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Abstract—In this study, we consider a remote estimation system 
that estimates a time-varying target based on sensor data transmitted 
over wireless channel. Due to transmission errors, some data packets 
fail to reach the receiver. To mitigate this, the receiver uses a buffer to 
store recently received data packets, which allows for more accurate 
estimation from the incomplete received data. Our research focuses 
on optimizing the transmission scheduling policy to minimize the 
estimation error, which is quantified as a function of the age of 
information vector associated with the buffered packets. Our results 
show that maintaining a buffer at the receiver results in better 
estimation performance for non-Markovian sources. 

I. INTRODUCTION 

Timely status updates from sensors is a cornerstone for 

networked intelligent systems that rely on live data to make 

estimations and real-time decisions. It enables these systems 

to provide timely estimations, leading to intelligent and 

proactive actions. For instance, autonomous vehicles depend 

on real-time state estimations to make safety-critical decisions, 

ensuring accident avoidance and smoother traffic integration. 

Similarly, remote healthcare systems use timely inference to 

monitor vital signs, allowing quick responses to health 

emergencies of remote patients. In industrial IoT systems, real-

time fault detection ensures operational efficiency by 

addressing malfunctions before they escalate into significant 

problems. But due to data loss, transmission error, 

transmission delay the status updates are not always fresh, 

which significantly affects the accuracy of timely predictions. 

To evaluate the freshness of data updates, we use the Age of 

Information (AoI) metric. Traditionally, AoI is defined as the 

time difference between the current time t and the generation 

time U(t) of the freshest packet delivered to the receiver, such 

that ∆(t) = t−U(t). A smaller AoI indicates the presence of 

more recent information at the receiver. 

In this paper, we consider a discrete-time remote estimation 

system for non-Markovian sources that consists of multiple 

sensors transmitting observations to a common receiver, as 

shown in Figure 1. Due to channel sharing among sensors and 

potential transmission errors, the data at the receiver may 

become outdated. To address the challenges posed by data 

staleness and the non-Markovian nature of the sources, we This 
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Fig. 1. System Model 

propose a buffer-based remote estimation model. In this 

model, the receiver maintains a buffer of size b for each sensor 

n, storing the b most recently received data packets. After each 

successful packet delivery from sensor n, the newly received 

data packet is stored in the buffer, while the oldest packet is 

discarded to maintain the fixed buffer size b. This setup extends 

the conventional concept of AoI to an AoI vector. Specifically, 

let ∆n(t) = (∆n,1(t),∆n,2(t),...,∆n,b(t)) denote the AoI vector of the 

buffered packets received from sensor n, where ∆n,i(t) 

represents the age of the i-th most recently delivered packet 

from sensor n. Therefore, the first element ∆n,1(t) corresponds 

to the AoI of the freshest packet, while the subsequent 

elements capture the AoI values of older packets stored in the 

buffer. When b = 1, the model reduces to the conventional 

remote estimation framework used for Markovian sources; 

see, e.g., [1]–[5]. The technical contributions of this paper are 

summarized as follows: 

• We formulate a transmission scheduling problem for 

buffer-based remote estimation, aiming to minimize the 

average estimation error of the sensors. At each time t, 

the estimation error for sensor n is modeled as a function 

of its AoI vector ∆n(t). This framework ensures accurate 

real-time estimation of non-Markovian sources, by 

dynamically prioritizing sensors for transmission based on 

their AoI vectors and their impact on reducing the overall 

system error. 

• The transmission scheduling problem is cast as a Restless 

Multi-Armed Bandit (RMAB) and solved using Lagrangian 
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relaxation and dual decomposition. This method 

decomposes the relaxed problem into smaller sub-

problems, which can be efficiently solved using dynamic 

programming. Leveraging the solution to the relaxed 

problem, a Maximum Gain First (MGF) scheduling policy 

is developed to address the original RMAB problem. 

Notably, this method eliminates the need to satisfy the 

indexability condition, which is typically required for 

Whittle index-based solutions. 

• Our numerical results show that maintaining a buffer at 

the receiver results in better estimation for 

nonMarkovian sources. To the best of our knowledge, this 

is the first work to study AoI-vector-based scheduling for 

remote estimation with a receiver-side buffer. 

II. RELATED WORKS 

The Age of Information (AoI) has become a key metric for 

quantifying data freshness in networked systems since its 

introduction in [6]. Early research focused on optimizing 

average and peak AoI within communication networks [7]–[9]. 

