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Hierarchical Control for Cooperative Teams in
Competitive Autonomous Racing

Rishabh Saumil Thakkar
Zhe Xu

Abstract—We investigate the problem of autonomous racing
among teams of cooperative agents that are subject to realistic
racing rules. Our work extends previous research on hierarchi-
cal control in head-to-head autonomous racing by considering a
generalized version of the problem while maintaining the two-
level hierarchical control structure. A high-level tactical planner
constructs a discrete game that encodes the complex rules using
simplified dynamics to produce a sequence of target waypoints.
The low-level path planner uses these waypoints as a reference
trajectory and computes high-resolution control inputs by solving
a simplified formulation of a racing game with a simplified repre-
sentation of the realistic racing rules. We explore two approaches
for the low-level path planner: training a multi-agent reinforcement
learning (MARL) policy and solving a linear-quadratic Nash game
(LQNG) approximation. We evaluate our controllers on simple
and complex tracks against three baselines: an end-to-end MARL
controller, a MARL controller tracking a fixed racing line, and an
LQNG controller tracking a fixed racing line. Quantitative results
show our hierarchical methods outperform the baselines in terms
of race wins, overall team performance, and compliance with the
rules. Qualitatively, we observe the hierarchical controllers mimic
actions performed by expert human drivers such as coordinated
overtaking, defending against multiple opponents, and long-term
planning for delayed advantages.

Index Terms—Game theory, hierarchical control, Monte Carlo
methods, multi-agent systems, reinforcement learning.

I. INTRODUCTION

UTONOMOUS driving has seen a rapid growth of re-
A search in academia and industry [1]. While most of these
efforts focus on day-to-day driving, there is growing interest
in autonomous racing [2]. Many advances in commercial au-
tomobiles have originated from projects invented for use in
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Fig. 1. Because players have incentive to finish ahead as a team in addition
to improving their own finishing position, Player 3’s strategy is unclear. Is there
enough time to try to pass Player 1 before the finish line? Otherwise, should it
consider slowing down on purpose to try help Player 4 pass Player 3 at the risk
of being overtaken itself or simply maintain position?

motorsports such as disc brakes, rear-view mirrors, and sequen-
tial gearboxes [3]. The same principle can apply when designing
self-driving controllers because racing provides a platform to
develop these controllers to be high-performance, robust, and
safe in challenging scenarios.

Successful human drivers are required to outperform oppo-
nents and adhere to the rules of racing. These objectives are
effectively at odds with each other, but the best racers can
achieve both. Prior approaches in autonomous racing usually
over-simplify the latter by only considering basic collision
avoidance [4], [5], [6], [7].

In reality, racing rules often involve discrete logic and com-
plex nuances [8]. For example, a driver may not change lanes
more than a fixed number of times when traveling along a straight
section of the track. While it is relatively straightforward to
describe this rule in text, it is challenging to encode it in a
mathematical formulation that can be solved by existing methods
for real-time control. Methods such as model predictive control
have to compromise by either using short planning horizons or
simply ignoring these constraints [4], [5].

In addition, real-life racing also involves an aspect of team-
work where drivers have one or more teammates, and there
is an additional objective of collectively finishing ahead of
other teams. Therefore, drivers are required to race with a
combination of cooperative and competitive objectives in mind
while continuing to adhere to complex safety and fairness rules.
In such scenarios, determining the best strategy is not trivial
and requires drivers to evaluate the long-term impacts of their
choices. Consider the example in Fig. 1. Player 1 and Player
2 are on one team, and Player 3 and Player 4 are on another
team. Player 1 is clearly first and almost at the finish line, so it
is unlikely that Player 3, who is in second, can catch him before
the finish line. On the other hand, Player 4 is in last, but it is close
to Player 2 in third. Player 3 now has three high-level choices to
consider:
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Fig. 2. Two-level planning architecture of the proposed racing controller.

1) Try to overtake Player 1 before the finish line.

2) Maintain its position to the finish line.

3) Purposely slow down to block Player 2 and improve the
chances of Player 4 overtaking Player 2 at the risk of being
overtaken by Player 2.

If all players are racing independently, choice 1 would likely
be the most reasonable because that is only possibility of any
payoff. However, in the cooperative team setting, because there
is an incentive to finish higher overall as a team, Player 3
must consider the payoffs and risks associated with all three
choices. These factors are not obvious to evaluate because the
implications of the choices are not immediately observed, and it
is usually challenging to switch from one choice to another. For
example, committing to the choice 3 means that Player 3 cannot
realistically change its mind and switch to choice 1 if it realizes
the risk is too high.

This article builds on previous work on hierarchical control in
head-to-head racing [9]. The contributions of this article begin
with developing a generalized version of a the racing game
with realistic safety rules introduced in the previous paper. Our
updated formulation allows for NV players organized into teams,
and includes a mixed objective that takes into account both
individual and team performance.

We then design a two-level hierarchical controller to tackle
this complex problem. The controller considers both competi-
tive and cooperative objectives and enables us to consider the
safety rules in real-time. The two levels of the controller consist
of a high-level tactical planner and a low-level path planner.
The high-level planner creates a discrete approximation of the
general formulation, which makes it easy to model the discrete
nature of the safety rules. The output of the high-level planneris a
series of target waypoints. Given these waypoints, the low-level
path planner solves a simplified continuous state/action dynamic
game to produce control inputs that aim to reach the waypoints
as closely as possible, help teammates pass as many waypoints
as possible, and prevent opposing teams from passing waypoints
while taking into account a simplified version of the safety rules.
The control architecture is shown in Fig. 2.

Finally, we show that our hierarchical planning model outper-
forms other common approaches in a high-fidelity simulator in
terms of maximizing both cooperative and competitive measures
of performance and adherence to the safety rules. To our knowl-
edge, this is the first paper to study teamwork in the context
of autonomous racing. And while we develop our controller
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in the context of a racing game, the structure of our approach
makes it possible to reason about long-term optimal choices in
more general game-theoretic settings with complex objectives,
constraints involving temporal logic, and both continuous and
discrete dynamics. This makes it possible to apply our method
to other adversarial settings with similar properties, such as
financial systems, power systems, or air traffic control [10], [11].

II. PRIOR WORK

Because multi-agent racing is inherently a more complex
problem than single-agent lap time optimal control, most prior
work in autonomous racing is focused on single-agent lap time
optimization, with fewer and more recent developments in multi-
agent racing.

Single-agent racing approaches include both optimization
and learning-based methods. One study uses Monte Carlo tree
search to estimate where to position the car around various
shaped tracks to define an optimal trajectory [12]. Another
paper proposes a method that computes an optimal trajectory
offline and uses a model predictive control (MPC) algorithm to
track the optimized trajectory online [13]. Similarly, the Stahl
et al. [14] also perform calculations offline by creating a graph
representation of the track to compute a target path and use spline
interpolation for online path generation in an environment with
static obstacles. In the category of learning-based approaches,
Kabzan et al. [15] use online learning to update parameters of
an MPC algorithm based on feedback from applying control
inputs. Further, several works develop and compare various
deep reinforcement learning methods to find and track optimal
trajectories [16], [17], [18].

In the context of multi-agent racing works, both optimization
and learning-based control approaches are also used. Li et al. [6]
develop a mixed-integer quadratic programming formulation for
head-to-head racing with realistic collision avoidance but con-
cede that this formulation struggles to run in real-time. Another
study proposes a real-time control mechanism for a game with a
pair of racing drones [19]. This work provides an iterative-best
response method while solving an MPC problem that approx-
imates a local Nash equilibrium. It is eventually extended to
automobile racing [4] and multi-agent scenarios with more than
two racers, but they do not consider teams [5]. A fast, real-time
MPC algorithm to make safe overtakes is presented in [7], but
the method does not consider adversarial behavior from the
opposing players. Similar to the single-agent racing case, some
studies use deep learning methods to train neural network based
controllers [20], [21]. Again, all of these studies do not consider
racing rules except for collision avoidance without the nuances
of responsibility nor do they incorporate team-based objectives.

