
Tyche: Making Sense of Property-Based Testing E�ectiveness

Harrison Goldstein
University of Pennsylvania

Philadelphia, PA, USA
hgo@seas.upenn.edu

Je�rey Tao
University of Pennsylvania

Philadelphia, PA, USA
je�tao@seas.upenn.edu

Zac Hat�eld-Dodds∗

Anthropic
San Francisco, CA, USA

zac.hat�eld.dodds@gmail.com

Benjamin C. Pierce
University of Pennsylvania

Philadelphia, PA, USA
bcpierce@seas.upenn.edu

Andrew Head
University of Pennsylvania

Philadelphia, PA, USA
head@seas.upenn.edu

@given(trees(), ints(), ints())
def test_insert_lookup(t, k, v):

assume(is_red_black_tree(t))
event("size", payload=size(t))
assert lookup(insert(k, v, t), k) == v

Figure 1: The Tyche interface for property-
based testing. A developer can use Tyche 
during their automated testing process to 
see a novel ensemble of visualizations that 
can help them to better evaluate their tests.

ABSTRACT

Software developers increasingly rely on automated methods to

assess the correctness of their code. One such method is property-

based testing (PBT), wherein a test harness generates hundreds or

thousands of inputs and checks the outputs of the program on those

inputs using parametric properties. Though powerful, PBT induces

a sizable gulf of evaluation: developers need to put in nontrivial

e�ort to understand how well the di�erent test inputs exercise the

software under test. To bridge this gulf, we propose Tyche, a user

interface that supports sensemaking around the e�ectiveness of

property-based tests. Guided by a formative design exploration, our

design of Tyche supports developers with interactive, con�gurable

views of test behavior with tight integrations into modern devel-

oper testing work�ow. These views help developers explore global

∗Also with Australian National University.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676407

testing behavior and individual test inputs alike. To accelerate the

development of powerful, interactive PBT tools, we de�ne a stan-

dard for PBT test reporting and integrate it with a widely used PBT

library. A self-guided online usability study revealed that Tyche’s

visualizations help developers to more accurately assess software

testing e�ectiveness.

KEYWORDS

Randomized testing, property-based testing (PBT), visual feedback,

multiple program executions

ACM Reference Format:

Harrison Goldstein, Je�rey Tao, Zac Hat�eld-Dodds, Benjamin C. Pierce,

and Andrew Head. 2024. Tyche: Making Sense of Property-Based Testing

E�ectiveness. In The 37th Annual ACM Symposium on User Interface Software

and Technology (UIST ’24), October 13–16, 2024, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 16 pages. https://doi.org/10.1145/3654777.3676407

1 INTRODUCTION

Software developers work hard to build systems that behave as in-

tended. But software is rarely 100% correct when �rst implemented,

so developers also write tests to validate their work, detect bugs,

and check that bugs stay �xed. Traditionally, these tests take the

form of manually written “example-based” tests, where developers



UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA Goldstein et al.

write out speci�c sample inputs together with expected outputs; but

this process is labor-intensive and can miss bugs in cases the pro-

grammer did not think to check. Instead, some programmers have

adopted automated techniques to supplement or replace example-

based tests. One such technique is property-based testing (PBT),

which automatically samples many program inputs from a random

distribution and checks, for each one, that the system’s behavior

satis�es a set of developer-provided properties. Used well, this leads

to testing that is more thorough and less laborious; indeed, PBT

has proven e�ective in identifying subtle bugs in a wide variety

of real-world settings, including telecommunications software [3],

replicated �le and key-value stores [6, 41], automotive software [4],

and other complex systems [40].

Of course, automation comes with tradeo�s, and PBT is no ex-

ception. In PBT, there are often too many randomly generated test

inputs for a developer to understand at once, creating a gulf of

evaluation [67] for test suite quality. Indeed, in a recent study of the

human factors of PBT [25], developers reported having di�culty

understanding what was really being tested.

For example, suppose a developer is testing some mathematical

function using randomly generated �oating-point numbers. The

developer might have a variety of questions about their test suite

quality. They might ask if the distribution is broad enough (e.g., is

it stuck between 0 and 1), or too broad (e.g., does it span all possible

�oats, even if the function can only take positive ones). Or they may

wonder if the distribution misses corner-cases like 0 or -1. Perhaps

most importantly, they may want to know if the data generator

produces too many malformed or invalid test inputs (e.g., NaN) that

cannot be used for testing at all. State-of-the-art PBT tooling does

not give adequate tools for answering these kinds of questions: any

of these erroneous situations could go unnoticed because necessary

information is not apparent to the user. As a result, developers

may not realize that their tests are not thoroughly exercising some

important system behaviors.

This gulf of evaluation presents an opportunity to rethink user

interfaces for testing. HCI has made strides in helping developers

make sense of large amounts of structured program data, whether

by revealing patterns that manifest in many programs [20, 22, 32,

93] or comparing the behavior of program variants [83, 86, 96]. As

developers adopt PBT, it is critical to tackle the related problem

of helping programmers understand a summary of hundreds or

thousands of executions of a single test.

To address this problem, we propose Tyche,1 an interface that

supports sensemaking and exploration for distributions of test in-

puts. Tyche’s design was inspired by a review of recent PBT us-

ability research and re�ned through iterative design with the help

of expert PBT users; this re�nement identi�ed design principles

that clarify the information needs of PBT users. Tyche provides

users with an ensemble of visualizations, and, while each individual

visualization is well-understood by UI researchers, the speci�c com-

bination of visualizations is novel and �ne-tuned to the PBT setting.

Tyche’s visualizations provide high-level insight about the distri-

bution of test inputs as well as various aspects of test e�ciency (see

Figure 1). Tyche also supports visualization and rapid drill-down

into input data, taking advantage of existing hooks in PBT libraries.

1Named after the Greek goddess of randomness.

To understand whether Tyche actually changes how developers

understand their tests, we conducted a 40-participant self-guided,

online study. In this study, participants were asked to view test

distributions and rank them according to their power to identify

program defects. Compared to using a standard tools, Tyche helped

developers make to better judgments about their test distributions.

To encourage broad adoption of Tyche, we de�ne OpenPBT-

Stats, a standard format for reporting results of PBT. When a PBT

framework generates data in this format, its results can be viewed in

Tyche and perhaps other interfaces supporting the same standard

in the future. We integrated OpenPBTStats into the main branch

of Hypothesis [55], the most widely-used PBT framework, showing

the way forward for other frameworks.

After discussing background (§2) and related work (§3), we o�er

the following contributions:

• We articulate design considerations for Tyche, motivated by

a formative study with experienced PBT users. (§4)

• We detail the design of Tyche, an interface that helps devel-

opers evaluate the quality of their testing with an ensemble of

visualizations �ne-tuned to PBTwith lightweight a�ordances

to support exploration. (§5)

• We de�ne the OpenPBTStats format for collecting and re-

porting PBT data to help standardize testing evaluation across

di�erent PBT frameworks. (§6)

• We evaluate Tyche in an online study, demonstrating that

Tyche guides developers to signi�cantly better assessments

of test suite e�ectiveness. (§7)

We conclude with directions for future work (§8), including other

automated testing disciplines that can bene�t from Tyche and

related interfaces.

2 BACKGROUND

We begin by describing property-based testing and reviewing what

is known about its usability and contexts of use.

2.1 Property-Based Testing

In traditional unit testing, developers think up examples that demon-

strate the ways a function is supposed to behave, writing one test

for each envisioned behavior. For example, this unit test checks

that inserting a key "k" and value 0 into a red–black tree [90] and

then looking up "k" results in the value 0:

def test_insert_example():

t = Empty()

assert lookup(insert("k", 0, t), "k") == 0

If one wanted to test more thoroughly, they could painstakingly

write dozens of tests like this for many di�erent example trees, keys,

and values. Property-based testing o�ers an alternative, succinct

way to express many tests at once:

@given(trees(), integers(), integers())

def test_insert_lookup(t, k, v):

assume(is_red_black_tree(t))

assert lookup(insert(k, v, t), k) == v



Tyche: Making Sense of Property-Based Testing E�ectiveness UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA

This test is written in Hypothesis [55], a popular PBT library in

Python. It randomly generates triples of trees, keys, and values,

and for each triple, checks a parameterized property that resembles

a unit-test assertion—that the inserted value is in the tree. This

single test speci�cation represents a massive collection of concrete

individual tests, and using it can lead to more thorough testing

(compared to a unit test suite), since the random generator may

produce examples the user had not thought of.

2.2 PBT Process and Pitfalls

At its core, the practice of PBT involves three distinct steps: de�ning

executable properties, constructing random input generators,2 and

reviewing the result of checking these properties against a large

number of sampled inputs; challenges can arise at any of these

stages. There is signi�cant technical research into on each of the

�rst two stages [26, 48, 50, 52, etc.]. We are focused here on the

third stage: helping developers review the results of testing, in part

to support the (often iterative) process of re�ning and improving

the generators constructed in the second step. For instance, in the

example above, a developer might accidentally write a trees()

generator that only produces the Empty() tree, in which case their

property will be checked only against a single test input (over and

over). Or, if the generator’s strategy is not quite so broken but still

too naïve, it might fail to produce very many trees that actually

pass the assume(is_red_black_tree(t)) guard.

In cases like these, developers need to remember that, although

all their tests are succeeding, this does not necessarily mean their

code is correct [53]: they may need to improve their generators

to start seeing failing tests. Unfortunately, with conventional PBT

tools, developers may feel they don’t have easy access to this knowl-

edge [25]. While the programming languages community is contin-

ually developing better techniques for generating well-distributed

inputs [28, 52, 62, 80, etc.], developers still need to be able to check

that the generators they are using are actually �t for the job.

3 RELATED WORK

In this section we situate our work on Tyche within the larger area

of programming tools research.

3.1 Current A�ordances

What support do PBT frameworks provide today for developers to

inspect test input distributions? We surveyed the state of practice

in the most popular PBT frameworks (by GitHub stars) across

six di�erent languages: Python [55], TypeScript / JavaScript [17],

Rust [19], Scala [66], Java [37], and Haskell [12]. These frameworks

provide users with the following kinds of information. (A detailed

comparison of framework features can be found in Appendix A.)

