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Kalman !lters (KFs) have become ubiquitous in mod-
ern-day technology, with applications in medicine, 
robotics, and many other areas, due to their straight-

forward implementation and impressive performance. The 
KF is the optimal solution in the mean-square-error sense 
for tracking a linear stochastic state [1] and is well-known 
for its asymptotic convergence guarantee [2]. The extension 
of the KF to nonlinear systems is the extended KF (EKF), 
which has been the de facto standard for many years, even 
though it lacks the theoretical guarantees of the standard 
KF. Other KF "avors have been introduced, including the 
unscented KF [3] and the error state KF (ESKF) [4], all of 
which have their limitations and tradeoffs. The most glar-
ing disadvantage for all these KF variants is the state-
dependent linearization that can cause poor performance 
and weak convergence.

The recent development of the invariant EKF (InEKF) 
solves this problem for a certain class of systems by defin-
ing an error invariant to a class of symmetries [5], [6]. The 
error is defined by composition on a Lie group, which in 
our examples will be matrix multiplication, and results in 
the estimation error satisfying a log-linear differential 
equation, state-independent error system dynamics, and a 
local asymptotic convergence guarantee, which the EKF 
lacks. More recently, the class of systems that fit the InEKF 
paradigm has been more clearly defined and is known as 
group affine systems [7], [8]. The InEKF has led to numer-
ous successful results and applications in simultaneous 
localization and mapping (SLAM) [9], [10], [11], visual–iner-
tial navigation [12], [13], [14], guided aerial navigation [9], 
[15], [16], [17], 3D bipedal robots [18], [19], and underwater 
navigation [20]. Additionally, there are many other theo-
retical developments of the InEKF with regard to observ-
ability [21], reachability [22], [23], inertial measurement unit 
(IMU) preintegration [24], and usage in a multistate con-
strained KF framework [25].

Unfortunately, the current literature describing the InEKF 
requires a deep theoretical understanding of Lie groups and 
is not accessible enough to a general audience to allow more 
widespread adoption. Our purpose in this article is to fill this 
gap in the literature by providing an accessible introduction 

to the necessary theoretical background, focusing on imple-
mentation choices and details, and by providing several 
simple examples with full derivations (see “Summary” for an 
overview). Additionally, there are many scenarios when the 
tracked state is not completely group affine; in these scenar-
ios, an “imperfect” InEKF can be still be used, which, while it 
lacks the convergence guarantees, still exhibits improved 
performance over other EKF formulations. We illustrate with 
an example of an imperfect InEKF, again with detailed deri-
vations. We note that that our treatment of the InEKF is not 
comprehensive of all state-of-the-art developments but, 
rather, tutorial in nature. We focus on introducing the neces-
sary theory to utilize the InEKF as well as some practical 
choices for implementation purposes.

Since the error is based upon noncommutative matrix 
multiplication, the InEKF has both right and left variants, 
and the difference between these variants has limited dis-
cussion in the current literature. While both variants per-
form similarly, there are nuances that can cause one to 
perform better than the other, depending on the applica-
tion. In much of the existing literature, the right or left for-
mulation of the InEKF is selected with a limited discussion 
based on the specific application [8], [26], [27], [28]. One con-
tribution of this article is to shed additional light on the 
differences between the two variants, including a detailed 
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description of their nuances and an explanation of which 
variant will perform better for a given application.

Specific contributions of this article are as follows:
1) We provide step-by-step tutorials of deriving both 

the right and left InEKFs together with a detailed 
description of when one should be selected over the 

other. We provide a similar tutorial for the imper-
fect InEKF.

2) We provide several simple examples showing the 
application of the InEKF and the imperfect InEKF to 
specific problems.

3) We provide an all-inclusive open source C++ and 
Python library for easy implementation of both the 
right and left InEKFs, with Lie group structures and 
flexible measurement models already built in.

This article proceeds as follows. First, we give the neces-
sary mathematical background on matrix Lie groups, fol-
lowed by a review of the EKF and ESKF and then a 
derivation of the InEKF. The nuances between the right and 
left InEKF error, prediction step, and update step are then 
laid out and explained. Step-by-step examples with deriva-
tions and decision factors are then given for a simple odom-
etry model as well as an imperfect InEKF for an inertial 
model. The article then concludes and discusses possible 
research directions.

MATRIX LIE GROUPS
In this section, we provide a brief introduction to matrix 
Lie groups as well as various mathematical fundamentals 
to help in understanding the InEKF. See “Groups and 
Smooth Manifolds” for additional details about groups and 
manifolds. 

A Lie group is a group and a smooth manifold with the 
property that element inversion and the group operation 
are differentiable [29]. A matrix Lie group is simply a Lie 

Summary

Successfully and accurately estimating the 3D position of 
a vehicle is a necessary step for any form of robotic au-

tonomy. In a linear setting, there are straightforward optimal 
(in the mean-square-error sense) solutions, such as the KF, 
that provide out-of-the-box methods for estimation. Unfortu-
nately, most systems in the real world are highly nonlinear, 
and while there are many formulations of the KF that empiri-
cally work well with nonlinear systems, the KF convergence 
guarantees do not apply to general nonlinear systems.

For systems tracking states that meet a minimal form of 
symmetry, such as 3D rotations, the InEKF provides a state-
independent linearization that provides convergence guar-
antees similar to the KF. This article provides an in-depth 
introduction to and tutorial on the InEKF by covering the 
necessary mathematical background, providing derivations 
of the InEKF’s various components, and walking step by step 
through various examples of its usage. Additionally, an open 
source library is provided for straightforward implementation 
under a variety of process and measurement models.

Groups and Smooth Manifolds
GROUPS

A group is de!ned as any set G  along with an operation 
:G G G"$ #  that satis!es the following properties , ,a b c G6 !  

[S1]: 
• Closure: .a b G$ !

• Associativity: ( ) ( ) .a b c a b c$$ $ $=

• Identity: There exists an I G!  such that .I a a I a$ $= =

• Inverse: There exists an a G1!-  such that .a a a a I1 1 $$ = =- -

Groups are generally an abstraction of symmetry. That is, each 
element in G  can be thought of as a transformation that leaves 
a certain object unchanged. For example, a group of rotations 
of a square could be given by the set , , , .//G 0 22 3r r r= " ,  It 
is straightforward to verify that each of the above properties 
holds on this set with the addition-modulo-2r  operation.

SMOOTH MANIFOLDS Rn

A smooth manifold of dimension n is a geometric structure that 
is locally close to ,Rn  enabling the use of calculus on a local 
map of the manifold [29]. Examples include the unit sphere, a 
torus, or a smooth surface in .R3  Manifolds are often visualized 

by a curved surface, where each point X M!  is equipped with 
a tangent space denoted ,T MX  as shown in Figure  1. Each 
tangent space is a vector space of dimension n and can be iso-
morphically mapped to Rn  [30] using the “hat” operator, which 
is denoted as

 : .TR Mn
X"/  (S1)

Each element of the tangent space is called a vector and often 
denoted by .T MX!p  Furthermore, a map exists from T MX  to a 
neighborhood of ,X M!  called the exponential map:

 : .exp T MMX X "  (S2)

In some cases, exp is the well-known exponential given by the 
Taylor series !,/e X nX

n
n

0R= 3
=  but generally, it is not [29].

REFERENCE
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group whose elements are matrices, and the group opera-
tion is matrix multiplication.

The Lie algebra g  of a Lie group G  is the tangent space 
to the smooth manifold G  at the identity; thus, g T GI=  
[30], as shown in Figure 1. In the case of a matrix Lie group, 
the identity is the identity matrix. The Lie algebra g  is a 
linear space that is isomorphic to ,Rn  where ,dimn G=  and 
we use the “hat” operator /  to map from Rn  to the Lie alge-
bra g  and the “vee” operator 0  to map from g  to .Rn

We can also map g T GX"  for any X G!  simply by 
using left and right multiplication. That is, for ,Rn!p  both 

  X X Tand GX!p p/ /  [29]. While both Xp/  and Xp/  result in 
elements in ,T GX  generally, .X X!p p/ /  These maps are 
also often used in differential equations when transporting 
tangent vectors to their correct tangent spaces. For exam-
ple, if R is the rotation matrix from the body to the inertial 
frame and ~  is the angular velocity of the body expressed 
in the body frame, then .R R~= /o  Alternatively, if R is the 
rotation matrix from the inertial to the body frame, then 

.R R~=- /o

For matrix Lie groups, the exponential map at the iden-
tity g:exp GI "  is given by the usual matrix exponential, 
which is denoted by “exp” throughout this article [31]. 
Thus, we can map Rn!p  to a neighborhood of I G!  using 

( ) .exp p/  We can also map any Rn!p  to the neighborhood 
of any X G!  by using ( )expX p/  or ( ) ,exp Xp/  which again 
are different maps, as we discuss later.