However, Wurman et al. [22] develop an autonomous racing
controller using deep reinforcement learning that considers the
rules of racing beyond collision avoidance. Their controller
outperforms expert humans while also adhering to proper racing
etiquette. It is the first study to consider nuanced safety and fair-
ness rules of racing and does so by developing a reward structure
that trains a controller to understand when it is responsible for
avoiding collisions, and when it can be more aggressive. They
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do not encode the rules directly in their model. Instead, they
refer to human experts to evaluate the behavior of their trained
deep learning controllers to adjust parameters that affect the
aggressiveness of their controller. Their control design is fully
learning-based and does not involve explicit path planning or
hierarchical reasoning. In addition, although this article models
more realistic racing behavior in multi-agent racing, it also still
lacks consideration of cooperative objectives amongst teams of
racers.

Hierarchical game-theoretic reasoning is a method that has
been previously studied in the context of autonomous driv-
ing. A hierarchical racing controller is introduced in [23] by
constructing a high-level planner with simplified dynamics to
sample sequences of constant curvature arcs and a low-level
planner to use MPC to track the arc that provided the fur-
thest progress along the track. A two-level planning system
is developed in [24] to control an autonomous vehicle in an
environment with aggressive human drivers. The upper-level
system produces a plan to be safe against the uncertainty of
the human drivers in the system by using simplified dynamics.
The lower-level planner implements the strategy determined
by the upper level-planner using precise dynamics. Similarly,
Moghadam and Elkaim [25] also study hierarchical reasoning
decision making in highway driving. They construct a high-
level planner using a trained reinforcement-learning policy to
determine lane changing plans to safely pass other drivers. The
lane changing plans are shared with low-level controllers to
execute those actions. These papers have established the power
of hierarchical reasoning in autonomous driving, but they have
only applied it in a non-adversarial context. However, in the au-
tonomous racing scenario, other participants in the system have
competing objectives, which complicates how the hierarchical
abstraction must be constructed.

Cooperative control in multi-agent systems is also an area that
has been extensively studied and applied to many domains. For
example, in a review by Wang et al. [26], the authors compile
several papers that apply multi-agent cooperative control to
some theoretical problems such as path covering, target tracking,
and distributed consensus. We have also seen it applied at an
application specific scope such as coordinated traffic control [27]
and robot soccer [28]. However, as far as our research shows,
cooperative control for autonomous racing has not been explored
previously.

While research in autonomous racing has much more liter-
ature across all of the components of development [2], almost
all of the works lack joint consideration of two important com-
ponents that would allow it to more closely resemble real-life
racing: rules in addition to basic collision avoidance and teams
of players. This project aims to fill that gap and show how game
theoretic hierarchical reasoning is a powerful tool for designing
controllers in multi-agent systems involving complex rules and
objectives.

III. TEAM-BASED MULTI-AGENT RACING
GAME FORMULATION

To motivate the proposed control design, we first outline
a dynamic game formulation of a multi-agent racing game
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involving teams. Table III, provided in the Appendix, lists all
of the variables and functions referenced in this formulation and
the formulations introduced in the following sections.

Let there be a set N of players racing over 71" discrete time
steps in 7 = {1,...,T}. We introduce a set M consisting of
mutually exclusive subsets of players in /N. Each of the sets
in M represents a team of players whose objectives involve an
incentive to collectively finish ahead of the players in the other
teams in the race. We define a racetrack using a sequence of 7
checkpoints along its center line, {c; }7_;, whose indices are in
asetC' = {1,...,7}. Each player’s continuous state (including,
e.g., position, speed, or tire wear) is denoted as x@ € X CR",
and control is denoted as uj; € U C R*. We also introduce a
pair of discrete state variables r; € C andv* € T. The index of
the latest checkpoint passed by player i at time ¢ is ¢, and it is
computed by functionp : X — C. The earliest time when player
1 reaches the final checkpoint is fyi, i.e. r; = 7. We define a
multiplier ¢ € [0, 1] to balance a player’s emphasis on its team’s
performance vs. its own performance. Using these definitions,
the objective for each Player ¢ on a team p is expressed as:

(IT+C(pl =1) X ey o
IN| = |ul

min '+ ¢ Z |-
Uy seenyUip . .
JER\
ey
In effect, the players aim to minimize their own time and the
sum of the times of their teammates to reach the final checkpoint
while maximizing the sum of the times it takes all other players to
reach the final checkpoint. While this is not the precise definition
of winning the race by coming in first place, it is a practical and
smooth approximation to that idea. Also, note that if we assume
players actindependently, i.e. setting ¢ = Oor|u| =1V u € M,
the objective is equivalent to the N-player generalization to 2-
player formulation presented in prior work [9].

Player i’s state 2 and control u are governed by known
dynamics f?. The core dynamics of the game, including those
managing the previously introduced discrete state variables, for
all players j7 € N are as follows:

ol = I (:riui) ViteT )
it =p (elanrd), VteT 3)
=1 @)
h=r1 s)
v = minf{t|r; =7 At €T} (6)

In addition to the individual dynamics, we introduce con-
straints modeling the rules of the game. To ensure that the players
stay within the bounds of the track we introduce a function,
q : X — R, which computes a player’s distance to the closest
point on the center line. This distance must be limited to the
width of the track w. Therefore, forall ¢t € 7 and j € N:

a(al) <w )

Next, we define the collision avoidance rules. We evaluate if
player 7 is “behind” player j, and depending on the condition,
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the distance between every pair of players, computed by the
function d : X — R, is required to be at least s; if player ¢ is
behind another player j or sg otherwise. Forallt € T, j € N,
and k € N\ {j} these rules are expressed by the constraint:
d(a:i, xi) > {51 playerz:behind player j )

so otherwise

Finally, players are limited in how often they may change
lanes depending on the classification of part of the track they
are located at. We assume that there are A € Z ™ lanes across all
parts of the track. If the player’s location on the track is classified
as a curve, there is no limit on lane changing. However, if the
player is at a location classified as a straight, it may not change
lanes more than L times for the contiguous section of the track
classified as a straight. We define a set S that contains all possible
states where a player is located at a straight section. We also
introduce a function z : X — {1,2,..., A} that returns the lane
ID of a player’s position on the track. Using these definitions,
we introduce a variable I calculated by the following constraint
forallt € T and j € N:

- lg—l +1 ]lz{ €S — ]lz{;les Nz (in) #z (mg—l)
0 otherwise
| ©)
17 represents a player’s count of “recent” lane changes over a
sequence of states located across a contiguous straight or curved
section of the track. However, the variable is only required to
be constrained if the player is on a straight section of the track.
Therefore, the following constraint must hold for all ¢ € T and
jE€ Nandifz] € S:
<L (10)
Most prior multi-agent racing formulations do not include
the complexities introduced through constraints (8)—(10), [4],
[51, [71, [20], [21]. Instead, they usually have a similar form re-
garding continuous dynamics and discrete checkpoints (2)—(6),
and their rules only involve staying on track (7) and collision
avoidance with a fixed distance for all players regardless of
their relative position. However, in real-life racing, there exist
complexities both in the form of mutually understood unwritten
rules and explicit safety rules [8]. As a result, we account for
two of the key rules that ensure the game remains fair and safe:
1) There is a greater emphasis on and responsibility of col-
lision avoidance for a vehicle that is following another
(8).

2) The player may only switch lanes L times while on a
straight section of the track (9)—(10).

The first rule ensures that a leading player can make a decision
without needing to consider an aggressive move that risks a rear-
end collision or side collision while turning from the players that
are following. This second rule ensures that the leading player
may not engage in aggressive swerving across the track that
would make it impossible for a player that is following the leader
to safely challenge for an overtake. While there exist functions
to evaluate these spatially and temporally dependent constraints,
their discrete nature makes them difficult to differentiate. As a
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result, most state-of-the-art optimization algorithms may not be
applicable or may struggle to find a solution in real time.

