TycHE: Making Sense of Property-Based Testing Effectiveness

Harrison Goldstein
University of Pennsylvania
Philadelphia, PA, USA
hgo@seas.upenn.edu

Benjamin C. Pierce
University of Pennsylvania
Philadelphia, PA, USA
bepierce@seas.upenn.edu

Jeffrey Tao
University of Pennsylvania
Philadelphia, PA, USA
jefftao@seas.upenn.edu

Zac Hatfield-Dodds”
Anthropic
San Francisco, CA, USA
zac.hatfield.dodds@gmail.com

Andrew Head
University of Pennsylvania
Philadelphia, PA, USA
head@seas.upenn.edu

@ ¢ 0,), (@))
(t, k, v):

e assume(is_red_black_tree(t))
event("size", payload=size(t))
((k, v, t), k) == v

Figure 1: The TycHE interface for property-
based testing. A developer can use TYCHE
during their automated testing process to
see a novel ensemble of visualizations that
can help them to better evaluate their tests.

ABSTRACT

Software developers increasingly rely on automated methods to
assess the correctness of their code. One such method is property-
based testing (PBT), wherein a test harness generates hundreds or
thousands of inputs and checks the outputs of the program on those
inputs using parametric properties. Though powerful, PBT induces
a sizable gulf of evaluation: developers need to put in nontrivial
effort to understand how well the different test inputs exercise the
software under test. To bridge this gulf, we propose TYCHE, a user
interface that supports sensemaking around the effectiveness of
property-based tests. Guided by a formative design exploration, our
design of TycHE supports developers with interactive, configurable
views of test behavior with tight integrations into modern devel-
oper testing workflow. These views help developers explore global

*Also with Australian National University.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0628-8/24/10

https://doi.org/10.1145/3654777.3676407

Sample Breakdown (D
Unique Duplicate

Tyche Invalid 97 15 112

170 42

@ Distribution of size O =

=
L [.

Code Coverage () =

100 Coverage
— Lines
0

2

of Samples
3

2

% of Coverage

]
s
8
g

testing behavior and individual test inputs alike. To accelerate the
development of powerful, interactive PBT tools, we define a stan-
dard for PBT test reporting and integrate it with a widely used PBT
library. A self-guided online usability study revealed that TYCHE’s
visualizations help developers to more accurately assess software
testing effectiveness.

KEYWORDS

Randomized testing, property-based testing (PBT), visual feedback,
multiple program executions

ACM Reference Format:

Harrison Goldstein, Jeffrey Tao, Zac Hatfield-Dodds, Benjamin C. Pierce,
and Andrew Head. 2024. TycHE: Making Sense of Property-Based Testing
Effectiveness. In The 37th Annual ACM Symposium on User Interface Software
and Technology (UIST °24), October 13-16, 2024, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3654777.3676407

1 INTRODUCTION

Software developers work hard to build systems that behave as in-
tended. But software is rarely 100% correct when first implemented,
so developers also write tests to validate their work, detect bugs,
and check that bugs stay fixed. Traditionally, these tests take the
form of manually written “example-based” tests, where developers

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

write out specific sample inputs together with expected outputs; but
this process is labor-intensive and can miss bugs in cases the pro-
grammer did not think to check. Instead, some programmers have
adopted automated techniques to supplement or replace example-
based tests. One such technique is property-based testing (PBT),
which automatically samples many program inputs from a random
distribution and checks, for each one, that the system’s behavior
satisfies a set of developer-provided properties. Used well, this leads
to testing that is more thorough and less laborious; indeed, PBT
has proven effective in identifying subtle bugs in a wide variety
of real-world settings, including telecommunications software [3],
replicated file and key-value stores [6, 41], automotive software [4],
and other complex systems [40].

Of course, automation comes with tradeoffs, and PBT is no ex-
ception. In PBT, there are often too many randomly generated test
inputs for a developer to understand at once, creating a gulf of
evaluation [67] for test suite quality. Indeed, in a recent study of the
human factors of PBT [25], developers reported having difficulty
understanding what was really being tested.

