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Abstract

Developing autonomous agents that can strate-
gize and cooperate with humans under information
asymmetry is challenging without effective com-
munication in natural language. We introduce a
shared-control game, where two players collec-
tively control a foken in alternating turns to achieve
a common objective under incomplete information.
We formulate a policy synthesis problem for an au-
tonomous agent in this game with a human as the
other player. To solve this problem, we propose a
communication-based approach comprising a lan-
guage module and a planning module. The lan-
guage module translates natural language messages
into and from a finite set of flags, a compact rep-
resentation defined to capture player intents. The
planning module leverages these flags to compute a
policy using an asymmetric information-set Monte
Carlo tree search with flag exchange algorithm we
present. We evaluate the effectiveness of this ap-
proach in a testbed based on Gnomes at Night, a
search-and-find maze board game. Results of hu-
man subject experiments show that communication
narrows the information gap between players and
enhances human-agent cooperation efficiency with
fewer turns.

1 Introduction

Developing autonomous agents capable of cooperative strate-
gic planning in games under incomplete information is an
important problem in human-agent interaction. Agents with
such capabilities hold the potential to improve how they work
with humans in a diverse range of settings, from virtual ap-
plications like strategy board games [Bard et al., 2020] and
action video games [Carroll et al., 2019] to physical applica-
tions like assistive wheelchairs [Goil et al., 2013].

In games where the information available to each player is
different or incomplete, cooperation between players is chal-
lenging without an effective exchange of information. This

*The source code and the full paper with appendix can be found
at https://github.com/vivianchen98/shared_control_language.
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Cooperative-control Game
under Incomplete Information
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Figure 1: An illustration of the shared-control game in Definition 1.

information asymmetry, often resulting from a partial obser-
vation of underlying game states or an incomplete grasp of
overall game dynamics, can lead to actions that are either mis-
aligned with the team’s objectives or suboptimal for coordi-
nation. To overcome this challenge, it is crucial for players to
engage in effective communication to exchange relevant in-
formation at runtime. If only autonomous agents are playing
such games, they can accomplish this exchange in a struc-
tured manner, for example, with limited hints in the game of
Hanabi [Bard ez al., 2020].

When an autonomous agent needs to partner with a human
player, this challenge of effective information exchange be-
comes more pronounced. Humans typically rely on natural
language for communication, a medium that is rich, nuanced,
and inherently more complex than the structured data for-
mats that autonomous agents might use. Therefore, success-
ful collaboration between humans and agents often requires
more than communication in structured representations—it
demands communication in natural language. This require-
ment introduces an additional layer of complexity, as agents
must be able to understand and extract contextually relevant
information from natural language communication.

Consider a motivating scenario: an autonomous robot and
a human coordinator team up in a search-and-rescue mission,
navigating hazardous environments to reach a target. Both the
robot and the human have incomplete information: the robot
has sensor data of its immediate environment but lacks overall
mission context, while the coordinator has an overview plan
but no access to the robot’s detailed sensor data.

Gnomes at Night, a cooperative search-and-find maze
board game, offers a more manageable scenario with simi-
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lar characteristics [Peaceable Kingdom, 2016]. In this board
game, two players collaborate to move two magnetically con-
nected gnome pieces through a maze board to collect trea-
sures. The maze paths are different on each side of the board,
and players can only move the gnome pieces along paths vis-
ible on their side. While they cannot move the gnome pieces
through walls on their own side, they can move them through
walls on the opposite side. Both players receive identical re-
wards when reaching a treasure.

To model the described scenarios, we introduce a two-
player, turn-based game called a shared-control game, where
players collectively control a single token for a common ob-
jective under incomplete information. This game features a
shared state space and individual action spaces. Players take
turns to move the token to new states according to their pri-
vate deterministic transition functions, reflecting their respec-
tive understanding of the game dynamics. It is worth high-
lighting that each player does not know the transition func-
tion of the other player, creating a form of incomplete in-
formation different from what is typically encountered due
to partial game state observations as seen in decentralized
partially-observable Markov decision processes [Bernstein et
al., 2002]. Finally, we augment the game with a reward func-
tion to incentivize player cooperation in achieving the com-
mon objective. This game abstracts specific scenarios, offer-
ing a general framework to think about teamwork in situations
under incomplete information.