IV. HIERARCHICAL CONTROL DESIGN

In the example given in the introduction, there are three main
strategies that seem reasonable. However, there is also an infinite
set of strategies that lie between these three options. Because of
this, it is computationally infeasible to consider and compare
all of the possible strategies in terms of their satisfiability with
respect to the rules in (2)—(10) and their optimality with respect
to the objective in (1). The rules and the objective involve nonlin-
ear functions over both continuous and discrete variables, which
makes it unlikely that a mixed-integer nonlinear programming
algorithm could be used to solve the game at high frequencies
for precise control. This inherent challenge motivates the use of
methods such as deep reinforcement learning or short receding
horizons. However, we do not solely rely on these methods as
seen in previous works.

We propose a two-level hierarchical control design involving
two parts that work to ensure the rules are followed while ap-
proximating long-term optimal choices. The high-level planner
transforms the general formulation into a game with discrete
states and actions where all of the discrete rules are naturally
encoded. The solution provided by the high-level planner is a
series of discrete states (i.e waypoints) for each player, which
satisfies all of the rules. Then, the low-level planner solves a
simplified version of the racing game. The simplified version has
an objective that places greater emphasis on tracking a series of
waypoints and smaller emphasis on the original game-theoretic
objective and a reduced version of the rules. Therefore, this
simplified game can be solved by an optimization method in
real-time or be trained in a neural network when using a learning-
based method.

This control design assumes that if the series of waypoints
produced by the high-level planner is guaranteed to follow the
rules, then the control inputs generated by the waypoint tracking
low-level planner will also satisfy the rules of the original game
when applied to the actual underlying system. Fig. 3 visualizes
how overall control architecture is applied.

A. High-Level Tactical Planner

The high-level planner constructs a turn-based discrete, dy-
namic game that is an approximation of the general game (1)-
(10). In the following subsections, we discuss how we discretize
the state space, simplify the dynamics, and solve the game.

1) State Space Discretization: We begin by constructing
the discrete abstraction of the state space from the original
formulation. We do not explicitly specify any components of
players’ states when defining the original formulation because
it is agnostic to the vehicle dynamics model being considered.
However, including variables computed by constraints (3) and
(9), we assume each player’s state in the original formulation
at least consists of following five variables as they are the only
ones modeled in our dynamics and state representation: position,
velocity, number of “recent” lane changes, tire wear, last passed
checkpoint index.
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We show an overall view of our planning algorithm with the perspective of the black car at the start. There are many seemingly reasonable trajectories

in the general game (left). The high-level planner constructs a discretized approximation, which only considers nearby players (middle). The low-level controller
tracks the sequence of target waypoints calculated by the high-level planner in green, which is represented by a continuous trajectory in black (right).

We specify the play order so that the discrete game pro-
gresses by players making choices at the checkpoints indexed
by elements of C' rather than at each time-step from 7. This
transformation is natural to consider because all players must
ultimately pass all of the checkpoints in order. As a result, the
turns of the discrete game and players’ states in the discrete game
are indexed by their last passed checkpoint, and the time step
becomes a variable in the discrete game state. Furthermore, in-
dexing by the checkpoints also produces a natural discretiziation
for the position state variable in the original formulation. Around
each checkpoint, we select A (which is the number of lanes)
discrete locations along the line perpendicular to the direction
of travel. Each of the A locations evaluates to a unique lane
ID on the track when passed into function z(-) defined in the
general formulation. Therefore, we represent a player’s position
in discrete game by its lane ID for a given index of the game
state i.e., the last passed checkpoint. This choice enables us to
naturally encode the rules governing players’ lanes and ensures
that every location considered in the discrete game remains
within the bounds of the track.

The remaining components of players’ states are either
already discrete valued (such as the count of “recent lane
changes”), represented in the form of discrete ranges, or rounded
to a finite precision. For example, instead of considering real
number value for a Player i’s velocity from its state 2! = 2.5
ms~! in the original game, the discrete representation would
simply be v’ € [2,4) ms~! meaning that the continuous velocity
falls within the given range. TThese ranges are predetermined
based on the size of the state space that is manageable for the
computational resources. The overall components of Player i’s
discrete state consist of lane ID a};, velocity range v,i, number
of “recent” lane changes [, tire wear proportion e}, and time ¢},
where k is the index of the state and the last passed checkpoint
associated with the state. Fig. 4 shows how the continuous space
of the track with checkpoints (in red) is transformed into discrete
locations associated with a unique lane ID at each checkpoint (in
purple). It also illustrates how the state in the original game (left)
is transformed into the discrete game representation (right).

2) Dynamics Abstraction: Given the state space transforma-
tion, we discuss the dynamics of the discrete game. The players’
actions are defined by pairs of lane ID and target velocity range
for the upcoming checkpoint. Therefore, we approximate the

Transform into Discrete State

Original State

discrete
approximation [}
o o (] ® - @
%.On » B

Lane ID=3,
Velocity=[2, 4) m/s,
Recent lane changes=1,
Tire wear=[10, 15)%
Time = 0.5s,
Checkpoint index = 1

Position x=10 m,

Position y=15 m,
Velocity=2.5 m/s,

Recent lane changes=1,
Tire wear=10%,

Last passed checkpoint=1,
Time index=26 (0.52s)

Fig. 4. Example of a player’s state in the original game (top) is converted into
our discrete game approximation (bottom). The position is converted into a lane
ID and checkpoint index. Velocity and tire wear are projected into ranges of
some fixed size. The time step is reduced to lower, finite precision time state
in the discrete game. The recent lane changes state variable remains unchanged
because it is inherently discrete.

original dynamics using one-dimensional equations of motion
to determine the time it would take to transition from one check-
point to the next. Using those calculations, we also estimate
the remaining state variables or rule out the actions if they are
dynamically infeasible in our approximation.

To calculate updates for the elapsed time state dtx, we first
use the known track parameters (such as turning radius or lane
width) to estimate the travel distance d between a player’s lane
at the current checkpoint ¢y, to the target lane in the subsequent
checkpoint ¢y ;. If the track between two checkpoints is a
straight, the Euclidian is used to estimate the distance to travel
based on the lane width w;, difference between the player’s initial
lane and target lane, and the straight line distance between the
location of the checkpoints vy, ,.41. If the the track between the
two checkpoints is a curve, then we calculate a coarse estimate
of the distance by averaging the radius of the turn for the player’s
lane at the initial checkpoint 7, and the radius of the turn for the
player’s target lane at the next checkpoint 7, and multiply
it by the central angle of the turn 6. These calculations are
summarized below:

Vwilar = axal) + 0}y, ifRES
7'k+;'k+1 ek

(1)

otherwise

Once the distance d is known, we use the average of the
velocity range at the initial checkpoint v, average of the velocity
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range at the target checkpoint vy, and known parameters
of the vehicle to estimate minimum time it takes to travel a
given distance. The known parameters of the vehicle include
maximum acceleration @, maximum deceleration b, maximum
velocity vmax, and a derived quantity denoted as maximum
allowed velocity v,. We derive v, to be the minimum of vy,
and a calculation derived from lateral acceleration sustained
when driving in a circle. This calculation relies on the tire
wear proportion at the initial checkpoint ey, track radius at the
initial checkpoint 7y, and additional known vehicle parameters
of maximum allowed lateral acceleration ap,x and minimally
feasible lateral acceleration a,;, (i.e. lateral acceleration the
vehicle can sustain regardless of tire wear state). The equation
to compute v, is the following:

12)

Once v* is known, we have all of the components to estimate
the minimum time to travel a distance using equations of one di-
mensional motion. In the calculation, we enforce that vy +1 < v,
and disregard all actions that violate this constraint because they
would not obey the lateral acceleration or top speed limitations
of the vehicle in our approximation. In addition, we verify it is
possible to accelerate or decelerate from vy, to U541 within the
distance d. If that is not possible, then the action with average
target velocity vy is also disregarded. For the remaining cases,
we use the following calculation to determine the time update 0,
for an agent going from initial velocity vy, to target velocity U1,
maximum acceleration a, maximum braking b, and maximum
allowed velocity v,:

Vs = min{ \/(amax - (amax - amin)ek)rka 'Umax}

LTy VeUkil e vra—1
a b Vs
. - 0 UE—'E,C _vffﬁiJrl
ifv, > 7, A 2e——2b— > ()
«
52 -p2 vZ-D
Vg — Vs Vs V41 T *%
b + b + Vs )
) B diﬁi*”* YT
Sty = ifv, <o A 20 o 2L >0

_ ) - 152 a2
2dba—bvl—av? Y 2dba—bvl—av? s
—a—b k + —a—b k+1

a b
w2 52 w2-9?2
. _ de—k_ _* k41
ifv, >v N —2—32— <0
action ruled out otherwise

13)

This calculation assumes that the player accelerates or brakes
to reach v, from vy, maintains that speed for as long as possible
until the player must brake to hit 051 if U411 # v.. If there is
not enough distance to perform this maneuver and vy, < v,, we
calculate the highest velocity the player can reach given we must
end at the target velocity o1 within the distance d. All other
possible maneuvers would violate the approximated dynamical
limitations of the vehicle and are ruled out of the set of allowed
actions player may choose. We also use the time state update (13)
to estimate collision avoidance. If a player chooses a lane that a
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prior player has already selected for its turn and the difference in
the time states for these players would be smaller than some time-
window if the action is applied, then the action is disregarded
for being a high risk of collision.