For example, suppose a developer is testing some mathematical
function using randomly generated floating-point numbers. The
developer might have a variety of questions about their test suite
quality. They might ask if the distribution is broad enough (e.g., is
it stuck between @ and 1), or too broad (e.g., does it span all possible
floats, even if the function can only take positive ones). Or they may
wonder if the distribution misses corner-cases like @ or -1. Perhaps
most importantly, they may want to know if the data generator
produces too many malformed or invalid test inputs (e.g., NaN) that
cannot be used for testing at all. State-of-the-art PBT tooling does
not give adequate tools for answering these kinds of questions: any
of these erroneous situations could go unnoticed because necessary
information is not apparent to the user. As a result, developers
may not realize that their tests are not thoroughly exercising some
important system behaviors.

This gulf of evaluation presents an opportunity to rethink user
interfaces for testing. HCI has made strides in helping developers
make sense of large amounts of structured program data, whether
by revealing patterns that manifest in many programs [20, 22, 32,
93] or comparing the behavior of program variants [83, 86, 96]. As
developers adopt PBT, it is critical to tackle the related problem
of helping programmers understand a summary of hundreds or
thousands of executions of a single test.

To address this problem, we propose TycHE,! an interface that
supports sensemaking and exploration for distributions of test in-
puts. TycHE’s design was inspired by a review of recent PBT us-
ability research and refined through iterative design with the help
of expert PBT users; this refinement identified design principles
that clarify the information needs of PBT users. TYCHE provides
users with an ensemble of visualizations, and, while each individual
visualization is well-understood by Ul researchers, the specific com-
bination of visualizations is novel and fine-tuned to the PBT setting.
TycHE’s visualizations provide high-level insight about the distri-
bution of test inputs as well as various aspects of test efficiency (see
Figure 1). TYcHE also supports visualization and rapid drill-down
into input data, taking advantage of existing hooks in PBT libraries.

!Named after the Greek goddess of randomness.

Goldstein et al.

To understand whether TycHE actually changes how developers
understand their tests, we conducted a 40-participant self-guided,
online study. In this study, participants were asked to view test
distributions and rank them according to their power to identify
program defects. Compared to using a standard tools, TycHE helped
developers make to better judgments about their test distributions.

To encourage broad adoption of TycHE, we define OPENPBT-
StATs, a standard format for reporting results of PBT. When a PBT
framework generates data in this format, its results can be viewed in
TycHE and perhaps other interfaces supporting the same standard
in the future. We integrated OPENPBTSTATS into the main branch
of Hypothesis [55], the most widely-used PBT framework, showing
the way forward for other frameworks.

After discussing background (§2) and related work (§3), we offer
the following contributions:

e We articulate design considerations for TycHE, motivated by
a formative study with experienced PBT users. (§4)

We detail the design of TYCHE, an interface that helps devel-
opers evaluate the quality of their testing with an ensemble of
visualizations fine-tuned to PBT with lightweight affordances
to support exploration. (§5)

We define the OPENPBTSTATS format for collecting and re-
porting PBT data to help standardize testing evaluation across
different PBT frameworks. (§6)

We evaluate TYCHE in an online study, demonstrating that
TycHE guides developers to significantly better assessments
of test suite effectiveness. (§7)

We conclude with directions for future work (§8), including other
automated testing disciplines that can benefit from TycHE and
related interfaces.

2 BACKGROUND

We begin by describing property-based testing and reviewing what
is known about its usability and contexts of use.

2.1 Property-Based Testing

In traditional unit testing, developers think up examples that demon-
strate the ways a function is supposed to behave, writing one test
for each envisioned behavior. For example, this unit test checks
that inserting a key "k" and value @ into a red-black tree [90] and
then looking up "k" results in the value o:

def test_insert_example():
t = Empty()
assert lookup(insert("k", 0, t), "k") == 0

If one wanted to test more thoroughly, they could painstakingly
write dozens of tests like this for many different example trees, keys,
and values. Property-based testing offers an alternative, succinct
way to express many tests at once:

Ogiven(trees(), integers(), integers())
def test_insert_lookup(t, k, v):

assume (is_red_black_tree(t))

assert lookup(insert(k, v, t), k) == v

TycHE: Making Sense of Property-Based Testing Effectiveness

This test is written in Hypothesis [55], a popular PBT library in
Python. It randomly generates triples of trees, keys, and values,
and for each triple, checks a parameterized property that resembles
a unit-test assertion—that the inserted value is in the tree. This
single test specification represents a massive collection of concrete
individual tests, and using it can lead to more thorough testing
(compared to a unit test suite), since the random generator may
produce examples the user had not thought of.

