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Abstract—In this study, we consider a remote estimation system
that estimates a time-varying target based on sensor data transmitted
over wireless channel. Due to transmission errors, some data packets
fail to reach the receiver. To mitigate this, the receiver uses a buffer to
store recently received data packets, which allows for more accurate
estimation from the incomplete received data. Our research focuses
on optimizing the transmission scheduling policy to minimize the
estimation error, which is quantified as a function of the age of
information vector associated with the buffered packets. Our results
show that maintaining a buffer at the receiver results in better
estimation performance for non-Markovian sources.

|. INTRODUCTION

Timely status updates from sensors is a cornerstone for
networked intelligent systems that rely on live data to make
estimations and real-time decisions. It enables these systems
to provide timely estimations, leading to intelligent and
proactive actions. For instance, autonomous vehicles depend
on real-time state estimations to make safety-critical decisions,
ensuring accident avoidance and smoother traffic integration.
Similarly, remote healthcare systems use timely inference to
monitor vital signs, allowing quick responses to health
emergencies of remote patients. In industrial loT systems, real-
time fault detection ensures operational efficiency by
addressing malfunctions before they escalate into significant
problems. But due to data loss, transmission error,
transmission delay the status updates are not always fresh,
which significantly affects the accuracy of timely predictions.
To evaluate the freshness of data updates, we use the Age of
Information (Aol) metric. Traditionally, Aol is defined as the
time difference between the current time t and the generation
time U(t) of the freshest packet delivered to the receiver, such
that A(t) = t-U(t). A smaller Aol indicates the presence of
more recent information at the receiver.

In this paper, we consider a discrete-time remote estimation
system for non-Markovian sources that consists of multiple
sensors transmitting observations to a common receiver, as
shown in Figure 1. Due to channel sharing among sensors and
potential transmission errors, the data at the receiver may
become outdated. To address the challenges posed by data

staleness and the non-Markovian nature of the sources, we This
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Fig. 1. System Model

propose a buffer-based remote estimation model. In this
model, the receiver maintains a buffer of size b for each sensor
n, storing the b most recently received data packets. After each
successful packet delivery from sensor n, the newly received
data packet is stored in the buffer, while the oldest packet is
discarded to maintain the fixed buffer size b. This setup extends
the conventional concept of Aol to an Aol vector. Specifically,
let An(t) = (An1(t),An2(t),-,Anb(t)) denote the Aol vector of the
buffered packets received from sensor n, where Ani(t)
represents the age of the i-th most recently delivered packet
from sensor n. Therefore, the first element An1(t) corresponds
to the Aol of the freshest packet, while the subsequent
elements capture the Aol values of older packets stored in the
buffer. When b = 1, the model reduces to the conventional
remote estimation framework used for Markovian sources;
see, e.g., [1]-[5]. The technical contributions of this paper are
summarized as follows:

. We formulate a transmission scheduling problem for
buffer-based remote estimation, aiming to minimize the
average estimation error of the sensors. At each time ¢,
the estimation error for sensor n is modeled as a function
of its Aol vector An(t). This framework ensures accurate
real-time estimation of non-Markovian sources, by
dynamically prioritizing sensors for transmission based on
their Aol vectors and their impact on reducing the overall
system error.

« The transmission scheduling problem is cast as a Restless
Multi-Armed Bandit (RMAB) and solved using Lagrangian
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relaxation and dual decomposition. This method
decomposes the relaxed problem into smaller sub-
problems, which can be efficiently solved using dynamic
programming. Leveraging the solution to the relaxed
problem, a Maximum Gain First (MGF) scheduling policy
is developed to address the original RMAB problem.
Notably, this method eliminates the need to satisfy the
indexability condition, which is typically required for
Whittle index-based solutions.

« Our numerical results show that maintaining a buffer at
the receiver results in better estimation for
nonMarkovian sources. To the best of our knowledge, this
is the first work to study Aol-vector-based scheduling for
remote estimation with a receiver-side buffer.