Finally, in order to calculate the tire wear state update, we
use different calculations for the straight or curve sections of
the track. If the track between the checkpoints is a straight, we
multiply a tire wear factor parameter Liyqigne associated with
driving straight with the distance of the straight d. When the
track between the checkpoints is a curve, we multiply the tire
wear factor parameter Ly associated with driving on a curve,
the distance of the curve d, and an estimate for the average
lateral acceleration achieved by hitting the target velocity U1
calculated using equations of circular motion. The tire wear
update dey is calculated as follows:

dLstraight ifkeS
0k = 4 2dLanet?,, . (14)
———*>+L otherwise
Th+Tk+1

For both the time and tire wear states, the updates are added
to the initial state and projected back into their discrete ranges
or rounded to the finite precision. Note that all of the known
parameters used in our calculations are standard in most vehicle
dynamics models except for tire wear related parameters [29].
We emphasize this note because our high-level planner is de-
signed to be agnostic to the underlying dynamics model. If tire
wear is not modeled, one can just assume that ey, is always zero,
and the remaining calculations are left unchanged or unused
without impacting the discrete game implementation.

As briefly mentioned earlier, this action space abstraction also
allows us to easily evaluate or prevent actions where rules of
the game would be broken. By limiting positional choices to
fixed locations across checkpoints, we ensure that the players
always remain on track (7). Moreover, the players’ actions are
dismissed if they would violate the limit on the number of lane
changes by simply checking whether choosing a lane would
exceed their limits or checking if the location is a curve or
straight (10). Finally, other actions that could cause collisions
are also dismissed by assuming that if two players reach the same
lane at a checkpoint and have a small difference (e.g. 0.15) in
their time states, there would be a high risk of collision (8).

The game is played with each player starting at the initial
checkpoint, and it progresses by resolving all players’ choices
and state updates one checkpoint at a time. The order in which
players take their turns is determined by the player with the
smallest time state at each checkpoint. This means that players
who arrived at a checkpoint earlier get to make their choices
before players who arrived later, and that players who arrive later
get to observe the actions of the players who arrived earlier. It is
also possible to use a time-step ordering in this model, i.e. the
order determined by the one having the smallest time state across
all checkpoints, which produces a more precise representation
of the flow of information. However, we discuss in the following
subsection that the players construct the game only considering
opponents within a small radius. As a result, both methods yield
similar, if not identical, order of player turns and checkpoints.
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3) Game Solution: The objective of the discrete game is to
minimize the difference between one’s own time state aggre-
gated with the sum of one’s teammates time states at the final
checkpoint and the sum of the time states of all other players
at the final checkpoint just like the original formulation (1).
This objective is to minimize the following equation, which is
returned as the score of the game for player ¢ on team p at
terminating state of the game once all players have reached the
final checkpoint:

ti _|_< Z tk o (1+C(‘:u| - 1)) ZjEN\Mtl

15
NT— 1l (1)

kep\i

Although the discrete game model is simpler than the original
formulation, the state space grows exponentially as the number
of players, actions, and checkpoints increases. Therefore, select-
ing the density of the checkpoints is important parameter in the
model. If we introduce too many checkpoints to better model
the track, the dynamics abstractions might become too great of
a simplification to be useful and the state space would just be
unmanageable. On the other hand, too sparse of a checkpoint
setup limits the possibilities of meaningful strategic plans. Our
model sets the checkpoints to be 10 m—15 m apart.

We solve the game in a receding horizon manner by assuming
the “final” checkpoint is 8 checkpoints ahead of the ego player’s
current checkpoint and only considering opponents within a
nearby radius. It is possible that nearby players may not be at
the same checkpoint as the ego player, even if they are within
the nearby radius. To set up the initial discrete approximations
of the opponents, we can use the complete state information
to determine the components of the discrete approximation,
except for the time state component. To determine the time state
component of nearby opponent players, we additionally assume
that all players have knowledge of when every other player has
passed each checkpoint. Using this knowledge, we compute the
time difference at the last checkpoint that both the ego player and
the nearby opponent being constructed have passed, and set that
difference as the initial time state of the opponent. The remaining
steps in the initialization and updates of the opponent’s state are
the same as those discussed in previous sections.

Our choice of horizon at 8 checkpoints allows us to plan fur-
ther into the future than an MPC-based continuous state/action
space controller can handle in real time. For example, the dis-
tance covered by 8 checkpoints in our horizon is upwards of 80
meters while the MPC-based continuous controller only plans
up to 25-30 meters ahead in [4], [5]. We use the Monte Carlo
tree search (MCTS) algorithm [30] to produce an approximate
solution for our game in real time. The solution from applying
MCTS is a series of waypoints in the form of target lane IDs
(which can be mapped back to positions on track) and the target
velocities at each of the checkpoints for the ego player and
estimates of the best response lanes and velocities for the other
players.

Our discrete game abstraction is an useful representation of
real-life racing because it captures the natural discretization that
exists in the rules and strategy. For example, there are rules
governing the lane-changing, which also involve conditions on
how different parts of the track are classified. Intuition also
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suggests that frequent changes in direction are both suboptimal
and unsafe, because they destabilize vehicles and increase the
risk of collision. As a result, drivers do not frequently change
directions without good reason. Instead, they make strategic
choices about which part of the track to occupy at discrete loca-
tions, represented by the checkpoints in the discrete abstraction.
The rest of their effort is focused on reaching these planned
locations. Our hierarchical model is based on these ideas. The
high-level tactical planner produces a series of target waypoints
at each checkpoint that satisfy the rules, and the low-level path
planner determines control inputs to reach those waypoints.

B. Low-Level Controller

The low-level controller is responsible for producing the
control inputs, so it must operate in real-time. Because we
have a long-term plan provided by the high-level planner that
has considered some of the complex rules, we can formulate a
reduced version of the original game for our low-level planner.
The low-level game is played over a shorter horizon compared to
the original game of just § discrete time stepsin 7 = {1,...,0}.
We assume that the low-level planner for player ¢ has received
k waypoints, wii’ cen wii 4> from the high-level planner, and
player i’s last passed checkpoint rZ.

