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An Introduction to the Invariant Extended Kalman Filter

EASTON R. POTOKAR', RANDAL W. BEARD

alman filters (KFs) have become ubiquitous in mod-

ern-day technology, with applications in medicine,

robotics, and many other areas, due to their straight-
forward implementation and impressive performance. The
KF is the optimal solution in the mean-square-error sense
for tracking a linear stochastic state [1] and is well-known
for its asymptotic convergence guarantee [2]. The extension
of the KF to nonlinear systems is the extended KF (EKF),
which has been the de facto standard for many years, even
though it lacks the theoretical guarantees of the standard
KEFE. Other KF flavors have been introduced, including the
unscented KF [3] and the error state KF (ESKF) [4], all of
which have their limitations and tradeoffs. The most glar-
ing disadvantage for all these KF variants is the state-
dependent linearization that can cause poor performance
and weak convergence.

The recent development of the invariant EKF (InEKF)
solves this problem for a certain class of systems by defin-
ing an error invariant to a class of symmetries [5], [6]. The
error is defined by composition on a Lie group, which in
our examples will be matrix multiplication, and results in
the estimation error satisfying a log-linear differential
equation, state-independent error system dynamics, and a
local asymptotic convergence guarantee, which the EKF
lacks. More recently, the class of systems that fit the INEKF
paradigm has been more clearly defined and is known as
group affine systems [7], [8]. The InEKF has led to numer-
ous successful results and applications in simultaneous
localization and mapping (SLAM) [9], [10], [11], visual-iner-
tial navigation [12], [13], [14], guided aerial navigation [9],
[15], [16], [17], 3D bipedal robots [18], [19], and underwater
navigation [20]. Additionally, there are many other theo-
retical developments of the INEKF with regard to observ-
ability [21], reachability [22], [23], inertial measurement unit
(IMU) preintegration [24], and usage in a multistate con-
strained KF framework [25].

Unfortunately, the current literature describing the InNEKF
requires a deep theoretical understanding of Lie groups and
is not accessible enough to a general audience to allow more
widespread adoption. Our purpose in this article is to fill this
gap in the literature by providing an accessible introduction
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to the necessary theoretical background, focusing on imple-
mentation choices and details, and by providing several
simple examples with full derivations (see “Summary” for an
overview). Additionally, there are many scenarios when the
tracked state is not completely group affine; in these scenar-
ios, an “imperfect” INEKF can be still be used, which, while it
lacks the convergence guarantees, still exhibits improved
performance over other EKF formulations. We illustrate with
an example of an imperfect INEKF, again with detailed deri-
vations. We note that that our treatment of the InEKF is not
comprehensive of all state-of-the-art developments but,
rather, tutorial in nature. We focus on introducing the neces-
sary theory to utilize the INEKF as well as some practical
choices for implementation purposes.

Since the error is based upon noncommutative matrix
multiplication, the INEKF has both right and left variants,
and the difference between these variants has limited dis-
cussion in the current literature. While both variants per-
form similarly, there are nuances that can cause one to
perform better than the other, depending on the applica-
tion. In much of the existing literature, the right or left for-
mulation of the InEKF is selected with a limited discussion
based on the specific application [8], [26], [27], [28]. One con-
tribution of this article is to shed additional light on the
differences between the two variants, including a detailed
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description of their nuances and an explanation of which
variant will perform better for a given application.
Specific contributions of this article are as follows:
1) We provide step-by-step tutorials of deriving both
the right and left INEKFs together with a detailed
description of when one should be selected over the

Summary
Successfully and accurately estimating the 3D position of

a vehicle is a necessary step for any form of robotic au-
tonomy. In a linear setting, there are straightforward optimal
(in the mean-square-error sense) solutions, such as the KF,
that provide out-of-the-box methods for estimation. Unfortu-
nately, most systems in the real world are highly nonlinear,
and while there are many formulations of the KF that empiri-
cally work well with nonlinear systems, the KF convergence
guarantees do not apply to general nonlinear systems.

For systems tracking states that meet a minimal form of
symmetry, such as 3D rotations, the INEKF provides a state-
independent linearization that provides convergence guar-
antees similar to the KF. This article provides an in-depth
introduction to and tutorial on the InEKF by covering the
necessary mathematical background, providing derivations
of the INEKF’s various components, and walking step by step
through various examples of its usage. Additionally, an open
source library is provided for straightforward implementation
under a variety of process and measurement models.

Groups and Smooth Manifolds

GROUPS

Agroup is defined as any set G along with an operation
:G X G — G that satisfies the following properties va,b,ce G

[S1]:

e Closure: a-beg.

e Associativity: (@-b)-c=a-(b-c).

e [dentity: There exists an /€ G such that [-a=a-I=a.

e Inverse: Thereexistsan a '€ G suchthata-a'=a'-a=1.
Groups are generally an abstraction of symmetry. That is, each
elementin G can be thought of as a transformation that leaves
a certain object unchanged. For example, a group of rotations
of a square could be given by the set G={0, /2, 7, 3x/2}. It
is straightforward to verify that each of the above properties
holds on this set with the addition-modulo-27 operation.

SMOOTH MANIFOLDS R”

A smooth manifold of dimension n is a geometric structure that
is locally close to R”, enabling the use of calculus on a local
map of the manifold [29]. Examples include the unit sphere, a
torus, or a smooth surface in R®. Manifolds are often visualized

other. We provide a similar tutorial for the imper-
fect InEKF.

2) We provide several simple examples showing the
application of the INEKF and the imperfect INEKF to
specific problems.

3) We provide an all-inclusive open source C++ and
Python library for easy implementation of both the
right and left InEKFs, with Lie group structures and
flexible measurement models already built in.

This article proceeds as follows. First, we give the neces-
sary mathematical background on matrix Lie groups, fol-
lowed by a review of the EKF and ESKF and then a
derivation of the INEKF. The nuances between the right and
left InEKF error, prediction step, and update step are then
laid out and explained. Step-by-step examples with deriva-
tions and decision factors are then given for a simple odom-
etry model as well as an imperfect InEKF for an inertial
model. The article then concludes and discusses possible
research directions.

MATRIX LIE GROUPS
In this section, we provide a brief introduction to matrix
Lie groups as well as various mathematical fundamentals
to help in understanding the InEKF. See “Groups and
Smooth Manifolds” for additional details about groups and
manifolds.

A Lie group is a group and a smooth manifold with the
property that element inversion and the group operation
are differentiable [29]. A matrix Lie group is simply a Lie

by a curved surface, where each point X € M is equipped with
a tangent space denoted TxM, as shown in Figure 1. Each
tangent space is a vector space of dimension n and can be iso-
morphically mapped to R” [30] using the “hat” operator, which
is denoted as
MR- TYM. (S1)
Each element of the tangent space is called a vector and often
denoted by & € Tx M. Furthermore, a map exists from TxM to a
neighborhood of X € M, called the exponential map:
expx: TxM— M. (S2)
In some cases, exp is the well-known exponential given by the
Taylor series e* = Zy_0X"/n!, but generally, it is not [29].

REFERENCE
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group whose elements are matrices, and the group opera-
tion is matrix multiplication.

The Lie algebra g of a Lie group G is the tangent space
to the smooth manifold G at the identity; thus, ¢ = T:G
[30], as shown in Figure 1. In the case of a matrix Lie group,
the identity is the identity matrix. The Lie algebra g is a
linear space that is isomorphic to R", where n = dim @, and
we use the “hat” operator * to map from R" to the Lie alge-
bra g and the “vee” operator V to map from g to R".

We can also map g — TxG for any X € G simply by
using left and right multiplication. That is, for £ € R”, both
X&M and €' X € TxG [29]. While both X£" and £ X resultin
elements in TxG, generally, X£" # £"X. These maps are
also often used in differential equations when transporting
tangent vectors to their correct tangent spaces. For exam-
ple, if R is the rotation matrix from the body to the inertial
frame and w is the angular velocity of the body expressed
in the body frame, then R =Ro". Alternatively, if R is the
rotation matrix from the inertial to the body frame, then
R=—w"R.

For matrix Lie groups, the exponential map at the iden-
tity expr:g — G is given by the usual matrix exponential,
which is denoted by “exp” throughout this article [31].
Thus, we can map & € R" to a neighborhood of I € G using
exp (£"). We can also map any & € R" to the neighborhood
of any X € G by using Xexp (£") or exp (£") X, which again
are different maps, as we discuss later.

Another useful operator is the adjoint of an element of
G, defined for matrix Lie groups as follows.

B S

FIGURE 1 A comparison of right- and left-invariant errors on a
model matrix Lie group. The state estimate X is shown in blue and
the inverted true state X' in orange. The mapping of the right n’
and left n' invariant errors in the Lie group G to £ and &' in the
Lie algebra g is displayed in red. Although the right and left errors
are composed of the same transformations, the multiplication
order results in different errors.
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Definition 1 [31]

For any X € G, where G is a matrix Lie group, and for any
£ € R", where g is the Lie algebra of G, the adjoint map
Adx:g — g is defined by

Adx(§") =X&"X @

Using the definition of the matrix exponential, it is
straightforward to verify that

exp (Adx(£") = exp(XE'X™") = Xexp (£ X . )

For afixed X € G, the adjoint map Adx() islinear. Its matrix
representation Adx:R"— R" operates directly on the
Euclidean vectors and is defined through the relationship

(Adx)€ = (Adx(£")" ©)

where multiplying the Euclidean vector & by the matrix
Adx is equivalent to the Lie algebra operation Adx(£")
mapped back to the equivalent Euclidean space. When-
ever the adjoint is used in this article, it uses the matrix
representation.