Raw Examples. All of these frameworks could print generated

inputs to the terminal. Some (3/6) provided a �ag or option to do

so; the others did not provide this feature natively, although users

might simply print examples to the terminal themselves.

Number of Tests Run vs. Discarded. Many frameworks (4/6) report

how many examples were run vs. discarded (because they did not

2Some approaches to PBT use exhaustive enumeration [74] or guided search [51]
instead of hand-written input generators; these lead to di�erent usability trade-o�s,
but ultimately results should always be reviewed to ensure that testing was successful.

pass a quality �lter). Sometimes (2/6), this information is hidden

behind a command line �ag.

Event / Label Aggregation. Many frameworks (4/6) could report

aggregates of user-de�ned features of the examples—e.g., lengths

of generated lists. Information about such features typically ap-

peared in a simple textual list or table, as in this example from

QuickCheck [81]:

7% length of input is 7

6% length of input is 3

5% length of input is 4

...

where this output conveys that among the generated lists for some

test run, 7% were 7 elements long, 6% were 3 elements long, etc.

Time. One framework reported how long the test run took.

Warnings. One framework providedwarnings about test distribu-

tions, in particular warning users when their generators produced

a very high proportion of discarded examples.

The a�ordances for evaluation in existing frameworks are situa-

tionally useful, but inconsistently implemented and incomplete. In

§5 and §6 we discuss how Tyche improves on the state of the art.

3.2 Interactive Tools for Testing

Some of the earliest research on improved interfaces for testing

focused on spreadsheets. Rothermel et al. [72] proposed a model of

testing called “what you see is what you test” (WYSIWYT), wherein

users “test” their spreadsheet by checking values that they see and

marking them as correct. This approach has appeared in many do-

mains of programming, including visual data�ow [45] and screen

transition languages [7]. Complementary to WYSIWYT are fea-

tures that encourage programmers’ curiosity [91], for instance by

detecting and calling attention to likely anomalies [61, 91].

Many of the testing tools developed by the HCI community have

sought to accelerate manual testing with rich, explorable traces

of program behavior [8, 15, 57, 58, 68]. These tools instrument a

program, record its behavior during execution, and then provide

visualizations of data and augmentations to source code to help

programmers pinpoint what is going wrong in their code. Tools can

also help programmers create automated tests from user demon-

strations. For instance, Sikuli Test [10] lets application developers

create automated tests of interfaces by demonstrating a usage �ow

with the interface and then entering assertions of what interface

elements should or should not be on the screen at the end of the

�ow.

Recent research has explored new ways to bring users into the

loop of randomized testing. One research system, NaNoFuzz [14],

shows programmers examples of program outputs and helps them

to notice problematic results like NaN or crash failures. NaNoFuzz

is super�cially the closest comparison available for Tyche, but the

two serve di�erent, complementary purposes. NanoFuzz’s strengths

reside in calling attention to failures; Tyche’s strengths reside in

exposing patterns in input distributions. One could imagine a user

leveraging both in concert during the testing process.



UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA Goldstein et al.

3.3 Making Sense of Program Executions

In a broad sense, Tyche’s aim is to help developers reason about the

behavior of a program across many executions. This problem has

been explored by the HCI community. Tools have been developed

to reveal the behavior of a program over many synthesized exam-

ples [95], and of an expression over many loops [34, 44, 54, 77]. The

problem of understanding input distributions has been of interest

in the area of AI interpretability, where tools have been built to sup-

port inspection of input distributions and corresponding outputs

(e.g., [35, 36]). Tyche’s aim is to tailor data views and exploration

mechanisms to tightly �t the concerns and context of randomized

testing with professional-grade software and potentially-complex

inputs (e.g., logs, trees).

Prior work has sought to help programmers make sense of sim-

ilarities and di�erences across sets of programs. Some of these

tools cluster programs on the basis of syntax, semantics, or struc-

ture [21, 23, 32, 94]. Others highlight di�erences in the source

and/or behavior of program variants [73, 83, 86, 96]. Tyche itself

does some lightweight clustering of test cases (in this case, input ex-

amples), and a�ordances for program di�erencing could be brought

to Tyche to help programmers pinpoint where some instantiations

of a property fail and others succeed.

3.4 Formal Methods in the Editor

Property-based testing can be seen as a kind of lightweight formal

method [92], in that it allows programmers to specify precisely the

behavior of their program and then verify that the speci�cation is

satis�ed. Tyche joins a family of research projects that bring formal

methods into the interactive editing experience, whether to support

repetitive edits [56, 65], code search [63], program synthesis [16,

70, 87, 95], or bidirectional editing of programs and outputs [33].

4 FORMATIVE RESEARCH

Our design for Tyche is informed by formative research into the

user experience of PBT. Below, we describe our methods for for-

mative research (§4.1), followed by a crystallization of user needs

(§4.2) and a set of design considerations for Tyche (§4.3).

4.1 Methods

To better understand what developers need in understanding their

PBT distributions, we drew on our recently published related work

and then iterated with design feedback from users.

4.1.1 Review of related work. Our baseline understanding of user

needs relating to evaluating testing e�ectiveness came from our

recent study [25] on the human factors of PBT.

4.1.2 Iterative design feedback. As we developed Tyche, we contin-

ually sought and integrated feedback on its design from experienced

users of PBT.We recruited 5 such users through X (formerly Twitter)

and our personal networks. We refer to them as P1–P5.

For each of these users, we conducted a 1-hour observation and

interview session. Each session was split into two parts. In the �rst

part, participants showed us PBT tests they had written, described

those tests, and answered questions about how they evaluate (or

could evaluate) whether those tests are e�ective. In the second part,

participants installed our then-current prototype and used it to

explore the e�ectiveness of their own tests.3 Study sessions were

staggered throughout the design process. We altered the design to

incorporate feedback after each session.

Initial prototype. All Tyche prototypes were developed as VS-

Code [60] extensions. All prototypes focused on providing visual

summaries of PBT data in a web view pane in the editor. The very

�rst prototype was informed by observations from a previous study

from some of the authors [25] and from our experiences using and

building PBT tools. It was published at UIST 2023 as a demo [24],

and summarized the following aspects of test data:

• Number of Unique Inputs New PBT users are sometimes

surprised that their test harness produces duplicate data.

Knowing how many unique inputs were tested is therefore

one important signal of the test harness’ e�ciency.

• Proportion of Valid Inputs As discussed in §2.2, PBT test har-

nesses sometimes discard data that does not satisfy necessary

preconditions. Users need to know how much of the data is

discarded and how much is kept.

• Size Distribution User need to keep track of the size of each

individual program input used for testing. It is commonly

believed in the PBT community that software can be tested

well by exhaustive sets of small inputs (i.e., the small scope

hypothesis [2]), and alternatively, that large tests have a com-

binatorial advantage [39] in �nding more bugs.4 Whichever

viewpoint a tester subscribes to, it is important to know the

sizes of inputs.

Analysis. Interviews were automatically transcribed by video

conferencing software,5 and analyzed via thematic analysis [5].

4.2 Testing Goals and Strategies

The �rst result of our formative research was a clari�cation of

PBT users’ goals and strategies when they were attempting to

determine the e�ectiveness of their tests. One might imagine that

testing e�ectiveness could be measured by the proportion of bugs

found, but this is a fantastical measure: if we had it, we would

know what all the bugs are and wouldn’t need to do any testing! As

we found in our study sessions, developers pay attention to proxy

metrics to gain con�dence in their test suites. Ideally, PBT tools

will surface these metrics. Here, we discuss the various metrics that

developers paid attention to and how they measured them.

4.2.1 Test Input Distribution. Participants reported checking that

their distributions covered potential edge cases like G = 0, G = −1,

or G = Integer.MAX_VALUE (P2), which are widely understood as

bug-triggering values. They also checked that their distributions

covered regions in the input space like G = 0, G < 0, and G > 0 (P2,

P4, P5); this kind of coverage is similar to notions of “combinatorial

coverage” discussed in the literature [27, 49].

Multiple participants (P1, P3, P4) wanted to know that their test

data was realistic. Their justi�cation was that the most important

3P5 showed us older code that they no longer had the infrastructure to run, so they
only saw Tyche running on our examples.
4Each of these viewpoints seems to be correct in some situations; a recent study [76]
has a nice discussion.
5P3’s interview audio was lost due to technical di�culties, so we instead analyzed the
notes we took during their interview.



Tyche: Making Sense of Property-Based Testing E�ectiveness UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA

bugs are the ones that users were likely to hit. Another partici-

pant (P5) wanted their test data to be uniformly distributed across

a space of values. They thought that this would make it easier for

them to estimate the probability that there was still a bug in the

program. Whether to test with realistic or uniform distributions

is a topic of debate in the literature, with some tools favoring uni-

formity [11, 62] and others realism [78]. In either case, developers

should be able to see the shape of the distribution.

Participants used a combination of strategies to review these

proxy metrics of test quality. Some (P1, P3, P5) read through the

list of examples. Others (P2, P5) described using evaluation tools

already present in their PBT framework of choice; one participant

used events in Hypothesis and another used labels in QuickCheck,

both to understand coverage of attributes of interest (e.g., how often

does a particular variant of an enumerated type appear). As we show

in §3, while some PBT frameworks provide views of distributions of

user-de�ned input features, they are di�cult to interpret at a glance

and can easily get drowned out among other terminal messages.

4.2.2 Coverage of the System Under Test. Three participants (P2,

P4, P5) mentioned coverage of the system under test (e.g., line cov-

erage, branch coverage, etc.) was an important proxy metric. Two

participants (P2, P4) reported actually measuring code coverage

via code instrumentation, although P2 did point out the potential

limitations of code coverage (calling it “necessary but not su�-

cient”). This view is supported by the literature, which suggests

that coverage alone does not guarantee testing success [47].

4.2.3 Test Performance. Finally, two participants (P1, P2) discussed

timing performance as an important proxy for testing e�ectiveness.

They argued that they have a limited time in which to run tests (e.g.,

because the tests run every time a new commit is pushed or even

every time a �le is saved), so faster tests (more examples per second)

will exercise the system better. They measured performance with

the help of tools built into the PBT framework.

