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Abstract—With the prevalence of multiple-input multiple-
output (MIMO) systems, multi-port antenna design has become
an important research area. In this work, we approach the
multi-port antenna design problem to accelerate the design cycle,
expanding design space, and finding non-intuitive designs that
can potentially yield better performance than existing template-
based designs. To achieve these, we rely on the optimization
of a discretized surface, which can implement near-arbitrary
antenna shapes. However, performing an electromagnetic (EM)
optimization with a large number of variables is prohibitively
costly. On the other hand, if EM simulations can be replaced by
a machine learning (ML) based approach, antenna optimization
could be accelerated greatly. To this end we utilize a convolutional
neural network (CNN) for the modeling of multi-port pixelated
structures. A genetic algorithm (GA) in conjunction with CNN
is used to perform inverse design. Example designs for various
optimization targets have been shown in support of the proposed
approach.

Index Terms—Deep neural networks, antenna design, electro-
magnetic, mmWave, genetic algorithm, machine learning

I. INTRODUCTION

As we enter the next-G era, the number of antennas is
increasing rapidly, leading to a growing concern regarding
the coexistence and miniaturization of variable antennas. As
a result, multi-port antennas have gained more and more
attention as they offer more functionality or flexibility with
a compact appearance [1]. On the other hand, the challenge
of antenna decoupling in MIMO and full-duplex systems has
emerged as a prominent area of research focus [2]–[4]. For
example, in portable antenna design, imposed by the size
limitations of mobile terminals, two primary objectives are
consistently pursued. One involves maximizing the placement
of patch antennas, while the other entails achieving high
isolation and low correlations among distinct antennas [5].
However, the growing complexity of system integration in
specific small areas makes it increasingly challenging to attain
the aforementioned goals through conventional antenna design
methods with optimized template-based geometries. There-
fore, developing ML-based methods for passive design has
become more and more attractive in recent years [6]–[8]. In
this study, we investigate the deep learning (DL) based inverse
design of multi-port antennas to enable dual-band and MIMO
operations.

II. DL-BASED MODELING AND INVERSE DESIGN

The main component of the inverse design approach is the
CNN-based EM predictor. As shown in Fig. 1, the input of
the CNN is a pixelated multi-port antenna structure divided
into 12× 12 pixels. Antenna ports are placed randomly to the

Fig. 1. a: CNN-based forward model can predict S-Parameters of 2-port
planar mmWave antennas. This model can then be used in conjunction with
an optimization algorithm to synthesize desired characteristics. As CNN
inference is orders of magnitude faster than an EM simulation, optimization
takes mere minutes even with modest computational resources. b: Prediction
accuracy of the CNN needs to be adequately well to characterize never-seen-
before antenna structures. We use the test set to evaluate this requirement.
Here, predicted and simulated values of S-Parameters at the center frequency
of 30 GHz are shown with a heat map. CNN predictions concentrate around
y = x line, indicating good accuracy.

left and right halves. Amplitudes of S11, S22 and S21 were
converted to dB and clipped between -20 and 0 for the training.
The output of the CNN covers the frequency range of 20-40
GHz with 81 linearly placed points. As 3 terms are predicted
at a given frequency, the output has 243 neurons. For the
preceding layers, hyper-parameters are decided in accordance
to [6]–[8].

It is worth noting that a two-step training approach was
adopted for efficient use of computational resources [8]. A
total of 300K fast simulations and 128K accurate simulations
were conducted. These datasets were augmented with geomet-
rical transformations. In the first step of training, a randomly
initialized network was trained with a test-validation-training
split of 38K-38K-375K over 30 epochs. The second step
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Fig. 2. CNN aided genetic algorithm optimization results. a-b: Antenna ports are matched at different frequencies while being isolated from each other. c:
Antenna ports are matched at 27.5 GHz with more than 15 dB isolation.

essentially carries on the training of the first model for another
30 epochs with the dataset of accurate simulations. This set
of data is divided into 15K-18K-175K test-validation-training
splits. Once the training was complete, we deployed the net-
work with a genetic algorithm (GA) to optimize for different
antenna properties. With the help of a GPU, prediction of S-
Parameters for the population size of ≈4000 structures takes
less than 1 second, and optimization concludes within ≈2
minutes for 100 generations.

III. EXAMPLE DESIGNS

To demonstrate the effectiveness of the modeling approach
and the inverse design methodology, we present synthesis
results antennas and their measured properties in Fig. 2. Fig. 2-
a shows an example of a dual-band 2-port patch antenna
on a 12 mil RO4003C substrate operating at 28.3 and 30.3
GHz. It should be noted that the goal here is to match S11

and S22 at 2 distinct frequencies while ensuring isolation
(S21). Furthermore, it was aimed that S11 and S22 should
be mismatched outside of the target band. The resulting EM
structure implements these requirements. Fig. 2-b implements
similar functions at a slightly different frequency range of 28.3
and 29.3 GHz. Fig. 2-c shows the simultaneous matching of
2 antenna ports while providing more than 15 dB isolation at
27.5 GHz. These examples illustrate that CNN-based multi-
port EM modeling for antenna synthesis is a promising method
for optimizing various aspects of multi-port antennas.

IV. CONCLUSION

The presented approach with deep CNN carries out an
extension of the previous works by providing greater design
freedoms. For example, as we allow a single antenna to be
excited from multiple ports, the bandwidth of the antenna

can be compositely extended. Moreover, a single radiating
structure can be used for both transmit and receive chains by
isolating antenna ports. While typically such functionalities
require considerable engineering effort, CNN-based modeling
and inverse design could synthesize a solution rapidly, as
shown in example designs. In addition, once trained, CNN can
be repeatedly utilized for antenna design to compensate for
the initial computational investment. These aspects can make
CNN-based modelling a viable design tool.
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