2.2 PBT Process and Pitfalls

Atits core, the practice of PBT involves three distinct steps: defining
executable properties, constructing random input generators,? and
reviewing the result of checking these properties against a large
number of sampled inputs; challenges can arise at any of these
stages. There is significant technical research into on each of the
first two stages [26, 48, 50, 52, etc.]. We are focused here on the
third stage: helping developers review the results of testing, in part
to support the (often iterative) process of refining and improving
the generators constructed in the second step. For instance, in the
example above, a developer might accidentally write a trees()
generator that only produces the Empty() tree, in which case their
property will be checked only against a single test input (over and
over). Or, if the generator’s strategy is not quite so broken but still
too naive, it might fail to produce very many trees that actually
pass the assume (is_red_black_tree(t)) guard.

In cases like these, developers need to remember that, although
all their tests are succeeding, this does not necessarily mean their
code is correct [53]: they may need to improve their generators
to start seeing failing tests. Unfortunately, with conventional PBT
tools, developers may feel they don’t have easy access to this knowl-
edge [25]. While the programming languages community is contin-
ually developing better techniques for generating well-distributed
inputs [28, 52, 62, 80, etc.], developers still need to be able to check
that the generators they are using are actually fit for the job.

3 RELATED WORK

In this section we situate our work on TycHE within the larger area
of programming tools research.

3.1 Current Affordances

What support do PBT frameworks provide today for developers to
inspect test input distributions? We surveyed the state of practice
in the most popular PBT frameworks (by GitHub stars) across
six different languages: Python [55], TypeScript / JavaScript [17],
Rust [19], Scala [66], Java [37], and Haskell [12]. These frameworks
provide users with the following kinds of information. (A detailed
comparison of framework features can be found in Appendix A.)

Raw Examples. All of these frameworks could print generated
inputs to the terminal. Some (3/6) provided a flag or option to do
so; the others did not provide this feature natively, although users
might simply print examples to the terminal themselves.

Number of Tests Run vs. Discarded. Many frameworks (4/6) report
how many examples were run vs. discarded (because they did not
2Some approaches to PBT use exhaustive enumeration [74] or guided search [51]

instead of hand-written input generators; these lead to different usability trade-offs,
but ultimately results should always be reviewed to ensure that testing was successful.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

pass a quality filter). Sometimes (2/6), this information is hidden
behind a command line flag.

Event / Label Aggregation. Many frameworks (4/6) could report
aggregates of user-defined features of the examples—e.g., lengths
of generated lists. Information about such features typically ap-
peared in a simple textual list or table, as in this example from

QuickCheck [81]:

7% length of input is 7
6% length of input is 3
5% length of input is 4

where this output conveys that among the generated lists for some
test run, 7% were 7 elements long, 6% were 3 elements long, etc.

Time. One framework reported how long the test run took.

Warnings. One framework provided warnings about test distribu-
tions, in particular warning users when their generators produced
a very high proportion of discarded examples.

The affordances for evaluation in existing frameworks are situa-
tionally useful, but inconsistently implemented and incomplete. In
§5 and §6 we discuss how TYCHE improves on the state of the art.

3.2 Interactive Tools for Testing

Some of the earliest research on improved interfaces for testing
focused on spreadsheets. Rothermel et al. [72] proposed a model of
testing called “what you see is what you test” (WYSIWYT), wherein
users “test” their spreadsheet by checking values that they see and
marking them as correct. This approach has appeared in many do-
mains of programming, including visual dataflow [45] and screen
transition languages [7]. Complementary to WYSIWYT are fea-
tures that encourage programmers’ curiosity [91], for instance by
detecting and calling attention to likely anomalies [61, 91].

Many of the testing tools developed by the HCI community have
sought to accelerate manual testing with rich, explorable traces
of program behavior [8, 15, 57, 58, 68]. These tools instrument a
program, record its behavior during execution, and then provide
visualizations of data and augmentations to source code to help
programmers pinpoint what is going wrong in their code. Tools can
also help programmers create automated tests from user demon-
strations. For instance, Sikuli Test [10] lets application developers
create automated tests of interfaces by demonstrating a usage flow
with the interface and then entering assertions of what interface
elements should or should not be on the screen at the end of the
flow.