In this paper, we pose the following problem in shared-
control games: Knowing the other player is a human, how
can an autonomous agent make strategic decisions to achieve
smooth cooperation despite lacking complete information on
the game dynamics? We hypothesize that allowing players
to exchange information via natural language communication
could narrow the information gap between them and lead to
more efficient cooperation than without communication.

To test this hypothesis, we introduce a simple testbed based
on Gnomes at Night. This testbed is a discretized version of
the board game where the maze is a 9 x 9 gridworld, and play-
ers move in single steps. As illustrated in Figure 2, the token
is the magnetically connected gnome pieces, and two play-
ers see board sides with different wall layouts. This testbed
has five rounds, each featuring a different treasure location
known exclusively to one player.

We propose an approach that uses natural language com-
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Figure 2: Gnomes at Night testbed where the token is the magnet-
ically connected gnome pieces and two private transition functions
encode the wall layouts on each side of the board. Middle figure
credit to [Peaceable Kingdom, 2016].
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munication to inform an online planning algorithm. This ap-
proach includes language and planning modules interfaced
through a representation of player intents called flags. The
language module translates communication messages into
flags using a large language model. The planning module
then determines the next action based on the input flag and
the current game state and optionally generates a new flag.

We present the asymmetric information-set Monte Carlo
tree search with flag exchange (AISMCTS-F) algorithm,
which determines the flag-based policy for the planning mod-
ule. This algorithm constructs perspective-based decision
trees for each player in a turn-based manner. An ego player
only selects valid actions on its turn, and it assumes initially
all actions are valid for the other player since it does not know
the other player’s transition function. A hidden information
dictionary, stored by the ego player, records actions the other
player has rejected to improve subsequent decision-making
by avoiding these actions. AISMCTS-F also prioritizes ac-
tions that match the other player’s communicated prefer-
ences, indicated by an input flag, when faced with equally
optimal choices. Lastly, the algorithm expresses its current
best estimate of what next action the other player should take
via an output flag.

To assess the effectiveness of the proposed approach, we
conduct human subject experiments in the Gnomes at Night
testbed. We recruit human participants to play with either an-
other human, a communication-enabled agent implemented
via the proposed approach, or an agent without communica-
tion capabilities. Results indicate that enabling communica-
tion enhances human-agent cooperation efficiency, reaching
treasures in fewer turns and less time per round. However,
even with improvements via the proposed approach, human-
agent cooperation still falls short of the efficiency seen in
human-to-human gameplay, suggesting potential room for fu-
ture research. Additionally, We observe distinct communica-
tion patterns in human-agent interactions compared to those
between humans.

2 Cooperation in Shared-control Games
under Incomplete Information

To model interactions in scenarios described in Section 1,
we introduce a two-player, turn-based game, called a shared-
control game, where players need to collectively control a
single token to achieve a common objective under incom-
plete information. Within the disaster response context, the
token is the physical robot, and the two players are the robot’s
decision-making system and the human operator respectively.

Definition 1. A shared-control game where player E and
player H collectively controls a token in alternating turns is
atuple I' = (S, sinit, Stinal, AF, AY, TE, TH) where S is a fi-
nite set of states, sj;y € S is an initial state, s, € S is a
final state, .A° is a finite set of actions available to each player
i€ {E,H},and 7% : S x A® — S is a deterministic transi-
tion function for each player ¢ € {E, H}. We refer to player
E as the ego player.

The shared-control game I' starts with the token in the ini-
tial state s;,; € S. Players E and H take turns to move the
token. Either player can initiate the game by taking an action
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during the first turn. During the turn of a player 4, whom we
refer to as the player in control, it observes the current state
of the token in s € S and selects an action a from its own
action space A*. Then, the token moves to a new state s’ ac-
cording to the transition function 7°(s, a) of this player in
control. Upon transitioning to the new state s’, control passes
to the other player, i.e., if H just played, then E will take the
next turn, and vice versa. The game continues with players
alternating turns until a final state sg,, € S is reached.
Without loss of generality, assume player H 1n1t1ates the

game, a path through I' is a sequence so_>31_> --such
that s; € S, al,; € A%, and s;11 = T*(s¢,ai ;). We as-

H E
sume there exists at least one finite path sg21ys; %25 - - - _ys7
where S0 = Sinit and ST = Sfinal-

Incomplete Information. In this game, players have in-
complete information about the game dynamics. Each player
i only knows its own transition function 77 but not that of the
other player. In this paper, we also let the final state sgy, be
visible to only one player.