The low-level objective involves two components. The first
component is to maximize the difference between the sum of
its own progress and its team’s progress and sum other agents’
progress at the end of § steps where progress is indicated
by the last passed checkpoint index variable r%. The second
component is to minimize its tracking error, 77;, of every passed
waypoint wi,i- y The former component influences the player
to pass as many checkpoints as possible and aid its teammates
in passing their checkpoints, which overall, suggests helping its
team reach the final checkpoint, c;, as quickly as possible. The
latter influences the player to be close to the calculated high-level
waypoints when passing each of the checkpoints. The objective
also includes a multiplier « that balances the emphasis of the
two parts of the objective. The objective for Player 7 is written
as follows:

((1+¢(Im| = 1)) Yjew, s

. JEN\p s i j
min INT= | —7“5—(27“6
U, jen\i
r§+k ‘
+a )y n (16)
C:T’li

The players’ continuous state dynamics, calculations for each
checkpoint, and constraints on staying within track bounds (17)—
(20) are effectively the same as the original formulation. For all
players j € N, the following must hold:

x{H:f(x{,u{), ViteT (17)
T{H:p(xgﬂ,rf), ViteT (18)
i =rl (19)
qz) <w, V te T (20)
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The collision avoidance rules are simplified to just main-
taining a minimum separation sy as the high-level planner
would have already considered the nuances of rear-end colli-
sion avoidance responsibilities outlined in (8). As a result, we
require the following constraint to hold for all ¢ € T, jEN,
andk e N\ {j}:

d (xi,mf) > So 21

Finally, we define the dynamics of the waypoint error, n,f/,
introduced in the objective. It is equivalent to the accumulated
tracking error of each target waypoint that player < has passed
using a function h : X x X — R that measures the distance.
If a player has not passed a waypoint, then the error variable
indexed by that waypoint is set to 0. Its dynamics are expressed
by the following constraint:

i [T hhl) i3>y
Y 0 otherwise
Lk}

Vye{r: .. (22)

This simplified formulation in (16)—(22) is similar to the
general formulation in (1)—(10). The objective, in addition to
involving the notion of maximizing the progress of one’s team,
influences the controller to stay as close to and pass as many
checkpoints as possible (indicated by the term multiplied by
a). Furthermore, the constraints introduced by the complex
fairness and safety rules in the original formulation are simplified
or dropped because we assume them to be considered by the
high-level planner.

However, it is important to note that the high-level and low-
level planners in our system run independently and concurrently,
which can sometimes lead to violations of the rules of the
original game. This is particularly likely to happen when the
high-level planner constructs a plan based on outdated state
information. For example, the low-level planner may cause a
player to take an unexpected evasive action that exceeds its lane
changing limit while the high-level planner is still calculating
the next sequence of waypoints before this action was taken.
Because the low-level formulation does not explicitly account
for this rule, the player may attempt to change lanes again,
resulting in arule violation. Despite this limitation, our empirical
results show that the hierarchical planners are more consistent in
following the rules compared to other methods, as they generally
stay close to their original high-level plan.

‘We consider two separate computational methods to solve this
low-level formulation. The first method develops a reward and an
observation structure to represent this simplified formulation for
amulti-agent reinforcement learning (MARL) algorithm to train
a policy that serves as a controller. The second method further
simplifies the low-level formulation into a linear-quadratic Nash
game (LQNG) to compute short-horizon control inputs. We
consider two low-level methods to study the versatility of our
high-level tactical planner. Because the low-level planners still
incorporate game-theoretic planning, it enables us to compare
our hierarchical architecture with our high-level planner against
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control architectures that use a pre-computed optimal racing line
with local game-theoretic reasoning.

1) Multi-Agent Reinforcement Learning Controller: Design-
ing the MARL controller primarily involves shaping a reward
structure that models the low-level formulation. While we pro-
vide a high-level description of the reward and penalty behav-
iors below, the Appendix includes specific details about the
reward functions and when they are applied. The Appendix also
contains details regarding the neural network architecture and
details about the training procedure. In general, the RL agent
is rewarded for the following behaviors that would improve the
objective function from the low-level formulation (16):

® Passing a checkpoint with an additional reward for being

closer to the target lane and velocity.

® Minimizing the time between passing two checkpoints.

® Passing as many checkpoints in the limited time.

® Helping one’s teammates pass as many checkpoints in the

limited time with higher rewards if one’s teammates pass
the checkpoint ahead of opposing teams’ players.

On the other hand, the agent is penalized for actions that would
violate the constraints:

e Swerving too frequently on straights (10).

® Going off track or hitting a wall (20).

e Colliding with other players (21) with additional penalty

if the agent is responsible for avoidance (8).

The rewards capture our low-level formulation objective (16)
to pass as many checkpoints as possible while closely hitting
the lane and velocity targets (22). The penalties capture the
on-track (20) and collision avoidance (21) constraints. However,
the penalties also reintroduce the original safety and fairness
from the original general game that were simplified away from
the low-level formulation (8) and (10). Because these rules
are inherently met by satisfying the objective of reaching the
high-level planner’s waypoints, their penalties have the weights
set much lower than other components of the reward/penalty
structure. Nevertheless, we still incorporate the original form of
these penalties to reinforce against the possibility that the ego
player might be forced to deviate far away from the high-level
plan.

The agents’ observations include perfect state information
(velocity, relative position, tire wear, lane change counts, and
last passed checkpoint) of all players and local observations
consisting of 9 LIDAR rays spaced over a 180° field of view
centered in the direction that the player is facing with a range of
up to 20 m. Lastly, the agents also observe the relative location
of the k& upcoming target waypoints, wf,i, cee 1/): 4 Asitis
rewarded for reaching those waypoints. ' '

2) Linear-Quadratic Nash Game Controller: Our second
low-level approach solves an LQNG using the coupled Riccati
equations [31]. This method involves further simplifying the
low-level formulation into a structure with a quadratic objective
and linear dynamics. The continuous state is simplified to just
four variables:  position, y position, v velocity, and ¢ heading.
The control inputs u! are also explicitly broken into acceleration,
al, and yaw-rate, e!. The planning horizon is reduced to § where
§ < 6 < T. To construct our quadratic objective for player 4,
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we break it into three components. The first is to minimize
the squared distance to the upcoming target waypoint from the
high-level planner ¢’ calculated by the following function of
some weight parameters p1, p2, and p3:

E}
O (@ prpaps) = 3 (pr (2= 02)" + (i - 03)7)
t=1
a2 (0f = 1)+ ps (01— 08)°)

(23)

The second component is to maximize or minimize each of
the other player’s distances from the location of their estimated
target waypoints 1)J. If the other player is on the ego’s team,
then ego would like to help the other player reach the waypoint
thereby hitting the checkpoint quickly. On the other hand, if the
other player is on any opposing teams, then the ego wants to
maximize the squared distance to hinder its opponent’s progress
towards the checkpoint. This component is calculated by the
following function of the waypoint estimated target waypoint
1)’ and a weight parameter p:

o (¥ RS i_ i) A
t=1

We drop all of the constraints with the exception of collision
avoidance, and it is incorporated as the third component and
penalty term in the objective where the distance to all other
players should be maximized. This term is calculated by the
following function of the opponent’s position (z7,y]) and a
weight parameter p:

v (alvi ) = S ((xi )+ - yé)Q) (25)
t=1

The final quadratic objective for a player ¢ on team . aggre-
gates (23)—(25) using weight multipliers (p;) to place varying
emphasis on the components as follows:

iUi (plap27p3)+ Z (¢Z (1;]7/)4))
5 jeli i

> (¥ (alvlee)) @0

FE{N\{i}}

- Imin
ai,ej,...,a

o

- Z (¢Z(d—)jap5)) -
JE{N\p}
Finally, the dynamics are time invariant and linearized around
initial state (x4, Y., Vt,. 0¢,) for all players j € N:

x{H 10 COS(@{O)At —y{o sin(Q{o)At xj
yg+1 _ |0 1 sin(6f)At vy, cos(6f,)At yg
U4 0 0 1 0 v}
0., 0 0 0 1 o

0 0

0 0] |ad

+ . 27
At 0 Li] o
0 At
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V. EXPERIMENTS

The high-level planner is paired with each of the two low-
level planners discussed. We refer to our two hierarchical design
variants as MCTS-RL and MCTS-LQNG.

A. Baseline Controllers

To measure the importance of our design innovations, we also
consider three baseline controllers to resemble the other methods
developed in prior works.

1) End-to-End Multi-Agent Reinforcement Learning: The
end-to-end MARL controller, referred to as “E2E,” represents
the pure learning-based methods such as that of [22]. This
controller has a similar reward/penalty structure as our low-level
controller, but its observation structure is slightly different. In-
stead of observing the sequence of upcoming states as calculated
by a high-level planner, E2E only receives the subsequence of
locations from {¢;}7_, that denote the center of the track near
the agent. As aresult, it is fully up to its neural networks to learn
how to plan strategic and safe moves.