Recent research has explored new ways to bring users into the
loop of randomized testing. One research system, NaNoFuzz [14],
shows programmers examples of program outputs and helps them
to notice problematic results like NaN or crash failures. NaNoFuzz
is superficially the closest comparison available for TycHE, but the
two serve different, complementary purposes. NanoFuzz’s strengths
reside in calling attention to failures; TYCHE’s strengths reside in
exposing patterns in input distributions. One could imagine a user
leveraging both in concert during the testing process.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

3.3 Making Sense of Program Executions

In a broad sense, TYCHE’s aim is to help developers reason about the
behavior of a program across many executions. This problem has
been explored by the HCI community. Tools have been developed
to reveal the behavior of a program over many synthesized exam-
ples [95], and of an expression over many loops [34, 44, 54, 77]. The
problem of understanding input distributions has been of interest
in the area of Al interpretability, where tools have been built to sup-
port inspection of input distributions and corresponding outputs
(e.g., [35, 36]). TYCHE’s aim is to tailor data views and exploration
mechanisms to tightly fit the concerns and context of randomized
testing with professional-grade software and potentially-complex
inputs (e.g., logs, trees).

Prior work has sought to help programmers make sense of sim-
ilarities and differences across sets of programs. Some of these
tools cluster programs on the basis of syntax, semantics, or struc-
ture [21, 23, 32, 94]. Others highlight differences in the source
and/or behavior of program variants [73, 83, 86, 96]. TYCHE itself
does some lightweight clustering of test cases (in this case, input ex-
amples), and affordances for program differencing could be brought
to TYCHE to help programmers pinpoint where some instantiations
of a property fail and others succeed.

3.4 Formal Methods in the Editor

Property-based testing can be seen as a kind of lightweight formal
method [92], in that it allows programmers to specify precisely the
behavior of their program and then verify that the specification is
satisfied. TYCHE joins a family of research projects that bring formal
methods into the interactive editing experience, whether to support
repetitive edits [56, 65], code search [63], program synthesis [16,
70, 87, 95], or bidirectional editing of programs and outputs [33].

4 FORMATIVE RESEARCH

Our design for TycHE is informed by formative research into the
user experience of PBT. Below, we describe our methods for for-
mative research (§4.1), followed by a crystallization of user needs
(§4.2) and a set of design considerations for TYCHE (§4.3).

4.1 Methods

To better understand what developers need in understanding their
PBT distributions, we drew on our recently published related work
and then iterated with design feedback from users.

4.1.1 Review of related work. Our baseline understanding of user
needs relating to evaluating testing effectiveness came from our
recent study [25] on the human factors of PBT.

4.1.2 lterative design feedback. As we developed TYCHE, we contin-
ually sought and integrated feedback on its design from experienced
users of PBT. We recruited 5 such users through X (formerly Twitter)
and our personal networks. We refer to them as P1-P5.

For each of these users, we conducted a 1-hour observation and
interview session. Each session was split into two parts. In the first
part, participants showed us PBT tests they had written, described
those tests, and answered questions about how they evaluate (or
could evaluate) whether those tests are effective. In the second part,
participants installed our then-current prototype and used it to

Goldstein et al.

explore the effectiveness of their own tests.> Study sessions were
staggered throughout the design process. We altered the design to
incorporate feedback after each session.

Initial prototype. All TYCHE prototypes were developed as VS-
Code [60] extensions. All prototypes focused on providing visual
summaries of PBT data in a web view pane in the editor. The very
first prototype was informed by observations from a previous study
from some of the authors [25] and from our experiences using and
building PBT tools. It was published at UIST 2023 as a demo [24],
and summarized the following aspects of test data:

o Number of Unique Inputs New PBT users are sometimes
surprised that their test harness produces duplicate data.
Knowing how many unique inputs were tested is therefore
one important signal of the test harness’ efficiency.
Proportion of Valid Inputs ~ As discussed in §2.2, PBT test har-
nesses sometimes discard data that does not satisfy necessary
preconditions. Users need to know how much of the data is
discarded and how much is kept.