The adjoint matrix has a number of other useful proper-
ties, including [32]

Adx = Ady @)
Adxy = AdxAdy ")
Xexp(¢") = exp((Adx$)") X ©)
X¢" = (Adx§)"X @)

where the last two properties are derived by rearranging
(1) and (2) and can be used to move a vector from left to
right multiplication [33]. These properties will be used
when converting between right- and left-invariant errors
later in this article.

We can also define the “little ad” operator, which is useful
when linearizing continuous process models, as follows.

Definition 2 [31]
If G is a matrix Lie group with Lie algebra g, then for any
£, € R", we define the linear map

ade (") = 16,0 =¢"0" =08 ®)

where [-,-] is called the Lie bracket. Similar to Ad, itis also
often expressed by its matrix representation as (ad¢)({ =
(ade (¢M)'

The matrix representations of these two adjoint opera-
tors are related as follows.
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Theorem 1 [31]
Givenany £ € R",

Adexpe) = exp (ade). &)

See “Example of Matrix Lie Group” for the application of
these definitions to the matrix Lie groups SO(2) and SE(2).

FILTER BACKGROUND
In this section, we briefly review the EKF and the ESKF as
a precursor to introducing the InEKF.

EKF
Given a state x defined by linear dynamics
%x =Ax+Bu+w w~N(0,Q5(t—17)) (10)

Example of Matrix Lie Group

As an example of a matrix Lie group, consider the set of ro-
tation matrices in two dimensions, that is, the special or-

thogonal group SO(2), which can be defined as [33]

SO@)={AcM:(R)|ATA=AAT=] det(A)=1}.  (S3)

All the following hold for A,B € SO(2):

* Closure: AB is in SO(2).

e Associativity: Matrix multiplication is associative.

e [dentity: I € SO (2).

e Inverse: AT=A"1€S0(2).
Thus, SO(2) is a group with matrix multiplication as the operator.

Showing that SO(2) is a smooth manifold is beyond the

scope of this article, but we explain a few of the Lie group
properties here. First, SO(2) has dimension one; thus,
s0(2), its Lie algebra, also has dimension one and can be
defined as [33]

50(2):{[3 _OeHeeR} (S4)
along with the operator
cer, £=[2 ] (65)
and the matrix exponential
A _|cos(§) —sin(€)
exp(£") = sin(®) cos(é) | (S6)

Due to the fact that matrices in SO(2) and so0(2) commute,
we have the following for X € SO(2), £ € R":

(Adx&)" = Adx(£") = XENX!

=XX'&N
=g
= Adx=1. (S7)

and measurements given by the linear model

z=Hx+v ov~N(,M) (11)

the KF computes the optimal state estimate % of x given zin
the mean-square-error sense [1]. Furthermore, the KF is
globally asymptotically stable in a deterministic setting [2],
meaning that it will converge to the true state given any
initial estimate. It does this by propagating the mean and
covariance of X through the dynamics in a prediction step
and then correcting the mean and covariance of * in an
update step.

Generally, most system dynamics and measurement
models are nonlinear, so the KF cannot be used directly.
The EKF circumvents this problem by linearizing both the
system dynamics and measurement models using Jacobian
linearization [34]. These steps are outlined in Figure 2(a).

Example S1
Using the adjoint, we can switch from left to right multiplication.
Given Re SO(2), £ e R, we thus have

REM=(Adré)"R=£E"R. (S8)
Using Theorem 1 or the definition, we also arrive at
adg = 02x2. (SQ)

Here, SO(2) is shown embedded in R? as the unit circle in
Figure S1, along with its Lie algebra so(2).

— S0(2) — 20(2)

= TxSO(2)

— exp

FIGURE $1 An illustration of SO(2) embedded in R?. Included is
an example tangent space TxSO (2), the Lie algebra so(2), and
a vector £" € so(2) with its exponential map to 7€ SO(2).

(Continued)
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Example of Matrix Lie Group (Continued)

The special Euclidean group in two dimensions, or SE(2), is
another matrix Lie group made up of a 2D rotation and transla-
tion, defined as

SE(2):{AGM3(R)‘A:[OR ﬁ’
1x3

,ReS0(2), p ERQ}. (S10)

Note that SE(2) is also a group since A, B e SE(2) implies the
following:
* Closure: ABe SE(2) since SO(2) is closed, and

AB:[RA pAHRB pB:|:|:RARB RAPB+pA' (S11)

0o 10 1 0 1

* Associativity: Matrix multiplication is associative.
e Identity: Is€ SE(2).
RA
0
In addition, SE(2) has dimension three—one rotational dimen-

e Inverse: A= €S0(2).

—R/TAPA
1

sion and two translational dimensions; thus, its Lie algebra
s¢(2) has dimension three and the form

se(2)=“§9 §9 ?0, g ERS]={§9 So [;]eRa} (S12)

where &5 is using the SO(2) hat operator. To define the adjoint,
we first define the operator * for use in the following identity.

o=l 5 |lal-[o7]as 02

Then, for X € SE(2) and £ € R®, since matrices commute in
SO(2) and s0(2),

(S13)

(Adxé)" = xe'x1 =| P Per & [RT —RTp]

0 1
_[R&RT —R53RTP+R§p]
B 0
_[ée fp'efemefp]_ 1 0|[&]\'
1o 0 “\[=p* Rl|¢p

1 0
~Adc=|_p. gl (514)
Note that in some publications, £ is defined with rotational
states at the end rather than the start, that is, £=[&} &l
which results in the columns and rows of the adjoint being

flipped. Finally, for £, ¢ € R®, since matrices in so(2) commute,

(@def)" = ENEN — LM EN = [fe(s Seefp] [Cefe Ce.fp]

=[5 59“’3“"]4[ 5 el
- ady = f 2 (515)

Table S1 provides a summary of properties for some of the
common Lie groups used in robotics, and the readers should

ForaeR,b=[bs b2]" €R? consult other works [32] for a more in-depth analysis.
( \
TABLE S1 Various properties of typical Lie groups that are used in robotics.
N\ v
G dimg Matrix Size Xeg Ady £ e RImY Eeg adg
SO(2) 1 2x2 R / [0l 0 —& 0
£ O
SO(@3) 3 3x3 R R £ 0 —¢& & &
& Es 0 =&
&s & &0
SE(@2) 3 3x3 R p} 1 0] Eo &) 5p] 0 o]
0 1 -p* R & 00 —ép &6
SE(3) 6 4x4 R p R 0 Eo &b &p 6 0
0 1 p'R R £y 00 &b &b
SE2(2) 5 4x4 Rvop 1 00 Eo & & &p 0 00
010 —v* RO &y 000 —&5 & 0O
00 1 -p* 0 R £y 000 &5 0 &5
SE»>(3) 9 5x5 Rvp R 00 Eo Es Ev & 6 0 0
010 V'R R 0 &y 000 v & 0
001 p"R O R By 000 £ 0 &
_ Y,
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Unfortunately, this linearization can introduce signifi-
cant approximation errors in the filter, and it causes the
EKF to lose many of the mathematical guarantees of the
linear KF, except under strict assumptions [35]. A poor esti-
mate often leads to a poor linearization point, which leads
to another poor estimate and can begin a cycle of unaccept-
able performance. While an iterated KF [36] can solve for a
poor linearization point, we later see with the InNEKF that
iteration is not necessary at all.

For an example of the EKF applied to visual-inertial
navigation, see “Visual-Inertial Navigation Using the EKF,
ESKF, and InEKE.”

ESKF

The ESKF is an extension of the EKF, which seeks to track
the covariance of the error rather than that of the predicted
state [37]. The error state is defined as [38]

Sx=x0%x (12)

where x is the true state, X is the state estimate, and the EKF
is designed to track the error state éx. In a standard KF, ©
is generally defined using vector subtraction x©x = x — %,
but the ESKF allows a near-arbitrary choice of operation.
Note that X is generally defined with deterministic dynam-
ics, while x is stochastic.

Thus, in the prediction step, % is propagated for-
ward with the incoming u, and the covariance of éx is

updated using the Jacobian of the error dynamics [37],
given by

_ 9 (d
A‘asx<dt5x>

o2 50-8u(8%) | 13)

where g, defines the error dynamics.

The update step is once again accomplished simi-
larly to that of the standard EKF. We apply the standard
EKF update step to 8x, assuming that 8x is reset to zero
after each measurement step and is therefore zero
throughout the prediction cycle. The result after the
measurement update is the current estimate of the error
that we can add to the state estimate using the inverse of
the © operation,

=i @®ox (14)

and then 6x is reset to zero.