Besides these metrics, participants also expressed being more

con�dent in their tests when they understood them (P3), when they

had failed previously (P3), and when a su�ciently large (for some

de�nition of large) number of examples had been executed (P1, P4).

4.3 Design Considerations

Our formative research further clari�ed what is required of us-

able tools for understanding PBT e�ectiveness. We describe our

learnings here as �ve design considerations for Tyche:

Visual Feedback Our goal to provide better visual feedback from

testing arose from our prior work and was validated by participants.

Most participants (P1, P2, P3, P5) appreciated the interface’s visual

charts, stating that the visual charts are “a lot easier to digest than”

the built-in statistics printed by Hypothesis (P2). The previous

section (§4.2) clari�es the speci�c proxy metrics that developers

were interested in visualizing.

Work�ow Integration Our initial prototype was built to have

tight editor integration. It could be installed into VSCode in one

step, and updated live as code changed. But, while some partici-

pants validated this choice (P1 and P2), another said they were “not

always a big fan of extensions” because they use a non-VSCode

IDE at work (P4). For that participant, an editor extension actually

discourages use. We therefore refocused on work�ow integration

instead of editor integration, and re-architected our design so that

it could plug into other editing work�ows.

Customizability Participants found that the default set of visu-

alizations was a good start (P1, P2, P3, P5), but they also suggested

a slew of other visualizations that they thought might improve

their testing evaluation. Many of these visualizations (e.g., code

coverage (P1, P3, P5) and timing (P1)—see §5.2) were integrated into

Tyche. What we could not do was add views that summarized the

interesting attributes of each person’s data: every testing domain

was di�erent. Thus, tools should be customizable so developers can

acquire visual feedback for the information that is important in

their testing domain.

Details on Demand Almost all participants (P1, P2, P3, P4) ex-

pressed a desire to dig deeper into the visualizations they were

presented. When a visualization did not immediately look as ex-

pected, participants wanted to inspect the underlying data to see

where their assumptions had failed. This means that Tyche should

provide ways for developers to look deeper into the details of the

data that is being displayed by the visual interfaces.

Standardization Participants used PBT inmultiple programming

languages, including Python (P1, P2, P3, P4), Java (P4), and Haskell

(P5). We posit that to improve the testing experience for all of these

languages and their PBT frameworks without signi�cant duplicated

e�ort, Tyche needs to standardize the way it communicates with

PBT frameworks. Since PBT frameworks largely implement the

same test loop, despite super�cial implementation di�erences, this

standardization seems technically feasible.

5 SYSTEM

In this section, we describe the design of Tyche, addressing the

considerations we described in §4.3. We describe the interaction

model that we imagine for Tyche (§5.1), Tyche’s visual displays

that answer PBT users’ questions (§5.2), and integrations with PBT

frameworks that support easy con�guration of displays (§5.3).

5.1 Interaction Model

We envision user interactions with Tyche to follow roughly the

steps outlined in Figure 2.

(1) At the start of the loop, the developer runs their tests, and

the test framework (e.g., Hypothesis) collects relevant data

into an OpenPBTStats log (we discuss the details of this

format in §6).

(2) Once the data has been logged, the user sees Tyche render

an interface with a variety of visualizations (see §5.2).

(3) The user interacts with the interface. This may be as sim-

ple as seeing a visualization and immediately noticing that

something is wrong, but they may also explore the views to

seek details about surprising results or generate hypotheses

about what might need to change in their test suite. If the

user is happy with the quality of the test suite at this point,

they may �nish their testing session.

(4) Finally, the user can customize their Tyche visualizations or

make changes to their test (e.g., random generation strategies

or Hypothesis parameters) before reentering the loop.



UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA Goldstein et al.

Run Tests
to Generate

Data File

1 2

4 3

Tyche
View

Renders

Explore
Testing

Effectiveness

Change
Test Suite,

Add Events

Figure 2: The Tyche interaction loop.

5.2 Visual Feedback

The Tyche interface presents the user with a novel ensemble of

visualizations that are �ne-tuned to the PBT setting and enriched

with lightweight a�ordances to support exploration. We describe

these visualizations in the context of the kinds of questions they

answer for developers.

5.2.1 How many meaningful tests were run? Perhaps the most im-

portant thing for a developer to know about a test run is how

many meaningful examples were tested. Tyche communicates this

information through the “Sample Breakdown” chart:

The chart communicates a high-level understanding of how many

test inputs were sampled versus how many were “valid” to test

with. Ideally, the entire chart would be taken up by the dark green

“Unique / Passed” bar. If the “Invalid” bars are a large portion of

the chart’s height or the “Duplicate” bars are a large portion of the

width, the developer can see that it might be worth investing time

in a generation strategy that is better calibrated for the property at

hand. (If any tests had failed, there would be two more horizontal

bars with the label “Failed.”)

The use of amosaic chart [29] here allows Tyche to communicate

information about validity and uniqueness in a single chart. We

chose this chart after feedback from study participants suggested

that seeing validity and uniqueness metrics separately made it hard

to tell when and how they overlapped.

5.2.2 How are test inputs distributed? After checking the high-level

breakdown of test inputs, the next questions in the user’s mind will

likely be about subtler aspects of the distribution of inputs used to

test their property. Since test inputs are often structured objects

(e.g., trees, event logs, etc.), it is di�cult to observe their distribution

directly: what would it even mean to plot a distribution of trees?

Instead, the developer can visualize features of the distribution by

plotting numerical or categorical data extracted from their test

inputs.

For example, the following chart shows a distribution of sizes

projected from a distribution of red–black trees:

Charts like these give developers windows into their distributions

that are much easier to interpret than either the raw examples or

the statistics reported by frameworks like Hypothesis: the chart

above, for example, shows that the distribution skews quite small

(actually, most trees are size 0!), which would likely lead to poor

testing performance in practice.

Distributions for categorical features (e.g., whether the value at

the root of a red–black tree is positive or not) are displayed in a

di�erent format:

Categorical feature charts can be especially useful for helping devel-

opers understand whether there are portions of the broader input

space that their tests are currently missing. In this case, the devel-

oper may want to check on why so few roots are positive—in fact,

it is because an empty tree does not have a positive root, and the

distribution is full of empty trees!

Our formative research suggested that just these two kinds of

charts covered all of the kinds of projections that developers cared

about. In fact, participants seemed concerned that adding more

kinds of feature charts could be distracting; they felt they may

waste time trying to �nd data to plot for the sake of using the

charts, rather than plotting the few signals that would actually help

with their understanding. In §6.3 we describe how developers can

design their own visualizations outside of Tyche if needed.



Tyche: Making Sense of Property-Based Testing E�ectiveness UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA

5.2.3 How did the tests execute overall? The previous visualizations

show information about test inputs, but developers may also have

higher-level questions about what happened during testing. For ex-

ample, early users, including formative research participants, asked

for ways to visualize code coverage for their properties. Tyche

provides the following coverage chart:

This Tyche chart shows the total code coverage achieved over the

course of the test run. Note that this example is from a very small

codebase, so there were really only a few disjoint paths to cover.

Big jumps (around the 1st and 75th inputs) indicate inputs that

meaningfully improved code coverage, whereas plateaus indicate

periods where no new code was reached. As discussed in §4, code

coverage is an incomplete way to measure testing success, but

knowing that the �rst 70+ test inputs all covered the same lines

suggests that the generation strategy may spend too long exploring

a particular type of input.

Tyche also provides charts with timing feedback, again answer-

ing a high-level question about execution that was requested by

formative research participants:

The chart above shows that a majority of inputs execute quite

quickly (less than 0.002 seconds) but that some twice or three times

that. For the most expensive tests, the red area, signifying the time

it takes to generate trees, is the largest. While users did request

this chart, we are not clear how useful it is on its own (see §7.1).

However, the timing data can be used to corroborate and expand on

information from other charts. For example, notice how the timing

breakdown above actually mirrors the size chart from the previous

section. The combination of these charts suggests that larger trees

take much longer to generate, which suggests as trade-o� that a

developer should be aware of.

5.2.4 What test inputs were actually generated? Although much

of the point of Tyche is to avoid programmers needing to sift

through individual test input examples, Tyche does make those

examples available, in line with the design consideration of “details

on demand:”

Each example in the view shows a textual representation of the

generated sample that can be expanded to see metadata like ex-

ecution duration and code coverage for the individual example.

Examples are grouped, so that identical examples are only shown

once; this manifests in the “3x” and “2x” annotations shown in the

above screenshot. This grouping aligns with the design principle

of “visual feedback” by giving a compact visual representation of

repetition, and it cuts down on clutter.

The main way a user reaches the example view is by clicking

on one of the selectable bars of the sample breakdown or feature

distribution charts. The user can dig into the data to answer ques-

tions about why a chart looks a certain way (e.g., if they want to

explore why so few of the red–black tree’s root nodes are positive).

Secondarily, the example view can be used to search for particular

examples to make sure they appear as test inputs (e.g., important

corner cases that indicate thorough testing).

5.3 Reactivity and Customizability

The visualizations provided by Tyche are reactive and customizable,

allowing them to integrate neatly into the developer’s work�ow as

dictated by our design considerations.

5.3.1 Reactivity. Reactivity has been incorporated into an astonish-

ing variety of programming tools. It is a common feature of many

modern developer tools—two modern examples are Create React

App [13], which reloads a web app on each source change, and

pytest-watch [71], one of many testing harnesses that live-reruns

tests upon code changes. When run as a VSCode extension, Ty-

che automatically refreshes the view when the user’s tests re-run.

When used in conjunction with a test suite watcher (e.g., pytest-

watch, which reruns Hypothesis tests when the test �le is saved)

this yields an end-to-end experience with “level 3 liveness” on

Tanimoto’s hierarchy of levels of liveness [84].

5.3.2 Customizability. In step (4) of the Tyche loop, the user can

tweak their testing code in ways that change the visualizations that

are shown the next time around the loop.6

Assumptions. As discussed in §2 with the red–black tree example,

developers often express assumptions about what inputs are valid

for their property. Concretely, this happens via the Hypothesis

assume function; for example:

6While Tyche works with many PBT frameworks, we describe these customizations
in detail for Python’s Hypothesis speci�cally. Other frameworks may choose to imple-
ment user customization in other ways that are more idiomatic for their users.



UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA Goldstein et al.

def test insert lookup(t, k, v):

assume(is_red_black_tree(t))

assert lookup(insert(k, v, t), k) == v

The assume function �lters out any tree that does not satisfy the

provided Boolean check—in this case, that the generated tree is a

valid red–black tree. In the sample breakdown, inputs that break

assumptions are shown as “Invalid.”

Events. Hypothesis lets programmers de�ne custom “events” that

are triggered when something interesting happened during prop-

erty execution. For example, the programmer might write:

if some_condition:

event("hit_condition")

and then Hypothesis would output “hit_condition: 42%.” To sup-

port richer visual displays of features, we extended the Hypothesis

API (with the support of the Hypothesis developers) to allow events

to include “payloads” that correspond to the numerical and cate-

gorical features in the feature charts above. Adding an event to the

above property gives:

def test insert lookup(t, k, v):

event("size", payload=size(t))

assume(is red black tree(t))

assert lookup(insert(k, v, t), k) == v

These user events correspond to feature charts: the one shown here

generates the size chart shown in the previous section.

By reusing Hypothesis’s existing idioms for assumptions and

events, Tyche hooks into existing developer work�ows and makes

them more powerful.

6 IMPLEMENTATION

In this section, we outline the implementation of the Tyche inter-

face. We begin with the mechanics of the system itself (§6.1), but

the most interesting part is the standardized OpenPBTStats format

that PBT frameworks use to send data to Tyche (§6.2). In §6.3 we

explain how the Tyche architecture makes it easy to extend the

ecosystem of related tools.

6.1 UI Implementation

At the implementation level, Tyche is a web-based interface that is

easy to integrate into existing PBT frameworks. The implementa-

tion can be found on GitHub.7

6.1.1 React Application. Tyche is a React [85] web application that

consumes raw data about the results of one or more PBT runs and

produces interactive visualizations to help users make sense of the

underlying data. The primary way to use Tyche is in the context

of an extension for VSCode that shows the interface alongside

the tests that it pertains to, but it is also available as a standalone

webpage to support work�ow integration for non-VSCode users.

7https://github.com/tyche-pbt/tyche-extension

{

line_type: "example",

run_start: number,

property: string,

status: "passed" | "failed" | "discarded",

representation: string,

features: {[key: string]: number | string}

coverage: ...,

timing: ...,

...

}

Figure 3: The OpenPBTStats line format.

(When running as an extension, Tyche is still fundamentally a web

application: VSCode can render web applications in an editor pane.)

The mosaic chart described in §5.2.1 is implemented with custom

HTML and CSS, but all other charts and visualizations are generated

with Vega-Lite [75]. Vega-Lite has good default layout algorithms

for most of the types of data we care about, although it could do a

better job at making edge cases like NaN obvious; we leave this for

future work.

6.1.2 Framework Integration. As discussed in §5, we worked with

the Hypothesis developers to make a few small changes to enable

Tyche; other PBT tools require similar changes. The Hypothesis

developers added a callback to capture data on each test run, and

we implemented a simple data transformer to translate that data for

Tyche. This data is printed to a �le in the OpenPBTStats format,

which we discuss in §6.2.

In Hypothesis speci�cally, we also adapted the event function to

have a richer API, described in §5.3.2.

6.2 OpenPBTStats Data Format

We designed an open standard for PBT data that helps PBT frame-

works integrate Tyche and related tools.

OpenPBTStats is based on JSON Lines [88]: each line in the �le

is a JSON object that corresponds to one example. An example is

the smallest unit of data that a test might emit; each represents a

single test case. The JSON schema in Figure 3 de�nes the format

of a single example line. Each example has a run_start timestamp,

used to group examples from the same run of a property and dis-

ambiguate between multiple runs of data that are stored in the

same �le. The property �eld names the property being tested and

the status �eld says whether this example "passed" or "failed",

or "discarded" meaning that the value did not pass assumptions.

The representation is a human-readable string describing the ex-

ample (e.g., as produced by a class’s __repr__ in Python). Finally,

the features contain the data collected for user-de�ned events.

The full format includes a few extra optional �elds, including

some human-readable details (e.g., to explain why a particular value

was discarded), optional �elds naming the particular generator that

was used to produce a value, and a freeform metadata �eld for any

additional information that might be useful in the example view. A

guide to using the format can be found online.8

8See [31]. Some �eld names have been changed to clarify the explanations in the paper.



Tyche: Making Sense of Property-Based Testing E�ectiveness UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA

6.3 Expanding the Ecosystem

The clean divide between Tyche and OpenPBTStats means that

PBT frameworks require only the modest work of implementing

OpenPBTStats to get access to the visualizations implemented by

Tyche, and conversely that front ends other than Tyche will work

with any PBT tool that implements OpenPBTStats.

6.3.1 Supporting New Frameworks. Supporting a new PBT frame-

work is as simple as extending it with some lightweight logging in-

frastructure. Framework developers can start small: supporting just

�ve �elds—type, run_start, property, status, and representation

—is enough to enable a substantial portion of Tyche’s features.

After that, adding features will enable user control of visualiza-

tions; coverage and timing may be harder to implement in some

programming languages, but worthwhile to support the full breadth

of Tyche charts.

So far, support for OpenPBTStats exists in Hypothesis, Haskell

QuickCheck, and OCaml’s base-quickcheck. Our minimal Haskell

QuickCheck implementation is an external library comprising about

100 lines of code and took an afternoon to write.

6.3.2 Adding New Analyses. Basing OpenPBTStats on JSON Lines

and making each line a mostly-�at record means that processing

the data is very simple. This simpli�es the Tyche codebase, but it

also makes it easy to process the data with other tools. For exam-

ple, getting started visualizing OpenPBTStats data in a Jupyter

notebook requires two lines of code:

import pandas as pd

pd.read_json(<file>, lines=True)

This means that if a developer starts out using Tyche but �nds that

they need a visualization that cannot be generated by adding an

assumption or event, they can simply load the data into a notebook

and start building their own analyses.

In the open-source community, we also expect that developers

may �nd entirely new use-cases for OpenPBTStats data that are

not tied to Tyche. For example, OpenPBTStats data could be used

to report testing performance to other developers or managers (a

use-case mentioned by participants in our formative research).

7 EVALUATION

In this section, we evaluate Tyche. §7.1 presents an online self-

guided study to assess Tyche’s impact on users’ judgments about

the quality of test suites. §7.2 describes the concrete impact that

Tyche has already had through identifying bugs in the Hypothesis

testing framework itself.

7.1 Online Study

We designed this study to validate what we saw as the most critical

question about the design: whether the kinds of visual feedback

o�ered by Tyche led to improved understanding of test suites. We

regarded this question as most critical because we had less con�-

dence in the e�ectiveness of visual feedback for helping �nd bugs

than in other aspects of the Tyche design—indeed, it is a tall or-

der for any kind of feedback to provide an e�ective proxy for the

bug-�nding power of tests. (By contrast, we felt our choices around

customizability, work�ow integration, details on demand, and stan-

dardization were already on solid ground—these choices were more

conservative, and had previously received positive feedback from

developers and PBT tool builders.)

Accordingly, we designed a study to address the following re-

search questions:

RQ1 Does Tyche help developers to predict the bug-�nding power

of a given test suite?

RQ2 Which aspects of Tyche do users think best support sense-

making about test results?

To go beyond qualitative feedback alone, we designed the study

to support statistical inference about whether we had improved

judgments about test distributions. This led us a self-guided, online

usability study that centered on focused usage of Tyche’s visual

displays. The study allowed us to collect su�cientlymany responses

from diverse and su�ciently-quali�ed programmers to support the

analysis we wanted.

7.1.1 Study Population. We recruited study participants both from

social media users on X (formerly Twitter) and Mastodon and from

graduate and undergraduate students in the computer science de-

partment of a large university, aiming to recruit a diverse set of

programmers ranging from relative beginners with no PBT experi-

ence to experts who may have some exposure (all participants but

one were at least “pro�cient” in Python programming).

In all, we recruited 44 participants. 4 responses were discarded

because they did not correctly answer our screening questions, leav-

ing 40 valid responses. All but one of these reported that they were

at least pro�cient with Python, with 12 self-reporting as advanced

and 9 as expert. Half reported being beginners at PBT, 13 pro�cient,

6 advanced, and 0 experts. Almost all participants reported being

inexperienced with the Python Hypothesis framework; only 7 re-

porting being pro�cient. To summarize, the average participant had

experience with Python but not PBT, and if they did know about

PBT it was often not via Hypothesis.

When reporting education level, 4 participants had a high school

diploma, 15 an undergraduate degree, and 20 a graduate degree.

The majority of participants (24) described themselves as students;

7 were engineers; 3 were professors; 6 had other occupations. 28

participants self-identi�ed as male, 5 as female, 2 as another gender,

and 5 did not specify.

We discuss the limitations of this sample in §7.1.5.

7.1.2 Study Procedure. We hypothesized that Tyche would im-

prove a developer’s ability to determine how well a property-based

test exercises the code under test—and therefore, how likely it is

to �nd bugs. At its core, our study consisted of four tasks, each

presenting the participant with a PBT property plus three sets of

sampled inputs for testing that property, drawn from three di�erent

distributions respectively. The goal of each task was to rank the

distributions, in order of their bug-�nding power, with the help

of either Tyche or a control interface that mimicked the existing

user experience of Hypothesis. Concretely, the control interface

consisted of Hypothesis’s “statistics” output and a list of pretty-

printed test input examples; the statistics output included Hypoth-

esis’s warnings (e.g., when < 10% of the sample inputs were valid).

Both interfaces were styled the same way and embedded in HTML



UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA Goldstein et al.

Charts Charts Charts

Dist. 2 Dist. 1 Dist. 3

Examples Examples

Dist. 2 Dist. 1 Dist. 3

Examples

x4

Background & Instructions

Sense Check Questions

Evaluation Tasks

Closing Questions

Figure 4: Task �ow for the self-guided, online usability study.

iframes, so participants could interact with them as they would

if the display were visible in their editor; Tyche was re-labeled

“Charts” and the control was labeled “Examples” to reduce demand

characteristics.