Another useful operator is the adjoint of an element of 
,G  defined for matrix Lie groups as follows. 

De!nition 1 [31]
For any ,X G!  where G  is a matrix Lie group, and for any 

,Rn!p  where g  is the Lie algebra of ,G  the adjoint map 
g g:AdX "  is defined by

 ( ) .X XAdX
1p p=/ / -  (1)

Using the definition of the matrix exponential, it is 
straightforward to verify that

 ( ( )) ( ) ( ) .exp exp expX X X XAdX
1 1p p p= =/ / /- -  (2)

For a fixed ,X G!  the adjoint map ()AdX  is linear. Its matrix 
representation :Ad R RX

n n"  operates directly on the 
Euclidean vectors and is defined through the relationship

 ( ) ( )Ad AdX Xp p= / 0^ h  (3)

where multiplying the Euclidean vector p  by the matrix 
AdX is equivalent to the Lie algebra operation ( )AdX p

/  
mapped back to the equivalent Euclidean space. When-
ever the adjoint is used in this article, it uses the matrix 
representation.

The adjoint matrix has a number of other useful proper-
ties, including [32]

 Ad AdX X
11 = -

-  (4)

 Ad Ad AdXY X Y=  (5)

 ( ) (( ) )exp expX XAdXp p=/ /  (6)

 ( )X XAdXp p=/ /  (7)

where the last two properties are derived by rearranging 
(1) and (2) and can be used to move a vector from left to 
right multiplication [33]. These properties will be used 
when converting between right- and left-invariant errors 
later in this article.

We can also define the “little ad” operator, which is useful 
when linearizing continuous process models, as follows.

De!nition 2 [31]
If G  is a matrix Lie group with Lie algebra g,  then for any 

, ,Rn!p g  we define the linear map

 ( ) [ , ]ad g p g p g g p= = -/ / / / / / /
p/  (8)

where [·, ·] is called the Lie bracket. Similar to ,Ad  it is also 
often expressed by its matrix representation as ( )ad _gp/  

( ) .ad g/
0

p/^ h
The matrix representations of these two adjoint opera-

tors are related as follows.

l

ξl
ξr

ηl
ηr

Xt

X –1
G G→

FIGURE 1 A comparison of right- and left-invariant errors on a 
model matrix Lie group. The state estimate Xt  is shown in blue and 
the inverted true state X 1-  in orange. The mapping of the right nr  
and left nl  invariant errors in the Lie group G  to rp  and lp  in the 
Lie algebra g  is displayed in red. Although the right and left errors 
are composed of the same transformations, the multiplication 
order results in different errors.
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Theorem 1 [31]
Given any ,Rn!p

 ( ) .expAd ad( )exp =p p/ /  (9)

See “Example of Matrix Lie Group” for the application of 
these definitions to the matrix Lie groups SO(2) and SE(2). 

FILTER BACKGROUND
In this section, we briefly review the EKF and the ESKF as 
a precursor to introducing the InEKF.

EKF
Given a state x defined by linear dynamics

 ~ ( , ( ))dt
d x Ax Bu w w Q t0N d x= + + -  (10)

and measurements given by the linear model

 ~ ( , )z Hx v v M0N= +  (11)

the KF computes the optimal state estimate xt  of x given z in 
the mean-square-error sense [1]. Furthermore, the KF is 
globally asymptotically stable in a deterministic setting [2], 
meaning that it will converge to the true state given any 
initial estimate. It does this by propagating the mean and 
covariance of xt  through the dynamics in a prediction step 
and then correcting the mean and covariance of xt  in an 
update step.

Generally, most system dynamics and measurement 
models are nonlinear, so the KF cannot be used directly. 
The EKF circumvents this problem by linearizing both the 
system dynamics and measurement models using Jacobian 
linearization [34]. These steps are outlined in Figure 2(a).

Example of Matrix Lie Group

As an example of a matrix Lie group, consider the set of ro-
tation matrices in two dimensions, that is, the special or-

thogonal group SO(2), which can be de!ned as [33]

 ( ) ( ) , ( ) .detSO A M A A AA I A2 1R T T
2! ;= = = =" ,  (S3)

All the following hold for , ( ):A B SO 2!

• Closure: AB is in SO(2).
• Associativity: Matrix multiplication is associative.
• Identity: ( ) .I SO 22 !

• Inverse: ( ) .A A SO 2T 1 != -

Thus, SO(2) is a group with matrix multiplication as the operator.
Showing that SO(2) is a smooth manifold is beyond the 

scope of this article, but we explain a few of the Lie group 
properties here. First, SO(2) has dimension one; thus, 

( ),so 2  its Lie algebra, also has dimension one and can be 
defined as [33]

 ( )  so 2
0

0 R!
i

i
i=

-; E) 3 (S4)

along with the operator

 ,
0

0R1!p p
p

p
=

-/ = G (S5)

and the matrix exponential

 ( )
( )
( )

( )
( ) .exp

cos
sin

sin
cosp

p
p

p
p

=
-/ = G  (S6)

Due to the fact that matrices in SO(2) and ( )so 2  commute, 
we have the following for ( ), :X SO 2 R1! !p

 

( ) ( )

.

Ad Ad

Ad

X X
XX

I

X X

X

1

1

&

p p p

p

p

= =

=

=

=

/ / /

/

/

-

-

 

(S7)

Example S1
Using the adjoint, we can switch from left to right multiplication. 
Given ( ), ,R SO 2 R! !p  we thus have

 ( ) .AdR R RRp p p= =/ / /  (S8)

Using Theorem 1 or the de!nition, we also arrive at

 .ad 02 2= #p/  (S9)

Here, SO(2) is shown embedded in R2  as the unit circle in 
Figure S1, along with its Lie algebra ( ) .so 2

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

SO(2) (2) TXSO(2) exp

ξ^

η

l

X

FIGURE S1 An illustration of SO(2) embedded in .R2  Included is 
an example tangent space ( ),T SO 2X  the Lie algebra ( ),so 2  and 
a vector ( )so 2!p/  with its exponential map to ( ) .SO 2!h

(Continued)
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The special Euclidean group in two dimensions, or SE(2), is 
another matrix Lie group made up of a 2D rotation and transla-
tion, de!ned as

 ( ) ( ) , ( ), .SE A M A
R p

R SO p2
0 1

2R R3
1 3

2! ! != =
#

= G) 3  (S10)

Note that SE(2) is also a group since , ( )A B SE 2!  implies the 
following:

• Closure: ( )AB SE 2!  since SO(2) is closed, and

 .AB
R p R p R R R p p
0 1 0 1 0 1

A A B A B A B AB= =
+= = =G G G  (S11)

• Associativity: Matrix multiplication is associative.
• Identity: ( ) .I SE 23 !

• Inverse: ( ) .A R R p SO
0 1

2A
T

A
T

A1 !=
-- = G

In addition, SE(2) has dimension three—one rotational dimen-
sion and two translational dimensions; thus, its Lie algebra 

( )se 2  has dimension three and the form

 ( )  se 2
0

0
0
0 0

0 0
R R

x

y x

y

p

p

3 3! !pi
p p
p

p
p
p

p p p
p

=
-

=
/i i
i i> > ; =H H E G)* 34  (S12)

where p/i  is using the SO(2) hat operator. To de!ne the adjoint, 
we !rst de!ne the operator *  for use in the following identity. 
For , ,a b b b RR T

1 2
2! != 6 @

 * .a b a
a b

b
b

b a b a
0

0
1

2

2

1
_=

-
=
-/ ; ; ;E E E  (S13)

Then, for ( )X SE 2!  and ,R3!p  since matrices commute in 
SO(2) and ( ),so 2

 

( )

.

Ad

Ad

X X
R p R R p

R R R R p R

p R
p R

p R

0 1 0 0 0 1

0 0

0 0
1 0

1 0

X
p

T T

T T
p

p

p

X

1

&

p p
p p

p p p

p p p p
p

= =
-

=
- +

=
- +

=
-

=
-

/ /
/

/ /

/

i

i i

i i i

-

*

*

*

e o
;
;

;

; ;

=

;

=
E

E

E

E
E
G G

E

 

(S14)

Note that in some publications, p  is de!ned with rotational 
states at the end rather than the start, that is, ,p

T Tp p p= i6 @  
which results in the columns and rows of the adjoint being 
#ipped. Finally, for , ,R3!p g  since matrices in ( )so 2  commute,

 

( )

.

ad

ad

0 0 0 0
0
0 0

0 0

0 0

p p

p p

p

p
&

g p g g p
p g p g g p g p

p g g p
p p

g

p p

= - = -

=
-

=
-

=
-

/ / / / /
/ / / / / /

/ /

/

/

/

p
i i i i i i

i i

i

p
i

/

/

*

*

c m;
;

;
;

;
E
E

E
E

E
 

(S15)

Table S1 provides a summary of properties for some of the 
common Lie groups used in robotics, and the readers should 
consult other works [32] for a more in-depth analysis.