The ESKF has a number of advantages over the stan-
dard EKF. One is that the error dynamics g are often much
closer to linear than the actual dynamics f [37]. This allows
for less approximation error in the Jacobian linearization,
although the linearization still does depend on the current
state estimate. The ESKF also allows for an arbitrary defi-
nition of error and, thus, an arbitrary choice of state esti-
mate update @, allowing for improved tracking on manifolds.
Often, the state being tracked is not a vector space, and

13, =20 1 35, = Xo; 1 2? = Yo;
Zi‘Zl‘o, 2.’2':.’1,'0; ZX:XO;
3 if Between measurements 3 if Between measurements 3 if Between measurements
then then then

d . R d R d - R
4 E:rff(x,u), 4 &x:f(x,u); 4 aXqu(Xﬁ
| a2 s a9 | A= gufene):

8%;# B 6 &i’“ =AY +37AT +
=——. 6 - 7

6 EMER dou 12:u Ad;QAdL;
7| =3, = 7| =5 = AXss + 7 if At measurement z then

de . dt - T H¢ A gl\b.

AS +3, AT +GQGT Y5 A+ GQG ' 8 PRI
8 if At measurement z then 8 if At measurement = then 9 | 8= HY"H' +RMR
o | o oh , _ Oh | 0w | K=YX"H'S 1

0z i"r - 9z i’T u | 60X = K(IIXz —1Ib);

10 S:I—{Em}TI tM; 10 S:I{EMH + M; 2 X’:exp(—éX)X;
11 K=,H"S5" A; 11 K:E(ngTS_l; 13 ir: (I—KH)iT,
12 | dx=K(z—h()); 12 | dx=K(z—h());
1B | =2+ 0 1B | 2=200x; (c)
w5 = (-Kms, w | S5, = (1 KISy,

(b)

FIGURE 2 Algorithms for the standard, error state, and right InEKFs: (a) algorithm 1: the EKF, (b) algorithm 2: the ESKF, and (c) algorithm
3: the right InEKF.
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regular vector addition is ill-suited as an update operator,
whereas something such as quaternion multiplication, in
the case of rotational states, is a much better choice. These
steps are summarized in Figure 2(b). We see in the next
section how the InEKF leverages both of these advantages
to their fullest in cases where the dynamics exhibit certain
structural properties.

For an example of the ESKF applied to visual-inertial
navigation, see “Visual-Inertial Navigation Using the EKF,
ESKF, and InEKE.”

INEKF

The InEKF uses a specially chosen error that gives the
interaction among states, such as position and orienta-
tion, during the state estimate update through the matrix
exponential.

Definition 3 [7]

The right- and left-invariant error between two elements
X, Xegis given by

(15)
(16)

n = XX (right-invariant error)

n'2 X 1X (leftinvariant error).

Define the error states as £ = log(n")" € R" for the right
error and &' = log(n’)v € R” for the left error. Note that in
some publications [39], the inverse definition is taken:
7" = (XX "= XX"'. We note that this alternate conven-
tion will simply reduce to a negative outside the logarithm
above and, hence, a negative throughout the rest of the
derivations.

Example 1

The right- and left-invariant errors received their names
because they are invariant to right and left multiplications
of the state, as follows given Y € G:

7=ENXY) " = Xyy ' X' = XX!
=X OYX) =X"Y'YX=X"X.

(17)
(18)

The InEKF tracks the distributions of the error states &’
and £' in the Lie algebra, allowing for more accurate uncer-
tainty representation on group elements [40]. By solving for
X in (15) and (16), in the update step, the state will be cor-
rected as

X =exp(—£MX
X = Xexp(—£")

19)
(20)

(right-invariant update)

(left-invariant update).

These equations can also be viewed as defining a Gaussian
on a Lie group [40]. For example, if £,&"~N(0,Z), then (19)
defines a Gaussian on the Lie group G, with X as the mean
and covariance X, denoted X~N r(f(,):). Similarly, the left-
invariant update (20) gives X~N' (X,X).
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Not only does this choice of error give improved state
updates and uncertainty modeling, but when the system
dynamics

4 X =£(x) 1)
dt u
where u is the input, are restricted to the class of functions

called group affine, we achieve state-independent log-linear
error dynamics, as follows.

Theorem 2 [7]

If G is a Lie group, then the system in (21) is said to be
group affine if f.(-) satisfies

for all X,Y € G. If this condition is satisfied, the right- and
left-invariant error dynamics are trajectory independent,
that is, independent of X and X, and satisfy

A =) 2 fu) = ' ful0) 23)

Ay = gu0) = £ ~fu (D 4
Example 2

In the case where the group operator - is a vector addition
on R", (22) simplifies to

fulX+Y) = (X + V) + (X +fu(V)) = (X+fu(D+Y)  (25)
= fuX) + fu(Y) = fu(0) (26)

where 0 is the identity of R". In this simple case, it can be
seen that f, must take the form of f.(X)=AX+b, also
known as an affine function. Hence, it can be helpful to
think of group affine functions as affine functions simply
defined on groups.

Furthermore, this theorem shows that the resulting error
dynamics g are independent of the state X and state estimate
X and dependent only on the error variable 7, implying that
any linearization will not be corrupted by poor state estimates.

If the group affine property is satisfied, the right or left
error differential equation can then be linearized about the
corresponding £ € R" by defining A to satisfy [7]

gu(exp (&) = (A& +O( £IP). 27)

This approximation is often done using a first-order
approximation of the matrix exponential, 7 = I+ &". Using
the above definition of A, the error dynamics satisfy

e pg 28)
dt

Equation (28) results in linearized error dynamics with
second-order error. However, as one may expect from the
definition of group affine, it turns out that this linearization
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introduces no approximation error. In other words, the
above linearized dynamics of £ perfectly capture the true
dynamics of 7, as stated in the following theorem.

Theorem 3 [7]

Consider the right- or left-invariant error 7 between any two
trajectories that satisfy the group affine property. For arbi-
trary initial error & € R", if o = exp (£3), then forall £ > 0,

ne = exp(£1).

In other words, the nonlinear error 7 can be exactly recov-
ered from the time-varying linear differential (28).

Thus, rather than attempting to track the Lie group error
n, which is likely highly nonlinear, we can instead track its
representation in the vector space Lie algebra £, which has
linear dynamics.

The InEKF therefore exploits the benefits of the ESKF to
its fullest by using an error that provides an improved state
update step through the matrix exponential and using spe-
cific structural constraints on the process model that result
in state-independent log-linear error dynamics.

Example 3

Consider the system on SO@3) given by dynamics
(d/dt)R = fo(R) = Rw", with @ € R a known angular veloc-
ity. These dynamics are group affine since

= RSw"
= Rw"S + RSw" — Rw"S
=fo(R)S + Rfo(S) — Rfo(D) S

fo(RS)
(29)

and thus have right and left error dynamics:

=" =gu(m") = fu(n') — n'fu(l)
=00’ —n'w" =0,
' =gu(n) = fu(n) = fu(D '
=n'w"-o"n
=~ ([+ Mo — 0"+
51/\ A a)/\égl/\

=—(ad,&H".

Thus, the dynamics of " and n' can be exactly tracked by
using the linear dynamics given by (d/dt)é"=0 and
(d/dt) &' =—ad,é&'.

The InEKF allows for many of the same guarantees as
the standard linear KF that are rarely seen for nonlinear
systems; in particular, it is a proven asymptotically stable
observer [7, Th. 4]. The steps of the right INEKF are sum-
marized in Figure 2(c), with details described in the follow-
ing sections. For an example of the InEKF applied to
visual-inertial navigation, see “Visual-Inertial Navigation
Using the EKF, ESKF, and InEKE.”

While there are several articles in the literature that
compare the InEKF to the EKF or ESKE, there is limited
discussion or analysis of the difference between the right
and left InEKFs [8], [26], [27], [28]. While both variants will
generally outperform other observers for a given robotic
application, knowing which variant to use for a given
application is nuanced and can affect the performance of
the filter. In the following section, we clearly explain how
to use the InEKF as well as the differences between the left
and right InEKFs.

RIGHT AND LEFT ERROR
In robotics, the Lie groups SE(2), SE3), and their variants
are often of interest. In these scenarios, an element X € G
represents a transformation from a local frame to the global
frame, which we denote as X;. This state will have a rota-
tion of the local frame to the global frame R{ and position
pﬁ, from the global to the local frame represented in the
global frame. In this sense, the right-invariant error can be
seen as the error in the global frame, while the left-invari-
ant error is the error in the local frame.

For a simple example, consider the true transformation
from the local to the global frame, X§ € SE(3), of the form

RS 8
x?:[ I Pgl] 30
= 30)
while X¥ is the estimate of X¢ of the form
. RS 38
X§=|" ’”g’]. 31
: [0 s G
The right- and left-invariant errors will thus be
. RS 8 [RST —RS" 8
r_ %8syl [N Pa|| R0 I Pgi
n" = Xj(Xy) 0 1 HO 1
_[RERS" Y —RERS pg,]
0 1
_ R{R f’;gr—RfRész] (32)
0 1
T T ~
= axysg=| ) R R |
_ Rl "R RE (5 —pd)
0
— R¢Rf Ré(ﬁgz_sz) ) (33)
0

Note that 7" has its orientation and position errors in the
global frame, while 7' is in the local frame. Throughout the
rest of the article, we use the shorthand X, R, and p for
X{, R}, and pf, respectively.