Size Distribution User need to keep track of the size of each
individual program input used for testing. It is commonly
believed in the PBT community that software can be tested
well by exhaustive sets of small inputs (i.e., the small scope
hypothesis [2]), and alternatively, that large tests have a com-
binatorial advantage [39] in finding more bugs.* Whichever
viewpoint a tester subscribes to, it is important to know the
sizes of inputs.

Analysis. Interviews were automatically transcribed by video
conferencing software,” and analyzed via thematic analysis [5].

4.2 Testing Goals and Strategies

The first result of our formative research was a clarification of
PBT users’ goals and strategies when they were attempting to
determine the effectiveness of their tests. One might imagine that
testing effectiveness could be measured by the proportion of bugs
found, but this is a fantastical measure: if we had it, we would
know what all the bugs are and wouldn’t need to do any testing! As
we found in our study sessions, developers pay attention to proxy
metrics to gain confidence in their test suites. Ideally, PBT tools
will surface these metrics. Here, we discuss the various metrics that
developers paid attention to and how they measured them.

4.2.1 Test Input Distribution. Participants reported checking that
their distributions covered potential edge cases like x = 0, x = -1,
or x = Integer.MAX_VALUE (P2), which are widely understood as
bug-triggering values. They also checked that their distributions
covered regions in the input space like x = 0, x < 0, and x > 0 (P2,
P4, P5); this kind of coverage is similar to notions of “combinatorial
coverage” discussed in the literature [27, 49].

Multiple participants (P1, P3, P4) wanted to know that their test
data was realistic. Their justification was that the most important

3P5 showed us older code that they no longer had the infrastructure to run, so they
only saw TYCHE running on our examples.

“Each of these viewpoints seems to be correct in some situations; a recent study [76]
has a nice discussion.

5P3’s interview audio was lost due to technical difficulties, so we instead analyzed the
notes we took during their interview.

TycHE: Making Sense of Property-Based Testing Effectiveness

bugs are the ones that users were likely to hit. Another partici-
pant (P5) wanted their test data to be uniformly distributed across
a space of values. They thought that this would make it easier for
them to estimate the probability that there was still a bug in the
program. Whether to test with realistic or uniform distributions
is a topic of debate in the literature, with some tools favoring uni-
formity [11, 62] and others realism [78]. In either case, developers
should be able to see the shape of the distribution.

Participants used a combination of strategies to review these
proxy metrics of test quality. Some (P1, P3, P5) read through the
list of examples. Others (P2, P5) described using evaluation tools
already present in their PBT framework of choice; one participant
used events in Hypothesis and another used labels in QuickCheck,
both to understand coverage of attributes of interest (e.g., how often
does a particular variant of an enumerated type appear). As we show
in §3, while some PBT frameworks provide views of distributions of
user-defined input features, they are difficult to interpret at a glance
and can easily get drowned out among other terminal messages.

4.2.2 Coverage of the System Under Test. Three participants (P2,
P4, P5) mentioned coverage of the system under test (e.g., line cov-
erage, branch coverage, etc.) was an important proxy metric. Two
participants (P2, P4) reported actually measuring code coverage
via code instrumentation, although P2 did point out the potential
limitations of code coverage (calling it “necessary but not suffi-
cient”). This view is supported by the literature, which suggests
that coverage alone does not guarantee testing success [47].

4.2.3 Test Performance. Finally, two participants (P1, P2) discussed
timing performance as an important proxy for testing effectiveness.
They argued that they have a limited time in which to run tests (e.g.,
because the tests run every time a new commit is pushed or even
every time a file is saved), so faster tests (more examples per second)
will exercise the system better. They measured performance with
the help of tools built into the PBT framework.

Besides these metrics, participants also expressed being more
confident in their tests when they understood them (P3), when they
had failed previously (P3), and when a sufficiently large (for some
definition of large) number of examples had been executed (P1, P4).

4.3 Design Considerations

Our formative research further clarified what is required of us-
able tools for understanding PBT effectiveness. We describe our
learnings here as five design considerations for TYCHE:

Visual Feedback Our goal to provide better visual feedback from
testing arose from our prior work and was validated by participants.
Most participants (P1, P2, P3, P5) appreciated the interface’s visual
charts, stating that the visual charts are “a lot easier to digest than”
the built-in statistics printed by Hypothesis (P2). The previous
section (§4.2) clarifies the specific proxy metrics that developers
were interested in visualizing.