G dimG Matrix Size X G! AdX RdimG!p g!p/ adp/

SO(2) 1 2 # 2 R I pi6 @ 0
0p
p-

i

i= G 0

SO(3) 3 3 # 3 R R 1

2

3

p
p
p

R

T

S
S
SS

V

X

W
W
WW

0
0

0
3

2

3

1

2

1p
p

p

p

p
p

-

-
-

R

T

S
S
SS

V

X

W
W
WW

p/

SE(2) 3 3 # 3 R p
0 1
= G

p R
1 0
- )= G

p

p
p
i= G

0 0
pp p/i= G 0 0

pp p- /
i

)= G
SE(3) 6 4 # 4 R p

0 1
= G R

p R R
0

/= G
p

p
p
i= G

0 0
pp p/i= G 0

p

p

p p

/

/ /
i

i

= G
SE2(2) 5 4 # 4 R v p

0
0

1
0

0
1

> H v
p

R
R

1 0

0

0
0-

-

)

)

R

T

S
S
SS

V

X

W
W
WW

v

p

p
p
p

i
R

T

S
S
SS

V

X

W
W
WW

0
0

0
0

0
0

v pp p p/
i

R

T

S
S
SS

V

X

W
W
WW

0 0

0

0
0v

p

p

p

p

p

-
-

/

/
i

i
)

)

R

T

S
S
SS

V

X

W
W
WW

SE2(3) 9 5 # 5 R v p
0
0

1
0

0
1

> H R
v R
p R

R
R

0

0

0
0/

/

R

T

S
S
SS

V

X

W
W
WW

v

p

p
p
p

i
R

T

S
S
SS

V

X

W
W
WW

0
0

0
0

0
0

v pp p p/
i> H 0

0

0
0v

p

p

p

p

p

p

/

/

/

/

/

i

i

i

> H

TABLE S1 Various properties of typical Lie groups that are used in robotics.

Example of Matrix Lie Group (Continued )
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Unfortunately, this linearization can introduce signifi-
cant approximation errors in the filter, and it causes the 
EKF to lose many of the mathematical guarantees of the 
linear KF, except under strict assumptions [35]. A poor esti-
mate often leads to a poor linearization point, which leads 
to another poor estimate and can begin a cycle of unaccept-
able performance. While an iterated KF [36] can solve for a 
poor linearization point, we later see with the InEKF that 
iteration is not necessary at all.

For an example of the EKF applied to visual–inertial 
navigation, see “Visual–Inertial Navigation Using the EKF, 
ESKF, and InEKF.”

ESKF
The ESKF is an extension of the EKF, which seeks to track 
the covariance of the error rather than that of the predicted 
state [37]. The error state is defined as [38]

 x x x6d = t  (12)

where x is the true state, xt  is the state estimate, and the EKF 
is designed to track the error state .xd  In a standard KF, 6  
is generally defined using vector subtraction ,x x x x6 = -t t  
but the ESKF allows a near-arbitrary choice of operation. 
Note that xt  is generally defined with deterministic dynam-
ics, while x is stochastic.

Thus, in the prediction step, xt  is propagated for-
ward with the incoming u, and the covariance of xd  is 

updated using the Jacobian of the error dynamics [37], 
given by

 ( )A x dt
d x x g x,

,
x u u

x u2
2

2
2_

d
d

d
d= t

t
c m  (13)

where gu defines the error dynamics.
The update step is once again accomplished simi-

larly to that of the standard EKF. We apply the standard 
EKF update step to ,xd  assuming that xd  is reset to zero 
after each measurement step and is therefore zero 
throughout the prediction cycle. The result after the 
measurement update is the current estimate of the error 
that we can add to the state estimate using the inverse of 
the 6  operation,

 x x x5 d=+t t  (14)

and then xd  is reset to zero.
The ESKF has a number of advantages over the stan-

dard EKF. One is that the error dynamics g are often much 
closer to linear than the actual dynamics f [37]. This allows 
for less approximation error in the Jacobian linearization, 
although the linearization still does depend on the current 
state estimate. The ESKF also allows for an arbitrary defi-
nition of error and, thus, an arbitrary choice of state esti-
mate update ,5  allowing for improved tracking on manifolds. 
Often, the state being tracked is not a vector space, and 

(a) (b)

(c)

FIGURE 2 Algorithms for the standard, error state, and right InEKFs: (a) algorithm 1: the EKF, (b) algorithm 2: the ESKF, and (c) algorithm 
3: the right InEKF.
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regular vector addition is ill-suited as an update operator, 
whereas something such as quaternion multiplication, in 
the case of rotational states, is a much better choice. These 
steps are summarized in Figure 2(b). We see in the next 
section how the InEKF leverages both of these advantages 
to their fullest in cases where the dynamics exhibit certain 
structural properties.

For an example of the ESKF applied to visual–inertial 
navigation, see “Visual–Inertial Navigation Using the EKF, 
ESKF, and InEKF.”

INEKF
The InEKF uses a specially chosen error that gives the 
interaction among states, such as position and orienta-
tion, during the state estimate update through the matrix 
exponential.

De!nition 3 [7]
The right- and left-invariant error between two elements 

,X X G!t  is given by

 XX (right invariant error)-r 1_h -t  (15)

 X X (left invariant error) .-l 1_h - t  (16)

Define the error states as ( )log Rr r n_ !p h 0  for the right 
error and ( )log Rl l n_ !p h 0  for the left error. Note that in 
some publications [39], the inverse definition is taken: 

( ) .XX XXr 1 1 1h = =- - -t t  We note that this alternate conven-
tion will simply reduce to a negative outside the logarithm 
above and, hence, a negative throughout the rest of the 
derivations.

Example 1
The right- and left-invariant errors received their names 
because they are invariant to right and left multiplications 
of the state, as follows given :Y G!

 ( ) ( )XY XY XYY X XXr 1 1 1 1h = = =- - - -t t t  (17)

 ( ) ( ) .YX YX X Y YX X Xl 1 1 1 1h = = =- - - -t t t  (18)

The InEKF tracks the distributions of the error states rp  
and lp  in the Lie algebra, allowing for more accurate uncer-
tainty representation on group elements [40]. By solving for 
X in (15) and (16), in the update step, the state will be cor-
rected as

 ( )expX X (right invariant update)-rp= - / t  (19)

 ( ) .expX X (left invariant update)-lp= - /t  (20)

These equations can also be viewed as defining a Gaussian 
on a Lie group [40]. For example, if , ~ ( , ),0Nl rp p R  then (19) 
defines a Gaussian on the Lie group ,G  with Xt  as the mean 
and covariance ,R  denoted ~ ( , ) .X XN r Rt  Similarly, the left-
invariant update (20) gives ~ ( , ) .X XN l Rt

Not only does this choice of error give improved state 
updates and uncertainty modeling, but when the system 
dynamics

 ( )dt
d X f Xu=  (21)

where u is the input, are restricted to the class of functions 
called group affine, we achieve state-independent log-linear 
error dynamics, as follows.

Theorem 2 [7]
If G  is a Lie group, then the system in (21) is said to be 
group affine if (·)fu  satisfies

 ( ) ( ) · ( ) ( ) ·f X Y f X Y X f Y X f I Y· · ·u u u u= + -  (22)

for all , .X Y G!  If this condition is satisfied, the right- and 
left-invariant error dynamics are trajectory independent, 
that is, independent of X and ,Xt  and satisfy

 ( ) ( ) ( )dt
d g f f Ir

u
r

u
r r

u_h h h h= -  (23)

 ( ) ( ) ( ) .dt
d g f f Il

u
l

u
l

u
l_h h h h= -  (24)

Example 2
In the case where the group operator · is a vector addition 
on ,Rn  (22) simplifies to

 ( ) ( ( ) ) ( ( )) ( ( ) )f X Y f X Y X f Y X f I Yu u u u+ = + + + - + +  (25)

 ( ) ( ) ( )f X f Y f 0u u u= + -  (26)

where 0 is the identity of .Rn  In this simple case, it can be 
seen that fu must take the form of ( ) ,f X AX bu = +  also 
known as an affine function. Hence, it can be helpful to 
think of group affine functions as affine functions simply 
defined on groups.