Furthermore, the distributions in (19) and (20) also
follow this paradigm, where (19) represents noise applied
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Visual-Inertial Navigation Using the EKF, ESKF, and InEKF

n this sidebar, we show how the three filters listed in Figure 2

might be defined for the common problem of visual—inertial
navigation. We assume that the system equations of motion
are given by

Rb = Rb(0® — wo)"
Vi=g'+Rh(@" —wa)
P =vi—Riw, (S16)

where p’ € R® is the position of a robot expressed in the iner-

tial frame, v € R® is the velocity, g'€ R® is a constant vector
expressing the acceleration of gravity expressed in the inertial
frame, and R}, € SO(3) is the rotation matrix from body to in-
ertial frames. Here, the inputs to the system are given by the
measured body frame acceleration a” € R®, which is the ac-
tual body frame acceleration plus noise wa ~ N(0, Z2), and the
measured body frame angular velocity @® € R, which is the
actual body frame angular velocity plus noise w, ~ N(0, Z0).

We have also added process noise w, ~ N(0, X,) to the evo-
lution of the position to account for kinematic error and ex-
pressed this noise in the body frame to be consistent with the

other noise terms. For exposition purposes, we assume that

the robot makes a single range and bearing measurement (for
example, using a lidar) of a known landmark L' € R®, where the
measurement is given by

z=Ry (L'-p')+w; (S17)

where the measurement noise is w; ~ N(0, M).

ESTIMATION USING A NAIVE EKF

To estimate the state using a naive EKF that does not ex-
ploit the group structure of SO(3), the attitude can be param-
eterized using the 3—2—1 Euler angles ¢, 6, and v, denoting
the roll, pitch, and yaw angles, respectively [S2]. Defining
0=(¢,0,y)’, the estimated state in Figure 2(a) is defined as
x=(OT,v'", p'T)T, and the inputis u = (®T,a"")", and the esti-
mated equations of motion are

(S18)
where

CoCy S$pSoCy — CypSy CpSeCy + S¢Sy
R(©)=|coSy S¢SeSy +CyCy CpSoSy — SyCy |,
1 syte

—Se S¢Co CyCo
Colo
0 ¢y —Sp

0 sysece CypSece

S©)= (S19)
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and c.=cos(*), s.=sin(x), t.=tan(x), and sec.=sec(x). The
Jacobians on lines 5 and 6 in Figure 2(a) are given by

&) b
83(8& O3x3 Osx3
dR(©)a’
A g_;i,u: % 03x3 Osxs|,
Osxs  laxs Osxa
. ~S(0) 0Osxs  Osxa
G=—2L1 =l Oas —R(O) Oaxs (S20)
e O03x3  Osxs —R(O)

where it is clear that A and G are nonlinear and depend strong-
ly on the estimated state x.
The predicted output is given by

Z=h(X)=R(©)"(L'-p) (S21)
and therefore, the Jacobian on line 9 in Figure 2(a) is
_on| _(3REO)(L-p) _R(6
H= x|~ ( 2% 03xs —R(®) (S22)

which is again highly nonlinear and strongly dependent on the
estimated state x. Therefore, both the covariance prediction
step on line 7 in Figure 2(a) and the covariance update step on
line 14 in Figure 2(a) are nonlinear and state dependent due to
the strong state dependence of A, G, and H.

ESTIMATION USING AN ESKF

The ESKF when used with attitude estimation is sometimes
called the multiplicative EKF [S3], [S4], [S5] or indirect EKF
[S6]. In the application considered in this sidebar, the state is
defined as the tuple x ={R},v,p'}, and the state estimate as
the tuple x ={R},v',p'} is propagated according to the nonlin-
ear equations

2 =Rbw”"
v'=g'+Rja®
p=Vv. (S23)

The typical definition of the error state in position and velocity
is computed as

Eh=p'-p, Ei=V' =V (S24)
and the attitude error state is computed as either
&, =log(RLRY)’ or &£8,=log(Ri Rb)" (S25)

where &5, € R® is the right attitude error and &5, € R® is the left
attitude error, and note that the right error is an attitude devia-
tion expressed in the inertial frame, and the left error is an at-
titude deviation expressed in the body frame.
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The evolution of the error states is different depending on
whether the right or left attitude error is used. In the case of
right attitude error, we have that

%.fg:,é"—p"z\?’—v’ﬂ?i,wv
=&+ exp(—ENRbwy
~E+ (1 - ENRLwy = E + Rbwy. (S26)

For the velocity, we have
d g _ G i
at v=V v
=g +Rba® — (g +Rb(@® —wa))
=(R)— Rb)a® + Rbwa
=(I—exp(—£R))Rba® + exp (- EX) Rbwa
~(I— (- £§))Rba® + Rbwa
= £5Rha® + Rhwa
=— (Rha®)" &), + RbWa. (S27)
For the evolution of the attitude error, we use the fact that

d

Srexp(Eh) ~ Grl+ £6) = Ge b, (528)

to get

G-£h = RLRY + Rb-0H(RY)
=RLw® Ry — RLRY R (w” — ww) R’
=(Rhwo) RLRY =~ (Rhwo)" (I + £8) ~ (Rbws)'.  (S29)

Therefore, the error state satisfies

Eor 0 0 0\/&
5@): ~(Rba")" 0 o)(ﬂ
flp O l O fer

We see that the A and G matrices on lines 5 and 6 in Fig-
ure 2(b) depend on the estimated state X through R} and on
the input u via a®.

In the case of left attitude error, we again get that (d/dt) &, =
£, + Rbw,, but following a similar derivation as above, we get
that (d/dt)&) = —Rba’" &g+ Rbwa. Similarly, we get that the
left attitude error satisfies (d/dt) &5, = —w?"£8, + w.. Therefore,
the error state satisfies

d

ﬁi,o'o
E +{0 R, O

0 0 R}

Wo
(Wa ) (830)

Wy

Eol —@® 0 0\(/&a\ (I O 0\ Wo
g1 & |=|-Rba> 0 5{;)+ 0R, 0 (w) (S31)
& o 1 0/\&) \o o RL\wy

and we see that the A and G matrices on lines 5 and 6 in Fig-
ure 2(b) for this case depend on the estimated state x through
2, and on the input u via a® and w®.

For the output equation we have that

z=h(x)=Ry (L'=p)=Ry (L'=p'+p' - p)

=Rb (L'~ p'+&p). (S32)

For the right error, where R, R = exp (£4) ~ | + £ implies that
RL" ~ Ry (I + £4), we have that

z= R (1+E8) (L' p) + &)
=Ry (L' p)+ Ry £ + Ry £ (L' - p') + RY £5) &5

£
ffv)
&

R (L~ )+ (= Rb (L'~ p))" Osxa RH)

QR

11>

2+ Héx (S33)

where we see that the Jacobian H on line 9 in Figure 2(b) de-
pends on the estimated state x through R} and p'.
Similarly, for the left error, we can derive

55(
£
ép

z=2+((RY(L'—p))" Osxs Rp) (S34)

where again the Jacobian H on line 9 in Figure 2(b) depends on
the estimated state X through R} and p’.

ESTIMATION USING THE INEKF
We now show the equivalent formulations using the InEKF.
The right INEKF defines the state estimate as

Rh V' p'
X=(0 1 0 ) (S35)
0 0 1
and, therefore, the error using
A ﬁz \7’1 pz lb Vi pi -
n=XX"'=[0 1 0|0 1 0
0 0 1/10 O 1
RLRL V'—RLRL'V' p'—RLRL P’
= O 1 0 (S36)
0 0 1

where we have used the superscript i to denote the true inertial
frame and :z to denote the estimated inertial frame. Therefore,
for the right InEKF, the error state is given by, using the ap-
proximation 7 =1+ &,

Eor=log(RbRY)" (S37)
£l ~V —RLRL vV (S38)
EL~p'—RLRY p’ (S39)

where it is clear that the errors are defined relative to the esti-
mated inertial frame and that the subtractions are carried out
in the correct frame, as opposed to the simpler but naive posi-
tion and velocity errors defined in (S24). Interestingly enough,
the right attitude error is defined identically to (S25), but it is
now clear that the rotation error is from the inertial frame to the
estimated inertial frame.

(Continued)
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Visual-Inertial Navigation Using the EKF, ESKF, and InEKF (Continued)

Differentiating the position and velocity errors gives
ifi _ 5 _RiRTh _ A9 (R _RIRITH
aisr=p oRb p'—Rb ¢ (Rb)p' — RuRb p

=v'—Riw" Ry p'+ RbRL Rbew" Ry p'
—RLRY Ryws R p' — RLRL (v — Rbwy)
=V —RLRTV — (Roww) (P’ — 8p') + Rbwy
~ E+ PP REW, + Rbwy
%ééxg“faﬁﬁf,w”\i“ﬁéww (S40)
and we have shown in the previous section that £o, = RbW,.
Therefore, the error state satisfies

s (00 0\ R, 0 0)we

2o 0 t)[4]+{ 2 4 o )
&y 0/ 0/\¢ PRy 0 RL)\wy

where the matrix multiplying the noise is seen from Table S1
to be Adx, and we see that in this case, the Jacobian A on
line 5 in Figure 2(c) is constant but that Adx is state depen-
dent, which implies a state-dependent propagation of the error
covariance 2'.

