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Abstract— When interacting with other non-competitive
decision-making agents, it is critical for an autonomous agent
to have inferable behavior: Their actions must convey their
intention and strategy. For example, an autonomous car’s
strategy must be inferable by the pedestrians interacting with
the car. We model the inferability problem using a repeated
bimatrix Stackelberg game with observations where a leader
and a follower repeatedly interact. During the interactions, the
leader uses a fixed, potentially mixed strategy. The follower,
on the other hand, does not know the leader’s strategy and
dynamically reacts based on observations that are the leader’s
previous actions. In the setting with observations, the leader
may suffer from an inferability loss, i.e., the performance com-
pared to the setting where the follower has perfect information
of the leader’s strategy. We show that the inferability loss is
upper-bounded by a function of the number of interactions and
the stochasticity level of the leader’s strategy, encouraging the
use of inferable strategies with lower stochasticity levels. As
a converse result, we also provide a game where the required
number of interactions is lower bounded by a function of the
desired inferability loss.

I. INTRODUCTION

Autonomous agents repeatedly interact with other agents,
e.g., humans and other autonomous systems, in their en-
vironments during their operations. Often, the intentions
and strategies of these autonomous agents are not perfectly
known by the other agents, and the other agents rely on
inference from the past interactions when they react to the ac-
tions of the autonomous agent. For example, an autonomous
car interacts with pedestrians who intend to cross the road,
and pedestrians do not have a perfect knowledge of the
car’s strategy. Consequently, acting in an inferable way is
consequential for autonomous agents.

We model the interaction between the autonomous agent
and the other agent with a bimatrix Stackelberg game. In this
game, the autonomous agent is the leader that commits to
a strategy, and the other agent is the follower that does not
know the leader’s action and reacts to the leader’s strategy
where the leader’s actions are drawn from. The game is
repeated between the agents. While the leader follows the
same strategy at every interaction, the follower’s strategy can
change between interactions. For the autonomous car exam-
ple, the fixed strategy over actions stopping and proceeding
represents a version of the car’s software.

We consider that the follower does not have perfect infor-
mation of the leader’s strategy and relies on the observations
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from the previous rounds. In detail, at every interaction, the
follower plays optimally against the empirical action distri-
bution from the previous interactions. For example, in the
car-pedestrian scenario, the pedestrian would act based on the
frequency that the car stopped in the previous interactions.

For a traditional bimatrix Stackelberg game, the leader’s
optimal strategy may be mixed [1]. However, in the inference
setting that we consider, this strategy may not be optimal
since the follower reacts to the empirically observed strategy
of the leader, not the actual strategy. As a result, the leader
might be better off using a less stochastic strategies since
such strategies would be more inferable.

The leader’s expected return in the inference setting might
be lower than its expected return in the perfect information
setting. We call the return gap between these settings the
leader’s inferability loss.

We show that when the follower has bounded rationality
(modeled by the maximum entropy model), the leader’s
cumulative inferability loss is bounded above. The upper
bound is a function of both the stochasticity level (trace
of the covariance matrix) of the leader’s strategy and the
number of interactions. As the stochasticity level of the
leader’s strategy decreases, the inferability loss vanishes. In
the extreme case where the leader’s strategy is deterministic,
the leader does not suffer from any inferability loss; the
expected return in the inference setting is the same as
the expected return in the perfect information setting. The
inferability loss at interaction k is at most O(1/vk), implying
that O(1/¢?) interactions are sufficient to achieve a maximum
of € inferability loss.

Motivated by the bound, we use the stochasticity level as a
regularization term in the leader’s objective function to find
optimal strategies for the inference setting. Numerical experi-
ments show that the leader indeed suffers from an inferability
loss in the inference setting, and the strategies generated by
the regularized objective function lead to improved transient
returns compared to the strategies that are optimal for the
perfect information case.