Il. RELATED WORKS

The Age of Information (Aol) has become a key metric for
quantifying data freshness in networked systems since its
introduction in [6]. Early research focused on optimizing
average and peak Aol within communication networks [7]—[9].
More recent studies have applied Aol to enhance real-time
applications, including remote inference [10], [11], edge
computing [12], and control systems [3], [7], making it a central
optimization tool. However, Aol focuses solely on timeliness
and ignores the relevance of updates. To address this,
complementary metrics such as Age of Incorrect Information
(Aoll) [13], Age of Synchronization (AoS) [14], and Value of
Information (Vol) [15] have been developed. Additionally, [16]
introduces the concept of credibility in real-time wireless
networks, focusing on minimizing the system-wide Loss-
ofCredibility (LoC) by ensuring timely packet deliveries. These
metrics extend Aol by incorporating aspects like estimation
error, context dependency, and the performance benefits of
transmitting specific updates.

Previous works have extensively applied Kalman filters in
remote estimation systems to address packet loss, delays, and
communication constraints. [17] examined the stability of
Kalman filtering over packet-erasure channels, identifying
conditions for bounded estimation error despite intermittent
observations. [18] analyzed Kalman filtering under random
delays and packet drops, demonstrating that stability
thresholds can be independent of delays under certain
conditions. However, other studies, such as [1] and [4],
highlight the interplay between Aol and remote estimation by
designing optimal sampling strategies to minimize Aol-based
estimation error. Building on this, our work incorporates the
Aol as a vector into the estimation and scheduling process,
enhancing accuracy under network constraints.

The optimization of both linear and non-linear Aol functions
for multiple source scheduling can be framed as a restless
multi-armed bandit (RMAB) problem, as explored in several
works [11], [19]-[23]. Whittle’s pioneering work [24]
introduced an index-based policy to solve RMAB problems with

binary actions. An extension of the Whittle index policy for
handling multiple actions was presented in [25], though it
requires satisfying a complex indexability condition. In addition
to Whittle index-based policies, which rely on satisfying an
indexability condition, non-indexable scheduling policies have
also been explored in studies such as [20], [22], [23], [26]. Due
to the complex buffer mechanism and channel fading
conditions, Whittle index theory could not be applied to
establish indexability for our multi-source scheduling problem.
To address this, we adopt the “Net-gain Maximization” policy
from our recent work [22], [23] and rename it as the
“Maximum Gain First” policy. This policy does not rely on the
indexability condition. It was also called the Optimal Lagrange
Index policy in [27], LP-Index policy in [28], and Gain Index
policy in [26].

I1l. MODEL AND FORMULATION
A. System Model

We consider the discrete-time remote estimation system
depicted in Figure 1, where N sensors transmit status updates
over M shared wireless channels to a common receiver. At each
time slot t € {0,1,2,...}, the receiver estimates a timevarying
target Ynt € Y using status update packets received from sensor
n up to time t. A scheduler decides which sources to select for
data transmission. The scheduler’s decision for sensor n at
time t is represented by an indicator function

(
1, if decides to transmit,
un(t) = (1)

0, otherwise.

In response to the scheduler’s decision, each sensor n submits
a time-stamped status update packet (Xn:t) of its observation
Xnt € X to a channel. However, due to transmission errors over
wireless fading channels, some packets are lost during the
transmissions. This transmission successful events can be
expressed using indicator functions cn(t) € {0,1} that are i.i.d.
across time and sensors. The transmission successful
probability is denoted by pn = Pr{c:(t) = 1}. The freshest
information the receiver gets at time t is Xnt-aa(), Which was
generated Ax(t) time slots ago. This time difference An(t) is the
Aol of sensor n. If an update is sent at beginning of time slot ¢,
it gets delivered at beginning of time slot t+1, then the Aol
evolution of the n-th source follows
(
1, if cn(Q)un(t) =1,
An(t+1) = (2)
An(t) +1, otherwise.

We assume that at a given time, each channel can serve only
one of the N sources and after every successful transmission,
the receiver sends an error free acknowledgment back to the
transmitter.
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The receiver consists of N buffers, each of a size b, connected
to the N estimators corresponding to the N sensors. Each
buffer n can store at most b packets previously received from
sensor n. The content of buffer n is
{(Xn,t-tn1(8), An,1(£)), (Xn,t=an2(6), An2(t)), .., (Xnt-ann(0,Anb(t))},
where the i-th packet consists of a stale observation Xp,c-ani(e)
from sensor n, generated Ay,i(t) time ago and its corresponding
Aol Ani(t) such that i € {1,2,..,b}. At time t+1, if the latest
transmission is successful, i.e. un(t) = 1, the buffer gets
updated with the freshest packet (Xi;1) and discards the
oldest data packet in order to maintain the fixed size of b. In
contrast, if the transmission fails, i.e. ua(t) = 0, the signal values
in the buffer contents stay the same, but their age values get
one time slot older, mathematically represented as
(Xnt-ani(t),Ani(t)+1). The transition of the Aol vector is
expressed as

An(t+1) = (3)
(
(1,An,1(t) + 1,...,An,b—1(t) + 1), if Cn(t)l,ln(t) =1, (An,l(t) +
1,An2(t) + 1,...,Anp(t) + 1), otherwise.