For the measurement model, we have that

(S41)

R —RiTV _RLTpi L
0 1 0 0)+VT/Z

0 0 1 1

Z =Ry (L' - p)+w,=

=X"'b+w, (S42)

which implies from (53) that it is a right-invariant measurement
model. Therefore, from (58), we have that the right innovation
is given by

V' =E7b + X,
& & &b
=fo 1 0
0 0 1
Sol'+&p

0
1

Li
0 |+ Xw,
1

= + X\ (S43)

Letting IT = (/sx3 Osx1 Osx1) gives

V" =L+ £+ Rbw,

, o\
=(=L" O3x3 l3x3) fzv + Rbw;
A b
2 —H'E" + Rw, (S44)
which defines H" and II on lines 8 and 11 in Figure 2(c).
The left INEKF defines the left error using
Rlb Vv p/' —1 ﬁlb v ’6/
n=X'X=({0 1 0 010
0 0 1 0 0 1
Ry Ry Rb (7'~ v) RE (p'~p)
={ 0 1 0 (S45)
0 0 1
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Therefore, for the left INEKF, the error state is given by, using
the approximation =1+ &",

£Eor=log (HLTP(Q;)V
EL ~ R (V' — V')

Ep~RL (p'—p) (S46)

where we see that in contrast to the position and velocity errors
in (S24), (S38), and (S39), the position and velocity errors are
defined in the body frame, and the left-invariant attitude error
is similar to the left error in (S25), but it is clear that the rota-
tion error is between the estimated body frame and the body
frame. Differentiating the position and velocity errors gives,
after some algebra,

Shm—wt e+l w,

%55 ~—@P L — @b Egg+ Wa. (S47)

We have shown in the previous section that (d/dt)£e=
@®"Eei+wo. Therefore, for the left-invariant error, the error
state satisfies

Eoo -® 0 0 Eou
gt(flv’)z(a“ - 0 )(59
&b O AT

I 0 0\ /We
+(O / 0)(Wa) (S48)
00/ Wy

and we see that in this case, the Jacobian A on line 5 in Fig-
ure 2(c) is independent of the state X but depends on the
input u, and the error covariance propagation on line 6 in Fig-
ure 2(c) will be independent of the state.

For the measurement model, from (73), we get that

H'=H"Adx
RE,M 9 0
=(L'" Osxs —lax3) V”\:‘?i] Rb 9
PR, 0 R}

=((L'=p)"Rb 0sxs —R}) (S49)

which defines H' on line 8 in Figure 2(c).
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in the global frame and (20) represents noise applied in the
local frame. When specifying an initial mean and covari-
ance for the InEKF, these are the distributions that are
initialized.

One must take care because even with the same mean
and covariance, N" and N* represent entirely different dis-
tributions. This can be seen in Figure 3, which shows vari-
ous distributions in SE(2) with identical covariances of
X =diag(.5%,.01,.01) and varying means. The left distribu-
tion results in an elliptical distribution, as one would
expect from a Gaussian with a diagonal covariance; how-
ever, the right distribution has a very different shape. When
initializing a right InEKEF, it must be taken into account that
an initial diagonal covariance is not an elliptical Gaussian
but instead results in a banana-shaped distribution because
the error is applied before transforming by X.

There is an exact linear conversion between &' and &
that allows us to switch between the two and their covari-
ances and that intuitively involves the adjoint. Its deriva-
tion is as follows [18]:

n=XX" =XX1XX'=Xp'X !
sexp(E”)  =Xexp(E™X!
= exp(X¢"'X™)
= exp((Adx&H)" XX ™)
= & = Adxé'. (34)
A near-identical derivation results in
E'=Adx & (35)

Thus, to initialize a right INEKF with an elliptical Gaussian,
the following conversion should be applied:
= AdxZ'Adg (36)

where X' isa diagonal matrix.
It should also be noted that it may be preferable to track
the global frame X rather than the local frame X} in some

circumstances. In these scenarios, it is simple to see that the
above conventions are inverted; the right-invariant error

Left Error Distribution

> o

can be seen as the error in the local frame, while the left-
invariant error is in the global frame. Further, many of the
results in the rest of the article will also be inverted. For
conciseness and simplicity, we focus on tracking the local
frame X7 in this article, as the derivations involving X}
follow similarly.

PROCESS MODEL
To gain insight into the linearized dynamics A" and A, we
introduce the notion of left- and right-invariant dynamics.

Invariant Dynamics
Definition 4 [41]
The system z = fu(z) is said to be left invariant if f, satisfies
SuXY) = Xfu(Y) ©7)
for all X,Y € G. Itis right invariant if f, satisfies
fu(XY) =fu(X)Y. (38)

Example 4

The rotational dynamics (d/dt)R§ = Riw", where @' is the
angular velocity expressed in the local frame, are left
invariant. Alternatively, the rotational dynamics
(d/dt)Rf =—w*"Rf, where ® is the angular velocity
expressed in the global frame, are right invariant.

Since left multiplication does not change the dynamics
of left-invariant systems, it follows that, generally, left-
invariant systems must evolve through right multiplica-
tion, which modifies the local frame of X. Similarly, a
right-invariant system will modify the global frame. Notice
from the definition of group affine in Theorem 2 that if a
system is right or left invariant, it is also group affine, but
the converse is not necessarily true.

Right- and left-invariant systems result in simple-to-lin-
earize process models. From the definition of g, in (23) and
(24), if a system is right invariant, the linearized left error
dynamics A’ willbe0,and ifa system is left invariant, linear-
ized right error dynamics A" will be 0. For many robotic

Right Error Distribution
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FIGURE 3 A comparison of right and left Lie group distributions on SE(2). Each plot shows nine distributions, each with X =diag(.5°,.01,.01),
and means with varying x values. We sample 250 group elements from each distribution, with each X € SE(2) position shown on the
x- and y-axes and rotation shown as the orientation of each line. Notice how different the right and left distributions are, even with iden-
tical mean and covariance. The (a) left error distribution and (b) right error distribution.
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systems, angular velocity or linear acceleration is measured
in the local frame, and therefore, the dynamics are left invari-
ant or close to it. In these cases, A" is either 0 or constant [7],
[18], [20] and we focus on these cases throughout the article.

Intuitively, it makes sense that there is little transform-
ing of the right error, which tracks in the global frame,
needed between time steps in a left-invariant system since
changes are occurring to the local frame. On the other
hand, the left error, tracking in the local frame, will likely
need to be rotated or transformed according to the most
recent control u since the local frame is what is evolving.
Thus, A¢, while not dependent on the state, is often a func-
tion of the controls u [7].

Stochastic Models
Thus far, we have dealt entirely with deterministic models.
For left-invariant systems, we introduce process noise into
the system as
%x = () + X", w~N(0,Q8(t— 1)) (39)

where w” is transferred to the tangent space of X. In this
case, we can interpret the process noise as being added in
the local frame. For right-invariant systems, process noise
can be added in the global frame by using the term w"X
instead of Xw" in (39) and with the following results inter-
changing right for left.

Introducing the process noise into the right and left
error dynamics of (23) and (24) results in [7]

A = gu(n) - Adsw'y (40)

Ly =g - v’ (4D

Following a similar linearization as in (28) and neglecting
terms of order O(|£|[|w]), the stochastic dynamics of &"
and &’ are [7]

%5’ = ATE+ Adsw 42)
Ae = Awe+w 3)

and consequently, the covariance prediction equations are

%ﬁ)’zA'ﬁ)"-i—i’A”—i—AdeAd}( 44)
A S A S+ S AT ) + Q. 45)

Since the right InNEKF is tracking error in the global frame,
it intuitively makes sense that the locally applied noise
covariance Q must be transformed to the global frame
using Adgx, as in (36).

This presents a nuanced decision to be made. Given a
left-invariant system, the covariance prediction step will
be dependent on either Adx in aright filter or on u through
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A" in a left filter. In practice, error in the conversion of Q
seems to have less impact on the performance of the filter
than the use of inaccuracies in A’. Furthermore, if the filter
is running correctly, errors in Adx should ideally con-
verge to zero, whereas noise in u, and, thus, in Al(u), will
likely remain close to the same magnitude throughout.
This implies that the right InEKF is the preferred choice
for most left-invariant or almost left-invariant systems, but
the type of measurement plays a much larger role when
choosing a filter, as covered later in the “Measurement
Model” section.

Discretization
The linearized dynamics can also be used in discrete time
as follows, assuming a constant A’ and A, over At [18], [42]:

O =exp(A'At) £l = DTEM+ AdswAt (46)
O'=exp(A'At)  Ef = DUE +wAL. 47)

The resulting covariance prediction equations will be
2L =027 + AdxQAd (Af)? (48)
2= 02T+ Q(AN?. (49)

Example 5

Continuing with the process model f,(R) =Ro" and its
right linearization from Example 3 and remembering that
the adjoint in SO(3) is R, the discrete covariance prediction
equations are

D" =exp(A"At)=exp(0At) =1
= X =52+ ROR" (A#)?