Workflow Integration Our initial prototype was built to have
tight editor integration. It could be installed into VSCode in one
step, and updated live as code changed. But, while some partici-
pants validated this choice (P1 and P2), another said they were “not
always a big fan of extensions” because they use a non-VSCode
IDE at work (P4). For that participant, an editor extension actually

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

discourages use. We therefore refocused on workflow integration
instead of editor integration, and re-architected our design so that
it could plug into other editing workflows.

Customizability Participants found that the default set of visu-
alizations was a good start (P1, P2, P3, P5), but they also suggested
a slew of other visualizations that they thought might improve
their testing evaluation. Many of these visualizations (e.g., code
coverage (P1, P3, P5) and timing (P1)—see §5.2) were integrated into
TycHE. What we could not do was add views that summarized the
interesting attributes of each person’s data: every testing domain
was different. Thus, tools should be customizable so developers can
acquire visual feedback for the information that is important in
their testing domain.

Details on Demand Almost all participants (P1, P2, P3, P4) ex-
pressed a desire to dig deeper into the visualizations they were
presented. When a visualization did not immediately look as ex-
pected, participants wanted to inspect the underlying data to see
where their assumptions had failed. This means that TycHE should
provide ways for developers to look deeper into the details of the
data that is being displayed by the visual interfaces.

Standardization Participants used PBT in multiple programming
languages, including Python (P1, P2, P3, P4), Java (P4), and Haskell
(P5). We posit that to improve the testing experience for all of these
languages and their PBT frameworks without significant duplicated
effort, TycHE needs to standardize the way it communicates with
PBT frameworks. Since PBT frameworks largely implement the
same test loop, despite superficial implementation differences, this
standardization seems technically feasible.

5 SYSTEM

In this section, we describe the design of TycHE, addressing the
considerations we described in §4.3. We describe the interaction
model that we imagine for TycHE (§5.1), TycHE’s visual displays
that answer PBT users’ questions (§5.2), and integrations with PBT
frameworks that support easy configuration of displays (§5.3).

5.1 Interaction Model

We envision user interactions with TYcHE to follow roughly the
steps outlined in Figure 2.

(1) At the start of the loop, the developer runs their tests, and
the test framework (e.g., Hypothesis) collects relevant data
into an OPENPBTSTATS log (we discuss the details of this
format in §6).

(2) Once the data has been logged, the user sees TYCHE render
an interface with a variety of visualizations (see §5.2).

(3) The user interacts with the interface. This may be as sim-
ple as seeing a visualization and immediately noticing that
something is wrong, but they may also explore the views to
seek details about surprising results or generate hypotheses
about what might need to change in their test suite. If the
user is happy with the quality of the test suite at this point,
they may finish their testing session.

(4) Finally, the user can customize their TycHE visualizations or
make changes to their test (e.g., random generation strategies
or Hypothesis parameters) before reentering the loop.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Run Tests > D Tyche
to Generate View
Data File Renders

I
1=
Change Explore
Test Suite, Testing
Add Events Effectiveness

Figure 2: The TycHE interaction loop.

5.2 Visual Feedback

The TycHE interface presents the user with a novel ensemble of
visualizations that are fine-tuned to the PBT setting and enriched
with lightweight affordances to support exploration. We describe
these visualizations in the context of the kinds of questions they
answer for developers.

5.2.1 How many meaningful tests were run? Perhaps the most im-
portant thing for a developer to know about a test run is how
many meaningful examples were tested. TYCHE communicates this
information through the “Sample Breakdown” chart:

Sample Breakdown ()

Unique Duplicate
Invalid 38 | 203
70

The chart communicates a high-level understanding of how many
test inputs were sampled versus how many were “valid” to test
with. Ideally, the entire chart would be taken up by the dark green
“Unique / Passed” bar. If the “Invalid” bars are a large portion of
the chart’s height or the “Duplicate” bars are a large portion of the
width, the developer can see that it might be worth investing time
in a generation strategy that is better calibrated for the property at
hand. (If any tests had failed, there would be two more horizontal
bars with the label “Failed.”)

The use of a mosaic chart [29] here allows TYCHE to communicate
information about validity and uniqueness in a single chart. We
chose this chart after feedback from study participants suggested

Goldstein et al.

that seeing validity and uniqueness metrics separately made it hard
to tell when and how they overlapped.