Furthermore, this theorem shows that the resulting error 
dynamics g are independent of the state X and state estimate 
Xt  and dependent only on the error variable ,h  implying that 
any linearization will not be corrupted by poor state estimates.

If the group affine property is satisfied, the right or left 
error differential equation can then be linearized about the 
corresponding Rn!p  by defining A to satisfy [7]

 ( ( )) ( ) .expg A Ou
2_p p p+/ / ^ h  (27)

This approximation is often done using a first-order 
approximation of the matrix exponential, .I.h p+ /  Using 
the above definition of A, the error dynamics satisfy

 .dt
d Ap p=  (28)

Equation (28) results in linearized error dynamics with 
second-order error. However, as one may expect from the 
definition of group affine, it turns out that this linearization 
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introduces no approximation error. In other words, the 
above linearized dynamics of p  perfectly capture the true 
dynamics of ,h  as stated in the following theorem.

Theorem 3 [7]
Consider the right- or left-invariant error h  between any two 
trajectories that satisfy the group affine property. For arbi-
trary initial error ,Rn

0 !p  if ( ),exp0 0h p= /  then for all ,t 0$

( ) .expt th p= /

In other words, the nonlinear error h  can be exactly recov-
ered from the time-varying linear differential (28).

Thus, rather than attempting to track the Lie group error 
,h  which is likely highly nonlinear, we can instead track its 

representation in the vector space Lie algebra ,p  which has 
linear dynamics.

The InEKF therefore exploits the benefits of the ESKF to 
its fullest by using an error that provides an improved state 
update step through the matrix exponential and using spe-
cific structural constraints on the process model that result 
in state-independent log-linear error dynamics.

Example 3
Consider the system on SO(3) given by dynamics 

( ) ,/d dt R f R R_ ~= /
~^ h  with R!~  a known angular veloc-

ity. These dynamics are group affine since

 
( )

( ) ( ) ( )

f RS RS
R S RS R S
f R S Rf S Rf I S

~

~ ~ ~

=

= + -

+ -=

/

/ / /
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~ ~ ~

 
(29)

and thus have right and left error dynamics:

( ) ( ) ( )

,

( ) ( ) ( )

( ) ( )

( ) .

dt
d g f f I

dt
d g f f I

I I

0

ad

r
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r
u

r r
u

r r

l
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l
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l
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_

_
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h h h h
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h h h h
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p

= -

= - =

= -

= -

+ - +
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/ /

/ /

/ / / /

/ / / /

/
~

Thus, the dynamics of rh  and lh  can be exactly tracked by 
using the linear dynamics given by ( )/d dt 0rp =  and 

.( )/d dt adl lp p=- ~

The InEKF allows for many of the same guarantees as 
the standard linear KF that are rarely seen for nonlinear 
systems; in particular, it is a proven asymptotically stable 
observer [7, Th. 4]. The steps of the right InEKF are sum-
marized in Figure 2(c), with details described in the follow-
ing sections. For an example of the InEKF applied to 
visual–inertial navigation, see “Visual–Inertial Navigation 
Using the EKF, ESKF, and InEKF.” 

While there are several articles in the literature that 
compare the InEKF to the EKF or ESKF, there is limited 
discussion or analysis of the difference between the right 
and left InEKFs [8], [26], [27], [28]. While both variants will 
generally outperform other observers for a given robotic 
application, knowing which variant to use for a given 
application is nuanced and can affect the performance of 
the filter. In the following section, we clearly explain how 
to use the InEKF as well as the differences between the left 
and right InEKFs.

RIGHT AND LEFT ERROR
In robotics, the Lie groups SE(2), SE(3), and their variants 
are often of interest. In these scenarios, an element X G!  
represents a transformation from a local frame to the global 
frame, which we denote as .Xl

g  This state will have a rota-
tion of the local frame to the global frame Rl

g  and position 
pgl

g  from the global to the local frame represented in the 
global frame. In this sense, the right-invariant error can be 
seen as the error in the global frame, while the left-invari-
ant error is the error in the local frame.

For a simple example, consider the true transformation 
from the local to the global frame, ( ),X SE 3l

g
!  of the form

 X R p
0 1l

g l
g

gl
g

= ; E (30)

while Xl
gt  is the estimate of Xl

g  of the form

 .X R p
0 1l

g l
g

gl
g

=
tt

t= G  (31)

The right- and left-invariant errors will thus be
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(32)
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(33)

Note that rh  has its orientation and position errors in the 
global frame, while h,  is in the local frame. Throughout the 
rest of the article, we use the shorthand X, R, and p for 

, ,  ,X R pandl
g

l
g

gl
g  respectively.

Furthermore, the distributions in (19) and (20) also 
follow this paradigm, where (19) represents noise applied 

Authorized licensed use limited to: Brigham Young University. Downloaded on April 25,2025 at 18:02:28 UTC from IEEE Xplore.  Restrictions apply. 



58 IEEE CONTROL SYSTEMS » DECEMBER 2024

Visual–Inertial Navigation Using the EKF, ESKF, and InEKF

In this sidebar, we show how the three !lters listed in Figure 2 
might be de!ned for the common problem of visual–inertial 

navigation. We assume that the system equations of motion 
are given by

 
( )

( )
R R w
v g R a w
p v R w

b
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b
i b

i i
b
i b

a

i i
b
i

v

~= -

= + -

= -

/
~

o

o

o

 

(S16)

where p Ri 3!  is the position of a robot expressed in the iner-
tial frame, v Ri 3!  is the velocity, g Ri 3!  is a constant vector 
expressing the acceleration of gravity expressed in the inertial 
frame, and ( )R SO 3b

i !  is the rotation matrix from body to in-
ertial frames. Here, the inputs to the system are given by the 
measured body frame acceleration ,a Rb 3!  which is the ac-
tual body frame acceleration plus noise ( , ),w 0Na a+ R  and the 
measured body frame angular velocity ,Rb 3!~  which is the 
actual body frame angular velocity plus noise ( , ) .w 0N+ R~ ~  
We have also added process noise ( , )w 0Nv v+ R  to the evo-
lution of the position to account for kinematic error and ex-
pressed this noise in the body frame to be consistent with the 
other noise terms. For exposition purposes, we assume that 
the robot makes a single range and bearing measurement (for 
example, using a lidar) of a known landmark ,L Ri 3!  where the 
measurement is given by

 z R L p wb
i i i

z= - +< ^ h  (S17)

where the measurement noise is ( , ) .w M0Nz +

ESTIMATION USING A NAIVE EKF
To estimate the state using a naive EKF that does not ex-
ploit the group structure of SO(3), the attitude can be param-
eterized using the 3–2–1 Euler angles ,z  ,i  and ,}  denoting 
the roll, pitch, and yaw angles, respectively [S2]. De!ning 

( , , ) ,z i }H = <  the estimated state in Figure 2(a) is de!ned as 
( , , ) ,x v pi i_ H < << <t t t t  and the input is ( , ) ,u ab b~= < <<  and the esti-

mated equations of motion are
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(S18)

where
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(S19)

and ( ),cosc )=)  ( ),sins )=)   ( ),tant )=)  and ( ) .sec sec )=)  The 
Jacobians on lines 5 and 6 in Figure 2(a) are given by
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(S20)

where it is clear that A and G are nonlinear and depend strong-
ly on the estimated state .xt

The predicted output is given by

 ( ) ( ) ( )z h x R L pi iH= = -<t t t t  (S21)

and therefore, the Jacobian on line 9 in Figure 2(a) is

 
( ) ( )

( )H x
h R L p

R0
x

i i

3 32
2 2 H

H= =
-

-#

<

2Ht

t t t
t
e o (S22)

which is again highly nonlinear and strongly dependent on the 
estimated state .xt  Therefore, both the covariance prediction 
step on line 7 in Figure 2(a) and the covariance update step on 
line 14 in Figure 2(a) are nonlinear and state dependent due to 
the strong state dependence of A, G, and H.