More recent studies have applied AoI to enhance real-time 

applications, including remote inference [10], [11], edge 

computing [12], and control systems [3], [7], making it a central 

optimization tool. However, AoI focuses solely on timeliness 

and ignores the relevance of updates. To address this, 

complementary metrics such as Age of Incorrect Information 

(AoII) [13], Age of Synchronization (AoS) [14], and Value of 

Information (VoI) [15] have been developed. Additionally, [16] 

introduces the concept of credibility in real-time wireless 

networks, focusing on minimizing the system-wide Loss-

ofCredibility (LoC) by ensuring timely packet deliveries. These 

metrics extend AoI by incorporating aspects like estimation 

error, context dependency, and the performance benefits of 

transmitting specific updates. 

Previous works have extensively applied Kalman filters in 

remote estimation systems to address packet loss, delays, and 

communication constraints. [17] examined the stability of 

Kalman filtering over packet-erasure channels, identifying 

conditions for bounded estimation error despite intermittent 

observations. [18] analyzed Kalman filtering under random 

delays and packet drops, demonstrating that stability 

thresholds can be independent of delays under certain 

conditions. However, other studies, such as [1] and [4], 

highlight the interplay between AoI and remote estimation by 

designing optimal sampling strategies to minimize AoI-based 

estimation error. Building on this, our work incorporates the 

AoI as a vector into the estimation and scheduling process, 

enhancing accuracy under network constraints. 

The optimization of both linear and non-linear AoI functions 

for multiple source scheduling can be framed as a restless 

multi-armed bandit (RMAB) problem, as explored in several 

works [11], [19]–[23]. Whittle’s pioneering work [24] 

introduced an index-based policy to solve RMAB problems with 

binary actions. An extension of the Whittle index policy for 

handling multiple actions was presented in [25], though it 

requires satisfying a complex indexability condition. In addition 

to Whittle index-based policies, which rely on satisfying an 

indexability condition, non-indexable scheduling policies have 

also been explored in studies such as [20], [22], [23], [26]. Due 

to the complex buffer mechanism and channel fading 

conditions, Whittle index theory could not be applied to 

establish indexability for our multi-source scheduling problem. 

To address this, we adopt the “Net-gain Maximization” policy 

from our recent work [22], [23] and rename it as the 

“Maximum Gain First” policy. This policy does not rely on the 

indexability condition. It was also called the Optimal Lagrange 

Index policy in [27], LP-Index policy in [28], and Gain Index 

policy in [26]. 

III. MODEL AND FORMULATION 

A. System Model 

We consider the discrete-time remote estimation system 

depicted in Figure 1, where N sensors transmit status updates 

over M shared wireless channels to a common receiver. At each 

time slot t ∈ {0,1,2,...}, the receiver estimates a timevarying 

target Yn,t ∈ Y using status update packets received from sensor 

n up to time t. A scheduler decides which sources to select for 

data transmission. The scheduler’s decision for sensor n at 

time t is represented by an indicator function 

( 

 1, if decides to transmit, 

 un(t) = (1) 

 0, otherwise. 

In response to the scheduler’s decision, each sensor n submits 

a time-stamped status update packet (Xn,t,t) of its observation 

Xn,t ∈ X to a channel. However, due to transmission errors over 

wireless fading channels, some packets are lost during the 

transmissions. This transmission successful events can be 

expressed using indicator functions cn(t) ∈ {0,1} that are i.i.d. 

across time and sensors. The transmission successful 

probability is denoted by pn = Pr{cn(t) = 1}. The freshest 

information the receiver gets at time t is Xn,t−∆n(t), which was 

generated ∆n(t) time slots ago. This time difference ∆n(t) is the 

AoI of sensor n. If an update is sent at beginning of time slot t, 

it gets delivered at beginning of time slot t+1, then the AoI 

evolution of the n-th source follows 

( 

 1, if cn(t)un(t) = 1, 

 ∆n(t + 1) = (2) 

 ∆n(t) + 1, otherwise. 

We assume that at a given time, each channel can serve only 

one of the N sources and after every successful transmission, 

the receiver sends an error free acknowledgment back to the 

transmitter. 
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The receiver consists of N buffers, each of a size b, connected 

to the N estimators corresponding to the N sensors. Each 

buffer n can store at most b packets previously received from 

sensor n. The content of buffer n is 

{(Xn,t−∆n,1(t),∆n,1(t)),(Xn,t−∆n,2(t),∆n,2(t)),..., (Xn,t−∆n,b(t),∆n,b(t))}, 

where the i-th packet consists of a stale observation Xn,t−∆n,i(t) 

from sensor n, generated ∆n,i(t) time ago and its corresponding 

AoI ∆n,i(t) such that i ∈ {1,2,...,b}. At time t+1, if the latest 

transmission is successful, i.e. un(t) = 1, the buffer gets 

updated with the freshest packet (Xn,t,1) and discards the 

oldest data packet in order to maintain the fixed size of b. In 

contrast, if the transmission fails, i.e. un(t) = 0, the signal values 

in the buffer contents stay the same, but their age values get 

one time slot older, mathematically represented as 

(Xn,t−∆n,i(t),∆n,i(t)+1). The transition of the AoI vector is 

expressed as 

∆n(t + 1) = (3) 