5.2.2 How are test inputs distributed? After checking the high-level
breakdown of test inputs, the next questions in the user’s mind will
likely be about subtler aspects of the distribution of inputs used to
test their property. Since test inputs are often structured objects
(e.g., trees, event logs, etc.), it is difficult to observe their distribution
directly: what would it even mean to plot a distribution of trees?
Instead, the developer can visualize features of the distribution by
plotting numerical or categorical data extracted from their test
inputs.

For example, the following chart shows a distribution of sizes
projected from a distribution of red—black trees:

Distribution of size (0

80

of Samples
3 3
I I

~
o
1

o
I

N
=
|
=

1-1.2
1.8-2

Charts like these give developers windows into their distributions
that are much easier to interpret than either the raw examples or
the statistics reported by frameworks like Hypothesis: the chart
above, for example, shows that the distribution skews quite small
(actually, most trees are size 0!), which would likely lead to poor
testing performance in practice.

Distributions for categorical features (e.g., whether the value at
the root of a red-black tree is positive or not) are displayed in a
different format:

Distribution of root_positive ()

Category
false ‘ true M false
r T T T T T T T T T 1 . true
0% 20% 40% 60% 80% 100%
% of Samples

Categorical feature charts can be especially useful for helping devel-
opers understand whether there are portions of the broader input
space that their tests are currently missing. In this case, the devel-
oper may want to check on why so few roots are positive—in fact,
it is because an empty tree does not have a positive root, and the
distribution is full of empty trees!

Our formative research suggested that just these two kinds of
charts covered all of the kinds of projections that developers cared
about. In fact, participants seemed concerned that adding more
kinds of feature charts could be distracting; they felt they may
waste time trying to find data to plot for the sake of using the
charts, rather than plotting the few signals that would actually help
with their understanding. In §6.3 we describe how developers can
design their own visualizations outside of TycHE if needed.

TycHE: Making Sense of Property-Based Testing Effectiveness

5.2.3 How did the tests execute overall? The previous visualizations
show information about test inputs, but developers may also have
higher-level questions about what happened during testing. For ex-
ample, early users, including formative research participants, asked
for ways to visualize code coverage for their properties. TYCHE
provides the following coverage chart:

Code Coverage (0 =
100 Coverage
— Lines

50

% of Coverage

This TycHE chart shows the total code coverage achieved over the
course of the test run. Note that this example is from a very small
codebase, so there were really only a few disjoint paths to cover.
Big jumps (around the 1st and 75th inputs) indicate inputs that
meaningfully improved code coverage, whereas plateaus indicate
periods where no new code was reached. As discussed in §4, code
coverage is an incomplete way to measure testing success, but
knowing that the first 70+ test inputs all covered the same lines
suggests that the generation strategy may spend too long exploring
a particular type of input.

TycHE also provides charts with timing feedback, again answer-
ing a high-level question about execution that was requested by
formative research participants:

Timing Breakdown () =

0.008 - Event
@ execute:test

o 0006 Ea— generate:k
E 0.004 ® generate:t
LR generate:v

0.002 - ™

0.000 . ‘ : |

0 20 40 60 80 100

Show Cumulative Time

The chart above shows that a majority of inputs execute quite
quickly (less than 0.002 seconds) but that some twice or three times
that. For the most expensive tests, the red area, signifying the time
it takes to generate trees, is the largest. While users did request
this chart, we are not clear how useful it is on its own (see §7.1).
However, the timing data can be used to corroborate and expand on
information from other charts. For example, notice how the timing
breakdown above actually mirrors the size chart from the previous
section. The combination of these charts suggests that larger trees
take much longer to generate, which suggests as trade-off that a
developer should be aware of.

5.2.4 What test inputs were actually generated? Although much
of the point of TYCHE is to avoid programmers needing to sift
through individual test input examples, TycHE does make those
examples available, in line with the design consideration of “details
on demand:”

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

test_insert_lookup(

t=T(c=Red(), 1=E(), k=-9663, v=-26613,
r=E()),

k=-56,

v=89,

test_insert_lookup(
t=T(c=Black(), 1=E(), k=0, v=0, r=E()),
k=0,

w=n

Each example in the view shows a textual representation of the
generated sample that can be expanded to see metadata like ex-
ecution duration and code coverage for the individual example.
Examples are grouped, so that identical examples are only shown
once; this manifests in the “3x” and “2x” annotations shown in the
above screenshot. This grouping aligns with the design principle
of “visual feedback” by giving a compact visual representation of
repetition, and it cuts down on clutter.