Additionally, as a converse result, we provide an example
bimatrix Stackelberg game where the inferability loss at
interaction k is at least € if k is not at the order of O(1/¢*)
under the full rationality assumption for the follower.

Related work: Bimatrix Stackelberg games with a commit-
ment to mixed strategies have been extensively studied in the
literature under the assumption that the follower has perfect
knowledge of the leader’s strategy [1], [2], [3]. For these
games, an optimal strategy for the leader can be computed
in polynomial time via linear programming (assuming that
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the follower breaks ties in favor of the leader) [2]. The paper
[4] considers Stackelberg games with partial observability
where the follower observes the leader’s strategy with some
probability and does not otherwise. We consider a different
observability setting where the follower gets observations
from the leader’s strategy. Papers [5], [6] also consider this
observation setting. To account for the follower’s partial
information, [5], [6], [7] consider a robust set that repre-
sents the possible realizations of the leader’s strategy and
maximize the leader’s worst-case return by solving a robust
optimization problem. We follow a different approach and try
to maximize the leader’s expected return under observations
by relating it to the return under the perfect information
setting.

We provide a lower bound on the leader’s return that
involves the stochasticity level (inferability) of the leader’s
strategy. To our knowledge, a bound in this spirit does not
exist for Stackelberg games with observations. Works [8],
[9], [10] increase the stochasticity level of the control policy
(the leader’s strategy in our context) to improve the non-
inferability in different contexts. We consider a stochasticity
metric that coincides with the Fisher information metric
considered in [8], [9], [10]. However, unlike these works,
which focus on minimizing information and providing un-
achievability results, we provide an achievability result.

Human-robot interactions are more efficient if the human
knows the robot’s intent. Conveying intent information via
movement is explored to create legible behavior [11], [12].
These works are often concerned with creating trajectories
that are distant from the trajectories under other intents.

The leader’s optimization problem in our setting is a
bilevel optimization problem under data uncertainty [13].
Works [14], [15], [16] consider stochastic bilevel optimiza-
tion problems where first the leader commits to a strategy
before the data uncertainty is resolved, then the data uncer-
tainty is resolved, and finally, the follower makes its decision
with known data. In our problem, the distribution of data
depends on the leader’s decision', whereas [14], [15], [16]
consider a fixed distribution of data.

We represent the boundedly rational follower using the
maximum entropy model (also known as Boltzmann ratio-
nality model or quantal response) [18], [19]. Alternatively,
[5]1, [20] consider boundedly rational followers using the
anchoring theory [21] or e-optimal follower models.

II. PRELIMINARIES

A. Notation

We use upper-case letters for matrices and bold-face letters
for random variables. | - || denotes the L2 norm. A" denotes
the N-dimensional probability simplex. For z € AY, the
entropy of z, is

N
H(z) = Z z;log(1/z;)

IFor single-level stochastic optimization problems, this setting is referred
to as non-oblivious stochastic optimization [17].
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where z; is the i-th element of z. The softmax function o), :
RY — AY is defined as

exp(Az;)
Z;V:l exp(Az;)

where 7 (2); is the i-th element of o (z). The softmax func-
tion o is A-Lipschitz continuous, i.e., it satisfies ||o(z) —
a(g)ll < Allz — glfor all z,q € RV [22].

We define the stochasticity level of a probability distribu-
tion 2 € AN as

oxa(2); ==

that is the square root of the trace of the covariance matrix.

B. Bimatrix Stackelberg Games with Mixed Strategies

A bimatrix Stackelberg game is a two-player game be-
tween a leader and a follower. The leader has m (enumer-
ated) actions, and the follower has n (enumerated) actions.
We call matrix A € R™*" the leader’s utility matrix and
B € R™*" the follower’s utility matrix. When the leader
takes action 4 and the follower takes action j, the leader and
follower returns are A;; and B;; respectively.