The distributions that participants had to rank were chosen

carefully: one distribution was the best we could come up with; one

was a realistic generator that a developermight write, but with some

�aw or ine�ciency; and one was a low-quality starter generator

that a developer might obtain from an automated tool. To establish

a ground truth for bug-�nding power, we benchmarked each trio

of input distributions using a state-of-the-art tool called Etna [76].

Etna greatly simpli�es the process ofmutation testing as a technique

for determining the bug-�nding power of a particular generation

strategy: the programmer speci�es a collection of synthetic bugs to

be injected into a particular bug-free program, and Etna does the

work of measuring how quickly (on average) a generator is able

to trigger a particular bug with a particular property. Prior work

has shown that test quality as measured by mutation testing is well

correlated with the power of tests to expose real faults [43]. These

ground truth measurements agreed with the original intent of the

generators, with the best ones �nding the most bugs, followed by

the �awed ones, followed by the intentionally bad ones.

The study as experienced by the user is summarized in Figure 4.

We started by providing participants some general background on

PBT, since we did not require that participants had worked with

it before, and instructions for the study. After some “sense-check”

questions to ensure that participants had understood the instruc-

tions, we presented the main study tasks. In each, the participants

ranked three test distributions based on how likely they thought

they were to �nd bugs. Each of the four tasks was focused on a

distinct data structure and a corresponding property:

• Red–Black Tree The property described in §2.1 about the

insert function for a red–black tree implementation.

• Topological Sort A property checking that a topological sort-

ing function works properly on directed acyclic graphs.

• Python Interpreter Aproperty checking that a simple Python

interpreter behaves the same as the real Python interpreter

on straight-line programs.

• Name Server A property checking that a realistic name

server [89] behaves the same as a simpler model implemen-

tation.

These tasks were designed to be representative of common PBT

scenarios: red–black trees are a standard case study in the litera-

ture [74, 76], topological sort has been called an ideal pedagogical

example for PBT [64], programming language implementations

are a common PBT application domain [69], and name servers are

a kind of system that is known to be di�cult to test with PBT—

speci�cally, systems with signi�cant internal state [40].

To counterbalance potential biases due to the order that dif-

ferent tasks or conditions were encountered, we randomized the

participants’ experience in three ways: (1) two tasks were randomly

assigned Tyche, while the other two received the control interface,

(2) tasks were shown to users in a random order, and (3) the three

distributions for each task were arranged in a random order.

Four participants took over an hour to complete the study; we

suspect this is because they started, took a break, and then returned

to the study. Of the rest, participants took 32 minutes on average

(f = 12) to complete the study; only one took less than 15 minutes.

Participants took about 3 minutes on average (f = 2.5) to complete

each task.

7.1.3 Results. To answer RQ1, whether or not Tyche helps de-

velopers to predict test suite bug-�nding power, we analyzed how

well participants’ rankings of the three distributions for each task

agreed with the true rankings as determined by mutation testing.

Given a participant’s ranking, for example �2 > �1 > �3, we

compared it to the true ranking (say, �1 > �2 > �3) by counting

the number of correct pairwise comparisons—here, for example,

the participant correctly deduced that �1 > �3 and �2 > �3, but

they incorrectly concluded that �2 > �1, so this counted as one

incorrect comparison.9

Figure 5 shows the breakdown of incorrect comparisons made

with and without Tyche, separated out by task. To assess whether

Tyche impacted correctness, we performed a one-tailed Mann-

Whitney U test [59] for each task, with the null hypothesis that

Tyche does not lead to fewer incorrect comparisons. The results ap-

pear in Table 1. For three of the four tasks (all but Python Interpreter),

participants made signi�cantly fewer incorrect comparisons when

using Tyche, with strong common language e�ect sizes, meaning

that participants were better at assessing testing e�ectiveness with

Tyche than without. Furthermore, a majority of participants got a

completely correct ranking for all 4 of the tasks with Tyche, while

this was only the case for 1 of the tasks without Tyche. (For Python

Interpreter, participants overwhelmingly found the correct answer

9This metric is isomorphic to Spearman’s d [79] in this case. Making 0 incorrect
comparisons equates to d = 1, making 1 is d = 0.5, 2 is d = −0.5, and 3 is d = −1. We
found counting incorrect comparisons to be the most intuitive way of conceptualizing
the data.
9This corresponds to the probability that randomly sampled Tyche participant will
make fewer errors than a control participant, computed as A = *1/(=1 ∗ =2 ) .



Tyche: Making Sense of Property-Based Testing E�ectiveness UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA

0 1 2 3
0

5

10

15

C
ou

n
t

Red-Black Trees

0 1 2 3

Topological Sort

0 1 2 3

Python Interpreter

0 1 2 3

Name Server

Condition
Charts
Examples

Incorrect Comparisons

Figure 5: Distribution of number of errors made for each task, where each incorrect relative ranking between two test suites

counts as one error. = “Charts” = Tyche, = “Examples” = Control.

with both conditions—in other words, the task was simply too easy—

but precisely why it was too easy is interesting; see §7.1.4.) Despite

this di�erence in accuracy, participants took around the same time

with both treatments; the mean time to complete a task with Tyche

was 183 seconds (f = 125), verses 203 seconds (f = 165) for the

control. These results support answering RQ1 with “yes,” Tyche

helps users more accurately predict bug-�nding power.

To answer RQ2we used a post-study survey, asking participants

for feedback on which of Tyche’s visualizations they found use-

ful. The vast majority of participants (37/40) stated that Tyche’s

“bar charts” were helpful. (Unfortunately, we phrased this question

poorly: we intended for it to refer only to feature charts, but par-

ticipants may have interpreted it to include the mosaic chart as

well.) Additionally, 20/40 participants found the code coverage visu-

alization useful, 17/40 found the warnings useful, and 14/40 found

the listed examples useful. Only 4/40 found the timing breakdown

useful; we may need to rethink that chart’s design, although it may

also simply be that the tasks chosen for the study did not require

timing data to complete. These results suggest that the customizable

parts of the interface—the feature and/or mosaic charts—were the

most useful, followed by other a�ordances.

To get a sense of participants’ overall impression of Tyche, we

also asked “Which view [Tyche or the control] made the di�erence

between test suites clearer?” with �ve options on a Likert scale.

All but one participant said Tyche made the di�erences clearer,

with 35/40 saying Tyche was “much clearer” (the maximum on the

scale).

Table 1: Values for Mann-Whitney U test measuring Tyche’s

impact on incorrect comparisons of test suites’ bug-�nding

power. All sample sizes were between 18 and 22, totaling 40,

depending on the random variation in the way conditions

were assigned; A is common language e�ect size,< is median

number of incorrect comparisons.

Task * ? A <Tyche <Examples

Red–Black Trees 65 < 0.01 0.84 0 1

Topological Sort 127 0.01 0.68 0 1

Python Interp. 182 0.26 - 0 0

Name Server 91 < 0.01 0.77 0 1

7.1.4 Discussion. Overall, the online study implied that Tyche

improved developer understanding. In addition to the core observa-

tions above, we also made a couple of other smaller observations.

Con�dence. Alongside each ranking, we asked developers how

con�dent they were in it, on a scale from 1–5 (“Not at all” = 1, “A lit-

tle con�dent” = 2, “Moderately con�dent” = 3, “Very con�dent” = 4,

“Certain” = 5). We found that reported con�dence was signi�cantly

higher with Tyche than without on two tasks (Red–Black Tree

and Topological Sort), as computed via a similar one-sided Mann-

Whitney U test to the one before (? < 0.01 and ? = 0.03 respec-

tively), with no signi�cant di�erence for the other tasks. However,

con�dence ratings should be viewed with some skepticism. When

we computed Spearman’s d [79] between the con�dence scores and

incorrect comparison counts, we found no signi�cant relationship;

in other words, participants’ con�dence was not, broadly, a good

predictor of their success.

Non-signi�cant Result for “Python Interpreter” Task. As men-

tioned above, the Python Interpreter task seems to have been too

easy; participants made very few mistakes across the board. We

propose that this is, at least in part, because the existing statistics

output available in Hypothesis were already good enough. For the

worst of the three distributions, Hypothesis clearly displayed a

warning that “< 10% of examples satis�ed assumptions,” an obvi-

ous sign of something wrong. Conversely, for the best distribution

of the three, Hypothesis showed a wide variety of values for the

variable_uses event, which was only ever 0 for the other two distri-

butions. Critically, the list displayed was visually longer, so it was

easy to notice a di�erence a glance. (We show an example of what

the user saw in Appendix B.) This result shows that Hypothesis’s

existing tools can be quite helpful in some cases: in particular, they

seem to be useful when the distributions have big discrepancies

that make a visual di�erence (e.g., adding signi�cant volume) in

the statistics output.

7.1.5 Limitations. We are aware of two signi�cant limitations of

the online study: sampling bias and ecological validity.

The sample we obtained under-represents important groups with

regards to both gender and occupation. For gender, prior work has

shown that user interfaces often demonstrate a bias for cognitive

strategies that correlate with gender [9, 82], so a more gender-

diverse sample would have been more informative for the study.



UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA Goldstein et al.

For occupation, we reached a signi�cant portion of students and

proportionally fewer working developers. Many of those students

are in computer science programs and therefore will likely be de-

velopers someday, but software developers are ultimately the popu-

lation we would like to impact so we would like to have more direct

con�rmation that Tyche works for them.