Common Reward. We augment I" with a common reward
function R : 8 X UjeqpapA* — R that assigns equal real-
valued reward R (s, a) to both players following the execution
of action a by either player in state s. This function can cap-
ture cooperative objectives, such as reaching a final state in
as few turns as possible.

In the Gnomes at Night testbed, the state space is the maze
grid itself, and both players have the same set of actions:
noop, right, up, left, down. Each player only sees one
side of the board, captured by a private transition function.
Players receive equal rewards for finding a treasure and in-
cur penalties for hitting walls or taking excessive steps. This
testbed lays the foundation for exploring the problem of co-
operative policy synthesis under incomplete information.

Cooperative Policy Synthesis. In a shared-control game,
we study the problem of computing cooperative policies for
an autonomous agent as the ego player E, with a human as the
other player H. We allow communication between players
via the exchange of messages. Let M be a message space,
we model the behavior of player 7 as a message-based policy
7S x M — A x M.

Problem 1. In a shared-control game I"' with a common re-
ward function R, and given a human player whose behavior
is denoted as H, to compute the ego player’s policy ¥ that
maximizes the cuamulative total reward while adhering to the
game transitions:

T
max Y R(se,ar) (1a)
t=0
s.t. S0 = Sinits (1b)
forallt > 0,
a1, = mH(s;,mF) onH’s turn,
E E __E , (1c)
apy1, My = m(s¢,mi")  onE’s turn,

3t+1:7ﬁi(3t;ai+1): on player ¢’s turn.  (1d)
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Here m! represents the message sent by player i on turn
t, and T is the turn at which the final state sg,, is reached.
We highlight the messages sent by the ego player and the hu-
man player in blue and green respectively. Each player de-
cides its next move considering the message sent by the other
player in the last turn. This problem generalizes a “mute ver-
sion”, where messages m’ remain unspecified for both play-
ers throughout all turns, offering a baseline comparison for
understanding the value of communication.

3 Related Work

Research from various fields is relevant to our problem. This
section provides a non-exhaustive overview on two fronts.

Cooperative Games. Several strategic games have stood
out as testing environments for enhancing player cooperation,
including the card game Hanabi [Bard et al., 2020], the ac-
tion video game Overcooked [Carroll et al., 2019], and di-
alogue games involving negotiation (e.g., Deal-or-No-Deal
[Lewis et al., 2017; He et al., 2018] and Diplomacy [Paquette
et al., 2019]) and coordination (e.g., MutualFriends [He et al.,
2017]). However, Gnomes at Night features a unique set of
challenges and game dynamics. Unlike Overcooked, which
operates under complete information, Gnomes at Night, sim-
ilar to Hanabi, is characterized by incomplete information.
However, the nature of this incompleteness is different: it is
due to private transition functions in Gnomes at Night instead
of partial observation of game states in Hanabi. Additionally,
Gnomes at Night requires natural language communication,
significantly different from the hint-based communication in
Hanabi and the non-verbal coordination in Overcooked. Un-
like negotiation games, Gnomes at Night focuses on pure co-
operation and collaborative problem-solving, without deceit
or manipulation. Finally, other dialogue coordination games
usually only require coordination at the end of the dialogue,
while our setting requires players to cooperate on each turn
by sharing control of a single token.

MCTS-based Planning Techniques. Monte Carlo tree
search (MCTS) is an algorithm that combines tree-based
search with Monte Carlo random sampling to efficiently ex-
plore and evaluate vast decision spaces [Browne et al., 2012].
MCTS has proven to be effective in competitive strategic
games, such as chess [Campbell et al., 2002], Shogi [Silver
et al., 2018], and Go [Silver et al., 2016; Silver et al., 20171,
making it ideal as the foundation of our planning module.
However, standard MCTS works best for games with com-
plete information, but we need to deal with games under in-
complete information. Thus, we adopt the information-set
MCTS (ISMCTS), which maintains perspective-based trees
for each player, whose nodes correspond to players’ informa-
tion sets and edges correspond to moves from that player’s
viewpoint [Cowling et al., 2012]. Recent studies have also
demonstrated the effectiveness of MCTS-based algorithms
in cooperative game contexts, such as in Settlers of Catan
[Szita et al., 2010], The Resistance [Cowling et al., 2015],
and no-press Diplomacy [Jacob et al., 2022]. Another work
enhanced ISMCTS by introducing re-determinizing methods
to prevent hidden information leakage for Hanabi [Goodman,
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Figure 3: Communication-based approach that generates 7% : S x
M — A® x M via a language module (orange trapezoid) and a
planning module (brown rectangle) interfaced through flags.