In bimatrix Stackelberg games with mixed strategies, the
leader has a mixed strategy * € A™, and the follower has
mixed strategy y € A”. Let i and j denote the random
versions of ¢ and 7, respectively. The leader’s expected utility
is 2T Ay = Eiwgjy [4ij], and the follower’s expected
utility is " By = Eiwy joy [Bij] - When deciding on strategy
y, the follower knows the leader’s strategy . This means the
follower knows the probability distribution of the leader’s
action but does not know the leader’s realized action.

The follower’s goal is to maximize its expected return
given z, the leader’s strategy, by solving:

An optimal solution exists for the follower’s problem.
The leader’s goal is to maximize its (conservative?) ex-
pected return, i.e., solve the bilevel optimization problem:
. T *
sup minz ' Ay
zeA™ Y
st.  y* € arg max z' By.
yEA™

Note that an optimal solution may not exist for this problem.
We define

SR(z) :=minz " Ay*
o

s.t. * € arg max z ' By.
y" € arg max s By

We refer to SR as the Stackelberg return under perfect
information and full follower rationality.

2Here conservative refers to the fact that if there are multiple optimal
follower strategies, the follower chooses the worst strategy for the leader.
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C. Boundedly Rational Follower

Bounded rationality models represent the decision-making
process of an agent with limited information or information
processing capabilities and are often used to model the
decision-making process of humans [23]. We consider the
maximum entropy model (Boltzmann rationality) to repre-
sent boundedly rational followers [18].

Given the leader’s strategy =, a boundedly rational fol-
lower solves the following optimization problem

T 1
max o' By + H (v)
where A denotes the follower’s rationality level. Note that for
A € (0,00), the optimal solution for the above problem is
unique since the objective function is strictly concave and is
given by oy (B z) [22]. In words, the action probabilities are
weighted exponentially according to their expected returns.
As A — 0, the follower does not take its expected utility
z T By into account and takes all available actions uniformly
randomly. As A — oo, the follower becomes fully rational.
Given that the follower is boundedly rational with level A €
(0,00), the leader’s goal is to maximize its expected utility,
i.e., solve

max z ' Ay*

TEA™
such that y* = o, (B'z). We drop the inner optimization
problem since the optimal solution to the follower’s opti-
mization problem is unique due to strict convexity. We define

SRy (x) :=z " Ay* where y* = 0x(B ' z).

We refer to SRy as the Stackelberg return under perfect
information and bounded follower rationality.

III. PROBLEM FORMULATION
A. Repeated Bimatrix Stackelberg Games with Inference

Consider a bimatrix Stackelberg game with mixed strate-
gies that is repeated K times. However, assume the follower
does not know the leader’s fixed mixed strategy x. Instead,
the follower infers the leader’s strategy from observations
of the previous interactions. At interaction k, let Z; be the
sample mean estimation of the leader’s strategy. Specifically,

if the leader takes actions 41, ...,%x—1 at the previous k — 1
timesteps,
k—1 (.
I _ t=1 (Zt = l)
(mk)l - k _ 1 )

where (£1), is the I™ element of vector &5 and #(-) counts
the number of times the input is true.

Under these assumptions, the follower’s strategy yy at time
k depends on the leader’s actions in the previous k¥ — 1
timesteps. For this reason, y; changes over time. For exam-
ple, for a fully rational follower, y;; € arg maxycan ﬁc;By.

Next, we consider the following formulations of the
leader’s problem for different levels of follower rationality.

Fully rational follower: The leader’s decision-making
problem is to a priori select a strategy x* that maximizes its
expected cumulative return under inference, i.e., assuming
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that the follower rationally responds to the plug-in sample
mean estimator of z* at each time k. Let iy, X;, and y, be
random variables denoting the unrealized versions of iy, %
and yg, respectively. The leader’s optimal strategy is

K
lz min z ! Ay}
k=1

k

z* =arg max E
TEA™

st.yi € arg max X, By.
yEA™

Here, the expectation is over the randomness in the leader’s
actions 1y, ...,ix. The leader solves this decision problem
prior to taking any action, meaning their future actions
i1,...,ix are random variables. Since the follower’s estima-
tion X, is a function of these future actions and the follower’s
strategy y;, is a function of Xy, they are both random variables
as well and therefore bolded.