The other signi�cant limitation is ecological validity. Because

this study was not run in situ, aspects of the experimental design

may have impacted the results. For example, study participants did

not write the events and assumptions for the property themselves;

this means our outcomes assume that the participants could have

come up with those events themselves in practice. Additionally,

participants saw snippets of code, but they were not intimately

familiar with, nor could they inspect, the code under test. In a

real testing scenario, a developer’s understanding of their testing

success would depend in part on their understanding of the code

under test itself. We did control for other ecological issues: for

example, we used live instances of Tyche in an iframe to maintain

the interactivity of the visual displays, and we developed tasks that

spanned a range of testing scenarios. We discuss plans to evaluate

Tyche in situ in §8.1

7.2 Impact on the Testing Ecosystem

Since Tyche is an open-source project that is beginning to en-

gage with the PBT community, we can also evaluate its design by

looking at its impact on practice. The biggest sign of this so far

is that Tyche has led to 5 concrete bug-�xes and enhancements

in the Hypothesis codebase itself. As of this writing, Hypothesis

developers have found and �xed three bugs—one causing test input

sizes to be arti�cially limited, another that badly skewed test input

distributions, and a third that impacted performance of stateful

generation strategies—and two long-standing issues pertaining to

user experience: a nine-year-old issue about surfacing important

feedback about the assume function and a seven-year-old issue ask-

ing to clarify terminal error messages. All �ve issues are threats

to developers’ evaluation of their tests. They were found and �xed

when study participants and other Tyche users noticed de�ciencies

in their test suites that turned out to be library issues.

The ongoing development of Tyche has the support of the Hy-

pothesis developers, and it has also begun to take root in other

parts of the open-source testing ecosystem. One of the authors

was contacted by the developers of PyCharm, an IDE focused on

Python speci�cally, to ask about the OpenPBTStats format. They

realized that the coverage information therein would provide them

a shortcut for code coverage highlighting features that integrate

cleanly with Hypothesis and other testing frameworks.

8 CONCLUSIONS AND FUTUREWORK

Tyche rethinks the PBT process as more interactive and empower-

ing to developers. Rather than hide the results of running properties,

which may lead to confusion and false con�dence, the OpenPBT-

Stats protocol and interfaces like Tyche give developers rich in-

sight into their testing process. Tyche provides visual feedback,

integrates with developer work�ows, provides hooks for customiza-

tion, shows details on demand, and works with other tools in the

ecosystem to provide a standardized way to evaluate testing success.

Our evaluation shows that Tyche helps developers to tell the di�er-

ence between good and bad test suites; its demonstrated real-world

impact on the Hypothesis framework con�rms its value.

Moving forward, we see a number of directions where further

research would be valuable.

8.1 Evaluation in Long-Term Deployments

Our formative research and online evaluation study have provided

evidence that Tyche is usable, but there is more to explore. For

one thing, we would like to get in-situ empirical validation for the

second half of the loop in Figure 2. As Tyche is deployed over

longer periods of time in real-world software development settings,

we are excited to assess its usability and continued impact.

8.2 Improving Data Presentation for Tyche

As the Tyche project evolves, we plan to add new visualizations and

work�ows to support developer exploration and understanding.

Code Coverage Visualization. The visualization we provide for

displaying code coverage over time was not considered particu-

larly important by study participants: it may be useful to explore

alternative designs or cut that feature entirely.

One path forward is in-situ line-coverage highlighting, like that

provided by Tarantula [42]. Indeed, it would be easy to implement

Tarantula’s algorithm, which highlights lines based on the pro-

portion of passed versus failed tests that hit that line in Tyche

(supported by OpenPBTStats). In cases where no failing examples

are found, each line could simply be highlighted with a brightness

proportional to the number of times it was covered.10

Line highlighting is can answer some questions about particular

parts of the codebase, but developers may also have questions about

how code is exercised for di�erent parts of the input space. To

address these questions, we plan to experiment with visualizations

that cluster test inputs based on the coverage that they have in

common. This would let developers answer questions like “which

inputs could be considered redundant in terms of coverage?” and

“which inputs cover parts of the space that are rarely reached?”

Mutation Testing. In cases where developers implement muta-

tion testing for their system under test, we propose incorporating

information about failing mutations into Tyche for better inter-

action support. Recall that in §7.1, we used mutation testing, via

the Etna tool, as a ground truth for test suite quality; mutation

testing checks that a test suite can �nd synthetic bugs or “mutants”

that are added to the test suite. Etna is powerful, but its output is

not interactive: there is no way to explore the charts it generates,

nor can you connect the mutation testing results with the other

visualizations that Tyche provides. Thus, we hope to add optional

visualizations to Tyche, inspired by Etna, that tell developers how

well their tests catch mutants.

Longitudinal Comparisons of Testing E�ectiveness. Informal con-

versations with potential industrial users of Tyche suggest that

developers wantways to compare visualizations of test performance

for the same system at di�erent points in time—either short term,

to inspect the results of changes—or longer term, to understand

10Unit-test frameworks could also report simple OpenPBTStats output (see §6.3.1)
with one line per example-based test, enabling per-test coverage visualization for
almost any test suite.



Tyche: Making Sense of Property-Based Testing E�ectiveness UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA

how testing e�ectiveness has evolved over time. These comparisons

would make it clear if changes over time have improved test quality,

or if there have been signi�cant regressions.

Interestingly, the design of the online evaluation study acciden-

tally foreshadowed a design that may be e�ective: allowing two

instances of Tyche, connected to di�erent instances of the system

under test, to run side-by-side so the user can compare them. Since

developers were able to successfully compare two distributions

side-by-side with Tyche in the study, we expect they will also be

able to if presented the same thing in practice. This is simple to

implement and provides good value for developers.

8.3 Improving Control in Tyche

Tyche is currently designed to support existing developer work-

�ows and provide insights into test suite shortcomings. But partici-

pants in the formative research (P1, P4) did speculate about some

ways that Tyche could help developers to adjust their random

generation strategies after they notice something is wrong.

Direct Manipulation of Distributions. When a developer notices,

with the help of Tyche, that their test input distribution is sub-

par, they may immediately know what distribution they would

prefer to see. In this case, we would like developers to be able to

change the distribution via direct manipulation—i.e., clicking and

dragging the bars of the distribution to the places they should be,

automatically updating the input generation strategy accordingly.

One potential way to achieve this would be to borrow techniques

from the probabilistic programming community, and in particular

languages like Dice [38]. Probabilistic programming languages and

random data generators are quite closely related, but the potential

overlap is under-explored. Alternatively, re�ective generators [26]

can tune a PBT generator to mimic a provided set of examples. If

a developer thinks a particular bar of a chart should be larger, a

re�ective generator may be able to tune a generator to expand on

the examples represented in that bar.

Manipulating Strategy Parameters in Tyche. Occasionally direct

manipulation as discussed abovewill be computationally impossible

to implement; in those cases Tyche could still provide tools to help

developers easily manipulate the parameters of di�erent generation

strategies. For example, if a generation strategy takes a max_value

as an input, Tyche could render a slider that lets the developer

change that value and monitor the way the visualizations change,

resembling interactions already appearing in HCI programming

tools (e.g., [30, 46]). Of course, running hundreds of tests on every

slider update may be slow; to speed it up, we propose incorporating

ideas from the literature of self-adjusting computation [1], which

has tools for e�ciently re-running computations in response to

small changes of their inputs.

8.4 Tyche Beyond PBT

The ideas behind Tyche may also have applications beyond the

speci�c domain of PBT. Other automated testing techniques—for ex-

ample fuzz testing (“fuzzing”)—could also bene�t from enhanced un-

derstandability. Fuzzing is closely related to PBT,11 and the fuzzing

11Generally speaking, fuzzers operate on whole programs and run for extended periods
of time, whereas PBT tools operate on smaller program units and run for shorter times.
Instead of testing logical properties, fuzzers generally try to make the program crash.

community has some interesting visual approaches to commu-

nicating testing success. One of the most popular fuzzing tools,

AFL++ [18], includes a sophisticated textual user-interface giving

feedback on code coverage and other fuzzing statistics over the

course of (sometimes lengthy) “fuzzing campaigns.” But current

fuzzers su�er from the same usability limitations as current PBT

frameworks, hiding information that could help developers evalu-

ate testing e�ectiveness. We would like to explore adapting Tyche

and expanding OpenPBTStats to work with fuzzers and other au-

tomated testing tools, bringing the bene�ts of our design to an even

broader audience.

ACKNOWLEDGMENTS

Research reported in this publication was supported by an Amazon

Research Award Fall 2023. Any opinions, �ndings, and conclusions

or recommendations expressed in this material are those of the

authors and do not re�ect the views of Amazon. This work was also

supported by the National Science Foundation under grant NSF

#2402449, SHF: Medium: Usable Property-Based Testing. We would

like to thank Liam DeVoe for his feedback on early designs for

Tyche, and Sarah Chasins, Justin Lubin, and Michael Coblenz for

their advice on study designs and evaluation considerations.

REFERENCES
[1] Umut A. Acar. 2009. Self-adjusting computation: (an overview). In Proceedings of

the 2009 ACM SIGPLAN workshop on Partial evaluation and program manipulation
(PEPM ’09). Association for Computing Machinery, New York, NY, USA, 1–6.
https://doi.org/10.1145/1480945.1480946

[2] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. 2002.
Evaluating the “Small Scope Hypothesis”. (2002).

[3] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. 2006. Testing tele-
coms software with quviq QuickCheck. In Proceedings of the 2006 ACM SIGPLAN
workshop on Erlang (ERLANG ’06). Association for Computing Machinery, New
York, NY, USA, 2–10. https://doi.org/10.1145/1159789.1159792

[4] Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. 2015. Testing AU-
TOSAR software with QuickCheck. In 2015 IEEE Eighth International Confer-
ence on Software Testing, Veri�cation and Validation Workshops (ICSTW). 1–4.
https://doi.org/10.1109/ICSTW.2015.7107466

[5] Ann Blandford, Dominic Furniss, and Stephann Makri. 2016. Analysing Data.
In Qualitative HCI Research: Going Behind the Scenes, Ann Blandford, Dominic
Furniss, and Stephann Makri (Eds.). Springer International Publishing, Cham,
51–60. https://doi.org/10.1007/978-3-031-02217-3_5

[6] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard
Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob
Van Ge�en, and Andrew War�eld. 2021. Using Lightweight Formal Methods
to Validate a Key-Value Storage Node in Amazon S3. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (SOSP ’21). Association
for Computing Machinery, New York, NY, USA, 836–850. https://doi.org/10.
1145/3477132.3483540

[7] Darren Brown,Margaret Burnett, Gregg Rothermel, Hamido Fujita, and Fumio Ne-
goro. 2003. Generalizing WYSIWYT visual testing to screen transition languages.
In IEEE Symposium on Human Centric Computing Languages and Environments,
2003. Proceedings. 2003. IEEE, 203–210.