( 

(1,∆n,1(t) + 1,...,∆n,b−1(t) + 1), if cn(t)un(t) = 1, (∆n,1(t) + 

1,∆n,2(t) + 1,...,∆n,b(t) + 1), otherwise. 

Estimator n takes the contents of buffer n as a feature vector 

of length b and generates an output a = ϕn(Xn,t−∆n(t),∆n(t)) ∈ 

A, where Xn,t−∆n(t) = 

(Xn,t−∆n,1(t),Xn,t−∆n,2(t),...,Xn,t−∆n,b(t)) is the feature vector of length 

b, ∆n(t) = (∆n,1(t),∆n,2(t),...,∆n,b(t)) is the age vector of the 

packets in the feature vector, and ϕ : (Xb × Z+b) 7→ A is the 

estimation function. We consider an estimator whose 

estimation performance for sensor n at time slot t is measured 

by a loss function Ln : Y × A 7→ R, where Ln(y,a) indicates the 

incurred loss if the output a is used for estimation when Yn,t = 

y. The estimation problem is formulated as errn(∆n(t)) 

 

The loss function Ln is defined based on the objective of the 

remote estimation system [21]. For instance, in a neural 

network designed for minimum mean-squared error 

estimation, the loss function is given by Ln(y,yˆ) = (y−yˆ)2, 

where the action a = yˆ represents the estimate of the target 

Yn,t = y. In the case of softmax regression, which is a neural 

network-based approach for maximum likelihood 

classification, the action a = QY corresponds to a probability 

distribution over Yn,t, and the loss function L(y,QY ) = −log(QY 

(y)) represents the negative log-likelihood of the target value 

Yn,t = y. 

B. Scheduling Policy and Problem Formulation 

A scheduling policy is denoted by , where πn = 

(un(0),un(1),...). Let Π be the set of all possible causal 

scheduling policies, in which every decision un(t) is made using 

the current and history information available at the scheduler. 

As our system consists of M different channels, the condition

 is required to hold for all t. 

Our goal is to find the optimal scheduling policy that 

minimizes the discounted sum of the expected estimation 

errors among all the N sources over an infinite time-horizon. 

So the optimization problem can be formulated as 

 , (5) s.t. X 

un(t) ≤ M,un(t) ∈ {0,1},t = 0,1,..., (6) n=1 

where γ ∈ [0,1] is the discount factor and Eπ[·] is the 

expectation under policy π. 

IV. RESTLESS MULTI-ARMED BANDIT SOLUTION 

Problem (5)-(6) is an RMAB problem, considering each 

source n as an arm with ∆n(t) as the state. To solve RMAB 

problems, the Whittle index policy in [24] is the most 

commonly used method. However, a key challenge in applying 

the Whittle index is satisfying the problem’s indexability 

condition. Due to the complex buffer state transitions, proving 

indexibility is challenging in our problem. Therefore, we use a 

different algorithm, following [22], which does not require 

satisfying the indexability condition. 

A. Lagrangian Relaxation and Dual Decomposition 

To address (5)-(6), we first relax the per-time-slot channel 

constraints (6) into a discounted time-summation form, as 

expressed in constraint (8) of the following relaxed problem: 

 N ∞ 

 inf limsup XXγtEπ [errn(∆n(t))], (7) 
π∈Π T→∞ 

n=1 t=0 

 N ∞ 

 s.t.. (8) 

To solve this relaxed problem, we apply the Lagrange dual 

decomposition method [24], using a Lagrange multiplier λ ≥ 

0. The dual problem is formulated as 

λ∗ = argmaxq(λ), 
λ≥0 

where the dual function q(λ) is defined as 

(9) 

q(λ) = (10) 

. 

Given λ, problem (10) can be decomposed into N subproblems, 

and the sub-problem for sensor n is formulated as 



114 

Authorized licensed use limited to: Auburn University. Downloaded on April 25,2025 at 18:20:55 UTC from IEEE Xplore.  Restrictions apply.  

 

where Πn is the set of all causal scheduling policies πn = 

(un(0),un(1),...) of sensor n. The Lagrange multiplier λ ≥ 0 can 

be considered as a transmission cost, which sensor n has to pay 

for using a channel resource. 