ESTIMATION USING AN ESKF
The ESKF when used with attitude estimation is sometimes 
called the multiplicative EKF [S3], [S4], [S5] or indirect EKF 
[S6]. In the application considered in this sidebar, the state is 
de!ned as the tuple , , ,x R v pb

i i i= " ,  and the state estimate as 
the tuple , ,x R v pb

i i i=t t t t" , is propagated according to the nonlin-
ear equations
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The typical de!nition of the error state in position and velocity 
is computed as

 ,p p v vp
i i i

v
i i ip p= - = -t t  (S24)

and the attitude error state is computed as either

 ( ) ( )log logR R R Rori
b
i

b
i b

b
i

b
i

rp p= =0 0<<
i i,

t t  (S25)

where Ri 3
r !pi  is the right attitude error and Rb 3!pi,  is the left 

attitude error, and note that the right error is an attitude devia-
tion expressed in the inertial frame, and the left error is an at-
titude deviation expressed in the body frame.
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The evolution of the error states is different depending on 
whether the right or left attitude error is used. In the case of 
right attitude error, we have that
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For the velocity, we have
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For the evolution of the attitude error, we use the fact that

 ( ) ( )expdt
d

dt
d I dt

di i i
r r r.p p p+ =/ / /
i i i  (S28)

to get
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Therefore, the error state satis!es
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We see that the A and G matrices on lines 5 and 6 in Fig-
ure 2(b) depend on the estimated state xt through Rb

it  and on 
the input u via .ab

In the case of left attitude error, we again get that ( )/d dt p
ip =   

,R wv
i

b
i

vp + t  but following a similar derivation as above, we get 
that ( .)/d dt R a R wv

i
b
i b

b
i

ap p=- +/
,i

t t  Similarly, we get that the 
left attitude error satis!es ( .)/d dt wb b bp ~ p=- +/

i i ~, ,  Therefore, 
the error state satis!es

 dt
d R a

I

I
R

R

w
w
w0

0
0

0

0
0
0

0

0

0
0

b

v
i

p
i

b

b
i b

v
i

p
i

b
i

b
i

a

v

p
p
p

~ p
p
p

=
-
- +

/

/
, ,i i ~

t t
t

f f f f fp p p p p (S31)

and we see that the A and G matrices on lines 5 and 6 in Fig-
ure 2(b) for this case depend on the estimated state xt through 
Rb

it  and on the input u via ab  and .b~

For the output equation we have that
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For the right error, where ( )expR R Ib
i

b
i i i

r r.p p= +/ /<
i i

t  implies that 
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t  we have that

 

( ) (( ) )
( ) ( )

( ) ( )

z R I L p
R L p R R L p R

R L p R L p R

z H x

0

b
i i i i

p
i

b
i i i

b
i

p
i

b
i i i i

b
i i

p
i

b
i i i

b
i i i

b
i

i

v
i

p
i

3 3

r

r r

r

.

.

_

p p

p p p p

p
p
p

d

+ - +

= - + + - +

- + - -

+

/

/ /

/
#

<

< < < <

< < <

i

i i

i

t t
t t t t t t

t t t t t

t

^ fh p  

(S33)

where we see that the Jacobian H on line 9 in Figure 2(b) de-
pends on the estimated state xt through Rb

it  and .pit

Similarly, for the left error, we can derive
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where again the Jacobian H on line 9 in Figure 2(b) depends on 
the estimated state xt through Rb

it  and .pit

ESTIMATION USING THE INEKF
We now show the equivalent formulations using the InEKF. 
The right InEKF de!nes the state estimate as
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and, therefore, the error using
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where we have used the superscript i to denote the true inertial 
frame and -t to denote the estimated inertial frame. Therefore, 
for the right InEKF, the error state is given by, using the ap-
proximation ,Ih p= + /

 ( )log R Rr b b
ip = 0- <

i
tt  (S37)

 v R R vv b b
i i.p -- - - <t tt t t  (S38)

 p R R pp b b
i i.p -- - - <t tt t t  (S39)

where it is clear that the errors are de!ned relative to the esti-
mated inertial frame and that the subtractions are carried out 
in the correct frame, as opposed to the simpler but naive posi-
tion and velocity errors de!ned in (S24). Interestingly enough, 
the right attitude error is de!ned identically to (S25), but it is 
now clear that the rotation error is from the inertial frame to the 
estimated inertial frame.

(Continued)
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Differentiating the position and velocity errors gives
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and we have shown in the previous section that .R w
.

r b
ip =i ~
t  

Therefore, the error state satis!es
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where the matrix multiplying the noise is seen from Table S1 
to be ,AdXt  and we see that in this case, the Jacobian A on 
line 5 in Figure 2(c) is constant but that AdXt  is state depen-
dent, which implies a state-dependent propagation of the error 
covariance .rRt

For the measurement model, we have that
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which implies from (53) that it is a right-invariant measurement 
model. Therefore, from (58), we have that the right innovation 
is given by
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Letting I 0 03 3 3 1 3 1_P # # #^ h gives
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which de!nes Hr  and P  on lines 8 and 11 in Figure 2(c).
The left InEKF de!nes the left error using
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Therefore, for the left InEKF, the error state is given by, using 
the approximation ,Ih p= + /
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where we see that in contrast to the position and velocity errors 
in (S24), (S38), and (S39), the position and velocity errors are 
de!ned in the body frame, and the left-invariant attitude error 
is similar to the left error in (S25), but it is clear that the rota-
tion error is between the estimated body frame and the body 
frame. Differentiating the position and velocity errors gives, 
after some algebra,
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We have shown in the previous section that ( )/d dt p =,i  
.wb~ p +/

,i ~  Therefore, for the left-invariant error, the error 
state satis!es
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and we see that in this case, the Jacobian A on line 5 in Fig-
ure  2(c) is independent of the state Xt  but depends on the 
input u, and the error covariance propagation on line 6 in Fig-
ure 2(c) will be independent of the state.

For the measurement model, from (73), we get that
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which de!nes H,  on line 8 in Figure 2(c).
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in the global frame and (20) represents noise applied in the 
local frame. When specifying an initial mean and covari-
ance for the InEKF, these are the distributions that are  
initialized.

One must take care because even with the same mean 
and covariance, N r  and N ,  represent entirely different dis-
tributions. This can be seen in Figure 3, which shows vari-
ous distributions in SE(2) with identical covariances of 

(. , . , . )5 01 01diag cR =  and varying means. The left distribu-
tion results in an elliptical distribution, as one would 
expect from a Gaussian with a diagonal covariance; how-
ever, the right distribution has a very different shape. When 
initializing a right InEKF, it must be taken into account that 
an initial diagonal covariance is not an elliptical Gaussian 
but instead results in a banana-shaped distribution because 
the error is applied before transforming by .Xt

There is an exact linear conversion between p,  and rp  
that allows us to switch between the two and their covari-
ances and that intuitively involves the adjoint. Its deriva-
tion is as follows [18]: 
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(34)

A near-identical derivation results in

 .AdX
r1p p=, -t  (35)

Thus, to initialize a right InEKF with an elliptical Gaussian, 
the following conversion should be applied:

 Ad Adr
X XR R= <,t t  (36)

where R,  is a diagonal matrix.
It should also be noted that it may be preferable to track 

the global frame Xg
l  rather than the local frame Xl

g  in some 
circumstances. In these scenarios, it is simple to see that the 
above conventions are inverted; the right-invariant error 

can be seen as the error in the local frame, while the left-
invariant error is in the global frame. Further, many of the 
results in the rest of the article will also be inverted. For 
conciseness and simplicity, we focus on tracking the local 
frame Xl

g  in this article, as the derivations involving Xg
l  

follow similarly.

PROCESS MODEL
To gain insight into the linearized dynamics Ar and ,A,  we 
introduce the notion of left- and right-invariant dynamics.

Invariant Dynamics

De!nition 4 [41]
The system ( )z f zu=o  is said to be left invariant if fu satisfies

 ( ) ( )f XY Xf Yu u=  (37)

for all , .X Y G!  It is right invariant if fu satisfies

 ( ) ( ) .f XY f X Yu u=  (38)

Example 4
The rotational dynamics ,( )/d dt R Rg g

~= /
, ,

,  where ~,  is the 
angular velocity expressed in the local frame, are left 
invariant. Alternatively, the rotational dynamics 

,( )/d dt R Rg g g
~=- /

, ,  where g~  is the angular velocity 
expressed in the global frame, are right invariant.

Since left multiplication does not change the dynamics 
of left-invariant systems, it follows that, generally, left-
invariant systems must evolve through right multiplica-
tion, which modifies the local frame of X. Similarly, a 
right-invariant system will modify the global frame. Notice 
from the definition of group affine in Theorem 2 that if a 
system is right or left invariant, it is also group affine, but 
the converse is not necessarily true.

Right- and left-invariant systems result in simple-to-lin-
earize process models. From the definition of gu in (23) and 
(24), if a system is right invariant, the linearized left error 
dynamics A,  will be 0, and if a system is left invariant, linear-
ized right error dynamics Ar will be 0. For many robotic 
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FIGURE 3 A comparison of right and left Lie group distributions on SE(2). Each plot shows nine distributions, each with (. °, . , . ),5 01 01diagR=  
and means with varying x values. We sample 250 group elements from each distribution, with each ( )X SE 2!  position shown on the 
x- and y-axes and rotation shown as the orientation of each line. Notice how different the right and left distributions are, even with iden-
tical mean and covariance. The (a) left error distribution and (b) right error distribution.
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systems, angular velocity or linear acceleration is measured 
in the local frame, and therefore, the dynamics are left invari-
ant or close to it. In these cases, Ar is either 0 or constant [7], 
[18], [20] and we focus on these cases throughout the article.