Boundedly rational follower: The leader’s decision prob-
lem is to find a strategy x* such that

K
Z acTAy,c

z* =arg max E
TEA™ 1

st y, = ox(B ).

Once again, the expectation is over the randomness in the
leader’s (random) actions iy, ...,ix.

In the Stackelberg game with inference, the leader’s strat-
egy affects the follower’s optimal strategy in two ways,
regardless of the level of follower rationality. First, as in the
original Stackelberg game formulation, the leader’s strategy
determines the expected return for different follower actions,
i.e., z' B. This affects which strategies are optimal for the
follower. Second, unlike in the perfect information Stackel-
berg game, the leader’s strategy x modifies the distribution
of its empirical action distribution X; and, consequently, the
follower’s strategy yy.

A strategy with a high Stackelberg return under perfect
information may be highly suboptimal in a Stackelberg game
with inference. Different realizations of X; lead to different
solutions for y,. If = is poorly inferred by the follower,
the follower’s strategy y, may yield poor returns when
simultaneously played with z. In the inference setting, an
optimal strategy z* will strike a balance between having
a high Stackelberg return under perfect information and
efficiently conveying information about itself to the follower.

Remark 1. Inferability is important in semi-cooperative
games where the objectives of the players are weakly pos-
itively correlated. Due to the positive correlation between
the utility matrices A and B, it is useful for the leader to
be correctly inferred by the follower. On the other hand,
since there is only a weak correlation between A and B, i.e.,
A # B, the leader’s optimal strategy may still be mixed.

B. Motivating Example: Pedestrian and Autonomous Car
Interaction

This section describes a motivating example of the inter-
action between an autonomous car and a pedestrian. Similar
scenarios have been considered in [24], [25].
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Consider an autonomous car moving in its lane. A pedes-
trian is dangerously close to the road and aims to cross.
The car has the right of way and wants to proceed, as an
unnecessary stop is inefficient. However, if the pedestrian
decides to cross the car may need to make a dangerous
emergency stop. In the event the pedestrian crosses, they
may get fined for jaywalking. The pedestrian and the car
must make simultaneous decisions that will determine the
outcome. Since the autonomous car’s software is fixed prior
to deployment, the car’s decision is drawn from a fixed
strategy that does not change over time.

TABLE I
UTILITIES FOR THE AUTONOMOUS CAR AND PEDESTRIAN INTERACTION

Pedestrian’s actions

Wait Cross

Car’s Stop | (02) ©,D

actions | Proceed | (2,0) (-8,1)
For the pedestrian, crossing has a value r{r = 2, and
potentially getting fined for jaywalking has r = —1 value.

For the car, proceeding without a stop has a value r
and making an emergency stop has r. = —8 value

Scenario 1: The car stops and the pedestrian waits for the
car. The pedestrian’s return is rf = 2 since the car’s stop
allows them to cross. The car’s return is 0 since it does not
proceed and stops unnecessarily.

Scenario 2: The car stops, but the pedestrian crosses
before the car yields the right of way. In this case, the
pedestrian’s return is rf + r{w = 1 since they cross the
road but risk being fined for jaywalking. Once again, the car
receives a return of O since it does not proceed.

Scenario 3: The car proceeds and the pedestrian waits.
The car’s return is rf)r = 2 since it makes no unnecessary
stops. The pedestrian gets a return of 0 since it can not cross.

Scenario 4: The car proceeds and the pedestrian crosses.
The pedestrian’s return is rf + ijw = 1. While the car
proceeds, it makes an emergency stop due to the crossing
pedestrian, resulting in a return of 7!, = —8.