B. Optimal Solution for the Relaxed Problem (7)-(8) 

The sub-problem (11) for each sensor n is a discounted 

infinite-horizon MDP. Suppose that the current state ∆n(t) and 

action un(t) are denoted as s and a, respectively. Then, the 

Bellman optimality equation for the MDP (11) is 

 , (12) 

 Q∗n,λ(s,a) = errn(s) + λa + γ Xpssa
′Vn,λ∗ (s′), (13) 

s′ 

where Vn,λ∗ (·) and Q∗n,λ(·,·) are the optimal value function and 

the optimal action-value function of the MDP (11), 

respectively. The action-value function Q∗n,λ(s,a) is also known 

as Algorithm 1 Maximum Gain First Scheduling Policy 

1: Input: Optimal Lagrange multiplier λ∗ obtained by solving 

(7)-(8) using (12)-(14). 

2: for each time step t = 1,2,... do 3:

 for each sensor n = 1,2,...,N do 4:

 Update state ∆n(t) based on (2). 

5: Update the gain αn,λ∗(∆n(t)) based on (15). 

6: end for 

7: Select at most M sensors with the highest nonnegative 

gains αn,λ∗(∆n(t)). 8: end for 

 

the Q-function or Q-value. Given any λ ≥ 0, we use a dynamic 

programming algorithm to solve (12)-(13). 

Next, we use the stochastic sub-gradient ascent method to 

solve (9) and obtain the optimal dual variable λ∗. At each 

iteration k, the dual variable is updated as follows: 

 

where β > 0 is a constant, and   represents whether 

sensor n is scheduled at time slot t in the optimal solution to 

the sub-problem (11) when λ = λ(k). 

C. Maximum Gain First Policy for Problem (5)-(6) 

Now we present the Maximum Gain First (MGF) scheduling 

policy, which is a feasible solution to the original problem (5)- 

(6). Using the optimal dual variable λ∗ of the relaxed problem 

(7)-(8), the gain αn,λ∗(∆n(t)) of scheduling sensor n at time slot 

t is defined as the difference of Q-values between not 

transmitting and transmitting [22], [23]: 

αn,λ∗(∆n(t)) = Q∗n,λ∗(∆n(t),0) − Qn,λ∗ 
∗(∆n(t),1). (15) 

At each time slot t, the MGF policy selects no more than M 

sensors that have the highest non-negative gains αn,λ∗(∆n(t)), 

as described in Algorithm 1. We note that the MGF policy is 

also the solution to the following problem: 

(16) 

 .

 (17) 

V. EVALUATION 

We evaluate the performance of buffer-based remote 

estimation using the following fourth-order autoregressive 

system: 

Xn,t = 0.1Xn,t−1 + 0.8Xn,t−4 + Wn,t, (18) where Wn,t ∈ R 

represents i.i.d. Gaussian noise with zero mean and unit 

variance. The receiver uses a Kalman filter to estimate the 

current system state Xn,t, based on previously received data 

packets that are stored in the buffer. The mean squared error 

(MSE) of the Kalman filter is a function of AoI. 

 

Fig. 2. AoI ∆1(t) vs estimation error with fixed ∆2(t) = 3. 

Figure 2 depicts the MSE as a function of AoI under two 

scenarios: (i) buffer size b = 1, where the MSE is represented 

as err(∆1(t)), and (ii) buffer size b = 2, where the MSE is 

represented as err(∆1(t),∆2(t)). In both cases, the MSE is found 

to be a non-monotonic function of AoI, consistent with the 

results reported in [21]. One can observe that storing two data 

packets in the buffer reduces the MSE compared to the single-

packet case in traditional remote estimation framework. 

We evaluate the performance of our proposed scheduling 

algorithm in minimizing the overall estimation error. The 
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system consists of two sensors (N = 2) and one communication 

channel (M = 1). To assess the impact of buffer size at the 

receiver, we analyze two scenarios: (i) a buffer that holds a 

single data packet for each sensor (b = 1) and (ii) a buffer 

storing two data packets for each sensor (b = 2). Figure 3 

presents the average estimation error as a function of the 

transmission probability pn, assuming equal transmission 

success probabilities for both sensors, i.e., p1 = p2. The results 

demonstrate that, utilizing a buffer of size 2 reduces the 

optimized average estimation error compared to a buffer of 

size 1. 

VI. CONCLUSION 

In this paper, we design a remote estimation system with 

buffers at the receiver storing historically received data. Our 

results show that maintaining a buffer of multiple packets 

reduces the estimation error for non-Markovian sources. 
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