2) Fixed Trajectory Linear-Quadratic Nash Game: The
fixed trajectory LQNG controller, referred to as “Fixed-LQNG,”
uses the same LQNG low-level planner as our hierarchical
variant, but it tracks a fixed trajectory around the track instead of
using a dynamic high-level planner such as our discrete game.
This fixed trajectory is aracing line that is computed offline for a
specific track using its geometry and parameters of the vehicle as
seen in prior works [13], [14]. Furthermore, in the prior works,
the method was only applied to single agent racing scenarios,
whereas we use the game-theoretic LQNG controller and apply
it to multi-agent racing.

3) Fixed Trajectory Multi-Agent Reinforcement Learning:
The fixed trajectory MARL controller, referred to as “Fixed-RL,”
is a learning-based counterpart to Fixed-LQNG. The online
control inputs are computed using a deep RL policy trained to
track precomputed checkpoints that are fixed prior to the race.

B. Experimental Setup

Our controllers are implemented! in the Unity Game Engine.
Screenshots of the simulation environment are shown in Fig. 5.
We extend the Karting Microgame template [32] provided by
Unity. The kart physics from the template is adapted to include
cornering limitations and tire wear percentage. Tire wear is
modeled as an exponential decay curve that is a function of the
accumulated angular velocity endured by the kart. This model
captures the concept of losing grip as the tire is subjected to
increased lateral loads. Multi-agent support is also added to
the provided template in order to race the various autonomous
controllers against each other or human players. The high-level
planners run at 1 Hz, and low-level planners run at 15-50 Hz
depending on the number of nearby opponents. The time horizon
§ is set to 0.06 s for the LQNG planner. See the Appendix for
more details regarding the reward functions and training setup
for our RL-based agents.

ICode: https://www.github.com/ribsthakkar/HierarchicalKarting
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Kart racing environment from an MCTS-RL racer’s perspective during a race against an E2E team on the oval track (left). The purple boxes visualize the

lanes across checkpoints along the track, and the highlighted green and orange boxes show planned waypoints determined by the hierarchical controllers. We also
show a bird’s eye view of the oval track (right-top) and complex track (right-bottom) used in our training and experiments.

Our experiments include 2v2 team racing on a basic oval
track (which the learning-based agents were trained on) and
a more complex track (which they were not trained on) shown
in Fig. 5. Specifically, the complex track involves challenging
track geometry with turns whose radii change along the curves,
tight U-turns, and turns in both directions. To be successful,
the optimal racing strategy requires some understanding of the
shape of the track along a sequence of multiple turns. Each
team is composed of two players both using one of the five
types of implemented controllers, MCTS-RL, MCTS-LQNG,
E2E, Fixed-LQNG, and Fixed-RL, to construct five total teams.
Every pair of teams competes head-to-head in 48 races on both
tracks. The dynamical parameters of each player’s vehicle are
identical. The only difference in their initial states is the lane in
which they start and the initial checkpoint. Two of the players
start 10 m in front of the other pair resembling the starting grid
seen in real-life racing. In order to maintain fairness with respect
to starting closer to the optimal racing line or ahead of others,
we rotate through each of the six unique ways to place each team
on the four possible starting positions.

C. Results

Our experiments seek to reinforce the importance of hier-
archical game-theoretic reasoning and study its scalability to
challenging problems with strategies requiring decentralized
coordination and long-term planning. In our previous work [9],
we show that the hierarchical game-theoretic controllers clearly
outperform their baselines and exhibit realistic racing maneu-
vers to overtake and defend in head-to-head scenarios. We also
showed how staying close to the plan generated by the high-level
tactical planner resulted in better performance but had dimin-
ishing returns. Now, we are interested in observing maneuvers
where teammates use tactical positioning to help pass or defend
against the opposing team, which is also commonly observed
in real-life racing. We are also interested in seeing whether the
same relationship holds regarding performance with respect to
the distance and difference to the high-level plan.

To obtain a holistic comparison across all of the controllers,
we count the number of wins (i.e. 1st place finishes), average
collisions-at-fault per race, average illegal lane changes per race,
and a safety score (a sum of the prior two metrics). To evaluate
team-based performance, we assign points to each of the four
finishing positions, [10, 7.5, 6, 4] and O for not finishing the race.
The points are summed at the end of the race for each team.
To measure the effectiveness of our high-level tactical planner,
we also measure average target lane distance and average target
velocity difference, which evaluate to the distance and difference
in velocity at each checkpoint. This pair of metrics is only
collected for MCTS-RL, MCTS-LQNG, and E2E controllers.
Though the E2E agents do not rely on the high-level tactical
planner, we calculate this metric by running an identically
configured planner with respect to the hierarchical agents to see
what the target lanes and velocities would be calculated in the
E2E agents’ perspectives and compare them the E2E controllers’
actual decisions.

Note that the safety score and its component metrics are
directly evaluated based on violations to the constraints, (8) and
(10), in the original formulation related to these rules. On the
other hand, the wins and team points metrics are not a direct
measure of the objective function in (1). This is because the
objective function is actually an approximation of what it means
to win a race. The objective effectively models maximizing
performance relative to the average opponent while winning
implies being ahead of all opponents. Though the objective is
an approximation, we still use wins and team points to compare
our controllers because those are the metrics that are ultimately
used to measure performance in real-life.

Lastly, we also provide a video? demonstrating our controllers
in action.

Based on the plots in Figs. 6-7 Tables I-II, we conclude the
following key points:

1) The proposed hierarchical controllers outperform their
respective baselines in team-based racing: The results amongst

2Video: https://tinyurl.com/hierracingvideos
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Fig. 6. Results racing simulations on the oval track.
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Fig. 7. Results racing simulations on the complex track.

TABLE I
AGGREGATED TEAM-BASED RACING RESULTS OVER 384 TOTAL RACES
ACROSS BOTH TRACKS

Controller Type | Wins | Average Points | Average
Per Race Safety Score
MCTS-RL 254 14.93 1.61
E2E 224 13.20 1.67
Fixed-RL 175 13.51 2.14
MCTS-LQR 175 12.89 1.91
Fixed-LQR 132 12.56 1.78
TABLE II

AVERAGE DISTANCE AND DIFFERENCE BETWEEN THE HIGH-LEVEL PLANNER’S
TARGET LANE AND VELOCITY AND THE TRUE POSITION AND VELOCITY AT
EACH CHECKPOINT, RESPECTIVELY

Agent Type Average Lane | Average Velocity
Distance (m) Difference (ms™')

MCTS-RL 1.132 1.50

E2E 1.564 1.529

MCTS-LONG | 0.435 0.312

MCTS-RL, Fixed-RL, and E2E continue to show the effective-
ness of our hierarchical structure. Again, all of the MARL-based
agents were trained only on the oval track, but MCTS-RL leads
in all of the key metrics. While MCTS-RL has more wins overall,
the difference in the number of wins is not as high as the head-
to-head case in [9]. However, the essential metric of interest in
this study is average points per race, which evaluates team-based
performance. MCTS-RL maintains a considerable difference in
terms of average points per race compared to the baselines. The
higher points per race implies that even if MCTS-RL is not able
to finish first, it collaborates more effectively to produce better
results as a team.

Next, comparing just the baselines, we notice that Fixed-RL is
worse in terms of wins and safety score compared to E2E. Recall
that the Fixed-RL controller simply follows a fixed optimal
racing line. While such a strategy might be successful in the
head-to-head case where there is only one opponent to consider,
in the cooperative racing scenario, it is imperative for players to
consider alternative racing lines especially if one’s teammate is
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Fig. 8. Overtaking maneuver executed a team MCTS-RL agents (green and
orange) against the Fixed-RL agent (blue) on the oval track. From ¢ = 0 to
t = 1, the MCTS-RL agents split and attack the Fixed-RL agent from both sides.
The Fixed-RL agent attempts to defend the green MCTS-RL agent on its right
allowing the orange MCTS-RL agent to overtake on its left from¢ = 2tot = 6.
The green and orange boxes along each checkpoint highlight the long-term plans
calculated by the MCTS planners of each of the MCTS-RL agents, respectively.
The checkered boxes indicate a shared checkpoint in their plans.

already following a specific line. As aresult, Fixed-RL often had
collisions with its own teammate as both players competed over
the same space. In those situations, one or both of the Fixed-RL
teammates sometimes lost a position. However, once they were
separated far enough after recovering from the collision, both
of the agents on the Fixed-RL team could drive fast enough
to at least maintain their new positions or sometimes indepen-
dently overtake its opponents, which is reflected in its higher
points-per-race score compared to E2E. This pattern implies that
hierarchical reasoning is important to being successful but is not
necessarily enough. To be the most successful, game-theoretic
hierarchical reasoning, e.g. using MCTS for high-level planning,
should be used to allow teammates to predict each other’s plans
and work together effectively.