2019]. These works highlight MCTS’s versatility in not only
competitive but also cooperative settings.

4 Method

This section outlines a communication-based approach that
solves Problem 1 by leveraging information exchange
through natural language communication. It processes a hu-
man partner’s message and the current state to determine the
ego player’s next action and optionally generates a respond-
ing message. As shown in Figure 3, this approach consists
of a language module harnessing a large language model and
a planning module based on Monte Carlo tree search, inter-
faced through a finite set of flags that capture player intents
expressed in natural language messages.

We define a flag as a compact representation of intents.
In a shared-control game, the flag space F is the union of
both players’ action spaces and essential responses one player
might have to an intent the other player expresses, including
acceptance, rejection, inquiry, and no response, i.e.,

F = A" U A® U {Accept,Reject, Inquiry, None}.
2
Concretely, the flag space in the Gnomes at Night testbed is

F = {noop, right,up, left, down, 3)
Accept,Reject, Inquiry,None}.

With this representation defined, we model the ego player’s

behavior as a flag-based policy WJI? :Sx F— AE x F.

4.1 Planning Module: AISMCTS-F

This subsection presents an algorithm for the planning mod-
ule, called Asymmetric Information-Set Monte Carlo Tree
Search with Flag exchange (AISMCTS-F), that computes a
flag-based policy 71'1; from the perspective of an ego player E,
detailed in Algorithm 1.

To explain this algorithm, we introduce these notations: a
node v keeps track of its parent p(v), children C(v), incoming
action a(v), current state s(v), total reward T'(v), and visit
count N (v).

Inspired by ISMCTS [Cowling et al., 2012], this algorithm
first initializes two trees with root nodes v} for each player i.
Then the main skeleton of this algorithm (lines 1-15) unfolds
in four phases:

Algorithm 1 AISMCTS-F from player E’s perspective

Memory: hidden information dictionary €, last flag f'est
Parameter: T' = (S, sinit, Stinal, AY, AR, TE, TH), R, o0&, and
the number of iteration n
Input: current state s, € S, input flag f* € F,
Output: action a* € A%, output flag fo** € F

1: Create single-node trees with roots vf and vf respec-

tively, and initialize onRollout = False

2: for n iterations do

3: Setr = 0, s = s,., denote the player in control as 1

4 while s # sg,q do
5: a = EXPLORE(V?, )
6.
7
8
9

> Selection/Simulation
r+r+R(s,a)
s+ Ti(s,a)
for each player i do > Expansion
: v* < FINDORCREATECHILD(v, a)
10: i < the other player
11: for each player i do
12: BACKPROPAGATE(v?, 1)
13:  Reset vE « ovf, o « off
14: Set onRollout < False
15: return SELECTBESTACTION(vE, f™)

> Backpropagation

16: function FINDORCREATECHILD(v, a)
17: if not onRollout then

18: Instantiate a node u whose p(u) = v,a(u) = a
19: ifu ¢ C(v) then

20: Add u to C(v)

21: Setv < u

22: Set onRollout < True

23: return u

24: function BACKPROPAGATE(v, T)

25: N@w)« N(v)+1

26: Tw) « TwW)+r

27: if p(v) exists then

28: BACKPROPAGATE(p(v), T'(v))

* Selection: For each iteration, the algorithm traverses
both trees from the root to a leaf node by selecting nodes
that maximize the upper confidence bound (ucb) value
[Kocsis and Szepesvari, 2006]:

ucb(v) = ]1\;((11;))) +e- w’ @

where c balances exploration and exploitation'.

* Expansion: Upon reaching a leaf node that has not ex-
panded all possible actions, the algorithm chooses one
of these unexplored actions at random and adds a new
child node for this action in both trees if such a node
does not already exist.

* Simulation: From new nodes, the algorithm simulates
playouts using a rollout policy until the game ends.