Estimator n takes the contents of buffer n as a feature vector
of length b and generates an output a = ¢n(Xnt-a(t),An(t)) €
A, where Xn,t-an(t) =

(Xn,t-201(6), Xn,t-An2(8),..., Xn,t-0np(8)) IS the feature vector of length
b, An(t) = (Ani(t),Anz2(t),...Ans(t)) is the age vector of the
packets in the feature vector, and ¢ : (XP x Z*b) 7— A is the
estimation function. We consider an estimator whose
estimation performance for sensor n at time slot t is measured
by a loss function Ln: Y x A 7— R, where Li(y,a) indicates the
incurred loss if the output a is used for estimation when Yy =
y. The estimation problem is formulated as errn(An(t))
=minE [L,,\(K,_,{,@,,(Xm An(t) An(t)))|An(t ] .

ped

)

The loss function Lxis defined based on the objective of the
remote estimation system [21]. For instance, in a neural
network designed for minimum mean-squared error
estimation, the loss function is given by L.(yy") = (y-y")3
where the action a = )" represents the estimate of the target
Ynt=y. In the case of softmax regression, which is a neural
network-based approach for maximum likelihood
classification, the action a = Qr corresponds to a probability
distribution over Yat, and the loss function L(y,Qr) = -log(Qr
() represents the negative log-likelihood of the target value
Yn,t:y.

B. Scheduling Policy and Problem Formulation

A scheduling policy is denoted by ™ = (ﬁ'ﬂ)i}r:l, where m, =

(un(0),un(1),...). Let II be the set of all possible causal

scheduling policies, in which every decision un(t) is made using
the current and history information available at the scheduler.

As our system consists of M different channels, the condition

Z:i\ 1 un(t) < Mg required to hold for all t.

Our goal is to find the optimal scheduling policy that
minimizes the discounted sum of the expected estimation
errors among all the N sources over an infinite time-horizon.
So the optimization problem can be formulated as

inf limsup E, [~ferr t
S Y R, nz:l g Y n n ( ))}
N , (5) s.t. X
un(t) < Mun(t) € {0,1},t =0,1,..., (6) n=1

where y € [0,1] is the discount factor and Ex[:] is the
expectation under policy m.
IV. RESTLESS MULTI-ARMED BANDIT SOLUTION

Problem (5)-(6) is an RMAB problem, considering each
source n as an arm with A,(t) as the state. To solve RMAB
problems, the Whittle index policy in [24] is the most
commonly used method. However, a key challenge in applying
the Whittle index is satisfying the problem’s indexability
condition. Due to the complex buffer state transitions, proving
indexibility is challenging in our problem. Therefore, we use a
different algorithm, following [22], which does not require
satisfying the indexability condition.

A. Lagrangian Relaxation and Dual Decomposition

To address (5)-(6), we first relax the per-time-slot channel
constraints (6) into a discounted time-summation form, as
expressed in constraint (8) of the following relaxed problem:

N e
P XX, ¢
inf limsup **ytEx [erra(An(£))], (7)
m€ll T-oo
n=1t=0
M
lim ‘B n(t)] <
moip 3" 3B )] <
n=1t=0
N e
s.t.. (8)

To solve this relaxed problem, we apply the Lagrange dual
decomposition method [24], using a Lagrange multiplier A >
0. The dual problem is formulated as
= argmaxq(A), (9)
220

where the dual function g(A) is defined as

q(d) = (10)
AM

mf lim sup xlerry (AL (1) + Aug (B)] — ——
s 30518 o 8,0+ 0] - 225

Given A, problem (10) can be decomposed into N subproblems,
and the sub-problem for sensor n is formulated as
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inf lim bupZ’} Exr, [err,(An(t)) + Aun(t)],

Tn€lln T—o00 —0

(11)

where Il is the set of all causal scheduling policies mn =
(un(0),un(1),...) of sensor n. The Lagrange multiplier A = 0 can
be considered as a transmission cost, which sensor n has to pay
for using a channel resource.