Additionally, without a hierarchical structure, it is easy for a
MARL-based controller to overfit. By delegating the primary re-
sponsibility for game-theoretic reasoning to the high-level plan-
ner, the low-level planner’s objective in MCTS-RL is primarily
focused on reaching the target waypoints, with less emphasis
on tactical reasoning and consideration of the rules. In contrast,
EZ2E is required to encode both tactical planning and the rules
in its training, which can and likely did lead to overfitting and
difficulty generalizing beyond the training environment. This is
reflected in the results, which show that MCTS-RL had many
more wins than E2E on the complex track, but slightly fewer
the oval track.
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Fig. 9.

Tactical maneuver executed by the MCTS-RL team (green and orange) against an E2E agent (blue) on the complex track. Before reaching the turn, the

green MCTS-RL’s high-level planner calculates a trajectory suggesting to switch lanes to the left for first part of the upcoming straight and block the E2E agent
forcing it to slow down and evade further to the left of the track (¢ = 0 to ¢ = 3). This blocking move allows the orange MCTS-RL to plan to take advantage of the
opponent’s disruption and quickly switch to the right for the inside line of the upcoming turn (¢ = 3 to ¢t = 5). Eventually, the orange MCTS-RL agent completes
the overtake by ¢ = 9. The green and orange boxes along each checkpoint highlight the long-term plan calculated by MCTS planners of each of the MCTS-RL
agents, respectively. The checkered boxes indicate a shared checkpoint in their plans.

Finally, we compare MCTS-LQNG and Fixed-LQNG. Both
LQNG agents have similar safety scores. However, MCTS-
LQNG still has 33% more wins and a better points-per-race
metric overall. Again, the main drawback with the fixed trajec-
tory tracking agents is that they do not consider alternative racing
lines. While in the head-to-head case [9] considering alternative
lines might not be as important, it becomes considerably more
vital to success in multi-agent multi-team racing.

2) Tracking the high-level tactical planner’s waypoints re-
sults in better overall and team-based performance: When we
compare the target lane distance and target velocity difference
metrics in Table II, we can see the impact of our high-level
tactical planner. While the aggregated results indicate the E2E
outperformed MCTS-LQNG, most of its successes were on the
oval track, which it was likely due to overfitting as discussed
in the previous point. When challenged with the complex track,
both MCTS-based agents outperformed E2E while also staying
closer to the plan generated by by the high-level tactical planner
compared to E2E. However, tracking the high-level plan seems
to have diminishing returns because MCTS-LQNG performed
worse than MCTS-RL although it always stayed close to the
generated plan. In general, these results indicate that the high-
level tactical planner yields good strategical plans, but there
exist cases where blindly following them is not the best choice.
The trained, RL-based low-level planner of MCTS-RL allows
it to smooth out these situations and know to ignore obviously
unacceptable plans. This relates to the shortcoming in our design
that the high and low-level planners run independently and
concurrently. And because there are no theoretical guarantees
about the behavior at either level, we cannot take advantage
of having a reliable expectation of how each planner in the

controller might behave. As a result, the low-level planner must
also be able to reason strategically, which the LQNG struggles
with. In the next point, we further compare the performance of
RL and LQNG as low-level planners.

3) MARL performs better than LQNG as a low-level planner:
The MARL-based agents perform generally better than the
LQNG-based agents in terms of our key metrics. However,
the difference in their performance is smaller compared to the
head-to-head experiments in our previous work [9] where the
MARL-based agents are considerably better than the LQNG-
based counterparts. For example, in the complex track, both
the LQNG-based agents have better safety scores than their
MARL-based counterparts. However, in the oval track, the
MARL-based agents have significantly better safety scores due
to the number of illegal lane changes by the LQNG-based agents.
his result is likely due to the conservative tuning of the LQNG-
based controllers for collision avoidance, which results in fewer
collisions-at-fault but also forces them to change lanes more of-
ten. Furthermore, it also results in the LQNG-based agents often
conceding in close battles and thereby losing races because of the
high cost in the planning objective of driving near another player
even if there is no collision. Despite that, MCTS-RL has just 45%
more wins in the team-based experiments compared to the 80%
more wins it has against MCTS-LQNG in [9]. For the fixed tra-
jectory agents, this gap drops from 250% to 33%. Nonetheless,
when we consider our primary metric evaluating team-based
performance, points-per-race, both MARL-based variants are
clearly better than the LQNG-based variants. When all of the
results are aggregated across both tracks, all of the metrics are
still in favor of using the MARL-based agents because they are
generally more robust to nuances of the many possibilities of
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situations that arise. On the other hand, our LQNG formulation
has a mixture of concave and convex components in the objective
function, is only linearized around the initial state, and uses short
horizons, so our cost surface is sometimes unreliable degrading
the resulting behavior.

4) MCTS-RL outperforms all other implemented controllers
and exhibits teamwork tactics resembling real-life experts: The
MCTS-RL team records a win rate of over 66% of the 384 races
it participated in across both tracks, the best overall safety score,
and the highest average points per race. The MCTS high-level
planner provided the agents a series of waypoints allowing it
to make decisions in complex tactical situations where there
is a mix of both competitive and cooperative objectives. The
MARL-based low-level planner provided robustness to adapt to
the multitudes of scenarios that play out. Although the players
do not communicate or explicitly coordinate strategies, they
still produce cooperative behaviors that improve their overall
performance as a team.

We also observe our control structure execute plans that
resemble those performed by expert human drivers. For ex-
ample, Fig. 8 demonstrates how the two high-level planners of
each MCTS-RL agent developed a strategy to perform a pincer
like maneuver to overtake an opponent. Both agents from the
MCTS-RL team approached the opponent from either side of
the opponent at the same time. The opponent could only defend
one of the agents on the MCTS-RL team allowing the other agent
on the team to pass. In addition, MCTS-RL is also successful at
executing strategic maneuvers as seen in Fig. 9 wherein an agent
which is ahead momentarily slows down and blocks an opponent
behind to allow for its teammate to pass the opponent. The
latter example is also a demonstration of long-term planning,
in which the orange agent gives up the short term advantage
for the long-term gain of having both itself and its teammate
ahead of the opponent. Both of these tactics resemble strategies
of expert human drivers in real head-to-head racing. The video
referenced in Footnote 2 also demonstrates additional examples
of strategical behaviors resembling real-life racing including our
hierarchical agent defending against multiple opponents.

VI. CONCLUSION

We developed a hierarchical controller for cooperative
team-based competitive autonomous racing. Our controller
outperforms optimization-based and learning-based methods
by approximating the complex formulation of the team-based
racing game with realistic collision avoidance and lane change
constraints.The high-level planner produces long-term trajecto-
ries that satisfy these rules, allowing the low-level controllers
to focus on tracking the high-level plan and avoiding much of
the complexity of the original formulation. Overall, the results
indicate that our hierarchical controllers scale to the additional
complexities of team-based racing and considering more than
two players. They also exhibited maneuvers resembling those
performed by expert human drivers such as blocking to aid
teammates overtaking chances, pincer-like overtaking moves,
and defending against multiple opponents.
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Future extensions of this work should introduce additional
high-level and low-level planners. Examples of additional low-
level controllers include time-varying linear-quadratic approxi-
mations or other nonlinear simplified formulations of the orig-
inal formulation using iterative best response. With a larger
collection of control options, one might investigate policy-
switching hierarchical controllers where we switch between
the different high and low-level controllers depending on the
situation in the game and taking advantage of their strengths.