'We use ucb for its computational efficiency and set ¢ = v/2.
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Figure 4: AISMCTS-F: a tree from the perspective of an ego player
E in a minimal maze example shown at the top.

* Backpropagation: Then in both trees, the algorithm
backpropagates the results to update the statistics of the
nodes visited during this iteration.

After n iterations?, the algorithm returns the action associated
with a child node that has been visited the most from among
children of the root node v¥ in the ego player’s tree.

In the proposed algorithm, we modify two key functions,
EXPLORE and SELECTBESTACTION, to utilize the informa-
tion exchanged in communication. We explain these two
functions with a tree from the perspective of an ego player
in a minimal maze example, as shown in Figure 4.

EXPLORE. This function is responsible for choosing an ac-
tion in both the Selection and Simulation phases. In a shared-
control game, each player has a private transition function
that is inaccessible to the other player. Each private transition
function 7 induces a set of valid actions in any given state
s € S, which we denote as

o'(s) = {a € AYT"(s, a) is defined}. &)

A player E thus only knows o® C AF but not o, because
such sets cannot be defined without the knowledge of 7H.
This algorithm starts with the ego player assuming all ac-
tions available to the other player are valid. Accordingly,
as illustrated in Figure 4, the ego player’s tree expands in
an interleaved way: the branching in blue from ego-player-
controlled nodes (circles) is less extensive than branching in
green from human-player-controlled nodes (squares). This
difference occurs because the ego player has less information
about the human player’s transition function than its own.
We introduce a hidden information dictionary, stored in the
ego player’s memory, as a structure to record the information
accumulated through interaction about the transition function
of the other player. For player E, We denote this structure as

Q:8 — 24" ©6)

where Q(s) C AH is the set of actions rejected by player H
at state s. In the example shown in Figure 4, the algorithm
starts the tree-construction with

Q= {s:[left],sq: [Left,down]}. @)

“We set n. = 100 to meet the real-time requirements in this paper.
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Algorithm 1 (continued)

26: function EXPLORE(v?, s)

27: if not onRollout then > Selection

28: if X (v?, s) is not instantiated then
; AHN\ Q(s), ifi=H
29: X(v',s) = ’ ’
? (v',9) {JE(S), ifi = E.
30: if ©(v',s) # 0 then
1: return a < pop(X(v?, s))
32: return a(c*) where c* = arg max,cc(yi) ucb(c)
33: else . > Simulation
AR\ Q(s), ifi=H,
34: return a Sndom {O’E(S), fi—E

35: function SELECTBESTACTION(vf, ™)
36: if f** = Inquiry then

37 fo¥t = Inquiry

38: else if f** = REJECT then
39: Add flest to Q(s(vE))
40:  elseif fi" ¢ o%(s(vE)) then
41: fout = Reject

42: Compute C = arg max ¢ (yg) V()
43:  if3cf € Cs.toa(cf) = f™ then

44: a* — fin, " ¢

45: else

46: Choose c* € C, a* + a(c")

47: if f°“* not already set then

48: Compute G = {g € C(c*)|a(g) ¢ Q(s(c*))}
49: if G = () then

50: fout = NONE

51: else

52: fo* = a(g*) where g* € argmax, s N(g)
53:  return a*, f°", and set flost « fout

This piece of information can be useful for reducing the
branching factor at the human-player-controlled nodes. Es-
sentially, if the token steps into a visited state where the hu-
man has rejected actions 2(s), the algorithm will refrain from
expanding the corresponding edges as it now believes these
actions are unfeasible and not worth exploring. For exam-
ple, since the human has rejected 1left at state s and left,
down at state s4, these corresponding edges are absent in the
example tree. In both the Selection and Simulation phases,
we use the hidden information dictionary via A" \ Q(s) (see
lines 29 and 34).

SELECTBESTACTION. This function realizes the flag ex-
change in the algorithm: given the root node whose state
s(vg) is the current state in gameplay and an input flag
f*™ € F, this function operates in three stages to compute
the next action a* and an output flag f°%“ € F.

