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Abstract— This paper address the problem of path decon-
fliction and collision avoidance for unmanned aerial vehicles
equipped with a monocular optical camera. The measurements
observed from the camera do not include range, but they
do allow for calculation of time-to-collision. In this paper we
exploit the idea that a single time-to-collision estimate may have
come from any number of intruders with different range and
velocities, to define a family of potential intruders. The family
of potential intruders is represented by a set of particles that
can then be propagated forward in time to represent the set of
all potential collision scenarios. A path planning algorithm is
then introduced to minimize the collision risk. The method is
illustrated with simulation results.

I. INTRODUCTION

Path deconfliction and collision avoidance is a critical
capability for autonomous systems [1]. It is essential for
autonomous systems operating in various environments, in-
cluding urban cities with heavy air traffic and remote regions
with unpredictable terrain. Unmanned aerial vehicles (UAVs)
need to be able to detect and avoid obstacles in the environ-
ment to ensure safe and effective navigation.

Critical to the problem of collision avoidance is estimation
of the intruder pose. Use of LiDAR and radar for estimation
is very effective due to their ability to directly measure
range to the intruder [2]. However, these systems are usually
large or have a very narrow field of view. Monocular optical
cameras are a much more desirable sensor for small UAVs
due to their inexpensive, lightweight nature. The lack of
range information from these cameras represents a major
challenge to their utilization in intruder pose estimation as
they can only provide bearing measurements and rates of
expansion of the target in the camera image.

Pose estimation of a moving target using a single maneu-
vering, bearing-only sensor has been extensively researched
and analyzed [3], [4], [5], [6]. According to theoretical
results, the target state remains unobservable until certain
conditions are met. In order to detect a target accurately,
the sensor’s motion must be at least one order higher than
the target’s motion. For instance, if a target is moving at
a constant velocity, the observer must at least move with
constant, nonzero acceleration [5] though other maneuvers
also make the targets pose observable.

*This work was supported by Scientific Systems Company Inc, on the
Open Autonomy/Safety Enhancement System (OASES), Subcontract No.
SC-1754-01. In support of Prime Contract No. FA8649-22-P-0770

James J. Adams and Jen Jui Liu are graduate research assistants in the
MAGICC Lab, Brigham Young University, Provo, USA (bmccl745,
jenjui.liu)@gmail.com

Randal W. Beard is a Professor in the Department of Electrical
and Computer Engineering, Brigham Young University, Provo, USA,
beard@byu.edu

979-8-3503-8265-5/$31.00 ©2024 AACC

In light of this, many different types of estimators have
been proposed for use in bearing-only pose estimation of
moving targets including extended Kalman filters, unscented
Kalman filters, and Pseudo-Linear Kalman Filters (PLKF)
[7], [8]. Each of these estimators can converge to the correct
pose of the intruder given enough time and sufficiently
strong self-maneuvers, with larger self-maneuvers generally
corresponding to quicker convergence.

In some applications it is desirable for the ownship to
maneuver as little as possible while avoiding collision with
other aircraft. One such case is when engaging with other
potentially cooperative aerial vehicles. In this case it is
desirable to move with constant velocity until the avoidance
maneuver is performed to avoid confusion. The estimators
mentioned above would struggle with this requirement.

Research has shown that humans and insects use time-to-
collision (TTC), calculated from the expansion rate of the
target in the field of view, to maneuver in the environment,
and its application to UAVs has also been studied [9], [10],
[11]. We would like to incorporate this additional information
into our method of estimation.

In light of the difficulties of target pose estimation with
low-maneuvering observers and the additional information
that can be obtained from camera sensors, we propose the
application of a novel particle filter to the problem of intruder
pose estimation. A path planning algorithm to navigate
the ownship to an objective while minimizing the risk of
collision is also presented. It is desirable to maintain constant
altitude during avoidance maneuvers to comply with Visual
Flight Rules [12]. Our methods are therefore derived for use
in 2D, though no significant barrier exists to the extension
of these methods into three dimensions.

II. TRAJECTORY FAMILIES
Time-to-collision (TTC), denoted by 7, is given by the

equation

po 24 (el —po(t)Tee "
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where €4 and é4 are the area of the object in the camera
frame in calibrated normalized pixel coordinates and its
derivative, p; and v; are the position and velocity of the
intruder, p, and v, are the position and velocity of the
ownship, and e, is the unit vector along the optical axis of
the camera [13]. We assume that the position and velocity
of the ownship is known, either by GPS or Visual Inertial
Odometry. Equation (1) represents the amount of time in the
future where a “collision” will occur, or when the distance
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Fig. 1: The ownship and intruder at times t; and t; with
line-of-sight vectors.

between the intruder and ownship along the camera optical
axis will be zero. We define ¢, = 7(t) 4t to be the time of
collision (TOC). If neither the ownship nor the intruder is
accelerating, ‘fi—; = —1, and thus ¢, is constant.