Assume that the car stops with probability p and proceeds
with probability 1—p. If the pedestrian knows the probability
p, the pedestrian would wait if 2p+0(1—p) > 1p+1(1—p),
i.e., p > 0.5. Knowing that the pedestrian would wait when
p > 0.5, the car gets a return of Op + 2(1 — p). Knowing
that the pedestrian would cross when p < 0.5, the car gets
a return of Op — 8(1 — p). Hence, it is optimal for the car
to choose a p such that p > 0.5 and p ~ 0.5. While such
a strategy is optimal and has a return of ~ 1 for the car, it
relies on the fact that the pedestrian has perfect information
of the car’s strategy. Such a strategy may not be optimal if
the pedestrian does not know p and relies on observations.

Consider a scenario where the pedestrian and car will
interact a certain number of times. The pedestrian estimates
the car’s fixed strategy using observations from previous
interactions. If in most of the previous interactions the car
stopped, the pedestrian would expect the car to stop in
the next interaction. Knowing that the pedestrian relies on
observations, the car should pick an easily inferable strategy.

=2,
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If the pedestrian has a good estimate p of the car’s strategy,
the pedestrian will act optimally with respect to the car’s
actual strategy. On the flip side, the car will get a return
that is close to the perfect information case. For example,
consider that p = 1. In this case, the pedestrian has the
correct estimate p = 1 after a single interaction, and the car
will get a return of 0 in the subsequent interactions.

If the car’s strategy is not easily inferable, then the car may
suffer from an inferability loss. For example, if p is such
that p > 0.5 and p =~ 0.5, the car has an expected return
of ~ —1.5 in the second interaction. This is significantly
lower compared to the expected return of 1 in the perfect
information case. This is because the pedestrian’s estimate
will be p = 0 with probability 1 — p ~ 0.5. In those events,
the pedestrian will cross, and the car will get —8 return
if it proceeds. Overall, a strategy that maximizes the car’s
expected return over a finite number of interactions should
take the pedestrian’s estimation errors into account.

IV. PERFORMANCE BOUNDS UNDER INFERENCE

In this section, we compare the leader’s expected utility
under repeated interactions with inference with the leader’s
expected utility under repeated interactions with perfect
information. We define

minz " Ay;
Vi

IR (z) :=E [ ] sty € arg max %, By
yeEA™

that is the leader’s expected (conservative) return under

inference against a fully rational follower at interaction k.

Similarly, we define

K
IR, A(z) :=E ZxTAyk st.y, = ox(B %)
k=1

that is the leader’s expected return under inference against
a boundedly rational follower at the k™ interaction. The
leader’s expected return at the first interaction is arbitrary
since the follower does not have any action samples. Hence,
we are interested in analyzing the expected cumulative return
for interactions k£ = 2, ..., K. Due to the linearity of expec-
tation, the expected cumulative return can be represented as
a sum of expected returns of every interaction. In the fully
rational follower setting

Z IRy(z

Z min z" Ay;

k2’“

where y; € argmaxyca-r f(;chy, and in the boundedly
rational follower setting

ZIRIM

where y, = ox(B T %g).

Z xTAyk
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A. Achievability Bound for a Boundedly Rational Follower

The follower uses the sample mean estimator Zj to infer
the leader’s strategy x. As k — oo, the estimate converges
to the true distribution z. Given that o(z) is a continuous
mapping, the leader’s expected utility under inference, i.e.
the observation return, converges to the expected utility in
the perfect information setting, i.e., the Stackelberg return.
However, with a finite number of interactions these returns
are not necessarily the same, and the leader may suffer
from an inferability loss. The following result shows that
the inferability loss is upper bounded by a function of the
trace of the covariance matrix of the leader’s strategy.

Theorem 1. Define d/ = max; ; B; j—min; ; B; j and d' =
max; j Ai g minm Ai g We have

d'd an’\/my ()

(K —1)SRx(z ZIRk A Z
= 4/(k-1)
Remark 2. There are % ~ (k—1)™"! (assuming

k > m) different values of . Computing the exact value
of IR may require evaluating the expected return under all
possible realizations of Zy.