[8] Brian Burg, Richard Bailey, Amy J. Ko, and Michael D. Ernst. 2013. Interactive
Record/Replay for Web Application Debugging. In Proceedings of the Symposium
on User Interface Software and Technology. ACM, 473–483.

[9] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beck-
with, Irwin Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag: A
Method for Evaluating Software’s Gender Inclusiveness. Interacting with Com-
puters 28, 6 (2016), 760–787.

[10] Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller. 2010. GUI testing using
computer vision. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1535–1544.

[11] Koen Claessen, Jonas Duregård, and Michal H. Palka. 2015. Generating con-
strained random data with uniform distribution. J. Funct. Program. 25 (2015).
https://doi.org/10.1017/S0956796815000143

[12] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN



UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA Goldstein et al.

International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, Montreal,
Canada, 268–279. https://doi.org/10.1145/351240.351266

[13] Create React App [n. d.]. Retrieved March 23, 2024 from https://github.com/
facebook/create-react-app

[14] Matthew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Sunshine.
2023. NaNoFuzz: A Usable Tool for Automatic Test Generation.

[15] Daniel Drew, Julie L Newcomb, WilliamMcGrath, Filip Maksimovic, David Mellis,
and Björn Hartmann. 2016. The toastboard: Ubiquitous instrumentation and
automated checking of breadboarded circuits. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology. 677–686.

[16] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unifed Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In Proceedings of the CHI Conference on Human Factors
in Computing Systems. ACM. Paper 315.

[17] Nicolas Dubien. 2024. fast-check. https://fast-check.dev/
[18] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. {AFL++}

: Combining Incremental Steps of Fuzzing Research. https://www.usenix.org/
conference/woot20/presentation/�oraldi

[19] Andrew Gallant. 2024. BurntSushi/quickcheck. https://github.com/BurntSushi/
quickcheck original-date: 2014-03-09T07:29:09Z.

[20] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C.Miller.
2015. OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale. ACMTransactions on Computer-Human Interaction 22, 2 (March
2015), 7:1–7:35. https://doi.org/10.1145/2699751

[21] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C.Miller.
2015. OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale. 22, 2 (2015), 7:1–7:35.

[22] Elena L. Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. 2018.
Visualizing API Usage Examples at Scale. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3174154

[23] Elena L. Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. 2018.
Visualizing API Usage Examples at Scale. In Proceedings of the CHI Conference on
Human Factors in Computing Systems. ACM. Paper 580.

[24] Harrison Goldstein. 2023. Tyche: In Situ Exploration of Random Testing E�ec-
tiveness (Demo). In ACM Symposium on User Interface Software and Technology
(UIST). https://harrisongoldste.in/papers/uist23.pdf

[25] Harrison Goldstein, Joseph W Cutler, Daniel Dickstein, Benjamin C Pierce, and
Andrew Head. 2024. Property-Based Testing in Practice. In International Confer-
ence on Software Engineering (ICSE).

[26] Harrison Goldstein, Samantha Frohlich, Meng Wang, and Benjamin C. Pierce.
2023. Re�ecting on Random Generation. In Proceedings of ACM Programming
Languages. Seattle, WA, USA. https://doi.org/10.1145/3607842

[27] Harrison Goldstein, John Hughes, Leonidas Lampropoulos, and Benjamin C.
Pierce. 2021. Do Judge a Test by its Cover. In Programming Languages and Systems
(Lecture Notes in Computer Science), Nobuko Yoshida (Ed.). Springer International
Publishing, Cham, 264–291. https://doi.org/10.1007/978-3-030-72019-3_10

[28] Harrison Goldstein and Benjamin C. Pierce. 2022. Parsing Randomness. Pro-
ceedings of the ACM on Programming Languages 6, OOPSLA2 (Oct. 2022), 128:89–
128:113. https://doi.org/10.1145/3563291

[29] J. A. Hartigan and B. Kleiner. 1981. Mosaics for Contingency Tables. In Computer
Science and Statistics: Proceedings of the 13th Symposium on the Interface, William F.
Eddy (Ed.). Springer US, New York, NY, 268–273. https://doi.org/10.1007/978-1-
4613-9464-8_37

[30] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer.
2008. Design as Exploration: Creating Interface Alternatives through Parallel
Authoring and Runtime Tuning. In Proceedings of the Symposium on User Interface
Software and Technology. ACM, 91–100.

[31] Zac Hat�eld-Dodds. 2024. Observability Tools & Hypothesis 6.99.13. https:
//hypothesis.readthedocs.io/en/latest/observability.html

[32] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. 2017. Writing Reusable Code Feedback at
Scale with Mixed-Initiative Program Synthesis. In Proceedings of the Conference
on Learning at Scale. ACM, 89–98.

[33] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the Symposium on User Interface
Software and Technology. ACM, 281–292.

[34] Jane Ho�swell, Arvind Satyanarayan, and Je�rey Heer. 2018. Augmenting Code
with In Situ Visualizations to Aid Program Understanding. In Proceedings of the
CHI Conference on Human Factors in Computing Systems. ACM. Paper 532.

[35] Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M.
Drucker. 2019. Gamut: A Design Probe to Understand How Data Scientists
Understand Machine Learning Models. In Proceedings of the CHI Conference on
Human Factors in Computing Systems. ACM. Paper 579.

[36] Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur Patel. 2020.
Understanding and Visualizing Data Iteration inMachine Learning. In Proceedings
of the CHI Conference on Human Factors in Computing Systems. ACM. Paper 50.

[37] Paul Holser. 2024. pholser/junit-quickcheck. https://github.com/pholser/junit-
quickcheck original-date: 2010-10-18T22:33:36Z.

[38] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact
Inference for Discrete Probabilistic Programs. Proceedings of the ACM on Program-
ming Languages 4, OOPSLA (Nov. 2020), 1–31. https://doi.org/10.1145/3428208
arXiv:2005.09089 [cs].

[39] John Hughes. 2007. QuickCheck Testing for Fun and Pro�t. In Practical Aspects of
Declarative Languages (Lecture Notes in Computer Science), Michael Hanus (Ed.).
Springer, Berlin, Heidelberg, 1–32. https://doi.org/10.1007/978-3-540-69611-7_1

[40] John Hughes. 2016. Experiences with QuickCheck: Testing the Hard Stu� and
Staying Sane. In A List of Successes That Can Change the World: Essays Dedicated
to Philip Wadler on the Occasion of His 60th Birthday, Sam Lindley, Conor McBride,
Phil Trinder, and Don Sannella (Eds.). Springer International Publishing, Cham,
169–186. https://doi.org/10.1007/978-3-319-30936-1_9

[41] John Hughes, Benjamin C. Pierce, Thomas Arts, and Ulf Norell. 2016. Mysteries
of DropBox: Property-Based Testing of a Distributed Synchronization Service. In
2016 IEEE International Conference on Software Testing, Veri�cation and Validation
(ICST). 135–145. https://doi.org/10.1109/ICST.2016.37

[42] James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the
tarantula automatic fault-localization technique. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’05). Association for Computing Machinery, New York, NY, USA, 273–282.
https://doi.org/10.1145/1101908.1101949

[43] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654–665.

[44] Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented Live
Programming Environment with Always-On Run-Time Value Visualizations. In
Proceedings of the Symposium on User Interface Software and Technology. ACM,
737–745.

[45] Marcel R Karam and Trevor J Smedley. 2001. A testing methodology for a
data�ow based visual programming language. In Proceedings IEEE Symposia on
Human-Centric Computing Languages and Environments (Cat. No. 01TH8587).
IEEE, 280–287.

[46] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid moves between code and graphi-
cal work in computational notebooks. In Proceedings of the Symposium on User
Interface Software and Technology. ACM, 140–151.

[47] Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan Nagappan. 2017.
Code Coverage and Postrelease Defects: A Large-Scale Study on Open Source
Projects. IEEE Transactions on Reliability 66, 4 (Dec. 2017), 1213–1228. https:
//doi.org/10.1109/TR.2017.2727062 Conference Name: IEEE Transactions on
Reliability.

[48] Shriram Krishnamurthi and Tim Nelson. 2019. The Human in Formal Methods. In
FormalMethods – The Next 30 Years (Lecture Notes in Computer Science), Maurice H.
ter Beek, Annabelle McIver, and José N. Oliveira (Eds.). Springer International
Publishing, Cham, 3–10. https://doi.org/10.1007/978-3-030-30942-8_1

[49] D. Richard Kuhn, James M. Higdon, James Lawrence, Raghu Kacker, and Yu
Lei. 2012. Combinatorial Methods for Event Sequence Testing. In Fifth IEEE
International Conference on Software Testing, Veri�cation and Validation, ICST 2012,
Montreal, QC, Canada, April 17-21, 2012, Giuliano Antoniol, Antonia Bertolino,
and Yvan Labiche (Eds.). IEEE Computer Society, 601–609. https://doi.org/10.
1109/ICST.2012.147

[50] Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Ben-
jamin C. Pierce, and Li-yao Xia. 2017. Beginner’s Luck: a language for property-
based generators. Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017 (2017),
114–129. http://dl.acm.org/citation.cfm?id=3009868

[51] Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019. Coverage
guided, property based testing. PACMPL 3, OOPSLA (2019), 181:1–181:29. https:
//doi.org/10.1145/3360607

[52] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2017.
Generating good generators for inductive relations. Proceedings of the ACM on
Programming Languages 2, POPL (2017), 1–30. https://dl.acm.org/doi/10.1145/
3158133 Publisher: ACM New York, NY, USA.

[53] J Lawrance, Steven Clarke, Margaret Burnett, and Gregg Rothermel. 2005. How
well do professional developers test with code coverage visualizations? an em-
pirical study. In 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’05). IEEE, 53–60.

[54] Sorin Lerner. 2020. Projection boxes: On-the-�y recon�gurable visualization for
live programming. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. 1–7.

[55] David R MacIver, Zac Hat�eld-Dodds, and others. 2019. Hypothesis: A new
approach to property-based testing. Journal of Open Source Software 4, 43 (2019),
1891. https://joss.theoj.org/papers/10.21105/joss.01891.pdf



Tyche: Making Sense of Property-Based Testing E�ectiveness UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA

[56] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. 2015. User Interac-
tion Models for Disambiguation in Programming by Example. In Proceedings of
the Symposium on User Interface Software and Technology. ACM, 291–301.