' = exp (A'At) = exp(—adwAt) = exp(—adwar) = Adexpoan
=2 = Adepean 2 Addp@an + Q(AH)? (50)

A conversion between ®" and @’ using (34) and (35) can
be derived as follows [18]:

f{+l = AdX}+l§f+1 = AdXt+1 (I)ﬁff
= Adx., O Adx £

= ®" = Adx,., ®'Adx. (51)

Similarly,

O'= Adyx, @' Adx, (52

allowing for easier derivations and computations of either.

Imperfect INEKF

In some scenarios, it may be the case that not all the desired
states to track fit into a Lie group, such as wheel radii,
camera intrinsics, and so on. While the InEKF cannot be
used in these cases, an “imperfect” InEKF [9] can be used
by using an additional error { alongside 7. An imperfect
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InEKF loses the guarantees of the INEKF but still generally
outperforms other state-of-the-art methods [18], [20].

The imperfect InEKF is used by deriving the error
dynamics by hand for both n and ¢ rather than leaning
upon (23) and (24) for g and then using the approximation
n=exp(£") = I+ & to linearize. Measurement models are
derived similarly by appending the necessary additional col-
umns onto the linearized measurement model H. An exam-
ple of this can be seen in the later imperfect INEKF example.

MEASUREMENT MODEL

While any measurement model and corresponding innova-
tion that can be linearized about & or £’ can be used, in
practice, there are a few models that linearize particularly
easily and with no dependence on the current state.

Invariant Measurement Models

Definition 5
The right- and left-invariant measurements from a state X
are given by

(53)
(54

z'=X"'b+ @ (right—invariant measurement)
z'=Xb+@wn (left — invariant measurement)
where @, =[wx 0], with w,,~N(0,M), and b is a constant
vector.

As opposed to the frame conventions with the invariant
errors, the right measurement is a measurement of some
linear combination of the state in the local frame, while the
left measurement is in the global frame.

Example 6

Consider a 2D GPS measurement. Since it is a global mea-
surement, it is a left measurement with the following b,
given X € SE(2):

0
- Rp [wm] [p + wm]
- — —

0
1

Definition 6
Along with these measurement models, the following inno-
vations are defined:

V' =X -2
Vé‘ — X—l (Zﬂ _ 2(7)

(56)
(57)

(right — invariant innovation)

(left — invariant innovation)

with z as the actual measurement and z as the expected
measurement using the state estimate.

For the special Euclidean groups, the bottom rows of V'
are often identically zero and are truncated using an aux-
iliary matrix IT =[I 0]. For the special orthogonal groups,
we simply have II =I. These measurement models and
innovations are used because it allows for the following

first-order linearization, with the approximation 7 = exp

&) =1+&"[8]:

1% =Xz 2"
=XX 0+ wn—X'D)
=n'b+ Xiow—b
~ ([+ &b+ Xivw—b
= E"b + Xiom

=TIV =TIE" b+ T Xw, 2 H E + NXwo. (58)

A near-identical linearization exists for V' about £, as follows:

V=K' -2 &9)
=X"'Xb+X"b—b+ X "Wn (60)
=)0+ X —b+ X (61)
=([—EN+X"b—b+X"dm 62)
=— £+ X+ X ow 63)

STV =—TIE" + OX w, 2 HE + IX  w,. (G2

This linearization is not dependent on the state, and given
a constant b, it results in a constant H. Succinct formulas for
defining H from the right- and left-invariant innovations
are thus

H'E £ T1E"D, H'E"2—TIE"D. (65)
Additionally, the invariant innovation covariances are

Cov(IIV') =S = H'E'H" + IXMX'TI" (66)

Cov(IIVY) =S'=H'L'H" + IX'MX"II". (67)

The innovation also has a simplified version, for computa-
tional purposes, as follows:

o =NV =TIX(z' —2") =Xz — X7'b)
=IIXz"—TIb (68)

where oftentimes IIb =0 and can be omitted. A similar

simplification exists for the left innovation, as follows:

o' =V =NX 'z -2 = OX ' (z'— Xb)
=IIX"'z'—IIb. (69)

Other Measurement Models

As mentioned above, any measurement model that can be

linearized about &, or £, may be used.

Example 7

Consider a full pose measurement z = Xexp(—wn), with
X € SE(2),wn~N(03,M). Using log: SE (2) — se(2) and defin-
ing ¥ as the inverse of *, one possible left innovation is

Vi=1log(z'2)" = log(exp (wi) X ' X)" (70)
= log (exp (wi)n')" (1)
=~ log (exp (ZUQI + f“))v =Wm+ é‘:g (72)
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where combining the exponentials is done using a first-
order approximation of the Baker—-Campbell-Hausdorff
equation [31]. This makes the linearized measurement
model H' = I. Since the measurement is the full pose, it can
also be formulated as a right measurement.

Converting Measurements

Furthermore, a measurement linearized about the right error
can still be used in a left filter and vice versa. This can be
done using the conversion shown in (34) and (35), as follows:

H'¢ = (H Adx)E' = H'E'
H'¢'=(H'Adx )¢ 2 H'E".

(73)
(74)

This conversion does introduce a dependence on the cur-
rent state estimate and should be avoided when possible.
This conversion is also equivalent to converting the state
covariance to the alternate error, performing the appro-
priate alternate update step, and then converting the
covariance back to the original error. We find the conver-
sion of the measurement Jacobians to be more straightfor-
ward and to have a smaller reliance on terms canceling
out numerically.

Due to the dependence on the state estimate introduced
when converting measurements, when a single measure-
ment is being used in the filter, the filter should match the
measurement type. However, when both a right and a left
measurement are to be used, preference should be given to
the more accurate, frequent, or critical measurement or the
process model differences discussed previously.

SELECTING A FILTER

As a brief overview of the prior sections, a rough outline of
the ingredients and decision-making process of using the
InEKEF follows:

1) Confirm that the process model is group affine, or
alternatively, use the imperfect INEKF or another
InEKF formulation.

2) Determine whether the measurements are right or
left invariant. Right-invariant measurements measure

No, But | will Use an No, But | will Find an

No, But | will Find an

in the body frame, and left-invariant measurements
measure in the global frame. If they are not right or
left invariant, find a way to linearize about the right-
or left-invariant errors.

3) Based on the type of measurement being used, choose

a right- or left-invariant error. Choose an error type
that best matches the most frequent or critical mea-
surements. If there is no preference, go with the right-
invariant error.

Note that alternate linearization methods may include
standard Jacobian linearization, dropping higher-order
terms, other approximations, and so on. This decision-
making process has been summarized in Figure 4, and
the differences between the two filters are outlined
in Table 1.

EXAMPLES

To illustrate how these principles might be used, we pres-
ent a number of simple examples step by step to show how
to derive the filter. We note that these examples are pur-
posefully straightforward in order to illustrate the basic
principles of the InEKF. In addition, see “InEKF Open
Source Library” for our open source C++ and Python
library and the code for the following examples.

InEKF Example
We step through the derivation of both the right and left
InEKFs on SE(2) for a simple odometry motion model with
GPS, landmark, and compass sensors. We track orientation
R and position p =[px p,]". The state X € SE(2) and the
error state £ € R® are

=& =& 0 &

x=lor. 1
1x2 £ 0 0 0

{1 0 . ,_PX'_[_PV
Adxg_[_lf R]gl withp" = P}/] a Px] @9)

59/\ 0 _56 fr

where £y, &y, and £, are respectively the 6,x, and y invari-
ant errors on the Lie algebra.

Alternative INnEKF
Formulation

Alternate Way to
Linearize the P.M.

No No

L |Cannot Use
| the INEKF

Alternate Way to
Linearize the M.M.

+| Usethe
| Left INEKF

Right or Left
Invariant?

FIGURE 4 The decision-making process when using the InEKF. Alternate linearization methods may include standard Jacobian linear-
ization, dropping higher-order terms, other approximations, and so on. P.M.: process model; M.M.: measurement model.
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( )\
TABLE1 Acomparison of right- and left-invariant errors, measurements, and KFs. Differences are highlighted in red. Generally, the
left versions are considered tracking error in the local frame, while right errors are in the global frame. Elements after a prediction
are noted with a “ and after an update witha "

N\ v

Left Right
Error exp(EM=n'=X"X exp (£ =n"=XX"
Distribution X = Xexp (")~ Ni(X, 2 X =exp(£™M)X ~ N (X, Z0)
Conversion E'=Adg & £ =Adgé!
: dy_r(y d (X
Predict Step th—fu(X) th—fu(X)
%21 — AL TATE G %i’ = A5+ AT + AdxQAd}
Predict Dependence (if Dynamics Are Left Alis likely a function of u. A’ is likely constant, and Adsx is a function of X.
Invariant)
Measurement Model Z'=Xb+w Z=X"b+w
Linearized Measurement Model H'E' =-TIE"b HE =TI b
Innovation v =IIX"'z-TIb v =IIXz —IIb
Innovation Covariance S=H'Z'HT+ RTMR S=HY'H"+RMR’
Update Step K=%'H"s™ K=X'HTS™
X = Xexp(—Kv') X =exp(—Kv')X
£'=(-KH)E Sr=(I1—KH")%"
\ J