We now show that there is a family of constant velocity
trajectories that all appear identical to the observer if the
ownship follows a constant velocity trajectory. Let py(t) =
v(pi(t) — po(t)) + po(t) where v > 0 is a constant.
Differentiating we obtain pg(t) = v(v; — v,) + v, = va,
which is constant. Therefore so py(t) is a constant velocity
trajectory. Letting ?; and ¢4 be the unit vectors from p, to
p; and pg, respectively, we have that

j, = Pa®) =pot) _ (pi(t) = polt))
lpa(t) = po (DIl [Iv(pi(t) — po(t))]|
pit) — po( ) _ ;.
) —po®

which implies that the unit vectors from p, to pg and from
Do to p; are identical at any given time. Similarly, let 7; and
74 be the time-to-collision of the two trajectories, then

_ (Pa(t) = po(t) Tec _ y(pi(t) —po(t)) "ec
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which implies that the time-to-collision measurement associ-
ated with the two trajectories will be identical, and therefore
the two trajectories p;(t) and pu(t) will appear identical
to the ownship if the ownship follows a constant velocity
trajectory. By varying « it is possible to construct the family
of trajectories to which the intruder belongs, assuming we
have an example trajectory on which to base the family.

It has been well established in the literature on bearing-
only estimation that the full pose of an intruder is only
observable if the ownship outmaneuvers the intruder [4],
[5]. In this case where the intruder is moving with constant
velocity, the ownship must accelerate for the pose to be
observable. As we have shown there are multiple unique
constant velocity trajectories that appear identical to the
ownship observer, the introduction of TTC does not make
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the full pose of the intruder observable, but the use of TTC
can greatly improve our estimate of the target velocity.

We now present a strategy to find the velocity of an
intruder given its range. Let lo and 0, be the bearing
measurements at times ¢g and ¢q, respegtively. At time ¢,
the target must lie along the unit vector ¢ from the position
of the ownship at that time. We write this constraint as

pi(to) = po(to) + aolo )

where «a is the range to the intruder at time ¢,. Si{nilarly,
at time t; the target must be along the unit vector ¢; from
the position of the ownship, and we can write

pi(t1) = po(t1) + ol 3)

Assuming the intruder and ownship move with constant
velocity, we can rewrite Equation (3) as

pi(to) + vi(t1 — to) = po(t1) + arly. 4

Since we do not assume that the intruder is on a collision
course with the ownship, the vectors fo and él are not
necessarily equal. .

At time t., the quantity 7 = % = 0, and so
(pi(te) — po(te)) Te. = 0. In the 2D case, this means the
quantity p;(t.) — po(t.) lies along the unit vector perpendic-
ular to e. (we denote this as eCL), which we will write as
follows

pi(te) — polte) = arer (5)

Again assuming constant velocity motion, we rewrite Equa-
tion (5) as

pi(to) + vilte — to) — polte) = aret (6)

Writing equations (4) and (6) in matrix form gives
R Q@
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Taken together with equation (2), this set of equations can

thus give us the velocity of the target for any given initial
range qy.

We can continue to add bearing measurements as desired

to generalize equation (7) for many bearing measurements:

4 0 - 0 0 (i —to)lax2] [™
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Po(t1) — pi(to)
Po(t2) — pi(to)

: ®)
Po(tn) — pi(to)

Po(te) — pi(to)
b
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where t. is the average TOC found from the TTC mea-
surements. Adding more measurements can give us a better
estimate of the velocity given the noise-corrupted nature of
the measurements.

The meaning of the TTC measurements becomes less clear
when the ownship is accelerating, but dropping the last line
of equation (8) would allow us to obtain a velocity estimate
even if the ownship is accelerating, and this works better
the greater the time difference between the first and last
bearing measurements. In fact, the p;(to) variable could be
moved to the left side of the equation and doing sowould
in theory allow us to invert A to obtain the full pose of the
intruder. In practice the matrix A is singular if the ownship
is not accelerating and very close to singular unless major
maneuvers are performed. It is thus not useful for practical
application aside from velocity estimation.

We can then constrain the family of possible trajectories
based on a minimum and maximum detection range (7p,;n
and 7,,4,), as well as a maximum expected speed. From
these constraints we can obtain an 7,,;, and ¥4, to bound
the family of trajectories. Figure 2 shows some examples of
various trajectory families, with the blue line representing the
actual intruder trajectory, the red line representing the own-
ship trajectory, and the green and orange lines representing
the Ymar and vp,4p trajectories, respectively.