In the initial stage (lines 36—41), the function processes
three flag types. For Inquiry, it recognizes a question from
the human player, setting the output flag f°“¢ to Inquiry
too and directing the language module to formulate a re-
sponse considering the current game information. When
encountering Re ject, it interprets the human player’s re-
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sponse as a refusal of the last proposed action f'*** and up-
dates the hidden information dictionary accordingly. Lastly,
if faced with an invalid action, it issues a Reject flag,
prompting the language module to inform the human player
of an obstructing wall, conveying hidden information from
the ego player to the human player.

The second stage (lines 42—46) in the function selects a
node ¢* from among the root node’s children and returns the
action leading to that node a* as the ego player’s next move.
The function first finds out a set of child nodes with the high-
est visit count as C (see line 42). The actions leading up
to these nodes are equally optimal. Input flags can serve to
break ties, steering the ego player towards an action preferred
by the human. For instance, in Figure 4, when both noop
and down lead to nodes with equal visit counts, an input flag
favoring down would guide the selection towards this action,
highlighted by a path in orange glow. Absent a relevant input
flag, the function may randomly select a node among C and
return the action leading to this node.

In the final stage (lines 47-52), if the output flag o is
neither set to Inquiry nor Re ject, the function generates
an output flag based on an action associated with a child node
of the previously chosen node c*, pruning any nodes with ac-
tions listed in the hidden information dictionary at c*’s state
(see line 48). The output flag is the action leading to the high-
est visit count node in the pruned list, given such a list is not
empty. In the minimal example shown in Figure 4, f°“ is
right, which says the ego player wants the other player to
move right next. However, as this move is in fact not allowed
in its maze, player H sends a Re ject flag. The algorithm
will then update the hidden information dictionary to include
right at state s4.

In the worst-case scenario, the runtime of Algorithm 1 is
O (n(l +1log S|+ |A%| + | AH])), where n is the number of
iterations and [ is the average length of simulations.

4.2 Language Module

For parsing a human message into an intent flag, we first han-
dle cases of empty or absent messages by returning a None
flag. Subsequently, we employ few-shot prompting [Brown
et al., 2020] with gpt—3.5-turbo to categorize messages
into flags. Our prompts use 6 examples that pair messages
and intent flags, with the specific prompt detailed in the sup-
plementary material.

To generate messages based on an intent flag, we use tem-
plated sentences as well as GPT-generated responses. For ac-
tion flags, our messages request human interaction using the
template “Can you {}?”. For Reject flags, which indi-
cates an action proposed by the human player is invalid for
the ego player at the current state, we notify the human with
the template “I cannot {} because there is a wall in that direc-
tion.” to explain the obstruction. For Inquiry flags, we call
gpt-3.5-turbo with current game information to gener-
ate responses to specific questions. Implementation details
for this are also available in the supplementary material.

5 Human Subject Experiment

To assess the effectiveness of the proposed communication-
based approach, we conduct human subject experiments with
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the following hypotheses:

H1. Using a large language model for inferring intents is
more accurate than for predicting next actions directly.

H2. Enabling information exchange via natural language
communication improves cooperation efficiency.

Independent Variables. We recruit participants to play
as the human player and vary the ego player among three
types: another human (H), a communication-enabled agent
(A-Comm) implemented with the proposed approach, and a
mute agent (A-Mute) implemented with the same planning
module but without communication.

Dependent Measures. We use the number of turns as a
proxy measure for cooperation efficiency in this turn-based
game and measure the time to complete each round. We also
analyze the quantity and length of messages both players sent
during gameplay.

Experiment Design. 'We employ a between-subject design,
where each participant interacts exclusively with one type of
ego player. Upon giving consent, participants are asked to
play five rounds of Gnomes at Night on our testbed website,
each displaying a different treasure location.

Participants. We recruit a total of 150 consenting partici-
pants on Prolific [Palan and Schitter, 2018] to play with the
three types of ego players. The average age is 34.71, with a
gender ratio of 0.53 female.

5.1 Results and Discussion

Regarding H1. From the human-to-human gameplay data
collected, we pick out 286 pairs of conversation snippets and
their corresponding subsequent actions. We then annotate
snippets with intent flags. Also using few-shot prompting, we
construct prompts with 10% of the tuples and evaluate our
chosen LLM, gpt-3.5-turbo, with the remaining 90%
of the tuples. The details are in the supplementary material.
Our evaluation demonstrates that predicting flags achieves an
accuracy of 74.32%, higher than the 53.31% accuracy of di-
rectly predicting the next action. This result supports hypoth-
esis H1 and justifies our proposed approach.