Intuitively, it makes sense that there is little transform-
ing of the right error, which tracks in the global frame, 
needed between time steps in a left-invariant system since 
changes are occurring to the local frame. On the other 
hand, the left error, tracking in the local frame, will likely 
need to be rotated or transformed according to the most 
recent control u since the local frame is what is evolving. 
Thus, ,A,  while not dependent on the state, is often a func-
tion of the controls u [7].

Stochastic Models
Thus far, we have dealt entirely with deterministic models. 
For left-invariant systems, we introduce process noise into 
the system as

 ( ) , ~ ( , ( ))dt
d X f X Xw w Q t0Nu d x= + -/  (39)

where w/  is transferred to the tangent space of X. In this 
case, we can interpret the process noise as being added in 
the local frame. For right-invariant systems, process noise 
can be added in the global frame by using the term w X/  
instead of Xw/  in (39) and with the following results inter-
changing right for left.

Introducing the process noise into the right and left 
error dynamics of (23) and (24) results in [7]

 ( )dt
d g wAdr

u
r

X
rh h h= - /t  (40)

 ( ) .dt
d g wuh h h= - /, , ,  (41)

Following a similar linearization as in (28) and neglecting 
terms of order ( ),wO < << <p  the stochastic dynamics of rp  
and p,  are [7]

 dt
d A wAdr r

Xp p= + t  (42)

 ( )dt
d A u wp p= +, ,  (43)

and consequently, the covariance prediction equations are

 dt
d A A QAd Adr r r r rT

X XR R R= + + <t t t t t  (44)

 ( ) ( ) .dt
d A u A u QR R R= + +<, , , , ,t t t  (45)

Since the right InEKF is tracking error in the global frame, 
it intuitively makes sense that the locally applied noise 
covariance Q must be transformed to the global frame 
using ,AdXt  as in (36).

This presents a nuanced decision to be made. Given a 
left-invariant system, the covariance prediction step will 
be dependent on either AdXt  in a right filter or on u through 

A,  in a left filter. In practice, error in the conversion of Q 
seems to have less impact on the performance of the filter 
than the use of inaccuracies in .A,  Furthermore, if the filter 
is running correctly, errors in AdXt  should ideally con-
verge to zero, whereas noise in u, and, thus, in ( ),A u,  will 
likely remain close to the same magnitude throughout. 
This implies that the right InEKF is the preferred choice 
for most left-invariant or almost left-invariant systems, but 
the type of measurement plays a much larger role when 
choosing a filter, as covered later in the “Measurement 
Model” section.

Discretization
The linearized dynamics can also be used in discrete time 
as follows, assuming a constant A,  and Ar over tD  [18], [42]:

 ( )exp A t w tAdr r
t
r r

t
r

X1p pU D U D= = ++ t  (46)

 ( ) .exp A t w tt t1p pU D U D= = +, , , , ,
+  (47)

The resulting covariance prediction equations will be

 ( )Q tAd Adr r r rT
X X

2R U R U D= + <
+
t t t t  (48)

 ( ) .Q t 2R U R U D= +<, , , ,
+
t t  (49)

Example 5
Continuing with the process model ( )f R R~= /

~  and its 
right linearization from Example 3 and remembering that 
the adjoint in SO(3) is R, the discrete covariance prediction 
equations are
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 (50)

A conversion between rU  and U,  using (34) and (35) can 
be derived as follows [18]:
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(51)

Similarly,

 Ad AdX
r

Xt t1
1U U=, +
-t t  (52)

allowing for easier derivations and computations of either.

Imperfect InEKF
In some scenarios, it may be the case that not all the desired 
states to track fit into a Lie group, such as wheel radii, 
camera intrinsics, and so on. While the InEKF cannot be 
used in these cases, an “imperfect” InEKF [9] can be used 
by using an additional error g  alongside .h  An imperfect 
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InEKF loses the guarantees of the InEKF but still generally 
outperforms other state-of-the-art methods [18], [20].

The imperfect InEKF is used by deriving the error 
dynamics by hand for both h  and g  rather than leaning 
upon (23) and (24) for g and then using the approximation 

( )exp I.h p p= +/ /  to linearize. Measurement models are 
derived similarly by appending the necessary additional col-
umns onto the linearized measurement model H. An exam-
ple of this can be seen in the later imperfect InEKF example.

MEASUREMENT MODEL
While any measurement model and corresponding innova-
tion that can be linearized about rp  or p,  can be used, in 
practice, there are a few models that linearize particularly 
easily and with no dependence on the current state.

Invariant Measurement Models

De!nition 5
The right- and left-invariant measurements from a state X 
are given by

 z X b w (right invariant measurement)r
m

1= + -- u  (53)

 ( )wz Xb left invariant measurementm= + -, u  (54)

where ,w w 0m m= <u 6 @  with ~ ( , ),w M0Nm  and b is a constant 
vector.

As opposed to the frame conventions with the invariant 
errors, the right measurement is a measurement of some 
linear combination of the state in the local frame, while the 
left measurement is in the global frame.

Example 6
Consider a 2D GPS measurement. Since it is a global mea-
surement, it is a left measurement with the following b, 
given ( ):X SE 2!

 .z Xb
R p w p w

w 0 1

0
0
1

0 1
m m

m= + = + =
+, u ; > ; ;E H E E  (55)

De!nition 6
Along with these measurement models, the following inno-
vations are defined:

 ( ) ( )V X z z right invariant innovationr r r= - -t t  (56)

 ( ) (V X z z left invariant innovation)1= - -, , ,-t t  (57)

with z as the actual measurement and zt  as the expected 
measurement using the state estimate.

For the special Euclidean groups, the bottom rows of V 
are often identically zero and are truncated using an aux-
iliary matrix .I 0P = 6 @  For the special orthogonal groups, 
we simply have .IP =  These measurement models and 
innovations are used because it allows for the following 

first-order linearization, with the approximation exph =  
( ) I.p p+ /  [8]:
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(58)

A near-identical linearization exists for V,  about ,p,  as follows:

 ( )V X z z1= -, , ,-t t  (59)

 wX Xb X b b X m
1 1 1= + - +- - - ut t t  (60)

 ( ) b X b b X wm
1 1 1h= + - +, - - - ut t  (61)

 ( ) wI b X b b X m
1 1. p- + - +/, - - ut t  (62)

 wb X b X m
1 1p=- + +/, - - ut t  (63)

 .V b X w H X wm m
1 1& _p pP P P P=- + +/, , , ,- -t t  (64)

This linearization is not dependent on the state, and given 
a constant b, it results in a constant H. Succinct formulas for 
defining H from the right- and left-invariant innovations 
are thus

 , .H b H br r r_ _p p p pP P-/ /, , ,  (65)

Additionally, the invariant innovation covariances are

 ( )V S H H XMXCov r r r r rT TP R P P= = + <t t  (66)

 ( ) .V S H H X MXCov T1P R P P= = +< <, , , , , - -t t  (67)

The innovation also has a simplified version, for computa-
tional purposes, as follows:
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(68)

where oftentimes b 0P =  and can be omitted. A similar 
simplification exists for the left innovation, as follows:
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Other Measurement Models
As mentioned above, any measurement model that can be 
linearized about rp  or p,  may be used.

Example 7
Consider a full pose measurement ( ),expz X wm= - /  with 

( ), ~ ( , ) .X SE w M2 0Nm 3!  Using se: ( ) ( )log SE 2 2"  and defin-
ing 0  as the inverse of ,/  one possible left innovation is

 ( ) ( ( ) )log log expV z z w X Xm
1 1= =0 / 0, - -t t  (70)

 ( ( ) )log exp wm h= / 0,  (71)

 ( ( ))log exp w wm m. p p+ = +/ / 0, ,  (72)
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where combining the exponentials is done using a first-
order approximation of the Baker–Campbell–Hausdorff 
equation [31]. This makes the linearized measurement 
model .H I=,  Since the measurement is the full pose, it can 
also be formulated as a right measurement.