Lastly, our hierarchical control design can be extended
to other multi-agent systems applications where there exist
complex rules such as energy grid systems or air traffic con-
trol. Constructing a discrete high-level game allows for natural
encoding of the complex constraints, often involving discrete
components, to find an approximate solution that can warm start
a more precise low-level game-theoretic controller.

APPENDIX

A. Multi-Agent Reinforcement Learning Controller Reward
Structure Details

We outline the specifics of the reward and penalty calculations
in detail for our Multi-Agent Reinforcement Learning (MARL)
low-level controller. Recall that the MARL-based agents obser-
vations include perfect state information for all players (includ-
ing (x,y) position, v velocity, lane ID a, “recent” lane change
count e, and last passed checkpoint ) and 9 LIDAR rays, whose
distances we referto as I, . . ., Iy. Furthermore, we also assume
players know the overall time elapsed in the game ¢, and the
maximum time horizon 7'.

We list functions R(-) that evaluate the rewards or penalties
based on one or more weight parameters denoted by w;. Our
rewards and penalties are categorized into two types:

1) For every time step in the environment, we provide the

following rewards and penalties:
e A reward for driving fast. The reward that scales based
on the driving close to the top speed of the kart.

v

Rspeed (wl) = w1
Umax
e A reward for moving towards the next checkpoint 7.
We use the three-dimensional velocity vector of the
agent and take the dot product with the vector between
the agent’s position and the next checkpoint position.

Rdireclion(wl) - W1(<Um, Uy> ! <7"; -, 7“2 - y>)

® A penalty for exceeding the lane changing limit. We
use an indicator function to determine if the player is
in the straight region of the track S and whether the
lane changing limit L is exceeded.

Rwerve (Wl) =—w 1 (z,y)eSNe>L

® A penalty for being within & meters of the wall. We use
an indicator function 17, <1 ;hit wan that determines if
he LIDAR reading is below h and if whether the LIDAR
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Fig. 10.  Plots of the rewards (top-left), episode lengths (top-right), and value
function losses (bottom) convergence over the training of the RL-based models.

bounced off a player or a wall.

9

Ryatinit(w1) = — E w11, <has;nit wall
j=1

® A penalty for being within / meters of another player.
Using a similar indicator function from above, if any
LIDAR ray in that set hits another player within a
distance h, then the original player is penalized for
being in collision. In addition, we assume we have a set
O, which contains the indices of the LIDAR rays that
point towards the front of the kart. There is an additional
penalty if the LIDAR rays come from the subset © as
that indicates some form of rear-end collision where
the player would be at fault.

9

Rplayer—hil(wla Wy) =— § (Wl ]]'Ij<h/\ljhit player+w2]lj€(3
Jj=1

2) When a player passes a checkpoint with index r’, we
provide the following rewards and penalties:
® A reward to teach the policy to pass as many check-
points as possible before other players. The reward
is scaled based on the order in which the checkpoint
is reached. This reward is also added (with a differ-
ent weight parameter) to a shared reward value used
by the posthumous credit assignment algorithm to
incentivize cooperative behavior.

w1 if first
0.75wy if second
Rcheckpoint base (W 1 ) = 0.6w if third
-bwy
0.4wq  if fourth

® Arewardbased on the remaining time in the game to
incentivize minimizing time between checkpoints.
This reward is also added (with a different weight
parameter) to a shared reward value used by the
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Fig. 11.  Visualization of the training environment and neural network struc-
tures used for all of the RL-based models. The only difference in the training of
the three agents is the weights of the reward structures.

posthumous credit assignment algorithm to incen-
tivize cooperative behavior.

T—1
Rcheckpoint time (Wl) = w1 T

e A reward for being closer to the target lane a’ and
velocity v’ for the passed checkpoint.

!

Rcheckpoint target (w 1, W2 ) =

1 glo—a'ly/(ar a2+, —9)?
w2
NEWIET

® A penalty fordriving in reverse. We use an indicator
function to determine if checkpoint index 7’ is less
than or equal to r implying the player passed either
the same checkpoint or an earlier checkpoint.

Rcheckpoinl reverse (Wl ) = —w1 ]lr’gr
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TABLE III
SYMBOLS USED IN FORMULATIONS

Value

Symbol

N Set of players in the game

M Set of mutually exclusive subsets of /N representing
teams of players

T Set of steps in the game

1 Number of steps in the game

{ci}l_y Sequence of checkpoints
Set of checkpoint indices

:1:"; Continuous state of player 7 at time ¢

u,’s Control input of player % at time ¢

J(zh, ul) Continuous dynamics of player i

Ty Index of last checkpoint passed by player ¢ at time ¢

o Time when player ¢ passed last checkpoint

¢ A multiplier to balance emphasis on cooperative vs.
selfish objectives.

p(x}, 1,7{) | Function computing index of last track checkpoint
passed

q(zt 1) Function computing minimum distance to last track
checkpoint passed

w track width

d(zi, x]) Function computing distance between player i and
player j

S0 Minimum distance safety margin if player is not
directly behind another

S1 Minimum distance safety margin if player is directly
behind another

A Number of lanes in the track

li Integer state variable indicating player ¢’s recent lane
changes at time ¢

y(xi) Function evaluating if player i is on a straight or
curve

z(:(:%) Function computing the lane of the track player is in

L Upper bound on the number of recent lane changes
a player is allowed

a}c Lane ID for player 7 at checkpoint k

li l]:ecent lane change count for player 7 at checkpoint

U,i Discrete velocity state for player ¢ at checkpoint &

€, Discrete tire wear state for player ¢ at checkpoint k

iy, Discrete time state for player ¢ at checkpoint k&

wy Lane width

Uk k+1 Straight line distance between two checkpoints

Qmax Maximum lateral acceleration the vehicle can sustain

Amin Lateral acceleration that the vehicle sustain for any
tire wear level

Umax Maximum speed of vehicle

a Maximum acceleration of vehicle

b Maximum deceleration of vehicle

Ligtraight Tire wear factor parameter for straight sections of
track

Lecurve Tire wear factor parameter for curve sections of track

T Set of steps in the low-level game

) Shortened horizon

« Weight parameter in objective emphasizing impor-
tance of hitting trajectory waypoints

Pl Waypoint for player 7 to target when passing check-
point index ¢

Nt Distance of player ¢’s closest approach to the way-
point 1%

h(zi,¥l) Function distance of player #’s state to waypoint )’

B. Multi-Agent Reinforcement Learning Controller
Architecture and Training

We follow an almost identical training procedure as we did
in the prequel to this article [9]. We continue use the Unity
library known as ML-Agents [33] to train the RL-based agents.
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However, in order to train the cooperative agents, we use an
algorithm, created by the developers of Unity ML-Agents, ti-
tled posthumous credit assignment [34]. This algorithm is an
extension of the popular multi-agent reinforcement learning
algorithm, counterfactual multi-agent policy gradients, but it
modifies how the agents’ policies are impacted even when they
have reached an absorbing state while other agents who may
be on the absorbed agent’s team are still alive. In our case,
the absorbing state refers to an agent reaching the finish line,
i.e. final checkpoint. The training environment consists of eight
copies of two sizes of oval tracks. Within each set of tracks, half
of the training assumed a clockwise race direction and the other
half assumed a counter-clockwise direction. Using two sizes of
tracks ensures that the agents learn to make both sharp and wide
turns, and using the two race directions allows the agents to
learn to make both left and right turns. However, the training
is limited to just those track configurations to limit overfitting
and evaluate how the various controllers generalize to unknown
environments such as the complex track.

The agents share model inputs, policy and reward network
sizes and structures, and model outputs. The input is a matrix
consisting of stacked vectors of previously mentioned obser-
vations (own state, LIDAR rays, opponent state, checkpoint
progress, etc.). Both the actor and critic networks consist of
3 hidden layers with 256 nodes each. Fig. 11 is a visualization
of the described training environment, and Fig. 10 presents the
reward, episode length, and value function loss graphs across
training showing their convergence. Note that the rewards scale
varies amongst the three types of agents because the weights in
the reward functions are different. However, all of the agents
are trained to 8000000 steps and their rewards stabilized before
reaching the step limit as seen in the graph.
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