in parameter space that lead to
equally good model fits. Therefore, it can help
spot identifiability problems with the model pa-
rameters. Compared to bootstrapping, which
can be used to determine more comprehen-
sive confidence intervals within the maximum-
likelihood estimation approach, Bayesian in-
ference does not synthetically generate new
datasets. The only dataset that is used in
Bayesian inference is the given experimental
dataset. From a principled standpoint, this
is indeed the only dataset that should matter.
Also, the Bayesian approach saves significant
computation time on a per-sample basis. In
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general, the logically rigorous foundation of the os
Bayesian inference approach makes it possible oo
to use it as a reference method for analyzing

dipolar EPR data.

910

Although we presented the method using a
Tikhonov model for the intramolecular dis- °*
tance distribution combined with a simple ex-
ponential decay for the intermolecular contri- ***
bution, this method is very general and can o1s

handle more complex models.

Extensions to

use more sophisticated intermolecular models, oo
to include multiple dipolar pathways, and to

handle multiple datasets simultaneously are o
conceptually straightforward, although compu- ¢,

tationally more demanding.

Therefore, the g

Bayesian frameworks provide a robust and flex- o
ible tool for DEER data analysis, providing o»
complete quantitative information about uncer- g
tainty.
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