Converting Measurements
Furthermore, a measurement linearized about the right error 
can still be used in a left filter and vice versa. This can be 
done using the conversion shown in (34) and (35), as follows:

 H H HAdr r r
X _p p p= , , ,t^ h  (73)

 .H H HAdX
r r r1 _p p p=, , ,

-t^ h  (74)

This conversion does introduce a dependence on the cur-
rent state estimate and should be avoided when possible. 
This conversion is also equivalent to converting the state 
covariance to the alternate error, performing the appro-
priate alternate update step, and then converting the 
covariance back to the original error. We find the conver-
sion of the measurement Jacobians to be more straightfor-
ward and to have a smaller reliance on terms canceling 
out numerically.

Due to the dependence on the state estimate introduced 
when converting measurements, when a single measure-
ment is being used in the filter, the filter should match the 
measurement type. However, when both a right and a left 
measurement are to be used, preference should be given to 
the more accurate, frequent, or critical measurement or the 
process model differences discussed previously.

SELECTING A FILTER
As a brief overview of the prior sections, a rough outline of 
the ingredients and decision-making process of using the 
InEKF follows:

1) Confirm that the process model is group affine, or 
alternatively, use the imperfect InEKF or another 
InEKF formulation.

2) Determine whether the measurements are right or 
left invariant. Right-invariant measurements measure 

in the body frame, and left-invariant measurements 
measure in the global frame. If they are not right or 
left invariant, find a way to linearize about the right- 
or left-invariant errors.

3) Based on the type of measurement being used, choose 
a right- or left-invariant error. Choose an error type 
that best matches the most frequent or critical mea-
surements. If there is no preference, go with the right-
invariant error.

Note that alternate linearization methods may include 
standard Jacobian linearization, dropping higher-order 
terms, other approximations, and so on. This decision-
making process has been summarized in Figure 4, and 
the differences between the two filters are outlined 
in Table 1.

EXAMPLES
To illustrate how these principles might be used, we pres-
ent a number of simple examples step by step to show how 
to derive the filter. We note that these examples are pur-
posefully straightforward in order to illustrate the basic 
principles of the InEKF. In addition, see “InEKF Open 
Source Library” for our open source C++ and Python 
library and the code for the following examples. 

InEKF Example
We step through the derivation of both the right and left 
InEKFs on SE(2) for a simple odometry motion model with 
GPS, landmark, and compass sensors. We track orientation 
R and position .p p px y= <6 @  The state ( )X SE 2!  and the 
error state R3!p  are
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where , , andx yp p pi  are respectively the , ,  x yandi  invari-
ant errors on the Lie algebra.
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FIGURE 4 The decision-making process when using the InEKF. Alternate linearization methods may include standard Jacobian linear-
ization, dropping higher-order terms, other approximations, and so on. P.M.: process model; M.M.: measurement model.
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Process Model
We begin with a discrete-time process model, as is often 
common when integrating odometry measurements. The 
process model is

 ( ), ~ ( , )expX X U w w 0Nt t t t t1 R= /
+  (76)

with ( )U SE 2t !  as the change in odometry between time 
step t and .t 1+  Note that (76) is the discretization, up to 
first order, of the continuous-time model
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with ( ) .expU u tt D= /  Note that the following holds for 
, ( ):X Y SE 2!
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Thus, f satisfies the group affine property. Next, we define 
and linearize g for both the right and left filters using Theo-
rem 2 and the first-order approximation ( ) :exp I.h p p= + /

 
( ) ( ) ( )

( ) ( )
g f f I u u

A
0

0
u

r
u

r r
u

r r

r r r_

h h h h h

p p

= - = - =

= / /  
(79)

 
( ) ( ) ( )

( ) ( )
( ) ( ) .

g f f I u u
I u u I

u u Aad

u u u

u

.

_

h h h h h

p p

p p p p

= - = -

+ - +

= - = -

/ /

/ / / /

, , , , ,

, ,

, , , , ,

 
(80)

InEKF Open Source Library

To allow for easy implementation, we release an open 
source C++ InEKF library with an additional Python in-

terface. It is built with modularity in mind, allowing for easy 
inheritance and extension, in both Python and C++, of the 
base process and measurement models. This makes im-
plementing the InEKF for many process and measurement 
models simple and straightforward to do. Furthermore, all 
Lie groups that are generally used in robotics are included 
and heavily templated to allow for an arbitrary number of 
additional columns and Euclidean states.

Included are a number of examples, including an InEKF 
for underwater navigation [20] and an InEKF–SLAM imple-
mentation using the Victoria Park dataset. The library can 
be found online [S7].

In addition, we release all the code to run the simula-
tions found in this article as open source, also available on-
line [S8]. The !gures were all generated using the library’s 
Python bindings.

REFERENCES
[S7] E. Potokar, “Invariant extended Kalman !lter library,” Bitbucket. 
2024. Accessed: Oct. 1, 2024. [Online]. Available: https://bitbucket.
org/frostlab/inekf/  
[S8] E. Potokar, “Invariant extended Kalman !lter tutorial code,” Bit-
bucket. 2024. Accessed: Oct. 1, 2024. [Online]. Available: https://
bitbucket.org/frostlab/inekf_tutorial/ 
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are noted with a ˇ and after an update with a ˆ 
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Thus, we have , ,A A0 adr
u= =-,  and when applied in dis-

crete time and using Theorem 1, we have [18]

 ( )exp t I0rU D= =  (81)
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.
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(82)

Discretization removes the need to calculate u from U, 
which fits the paradigm we have mentioned, where for left-
invariant systems, right-invariant filters generally have a 
constant Ar and ,rU  while the left-invariant filter’s A,  and 
U,  are dependent upon the controls.

GPS Measurements
The GPS measurement model is

 , ~ ( , )z p w w N 0p p p p2 R= +  (83)

which can be rewritten as a left-invariant measurement:
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Thus, using the formula in (65),
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As discussed in previous sections, although linearized 
about ,p,  we can still use the measurement model with a 
right filter and rp  by the conversion in (34), although it does 
introduce a dependence on the current state estimate.

Landmark Measurements
A measurement of the relative position of a landmark with 
respect to a robot’s frame follows a similar linearization 
process. If the known landmark’s position in the world 
frame is , ,L L Lx y= <6 @  then the measurement is

 ( ) , ~ ( , )z R L p w w 0NL L L L2 R= - +<  (86)

which can be put into right-invariant form as
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and, thus, linearized as
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Compass Measurements
A compass will measure the direction of true north or, equiva-
lently, the global x-axis with respect to the local frame. This axis 
is the first column of R<  and is a right-invariant measurement

 , ~ ( , )z R w w
1
0 0Nm m m m2 R= +< ; E  (89)

that can be put into right-invariant form as
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and, thus, linearized as
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Note that in some cases, a compass will point to true north 
with a slight offset, which can be modeled using a linear 
combination of the columns of .R<  In this scenario, rather 
than use ,b 1 0 0m = <6 @  a slight modification would be 
b m m 0m x y= <6 @  for some mx and my.

Results
There is a performance difference between the right and 
left InEKFs that is largely dependent on the given type of 
measurement and measurement noise. To illustrate this, we 
run the above example on 0.5 s of simulated data, with mea-
surements and controls sampled at 100 Hz.

Both the right and the left filters are implemented with 
only left measurements, in this case, GPS. These results are 
in the first four columns of Figure 5. The right and left filters 
are then implemented with only right measurements, that 
is, the compass and landmark sensors, with results shown 
in the last four columns of Figure 5. Two right measure-
ments are used to ensure full observably. Each measure-
ment has a ( . , . ) .0 01 0 01diagR =  Each scenario is executed 
100 times, with random initial starting points sampled from 

( , ( , , )) .I 25 1 1diagN , c  The black dotted line in these plots is 
the ground truth value, except that the black dotted line in 
the Mahalanobis distance plots is the 99th percentile mark 
of a three-degrees-of-freedom chi-squared distribution.

While both filters converged within half a second or so, 
there are performance improvements when using a left filter 
with left measurements and a right filter with right measure-
ments. Most notable is the large Mahalanobis distance when 
using a mixed filter and measurement combination. This 
implies that the mixed filter has an estimated covariance 
that is much too confident about the resulting estimate, even 
though the states converge nearly as well as a nonmixed 
filter. Overconfidence can have severe consequences if the 
estimated covariance is used in a planning or SLAM algo-
rithm as a confidence interval for the state estimate.