Process Model

We begin with a discrete-time process model, as is often
common when integrating odometry measurements. The
process model is

Xev1 = Xelrexp(wt),  wi~N(0,X) (76)

with U: € SE(2) as the change in odometry between time
step t and ¢+ 1. Note that (76) is the discretization, up to
first order, of the continuous-time model

d~ _ A
i X =fu(X) + Xw

= Xu"+ Xw", w~N(0,Z5(t— 7)) (77)
with U; = exp(u"At). Note that the following holds for
X,Y € SE(2):

£.X0) = XY ()"
=Xu"Y + XYu" - Xu'Y

=LX)Y + X (Y) - XA(DY. (78)

Thus, f satisfies the group affine property. Next, we define
and linearize g for both the right and left filters using Theo-
rem 2 and the first-order approximation 7 = exp (£) =~ I + £":

&) =fu()—n'fu) =n"'u—n"u=0

= (060" = (A"¢)" (79)
gu() =f () = (D' = n'u—un’

~ (I+EMNu—u(l+£")

=&"u—ug” = (-adu£h)" = (A'EH". (80)

InEKF Open Source Library
To allow for easy implementation, we release an open
source C++ InEKF library with an additional Python in-
terface. It is built with modularity in mind, allowing for easy
inheritance and extension, in both Python and C++, of the
base process and measurement models. This makes im-
plementing the INEKF for many process and measurement
models simple and straightforward to do. Furthermore, all
Lie groups that are generally used in robotics are included
and heavily templated to allow for an arbitrary number of
additional columns and Euclidean states.

Included are a number of examples, including an InEKF
for underwater navigation [20] and an INEKF-SLAM imple-
mentation using the Victoria Park dataset. The library can
be found online [S7].

In addition, we release all the code to run the simula-
tions found in this article as open source, also available on-
line [S8]. The figures were all generated using the library’s
Python bindings.
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Thus, we have A" =0, A’=—ad,, and when applied in dis-
crete time and using Theorem 1, we have [18]

O"=exp(0At) =1 (81)
@' = exp(—ad.At) = exp(ad uar)
= Adexp(*llAt) = Adu;l. (82)

Discretization removes the need to calculate u from U,
which fits the paradigm we have mentioned, where for left-
invariant systems, right-invariant filters generally have a
constant A” and @', while the left-invariant filter’s A’ and
@' are dependent upon the controls.

GPS Measurements
The GPS measurement model is

zp=ptwy, wy~N(02,Zp) (83)

which can be rewritten as a left-invariant measurement:
HRA
1] [01x3 1

Thus, using the formula in (65),

02x1

w ~
1 +[0” £ Xb, + . (84)

0 —& &[0 0 -1 0
H,&'=—TIEb,=—T1|&6 0 &,|0|= 0 0 _1]5“. (85)
0 0 01

As discussed in previous sections, although linearized
about £, we can still use the measurement model with a
right filter and £" by the conversion in (34), although it does
introduce a dependence on the current state estimate.

Landmark Measurements

A measurement of the relative position of a landmark with
respect to a robot’s frame follows a similar linearization
process. If the known landmark’s position in the world
frame is L =[L.,L,]", then the measurement is

zZL = RT(L - p) +wr, wr~N(02,Zr) (86)
which can be put into right-invariant form as
zit] [R' —RTpHL] [wL R .
[1] = O1vs 1 1 + 0 2 X b+ we (87)
and, thus, linearized as
0 —&b &X[Lx
Hy e =M =1|E 0 &Ly
0 0 O0J1
[-Ly 1 0] .
“lLy 01 g 88)

Compass Measurements

A compass will measure the direction of true north or, equiva-
lently, the global x-axis with respect to the local frame. This axis
is the first column of R" and is a right-invariant measurement

1
2 =R [0] +wny Wn~N(O2Zn) (89)
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that can be put into right-invariant form as

1
Zm _ RT _RTp] [T/UmjlA -1 ~
e [ S ——
0
and, thus, linearized as
0 —& &4f1
HuE =TED, =11 0 £5][0
0 0 0]]0
0007,
10 0]5' oD

Note that in some cases, a compass will point to true north
with a slight offset, which can be modeled using a linear
combination of the columns of R'. In this scenario, rather
than use b, =[1 0 0], a slight modification would be
bw=[m: my 0] for some m, and m,.

Results

There is a performance difference between the right and
left InEKFs that is largely dependent on the given type of
measurement and measurement noise. To illustrate this, we
run the above example on 0.5 s of simulated data, with mea-
surements and controls sampled at 100 Hz.

Both the right and the left filters are implemented with
only left measurements, in this case, GPS. These results are
in the first four columns of Figure 5. The right and left filters
are then implemented with only right measurements, that
is, the compass and landmark sensors, with results shown
in the last four columns of Figure 5. Two right measure-
ments are used to ensure full observably. Each measure-
ment has a X = diag(0.01,0.01). Each scenario is executed
100 times, with random initial starting points sampled from
N'(I,diag(25°,1,1)). The black dotted line in these plots is
the ground truth value, except that the black dotted line in
the Mahalanobis distance plots is the 99th percentile mark
of a three-degrees-of-freedom chi-squared distribution.

While both filters converged within half a second or so,
there are performance improvements when using a left filter
with left measurements and a right filter with right measure-
ments. Most notable is the large Mahalanobis distance when
using a mixed filter and measurement combination. This
implies that the mixed filter has an estimated covariance
that is much too confident about the resulting estimate, even
though the states converge nearly as well as a nonmixed
filter. Overconfidence can have severe consequences if the
estimated covariance is used in a planning or SLAM algo-
rithm as a confidence interval for the state estimate.

While not shown, in the case where there are both right-
and left-invariant measurements, the difference between
the filters is much smaller and often insignificant. In this
scenario, which filter is chosen will be dependent on many
factors, including, but not limited to, which measurements
observe the most important states, which measurements
have the smallest covariance, and the process model differ-
ences in the “Process Model” section.
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Imperfect INEKF Example
It is often the case that part of the state to be tracked does
not fit into a Lie group structure. In these scenarios, an
imperfect INEKF can be used to track the Euclidean states
alongside the Lie group. This has often been used for track-
ing IMU biases. We note that in 3D, the current state of the
art for invariant filters and bias tracking leverages the two-
frame group [39], which we briefly discuss in the next sec-
tion. However, in 2D, due to the angular velocity bias being
a singleton and not fitting in the two-frame group, the
imperfect InNEKF still must be used to some extent, and we
show its usage here. The approach described in [43] also
outlines an approach that is similar to the imperfect InEKF.
Another alternative is the equivariant filter [44], [45], [46],
which also exploits a symmetry property but is not limited
to Lie groups. It is shown in [45] that the equivariant filter
is equivalent to the INEKF when the state and output mani-
fold are Lie groups. It is shown in [47] that the equivariant
filter can be used to effectively estimate biases.

We track orientation R, position p, and velocity v, modeled
as an element of the Lie group SE2(2) or the group of double
direct isometries [9]. An element X € SE»(2) is of the form

R op L (€ & &
X2[01x2 1 0f, &'=|&| =|0 0 0
0]><2 01 &p 0 00
1 00
. A |0 =&
Adx¢é=|—-v" R 0|&, where &s= . 92)
) o O
-p* 0 R
Mahalanobis
X (m) y (m) 6 (rad) Distance
4
20
5 2 [ 15
— " | 4 e e -
;l_: 0 ‘ : 10
= i
-2 |
4
ko 2
|
£ 0
(=]
Sl
2 f
0 05 0 05 0

We model the IMU measurements with Gaussian noise and
the IMU bias with Brownian motion, as

©0=0+botWs, Wo~N(O1x1, Zob(t— 1)) (93)
a=a+bitw, Wi~N(02x1, Zo) 9
bo =W,  Who~N(01x1,Z008 (f — 7)) (95)
bo=w",  Wu~N(02x1, ZpaS (t — 7)) 96)

with ,b, € R the angular velocity and its bias, respec-
tively, and a,b. € R? the linear acceleration and its bias,
respectively. Thus, in addition to the error »" or n', we track

¢ € R?, defined as
B gw] _[bo—bo
é‘a B brz_bﬂ

The error state is therefore [£7 ¢T]". Along with the
augmented error, we need an augmented adjoint. Since
the bias is updated via addition, which is commutative,
we have

]. 97)

[Adx O].

Adx, = (98)

Finally, in the update step, the Kalman gain will be split
as K=[K‘" K], where K¢ will be used to update X
using the matrix exponential and multiplication and K¢
will update [bo ba I using vector addition.

Mahalanobis
Distance

X (m)

S
S =

0.5

4

N

Left Filter
o

-2

N

Right Filter
o

(b)

FIGURE 5 A comparison of right and left INEKFs with right and left measurements. Each light line represents a filter implementation,
with random initial starting points sampled from N'(/, diag(25°,1,1)), and the dashed black line represents the true state. In the Maha-
lanobis distance plot, the dashed black line represents the 99th percentile of the distribution. The filters are run for 0.5 s at 100 Hz. The
first four columns are updated with only GPS data, a left-invariant measurement, and the last four with landmark and compass data,
right-invariant measurements. Note the improved performance when the adjoint does not have to be used to convert measurements.