III. PARTICLE FILTER

The standard approach to the particle filter is the Sample
Importance Resampling (SIR) method. In this scenario, the
particles would be initialized with a random position along
the first bearing measurement and a random velocity. At each
timestep the particles are weighted by how well they match
the current measurement, with new particles generated from
the highest weighted particles [14].

However, an SIR particle filter has many disadvantages
when applied to the problem addressed in this paper. First,
the velocity space for a given particle to match the behavior
of the intruder we wish to approximate is very small. Thus,
creating particles with a random velocity produces very few
feasible trajectories. An infeasibly large number of particles
would need to be generated to produce valid particles over
all possible ranges.

The second disadvantage is the nature of the bearing
measurement. These measurements tightly constrain lateral
position when the intruder is close, but this constraint loosens
as range increases. This tight constraint at close ranges
means that small perturbations in the random resampling of
particles close to the ownship tend to have a larger impact
on the subsequent weight of the particle compared to distant
particles. Scaling the perturbations based on range to the
particle does little to negate this issue. The effect is that
particles close to the ownship are filtered out at a much
greater rate than those far away, leading to a skew in range
estimation away from the ownship.

This paper proposes a new approach to particle sampling
for this problem. Namely, the velocity of the particles are de-
termined using the current TOC and bearing measurements.
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Fig. 2: Examples of trajectory families generated by various
intruder behaviors, with (a) being produced by the intruder
passing on the left, and (b) being produced by the intruder

passing in front of the ownship.

This method produces particles with behavior that better
matches the intruder. The method of updating the particles
can also be changed to estimate the range of the intruder as
it becomes observable as the ownship maneuvers.

A. Initialization of Particles

After tracking of the object has begun and two bearing
and one TOC measurement have been made, the particles
are initialized. This method of particle initialization aims to
fill the potential position space as thoroughly as possible.
Let EO and /; be the two bearing measurements, and . be
the TOC measurement. Let R(6) be the rotation matrix that
rotates a vector in the 2D plane by 6. The range is randomly
selected from between the minimum and maximum possible
values: a%m] ~ U(YVmin, Ymaz )- The bearing vector 1s then
rotated by a random amount: Z[ ml R(6y)0y and E

R(61)¢; where 90,01 ~ N(O,U). The TOC measurement
is also augmented: .. = ~ N (t.,o,). The initial position is
then given by p[ ](to) = po(to) —|—a0l~([)m], and these modified
values are then input into Equation (8) to obtain the particle
velocity vl[m]. This initialization process produces particles
with both range diversity and feasible velocities.
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B. Measurement Update

The method of updating the particle filter depends on
whether or not the ownship has accelerated in the time be-
tween the last measurement. If no acceleration has occurred,
the measurement update roughly follows an SIR update.
From the most recent TTC measurement we can obtain a
new TOC estimate ¢, = 7(tx) + ¢, Which is averaged with
previous estimates to eliminate noise:

k
Z )

The position of the particles at the current time ¢ is
calculated usm their initial position and calculated velocity:
p£ ](tk) t0)+7}[ Jt,.. The particles are then weighted
by how closely their LOS vector matches that of the bearing
measurement using

?r\'—‘

m 1 1 m n — m
wi™ = —exp(— z(h(x; N = 0)TR (h(al™

W )

(10)
where ¢, is the bearing measurement at time tj, Wy, is the
total weight of all the particles,

h(al™) =

(1)

is the measurement function, and R = Diag (amay). The
particles are then re-sampled according to this new weight-
ing, with random perturbations made to the initial locations
of the particles. This new initial location is then taken
with the previous LOS vectors and the averaged TOC and
substituted into equation (8) to produce the best estimate of
the velocity of the particle.

In the case that the ownship is accelerating, the mea-
surement update is simply used to weight the particles. The
number of effective particles can be calculated as

N

N = ——~
1 4 var(wy)

(12)
where N is the total number of particles. The particles are
resampled if N falls below a certain threshold. This more
closely follows existing PF applications to bearing-only pose
estimation with ownship maneuvers [15].

C. Utilization in Path Planning

As the velocity of the particles is known from the up-
dates, their positions at a future timestep can be predicted.
These predicted positions essentially sample the probability
distribution at the given time, and so a probability density
function can then be fit to the particles using a kernel-density
estimate (KDE). For our application we use a Gaussian KDE
to estimate the probability density function. These PDFs,
denoted as P;(tx,x) in the subsequent section, are then used
in the path planning algorithm to find an optimal path to
avoid the potential locations of the intruder.
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IV. B-SPLINE BASED PATH PLANNING ALGORITHM