While not shown, in the case where there are both right- 
and left-invariant measurements, the difference between 
the filters is much smaller and often insignificant. In this 
scenario, which filter is chosen will be dependent on many 
factors, including, but not limited to, which measurements 
observe the most important states, which measurements 
have the smallest covariance, and the process model differ-
ences in the “Process Model” section.
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Imperfect InEKF Example
It is often the case that part of the state to be tracked does 
not fit into a Lie group structure. In these scenarios, an 
imperfect InEKF can be used to track the Euclidean states 
alongside the Lie group. This has often been used for track-
ing IMU biases. We note that in 3D, the current state of the 
art for invariant filters and bias tracking leverages the two-
frame group [39], which we briefly discuss in the next sec-
tion. However, in 2D, due to the angular velocity bias being 
a singleton and not fitting in the two-frame group, the 
imperfect InEKF still must be used to some extent, and we 
show its usage here. The approach described in [43] also 
outlines an approach that is similar to the imperfect InEKF. 
Another alternative is the equivariant filter [44], [45], [46], 
which also exploits a symmetry property but is not limited 
to Lie groups. It is shown in [45] that the equivariant filter 
is equivalent to the InEKF when the state and output mani-
fold are Lie groups. It is shown in [47] that the equivariant 
filter can be used to effectively estimate biases.

We track orientation R, position p, and velocity v, modeled 
as an element of the Lie group ( )SE 22  or the group of double 
direct isometries [9]. An element ( )X SE 22!  is of the form
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We model the IMU measurements with Gaussian noise and 
the IMU bias with Brownian motion, as

 , ~ ( , ( ))b w w t0N 1 1~ ~ d xR= + + -#~ ~ ~ ~u  (93)

 , ~ ( , )a a b w w 0Na a a a2 1 R= + + #u  (94)

 , ~ ( , ( ))b w w t0Nb b b1 1 d xR= -#~ ~ ~ ~
o  (95)

 , ~ ( , ( ))b w w t0Na
ba

ba ba2 1 d xR= -#
o  (96)

with ,b R!~ ~  the angular velocity and its bias, respec-
tively, and ,a b Ra

2!  the linear acceleration and its bias, 
respectively. Thus, in addition to the error rh  or ,h,  we track 

,R3!g  defined as

 .
b b
b ba a a

g
g

g
= =

-
-

~ ~ ~
t
t; =E G  (97)

The error state is therefore .p g<
<<6 @  Along with the 

augmented error, we need an augmented adjoint. Since 
the bias is updated via addition, which is commutative, 
we have

  .I0
0

Ad
Ad

,X b
X

= ; E  (98)

Finally, in the update step, the Kalman gain will be split 
as ,K K K= < < <p g6 @  where Kp  will be used to update Xt  
using the matrix exponential and multiplication and Kg  
will update b ba

<<
~
t t6 @  using vector addition.
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Process Model
The continuous system dynamics are therefore [18]

 

 ( )
( )

.

R R w R w b
v Ra R a w b
p v

b w
b w

a a

b

a ba

~= = - -

= = - -

=

=

=

/ /
~ ~

~ ~

u

u

o

o

o
o

o

 

(99)
It is important to note that the process model has covari-
ance Q along with joint noise vector w, as follows:

 ( , , , , )Q 0block_diag a b ba3 3R R R R= #~ ~  (100)

 .w w w w w0a b ba3 1= #
< < < < < <
~ ~6 @  (101)

Group Affine
The deterministic no-bias version of the dynamics
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are group affine since
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Thus, the use of the InEKF on the Lie group portion of the 
state is justified.

Linearization
When using an imperfect InEKF, rather than use the for-
mulas for the error dynamics g, the error dynamics must be 
linearized by hand. First, recall from (32) and (33) that rh  
and h,  are of the form
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For tutorial purposes, in the following, we show the 
detailed calculations used to compute the error state linear 

dynamics in the joint Lie algebra and Euclidean space, first 
for the right error, then the left error. Using the fact that on 
SO(2), ,a a=-/ /<  and neglecting terms of order (| || |)O rp gi ~  
and using the expansion ,Ir r.h p+ /  the right rotational 
error dynamics are
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Using the identity
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where a R!  and ,b b b R1 2
2!= <6 @  gives
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The right positional error is derived using ,I.h p+ /  as
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Since the deterministic dynamics of g  are zeros, we have

 .dt
d A I

v
p

R
0
0
0
0
0

0
0

0
0

0
0
0
0
0

1

0
0

0

0
0
0

r
r

r

r

v
r

p
r

a

p

g

p

g

p

p

p

g

g

= =

-
-

i

~

*

*

t
t

t

R

T

S
S
S
S
S
S

R

T

S
S
S
S
S
S

; ;
V

X

W
W
W
W
W
W

V

X

W
W
W
W
W
W

E E  (110)

Following a similar process for ,h,  noting that matrices com-
mute in SO(2) and neglecting terms of order (| || |),O p g,

i ~  gives
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The left velocity error dynamics are derived as
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The left positional error dynamics are
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The resulting continuous linear system therefore has the 
state update matrix
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GPS Measurements
Similar to the odometry example, a GPS measurement is a left-
invariant measurement, with a near-identical linearized H that 
includes additional zeros for the velocity and bias states:

 .H I0 0p 2 3 2 3_
p

g

p

g
-# #

, ,= 6 =G @ G  (115)

Compass Measurements
Similarly, the compass measurement is a right-invariant 
measurement with additional zeros to obtain
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Velocity Measurements
Velocity can be measured in a number of ways, from pres-
sure sensors on aircraft to Doppler velocity logs on under-
water vehicles. Generally, velocity is measured in the local 
frame, resulting in a right-invariant measurement:

 , ~ ( , )z R v w w N 0v v v v2 1 R= + #
<  (117)

which can be rewritten in right-invariant form as
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Therefore, from (65),
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Results
To illustrate the effectiveness of the imperfect InEKF, we 
instantiate both the left and right versions on 0.5 s of simu-
lation data with the above process and measurement 
models, with measurements and controls sampled at 100 Hz. 
The results can be seen in Figure 6. Note that the biases do 
not converge in this simulation since the system is not fully 
observable [18].

Due to the simplicity of this example built on ( ),SE 22  we 
find that generally the quaternion extended Kalman filter 
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FIGURE 6 A comparison of right and left imperfect InEKFs with GPS, magnetometer, and velocity sensor measurements. Each light line 
represents a !lter implementation, with random initial starting points sampled from ( , ( , , )),, ,I 1 110 4 4diag °N l  and the dashed black line 
represents the true state. In the Mahalanobis distance plot, the dashed black line represents the 99th percentile of the distribution. The 
!lters are run for 0.5 s at 100 Hz. Note that the biases do not converge in this simulation since the system is not fully observable [18]. 
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(QEKF) and other ESKFs perform similarly to the imperfect 
InEKF. This can be seen as the lower limit for the imperfect 
InEKF; in our experience, it performs at least as well as 
other ESKFs, but in most scenarios, it has improved perfor-
mance [18], [20].

Furthermore, notice the improved performance of states 
measured with a right-invariant measurement when used 
in a right filter. For example, velocity and heading, mea-
sured with a right-invariant measurement, converge faster 
with a right filter, while position, measured with a left-
invariant measurement, converges faster with a left-invari-
ant filter. If there are specific measured states that are 
more mission critical, the filter type should be chosen to 
match those states’ measurement types. In this example, if 
position were extremely critical, a left filter should likely 
be chosen.

Two-Frame InEKF
When using SE(2) or SE(3), the position pgl

g  is in the global 
or “fixed” frame. In some cases, there are also vectors that 
need to be tracked in the local or “body” frame, such as 
IMU biases. In these scenarios, the two-frame group can be 
used to track both in a Lie group.

The two-frame group tracks a tuple (R, x, X), with ( ),R SO d!  
,x Rd M! #  and ,X Rd N! #  where vectors in x are represented 

in the global frame and vectors in X in the local frame. The 
identity is given by ( , , ),I 0 0d  the group action is defined as
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and the inverse is defined as
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From these properties, it can be shown that the two-frame 
group is a group and can be used in the InEKF. Its usage is 
beyond the tutorial nature of this article, but we point the 
readers to other literature for more information [39].

CONCLUSION
The recently developed InEKF has been experimentally 
shown to be superior to the standard EKF and ESKF. How-
ever, there does not appear to be an accessible explanation of 
the difference between the right and left InEKFs and the 
tradeoffs involved in choosing one of those implementa-
tions. We hope that this tutorial filled that gap. We have also 
included a full derivation of the associated error state 
dynamics, with the hope that these derivations will help 
others implement the InEKF for their specific applications. 
We also pointed the readers to other literature for more state-
of-the-art developments in invariant Kalman filtering, such 
as the two-frame group [39], IMU preintegration [23], [24], 

reachability [22], and observability [21]. Finally, we have 
developed an open source InEKF library with both Python 
and C++ interfaces for quick implementation of both the 
right and left InEKFs. Future work includes expansion of 
this library, along with more experimental results compar-
ing the right and left InEKF filters with each other and with 
equivalent ESKF implementations.
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