B. Optimal Solution for the Relaxed Problem (7)-(8)

The sub-problem (11) for each sensor n is a discounted
infinite-horizon MDP. Suppose that the current state Ax(t) and
action un(t) are denoted as s and a, respectively. Then, the
Bellman optimality equation for the MDP (11) is

o (8)= min Q7 \(s,a
A() = min Qi) -

Q*na(s,a) = erru(s) + Aa + )/Xpssa’Vn,)L* (s,

s

(13)

where Vpa* (+) and Q*na(+,*) are the optimal value function and
the optimal action-value function of the MDP (11),
el TL . : ior- Qs
: ithm 1 Maxi Sain Eirst Scheduling Poli
1: Input: Optimal Lagrange multiplier A* obtained by solving
(7)-(8) using (12)-(14).
2:for each time step t = 1,2,... do 3:
for each sensorn=1,2,...,.N do 4:
Update state An(t) based on (2).
Update the gain ana.(An(t)) based on (15).
6: end for
7: Select at most M sensors with the highest nonnegative
gains ana-(An(t)). 8: end for

the Q-function or Q-value. Given any A = 0, we use a dynamic
programming algorithm to solve (12)-(13).

Next, we use the stochastic sub-gradient ascent method to
solve (9) and obtain the optimal dual variable A*. At each
iteration k, the dual variable is updated as follows:

Ak + 1) = A(k [ZZWM z)fi

n=1t=0

(14)

where § > 0 is a constant, andun-kfk)(t) represents whether
sensor n is scheduled at time slot t in the optimal solution to
the sub-problem (11) when A = A(k).

C. Maximum Gain First Policy for Problem (5)-(6)

Now we present the Maximum Gain First (MGF) scheduling
policy, which is a feasible solution to the original problem (5)-
(6). Using the optimal dual variable A* of the relaxed problem
(7)-(8), the gain ana-(An(t)) of scheduling sensor n at time slot

t is defined as the difference of Q-values between not
transmitting and transmitting [22], [23]:

@i (An(8)) = Q*na-(An(8),0) - o (An(6),1). (15)

At each time slot t, the MGF policy selects no more than M
sensors that have the highest non-negative gains ana.(An(t)),
as described in Algorithm 1. We note that the MGF policy is
also the solution to the following problem:

max
un(t),n=1,....N

(16)

s.t. Zu,,(t} < M, u,(t) € {0,1}

n=1

(175

V. EVALUATION

We evaluate the performance of buffer-based remote
estimation using the following fourth-order autoregressive
system:

Xnt=0.1Xnt-1+ 0.8Xnt-4 + Wha,, (18) where Wit € R
represents i.i.d. Gaussian noise with zero mean and unit
variance. The receiver uses a Kalman filter to estimate the
current system state X, based on previously received data
packets that are stored in the buffer. The mean squared error
(MSE) of the Kalman filter is a function of Aol.
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Aoll (Aq(t)

Fig. 2. Aol A1(t) vs estimation error with fixed Az(t) = 3.

Figure 2 depicts the MSE as a function of Aol under two
scenarios: (i) buffer size b = 1, where the MSE is represented
as err(A1(t)), and (ii) buffer size b = 2, where the MSE is
represented as err(A1(t),Az2(t)). In both cases, the MSE is found
to be a non-monotonic function of Aol, consistent with the
results reported in [21]. One can observe that storing two data
packets in the buffer reduces the MSE compared to the single-
packet case in traditional remote estimation framework.

We evaluate the performance of our proposed scheduling
algorithm in minimizing the overall estimation error. The
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system consists of two sensors (N = 2) and one communication
channel (M = 1). To assess the impact of buffer size at the
receiver, we analyze two scenarios: (i) a buffer that holds a
single data packet for each sensor (b = 1) and (ii) a buffer
storing two data packets for each sensor (b = 2). Figure 3
presents the average estimation error as a function of the
transmission probability pn, assuming equal transmission
success probabilities for both sensors, i.e., p1 = p2. The results
demonstrate that, utilizing a buffer of size 2 reduces the
optimized average estimation error compared to a buffer of
size 1.

VI. CONCLUSION

In this paper, we design a remote estimation system with
buffers at the receiver storing historically received data. Our
results show that maintaining a buffer of multiple packets
reduces the estimation error for non-Markovian sources.
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