Regarding H2. Figure 5a shows that teams of humans and
communication-enabled agents (H + A-Comm) outperform
the teams of humans and mute agents (H + A-Mute) in 4
out of 5 rounds by taking fewer turns to reach the trea-
sure. An ANOVA analysis of three groups revealed a sig-
nificant difference in the number of turns taken (¥'(2, 627) =
10.53,p < .01), with post-hoc Tukey HSD testing confirm-
ing that H 4+ A-Comm complete rounds with fewer turns than
H + A-Mute (p < .05). These results support hypothesis H2.

Analysis on Completion Time. We also measure the time
taken to complete each round. Results in Figure 5b show
H + A-Comm reaches treasures with less or comparable time
than H + A-Mute in 4 out of 5 rounds, highlighting the value
of communication considering players do not need to spend
time sending messages in the latter case. The same figure
also shows H + A-Comm outpaces H+ H in 4 out of 5 rounds.
However, this may not be a reliable indicator that cooperation
between humans and communication-enabled agents reaches
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Figure 5: Bar plots of median cooperation efficiency measures, with 95% confidence intervals from bootstrap resampling with 10,000 samples.
Round 1, 3, 5 (green): treasure visible to human player; round 2, 4 (blue): treasure visible to ego player (see Figure 2).

the efficiency of human-to-human cooperation, since humans
may take more time to type messages.

Round 5 as a Special Case. Both turns and time taken re-
sults deviate from our hypothesis in round 5, as depicted in
the left maze of Figure 6, where a spanning wall blocks all ac-
cess to the treasure. We speculate that this unique treasure po-
sition necessitates more complex strategy coordination over
a longer time horizon than what one-step intent communica-
tion allows. Therefore, human teams significantly outperform
both types of human-agent pairs. The slight performance gap
between agents that can communicate and those that cannot
could simply be due to the time spent on communication.

Communication Paradigms. We analyze the average
number of messages each player sent during gameplay. The
data, presented in Table 1, reveals that humans exchange a
similar number of messages with comparable lengths. In con-
trast, the communication-enabled agent sends around twice
as many messages of longer lengths than those sent by its
human partner, demonstrating two different communication
paradigms. The autonomous agent appears to employ fre-
quent querying as a strategy to obtain more information from
its human partner, while human players tend to engage in
more equal conversations.

Player H / Player E H/H H/A-Comm
Average message count 735/ 7.34 9.24/17.57
Average message length 14.89/11.88 11.81/25.41

Table 1: Average message count and length per round. H + A-Mute
results are excluded since no messages are allowed.

Figure 6 qualitatively shows the effectiveness of the pro-
posed approach in learning hidden information via commu-
nication. By visualizing a heatmap of the hidden information
dictionary stored at the end of H + A-Comm gameplays, we
show that the ego player successfully discerns the general lay-
out of walls on the human player’s side. Yet, the same figure
also reveals instances of mistakenly identified walls, possibly
due to human errors or language parsing inaccuracies.
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6 Conclusion

In this paper, we introduce a shared-control game where two
players take turns to collectively control a token under incom-
plete information. We formulate a policy synthesis problem
in this game for an ego player whose partner is a human and
hypothesize that communication can narrow the information
gap between players for more efficient cooperation. Our ap-
proach combines a language module that translates natural
language messages into intent flags and a planning module
employing our AISMCTS-F algorithm for informed decision-
making. We conduct human subject experiments where 150
consenting participants play with either another human, a
communication-enabled agent, or a mute agent. Results show
that the communication-enabled agents tend to outperform
mute agents in collaboration with a human player.

Future Work. Several experiment results point to direc-
tions for future research. First, the deviations in round 5 sug-
gest future work should extend the communication mecha-
nism to support strategy-making over a longer time horizon.
Second, the false positive information in the heatmap high-
lights the need for methods more robust to human errors and
inaccuracies from language parsing. Finally, while this paper
adopts a minimal set of intent flags, the proposed approach is
a general framework that should work with any type of intent
representation, as long as it can be processed by the planning
module. Future work should explore representations that can
encode richer or composite intents.

® of ]
!
—

Figure 6: Left: maze side visible to H. Right: heatmap displaying
hidden information inferred by A-Comm.
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