The (a) left measurements and (b) right measurements.
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Process Model

The continuous system dynamics are therefore [18]
R=R@" =R(w—weo—ba)"
0 =Rid=R(a—w,—Dba)

p=v
bw = Wiw
ZJ,; = Whpa-. (99)

It is important to note that the process model has covari-
ance Q along with joint noise vector w, as follows:

Q = block_diag (Xw, s, 03x3, L, Lba) (100)
w=[wh wi 03«1 Wiy wi]'. (101)
Group Affine
The deterministic no-bias version of the dynamics
Rw" Ra v R v pl[(we)" w. 0
%X:()lxz 0 O[—[0ix2 1 0J Oix2 O O
Oix2 0 O O1x2 0 1fl O1x2 O O
2 £.(X) — Xa" (102)
are group affine since
fu(X)Y + Xfu(Y) = Xfu()Y
Ri@"Ry Ri@"vy+R:a Ri&"p,+ v«
= 01)(3 0 O
O1x3 0 0
R:R, @" R«Ry, 4 R.vy,
+| Oix3 0 0
O1x3 0 0
R:@"Ry Rx(@"vy+a) R:d"py
—| Oixs 0 0
O1x3 0 0
R:Ry@" RiRya Ryvy+ vy
=| Oix3 0 0 = fu(XY). (103)
01x3 0 0

Thus, the use of the INEKF on the Lie group portion of the
state is justified.

Linearization

When using an imperfect InEKF, rather than use the for-
mulas for the error dynamics g, the error dynamics must be
linearized by hand. First, recall from (32) and (33) that 7"
and 7’ are of the form

ne s ] [RRT 9—=RR"v p—RRp
"2101x2 1 0[=]01x2 1 0 (104)

Oix2 0 1 O1x2 0 1

ne no mp] [R'R RT(@—0) R'(p—p)
7°2|0ix2 1 0|=[01x2 1 0 (105)

Oix2 0 1 O1x2 0 1

For tutorial purposes, in the following, we show the
detailed calculations used to compute the error state linear
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dynamics in the joint Lie algebra and Euclidean space, first
for the right error, then the left error. Using the fact that on
SO@Q), a"" =—a", and neglecting terms of order O(| £ || {o )
and using the expansion n" =~ I+ ¢&™, the right rotational
error dynamics are

d d T d T d o7
L =L RR (dtR)R +RAR
—R(a)A— bo)"RT —R(w —bo)"RT
= R(bo—bo)"R
=—RR7¢)
=—nsle~=—(I+E)C0
~—{b. (106)
Using the identity
—a][b: —b N
0 ][bz]_[ b1 ]a =ba (107)
where a € R and b =[b1 b:]" € R?, gives
d., _d .
L =6 RR o)
_d.,_d T
T (RR )o—RR dt
=R@- a)+§wv RRTR(a—b,)
~—RCi+ 0" Co. (108)

The right positional error is derived using n = I + £, as

i = Ry

Eﬂf’ d .
u -~ a T T
=P (RR )p— RR P
=v+{wp RR™v
=mh+ploxEtplo. (109)
Since the deterministic dynamics of { are zeros, we have
000 -1 01]¢
. 000 o —R|é&
L =als]=fo 10 o]g (110)
¢ ¢ looo o o0 lc
000 O O ¢

Following a similar process for 7', noting that matrices com-
mute in SO(2) and neglecting terms of order O(| 6| |), gives
dpy =R R=LBRHR+RTLR
=—(0—bu,)"RTR+R"R(w — bn)"
=R"R(bo—ba)"
=—nelb~—(I+E6) Lo
=—{o.

The left velocity error dynamics are derived as

(111)

At LR (5-0)
4R (H-0)+R" (- 0)
=—(w—bo)"R" (D — v)+RT(R(a— b)) —R(a— b))
=—(w —bo)"ns+no(a — a)_ﬂ"l‘ba
=—(w—bs)" §1+(I+§A)(u— ba) —a+ b,
=—(0—bo)"Eb+ £ (@—b) +a—b.—a+b,

=—(0—ba)"Eo+ (a—ba)"E6— L. 112)
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The left positional error dynamics are
d d -
G =R P-p)

= LR Gp—p)+RLG-p)

=—(@—bo)'"R'(p—p)+R"(2—0)

=—(0—bo)"ny+ 5

~—(@=bo) &)+ £, (113
The resulting continuous linear system therefore has the
state update matrix

0 0 0 -1 0
(@a—ba)" —(w—Dba)" 0 0 —I
A= 0 I —~(@—bo)" 0 0 (114)
0 0 0 0 0
0 0 0 0 0

GPS Measurements

Similar to the odometry example, a GPS measurement is a left-
invariant measurement, with a near-identical linearized H that
includes additional zeros for the velocity and bias states:

fﬂ 0

HPC

. (115)

= [02><3 =1 Osz][i

Compass Measurements

Similarly, the compass measurement is a right-invariant
measurement with additional zeros to obtain

7]+ o705}

(116)

N

—

o

0.5 0.5
05 0
|
0O 05 0 05

0 0.5 0

Velocity Measurements
Velocity can be measured in a number of ways, from pres-
sure sensors on aircraft to Doppler velocity logs on under-
water vehicles. Generally, velocity is measured in the local
frame, resulting in a right-invariant measurement:
Zo=R"0+w,,

wo~N(02x1, Z0) (117)

which can be rewritten in right-invariant form as

z RT —RT‘() RTp 03><1 w
[ ”]: O1x3 1 0| -1 +[ ’ ]éX_lbv+ i, (118)
1 02x1

01><3 0 1 0

Therefore, from (65),

f(’a\ fv fp 03><1
b, =110 0 0] —1[=[02x1 —I 02x2]&"
0 0 0] O

:Hv[é;]é[()zm =1 OZXS][ir].

(119)

Results
To illustrate the effectiveness of the imperfect INEKF, we
instantiate both the left and right versions on 0.5 s of simu-
lation data with the above process and measurement
models, with measurements and controls sampled at 100 Hz.
The results can be seen in Figure 6. Note that the biases do
not converge in this simulation since the system is not fully
observable [18].

Due to the simplicity of this example built on SE2(2), we
find that generally the quaternion extended Kalman filter

b3, Mah. Dist.

FIGURE 6 A comparison of right and left imperfect INEKFs with GPS, magnetometer, and velocity sensor measurements. Each light line
represents a filter implementation, with random initial starting points sampled from N'(/, diag(10°, 4, 4,1,1)), and the dashed black line
represents the true state. In the Mahalanobis distance plot, the dashed black line represents the 99th percentile of the distribution. The
filters are run for 0.5 s at 100 Hz. Note that the biases do not converge in this simulation since the system is not fully observable [18].

The (a) left filter and (b) right filter.
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(QEKF) and other ESKFs perform similarly to the imperfect
InEKEF. This can be seen as the lower limit for the imperfect
InEKF; in our experience, it performs at least as well as
other ESKFs, but in most scenarios, it has improved perfor-
mance [18], [20].

Furthermore, notice the improved performance of states
measured with a right-invariant measurement when used
in a right filter. For example, velocity and heading, mea-
sured with a right-invariant measurement, converge faster
with a right filter, while position, measured with a left-
invariant measurement, converges faster with a left-invari-
ant filter. If there are specific measured states that are
more mission critical, the filter type should be chosen to
match those states” measurement types. In this example, if
position were extremely critical, a left filter should likely
be chosen.

Two-Frame InEKF

When using SE(2) or SE(3), the position pil is in the global
or “fixed” frame. In some cases, there are also vectors that
need to be tracked in the local or “body” frame, such as
IMU biases. In these scenarios, the two-frame group can be
used to track both in a Lie group.

The two-frame group tracksa tuple (R, x, X), with Re SO(d),
x€R”M and X € R”N, where vectors in x are represented
in the global frame and vectors in X in the local frame. The
identity is given by (I4,0,0), the group action is defined as

Ri] [R; RiR;
xi|-{xj[=| xi+ Rix; (120)
Xi X,‘ Xj + R;lxi
and the inverse is defined as
R -1 R—]
x| =[-R'x|. (121)
X —RX

From these properties, it can be shown that the two-frame
group is a group and can be used in the InEKF. Its usage is
beyond the tutorial nature of this article, but we point the
readers to other literature for more information [39].

CONCLUSION

The recently developed InEKF has been experimentally
shown to be superior to the standard EKF and ESKF. How-
ever, there does not appear to be an accessible explanation of
the difference between the right and left InEKFs and the
tradeoffs involved in choosing one of those implementa-
tions. We hope that this tutorial filled that gap. We have also
included a full derivation of the associated error state
dynamics, with the hope that these derivations will help
others implement the InEKF for their specific applications.
We also pointed the readers to other literature for more state-
of-the-art developments in invariant Kalman filtering, such
as the two-frame group [39], IMU preintegration [23], [24],
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reachability [22], and observability [21]. Finally, we have
developed an open source InEKEF library with both Python
and C++ interfaces for quick implementation of both the
right and left InEKFs. Future work includes expansion of
this library, along with more experimental results compar-
ing the right and left InEKF filters with each other and with
equivalent ESKF implementations.
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