[57] Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell
Karchemsky, David Mellis, and Björn Hartmann. 2017. Bifröst: Visualizing and
checking behavior of embedded systems across hardware and software. In Pro-
ceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology. 299–310.

[58] William McGrath, Jeremy Warner, Mitchell Karchemsky, Andrew Head, Daniel
Drew, and Bjoern Hartmann. 2018. Wifröst: Bridging the information gap for
debugging of networked embedded systems. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology. 447–455.

[59] Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini
encyclopedia of psychology (2010), 1–1. Publisher: Wiley Online Library.

[60] Microsoft. 2024. Visual Studio Code. https://code.visualstudio.com/
[61] Robert C Miller and Brad A Myers. 2001. Outlier �nding: Focusing user attention

on possible errors. In Proceedings of the 14th annual ACM symposium on User
interface software and technology. 81–90.

[62] Agustín Mista, Alejandro Russo, and John Hughes. 2018. Branching processes for
QuickCheck generators. In Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell, Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17,
2018, Nicolas Wu (Ed.). ACM, 1–13. https://doi.org/10.1145/3242744.3242747

[63] Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur
Naik, and Mukund Raghothaman. 2021. Sporq: An interactive environment for
exploring code using query-by-example. In The 34th Annual ACM Symposium on
User Interface Software and Technology. 84–99.

[64] Tim Nelson, Elijah Rivera, Sam Soucie, Thomas Del Vecchio, John Wrenn, and
Shriram Krishnamurthi. 2021. Automated, Targeted Testing of Property-Based
Testing Predicates. The Art, Science, and Engineering of Programming 6, 2
(Nov. 2021), 10. https://doi.org/10.22152/programming-journal.org/2022/6/10
arXiv:2111.10414 [cs].

[65] Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. recode:
A lightweight �nd-and-replace interaction in the ide for transforming code by
example. In The 34th Annual ACM Symposium on User Interface Software and
Technology. 258–269.

[66] Rickard Nilsson. 2024. ScalaCheck. https://scalacheck.org/
[67] Donald A Norman and Stephen W Draper. 1986. User centered system design; new

perspectives on human-computer interaction. L. Erlbaum Associates Inc.
[68] Stephen Oney and Brad Myers. 2009. FireCrystal: Understanding Interactive

Behaviors in Dynamic Web Pages. In Proceedings of the Symposium on Visual
Languages and Human-Centric Computing. IEEE, 105–108.

[69] Micha\l H. Pa\lka, Koen Claessen, Alejandro Russo, and John Hughes. 2011.
Testing an Optimising Compiler by Generating Random Lambda Terms. In Pro-
ceedings of the 6th International Workshop on Automation of Software Test (AST
’11). ACM, New York, NY, USA, 91–97. https://doi.org/10.1145/1982595.1982615
event-place: Waikiki, Honolulu, HI, USA.

[70] Kevin Pu, Rainey Fu, Rui Dong, XinyuWang, Yan Chen, and Tovi Grossman. 2022.
SemanticOn: Specifying content-based semantic conditions for web automation
programs. In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology. 1–16.

[71] pytest-watch [n. d.]. Retrieved March 23, 2024 from https://github.com/joeyespo/
pytest-watch

[72] Gregg Rothermel, Lixin Li, Christopher DuPuis, andMargaret Burnett. 1998. What
you see is what you test: A methodology for testing form-based visual programs.
In Proceedings of the 20th international conference on Software engineering. IEEE,
198–207.

[73] Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. 2018. Aiding
Collaborative Reuse of Computational Notebooks with Annotated Cell Folding.
In Proceedings of the Conference on Computer-Supported Cooperative Work and
Social Computing. ACM. Article 150.

[74] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and
lazy smallcheck: automatic exhaustive testing for small values. ACM SIGPLAN
Notices 44, 2 (Sept. 2008), 37–48. https://doi.org/10.1145/1543134.1411292

[75] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Je�rey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350. https://doi.org/10.
1109/TVCG.2016.2599030 Conference Name: IEEE Transactions on Visualization
and Computer Graphics.

[76] Jessica Shi, Alperen Keles, Harrison Goldstein, Benjamin C Pierce, and Leonidas
Lampropoulos. 2023. Etna: An Evaluation Platform for Property-Based Testing
(Experience Report). Proc. ACM Program. Lang. 7 (2023). https://doi.org/10.1145/
3607860

[77] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A �uent code
explorer for data wrangling. In The 34th Annual ACM Symposium on User Interface
Software and Technology. 198–207.

[78] Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske, and An-
dreas Zeller. 2020. Inputs from Hell: Learning Input Distributions for Grammar-
Based Test Generation. IEEE Transactions on Software Engineering (2020).
https://doi.org/10.1109/TSE.2020.3013716 Publisher: IEEE.

[79] C Spearman. 1904. The Proof and Measurement of Association between Two
Things. American Journal of Psychology 15 (1904), 72–101. Publisher: University
of Illinois Press, etc..

[80] Dominic Steinhöfel and Andreas Zeller. 2022. Input invariants. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 583–594. https://doi.org/10.1145/
3540250.3549139

[81] Donald Stewart, Koen Claessen, Nick Smallbone, and Simon Marlow. 2024.
Test.QuickCheck — hackage.haskell.org. https://hackage.haskell.org/package/
QuickCheck-2.14.3/docs/Test-QuickCheck.html#v:label

[82] Neeraja Subrahmaniyan, Laura Beckwith, Valentina Grigoreanu, Margaret Bur-
nett, Susan Wiedenbeck, Vaishnavi Narayanan, Karin Bucht, Russell Drummond,
and Xiaoli Fern. 2008. Testing vs. code inspection vs. what else? Male and fe-
male end users’ debugging strategies. In Proceedings of the SIGCHI Conference on
human factors in computing systems. 617–626.

[83] Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan Reis, Melina
Mongiovi, Loris D’Antoni, and Björn Hartmann. 2017. TraceDi�: Debugging un-
expected code behavior using trace divergences. In Proceedings of the Symposium
on Visual Languages and Human-Centric Computing. IEEE, 107–115.

[84] Steven L. Tanimoto. 1990. VIVA: A Visual Language for Image Processing. 1, 2
(1990), 127–139.

[85] Jordan Walke. 2024. React. https://react.dev/
[86] April Yi Wang, Will Epperson, Robert A DeLine, and Steven M Drucker. 2022.

Di� in the loop: Supporting data comparison in exploratory data analysis. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1–10.

[87] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J
Ko. 2021. Falx: Synthesis-powered visualization authoring. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–15.

[88] Ian Ward. 2024. JSON Lines. https://jsonlines.org/
[89] Wikipedia. 2024. Name server — Wikipedia, The Free Encyclopedia. http:

//en.wikipedia.org/w/index.php?title=Name%20server&oldid=1215654110
[90] Wikipedia. 2024. Red–black tree — Wikipedia, The Free Encyclope-

dia. http://en.wikipedia.org/w/index.php?title=Red%E2%80%93black%20tree&
oldid=1215636980

[91] AaronWilson, Margaret Burnett, Laura Beckwith, Orion Granatir, Ledah Casburn,
Curtis Cook, Mike Durham, and Gregg Rothermel. 2003. Harnessing curiosity
to increase correctness in end-user programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’03). Association for
Computing Machinery, New York, NY, USA, 305–312. https://doi.org/10.1145/
642611.642665

[92] J. Wing, D. Jackson, and C. B. Jones. 1996. Formal Methods Light. Computer 29,
04 (apr 1996), 20–22. https://doi.org/10.1109/MC.1996.10038

[93] Litao Yan, Elena L. Glassman, and Tianyi Zhang. 2021. Visualizing Examples
of Deep Neural Networks at Scale. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (CHI ’21). Association for Computing
Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3411764.3445654

[94] Litao Yan, Elena L Glassman, and Tianyi Zhang. 2021. Visualizing examples
of deep neural networks at scale. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. 1–14.

[95] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L Glassman. 2020.
Interactive program synthesis by augmented examples. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. 627–648.

[96] Valerie Zhao, Lefan Zhang, Bo Wang, Michael L Littman, Shan Lu, and Blase Ur.
2021. Understanding trigger-action programs through novel visualizations of
program di�erences. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems. 1–17.



UIST ’24, October 13–16, 2024, Pi�sburgh, PA, USA Goldstein et al.

A TABLE OF TEST EVALUATION AFFORDANCES IN EXISTING FRAMEWORKS

Table 2: Breakdown of existing test evaluation a�ordances in popular PBT frameworks.

Hypothesis fast-check quickcheck (Rust) ScalaCheck junit-quickcheck QuickCheck (Haskell)

# Tests Run ✓ ✓ ✓ ✓

# Tests Discarded ✓ ✓ ✓ ✓

Events / Labels ✓ ✓ ✓ ✓

Generation Time ✓

Warnings ✓

B CONTROL VIEW FOR PYTHON INTERPRETER STUDY TASK


	Abstract
	1 Introduction
	2 Background
	2.1 Property-Based Testing
	2.2 PBT Process and Pitfalls

	3 Related Work
	3.1 Current Affordances
	3.2 Interactive Tools for Testing
	3.3 Making Sense of Program Executions
	3.4 Formal Methods in the Editor

	4 Formative Research
	4.1 Methods
	4.2 Testing Goals and Strategies
	4.3 Design Considerations

	5 System
	5.1 Interaction Model
	5.2 Visual Feedback
	5.3 Reactivity and Customizability

	6 Implementation
	6.1 UI Implementation
	6.2 OpenPBTStats Data Format
	6.3 Expanding the Ecosystem

	7 Evaluation
	7.1 Online Study
	7.2 Impact on the Testing Ecosystem

	8 Conclusions and Future Work
	8.1 Evaluation in Long-Term Deployments
	8.2 Improving Data Presentation for Tyche
	8.3 Improving Control in Tyche
	8.4 Tyche Beyond PBT

	Acknowledgments
	References
	A Table of Test Evaluation Affordances in Existing Frameworks
	B Control View for Python Interpreter Study Task