The cumulative inferability loss grows sublinearly, i.e,

K d'df a2 /mu(z)
kZZQ /=1 =0 (\/E)\V(m)) .

As the leader’s strategy becomes deterministic, i.e.,
v(z) — 0, the inferability loss vanishes to 0. In the extreme
case where the leader’s strategy is deterministic v(z) = 0,
the leader does not suffer from an inferability loss. As the
follower becomes irrational, i.e., A — 0, the inferability
loss vanishes to 0, and when the follower is fully irrational,
A = 0, the leader does not suffer from an inferability loss
since the follower’s strategy is uniformly random and does
not depend on observations.

The leader’s optimal strategy under inference depends
on various factors. Such a strategy should have a balance
between having a high Stackelberg return under perfect
information and having a minimal inferability loss, i.e.,
efficiently conveying information about itself to the follower.

The proof’ of Theorem 1 follows from the Lipschitz
continuity of the follower’s response o(-), the Lipschitz
continuity of the leader’s return for different values of y,
and the concentration of X;, around z(yx).

B. Converse Bound for a Fully Rational Follower

Theorem 1 shows that with a boundedly rational fol-
lower, the gap between the leader’s expected return in the
perfect information setting and in the inference setting,
SR (z) — IRk (), is at most at the order of O(1/vk) at
interaction k. In other words, after O(1/¢?) interactions, we
have SRy (z) — IRy x(z) < e. In this section, we give an
example for the fully rational follower setting that matches

3The proof for all results can be found at https://arxiv.org/abs/
2310.00468.
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the upper bound: O(1/¢*) interactions are required to achieve

SR(z) — IR (x) < e. We consider
0 0 2 1
a=0 4 2= 1 M
For these choices of A and B, we have
1
v* = sup mmxTAy st. y* € arg max J;TBy ==
zeAm  Y* 2

Proposition 1. Let A and B be as defined in (1). For every
€ € (0,1/2) and = € A? such that SR(z) > (1/2) — ¢, if

1 — 20e + 132¢2

k<
32¢2

)

then

SR(z) — IRy(z) > €

For small enough ¢, the term 1/(32¢2) dominates the
other terms. If there are o(1/?) interactions, then the leader’s
expected return under inference is at least ¢ worse than its
return under perfect information.

The strategies with near-optimal Stackelberg returns, i.e.,
SR(z) > (1/2) — ¢, will have poor returns under inference
since they are close to the decision boundary where the
follower abruptly changes its strategy and the empirical dis-
tribution may be on the other side of the decision boundary.

V. NUMERICAL EXAMPLES

In this section, we evaluate the effect of inference on
repeated bimatrix Stackelberg games with boundedly rational
followers. As an example, we consider the aforementioned
car-pedestrian interaction and randomly generated bimatrix
games. For clarity of presentation, we plot the average return
L S, IRy, \(x), which is the expected cumulative return
up to interaction K divided by K. We approximate the
expectation with repeated simulations.

a) Car-Pedestrian Interactions: We consider the bi-
matrix game presented in Table I. We simulate the game
play under inference for 100 interactions with a rationality
constant A = 100. The car’s strategy is determined by p, i.e.,
the probability the car stops, and for A = 100, the optimal
p is 0.53 in the perfect information setting. We repeat the
simulation 10,000 times, and the leader’s average expected
return for different values of p. Results are shown in Fig. 1.