In this section we present a path planner that utilizes
continuous B-splines to avoid areas with high collision
probability. The objective function and constraints are used
to optimize the path by minimizing the path’s cost while
satisfying the constraints. Our objective is to navigate the
ownship from its start position to a specified end position
taking the shortest path while avoiding the locations where
the intruder has a high probability of occupying. The objec-
tive function

J(c) = [ler — pyll (13)

penalizes the distance between the goal location p, € R?
and the last control point ¢z, € R?, where ¢ = (cy,...,cr) €
R2*L are the B-spline control points. Since the velocity of B-
spines is a function of the difference between control points,
the constraints

oo e = ]
min —= At
limit the velocity between any control point and the next
control point. When the ownship is a multirotor and can
therefore hover or stop, v,,i, 1S zero.
The probability distribution of the ownship is denoted by

%@—WAUWEfﬂﬂx—%“m
= N (po(t), Zo(1))

while the probability distribution of the intruder is denoted
by P;(t,z). It is important to note that there may be multiple
intruders, and in that case P;(¢,xz) will be the convex sum
of the individual probability distributions. Lastly, P, (tx, cx)
refers to the ownship’s probability distribution at a specific
control point, denoted by cy, at time .

By the multiplication law of conditional probability, the
collision probability is P.(t,xz) = P;(t,z)P,(t,x) If Prax
denotes the maximum allowed collision probability, then we
require that for all € S

P.(t,x)

<w (14)

max

Po(t, @) ~ poexp[—

= P,(t,x)P;(t,z) < Ppas-

Since B-spline paths are contained in the convex hull of local
control points, we constrain the collision probability at the
control points:

Po(tk,Ck)PL'(tk7Ck) Spmaxv k:17"'7La (15)

where P;(t, x) is computed using the particle filter described
in the previous section, and where Equation (14) ensures that
the control points remain closely spaced avoiding the case
where most of the probability mass of P;(tj,x) would be in
the local convex hull of the control points.

We begin the optimization by setting all control points
equal the current position of the ownship zg = ps. Such
initial settings help the control points to avoid infeasible
regions. It is also intuitive to generate the path from the
starting position to the goal.

In our implementation, we used the
Python/Scipy/Optimization library with settings
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scipy.optimize.minimize (
objective_function,
X0,
method="SLSQP',
bounds=None,

constraints=[nlc_1, nlc_2])

where objective_function is the objective function
given by Equation (13), X0 is the initial control point
locations which we set to be the current ownship position,
and where nlc_1, nlc_2 are the constraints given in
Equations (14) and (15).

V. RESULTS

In this section we present two simulation results of
collision avoidance using our algorithm. In both of these
examples the goal location is directly in front of the ownship.
In our implementation we continue to fly with constant
velocity for about 1 second after the initial intruder detection
to allow the particle filter to converge before planning an
avoidance path. Therefore, in these simulations, the predicted
path of the particles and the path planned for the ownship
only take into consideration information derived during one
second of constant velocity flight.

Figure 3 illustrates planning results for one intruder and
Figure 4 illustrates planning results for two intruders. The
“time” bar in these plots represents time in the future as
measured from the current time. The large red dot represents
the future position of the ownship if it follows the planned
path, and the large orange and green dots are the actual future
positions of the intruders if the continue to follow constant
velocity trajectories. The small blue dots are the particle filter
positions projected into the future.

In Figure 3, the ownship must maneuver to avoid the
intruder. It does so and avoids collision with the densest
region of particles and therefore avoids the actual intruder.
In Figure 4, small manuevers result in a collision-free path.
From these examples we see that our method is able to avoid
collision with multiple intruders while maneuvering only
when required, and using only bearing and time-to-collision
measurements that are readily available from a camera.

VI. CONCLUSION

In this paper we have developed a new approach to
intruder pose estimation utilizing only information obtained
from a monocular optical camera, namely bearing and time-
to-collision. We have also developed a path planning algo-
rithm that maneuvers the ownship toward an objective while
minimizing the risk of collision.

Results indicate that our method is effective in approximat-
ing the family to which the intruder belongs without the need
for self-maneuvering. This method also produces trajectories
that avoid the areas with highest probability of occupation
while driving the ownship toward its objective. An advantage
of our approach is that the pose of an intruder can continue
to be estimated as the ownship begins to maneuver.

Future work includes improved initialization of the par-
ticles. The initialization of the particle filter requires the
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Fig. 4: Avoidance of two intruders on near-miss trajectories.

ownship to not maneuver during the first two measurements.
While this requirement is likely to be met in all but the
busiest airspaces, the elimination of this requirement would
improve the robustness of the method.

Additional improvement is also needed in the path plan-
ning algorithm. One possible way to improve the efficiency
of the planning would be to utilize an RRT-like method to
generate a feasible trajectory through the probability fields
from which a B-Spline trajectory can then be generated.
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