Each strategy converges to its perfect information case
as the number of interactions increases. In the long run, the
optimal strategy for the car in the perfect information setting,
i.e., p = 0.53, would achieve the highest return. However,
after 100 interactions, this strategy is still underperforming
compared to more deterministic strategies. This is because
a small error in the pedestrian’s estimation p, results in
large changes in the pedestrian’s strategy, demonstrating the
impact inference has on the leader’s return. On the other
hand, as we expected, the strategies with higher stopping
probabilities achieve higher transient returns: More deter-
ministic strategies are easier for the pedestrian to infer at
small time horizons K, and any error in p, results in only
small changes to the pedestrian’s strategy.
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b) Randomly Generated Bimatrix Games: We evaluate
the performance under inference for randomly generated
bimatrix games when the follower has bounded rationality.
From the achievability bound given in Theorem 1,

K
(K —1)SRx(z) — cv(z) < ZIRky)\(z)
k=2

for some constant ¢ depending on K, A and B. We use v as
a regularizer and optimize the bound for fixed values of c:
z*(c) = arg max SRy (z) — ¢ (v(z))%.
TEA™

and compare the performance of leader strategies for differ-
ent values of c. We replace v with v2? in the optimization
problem since the gradients of v are Lipschitz continuous.
We note that even when c 0, this is a nonconvex
optimization problem. To find a maximum, we use gradient
descent with decaying stepsize. We use the leader’s optimal
strategy from the Stackelberg game with a fully rational
follower as the starting point for the gradient descent.

In this example, we randomly generate bimatrix games.
For each bimatrix game, the entries of the leader’s utility
matrix A are uniformly randomly distributed between 0 and
1. The follower’s utility matrix B A/2 + C/2, where
C is a uniformly randomly distributed matrix between 0
and 1. This construction makes A and B weakly positively
correlated highlighting the importance of mixed strategies
and inferability as explained in Remark 1.

We randomly generate 10,000 4 x 4 bimatrix games. For
each random bimatrix game, we find the leader’s strategy
z*(c) for ¢ = 0,1, 10, and 100. For each bimatrix game, we
simulate play for 100 interactions with rationality constant
A = 100. We repeat the simulations 100 times, and the
leader’s return is averaged at each interaction over these sim-
ulations. Then, the leader’s average return until interaction k
for each bimatrix is averaged at each interaction k over all
bimatrix games. Results are shown in Fig. 2.

In these simulations, higher regularization constants corre-
spond to more inferable (less stochastic) strategies, as more
weight is given to the stochasticity level of a strategy. The
optimal strategies for the perfect information setting z*(c =
0) (the optimal strategy with no stochasticity regularization)
achieves a higher average expected return in the long run (af-
ter 45 interactions) since the follower’s estimation accuracy
improves with more interactions. However, these strategies
still suffer inferability loss after 100 interactions. For the first
45 interactions, the regularization constant ¢ = 100 yields
higher average returns, and the average return reaches its
final value even after the first interaction since the generated
strategies are deterministic and estimated by the follower
perfectly even with a single sample.
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Fig. 1. The car’s average return in the pedestrian-car example. Solid lines

represent the average return for different strategies where p is the probability
of the car stopping. Dashed lines represent the average return per interaction
under perfect information, i.e., z ' Aoy (B z) for z = [p,1 — p|.
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Fig. 2. The leader’s average return for the randomly generated 4x4

bimatrix games. Solid lines represent the average return for the bound’s
local maxima for different values of the regularization constant c. Dashed
lines represent the average return per interaction under perfect information,
ie., (£*(c))) T Aox (BT z*(c)).

VI. CONCLUSIONS

When interacting with other non-competitive agents, an
agent should have an inferable behavior to inform others
about intentions effectively. We model the inferability prob-
lem using a repeated bimatrix Stackelberg game where the
follower infers the leader’s strategy via observation from
previous interactions. We show that in the inference setting,
the leader may suffer from an inferability loss compared to
the perfect information setting. However, this loss is upper
bounded by a function that depends on the stochasticity level
of the leader’s strategy. The bound and experimental results
show that to maximize the transient returns, the leader may
be better off using a less stochastic strategy compared to the
strategy that is optimal in the perfect information setting.
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