The main way a user reaches the example view is by clicking
on one of the selectable bars of the sample breakdown or feature
distribution charts. The user can dig into the data to answer ques-
tions about why a chart looks a certain way (e.g., if they want to
explore why so few of the red-black tree’s root nodes are positive).
Secondarily, the example view can be used to search for particular
examples to make sure they appear as test inputs (e.g., important
corner cases that indicate thorough testing).

5.3 Reactivity and Customizability

The visualizations provided by TYCHE are reactive and customizable,
allowing them to integrate neatly into the developer’s workflow as
dictated by our design considerations.

5.3.1 Reactivity. Reactivity has been incorporated into an astonish-
ing variety of programming tools. It is a common feature of many
modern developer tools—two modern examples are Create React
App [13], which reloads a web app on each source change, and
pytest-watch [71], one of many testing harnesses that live-reruns
tests upon code changes. When run as a VSCode extension, Ty-
cHE automatically refreshes the view when the user’s tests re-run.
When used in conjunction with a test suite watcher (e.g., pytest-
watch, which reruns Hypothesis tests when the test file is saved)
this yields an end-to-end experience with “level 3 liveness” on
Tanimoto’s hierarchy of levels of liveness [84].

5.3.2 Customizability. In step (4) of the TycHE loop, the user can
tweak their testing code in ways that change the visualizations that
are shown the next time around the loop.®

Assumptions. As discussed in §2 with the red-black tree example,
developers often express assumptions about what inputs are valid
for their property. Concretely, this happens via the Hypothesis
assume function; for example:

®While TycuE works with many PBT frameworks, we describe these customizations
in detail for Python’s Hypothesis specifically. Other frameworks may choose to imple-
ment user customization in other ways that are more idiomatic for their users.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

def test_insert_lookup(t, k, v):
assume (is_red_black_tree(t))
assert lookup(insert(k, v, t), k) == v

The assume function filters out any tree that does not satisfy the
provided Boolean check—in this case, that the generated tree is a
valid red-black tree. In the sample breakdown, inputs that break
assumptions are shown as “Invalid”

Events. Hypothesis lets programmers define custom “events” that
are triggered when something interesting happened during prop-
erty execution. For example, the programmer might write:

if some_condition:
event ("hit_condition")

and then Hypothesis would output “hit_condition: 42%” To sup-
port richer visual displays of features, we extended the Hypothesis
API (with the support of the Hypothesis developers) to allow events
to include “payloads” that correspond to the numerical and cate-
gorical features in the feature charts above. Adding an event to the
above property gives:

def test_insert_lookup(t, k, v):
event("size", payload=size(t))
assume (is_red_black_tree(t))
assert lookup(insert(k, v, t), k) == v

These user events correspond to feature charts: the one shown here
generates the size chart shown in the previous section.

By reusing Hypothesis’s existing idioms for assumptions and
events, TycHE hooks into existing developer workflows and makes
them more powerful.

6 IMPLEMENTATION

In this section, we outline the implementation of the TYCHE inter-
face. We begin with the mechanics of the system itself (§6.1), but
the most interesting part is the standardized OPENPBTSTATS format
that PBT frameworks use to send data to TycHE (§6.2). In §6.3 we
explain how the TycHE architecture makes it easy to extend the
ecosystem of related tools.

6.1 Ul Implementation

At the implementation level, TYCHE is a web-based interface that is
easy to integrate into existing PBT frameworks. The implementa-
tion can be found on GitHub.”

6.1.1 React Application. TYCHE is a React [85] web application that
consumes raw data about the results of one or more PBT runs and
produces interactive visualizations to help users make sense of the
underlying data. The primary way to use TYCHE is in the context
of an extension for VSCode that shows the interface alongside
the tests that it pertains to, but it is also available as a standalone
webpage to support workflow integration for non-VSCode users.

"https://github.com/tyche-pbt/tyche-extension

Goldstein et al.

{
line_type: "example",
run_start: number,
property: string,
status: "passed" | "failed" | "discarded",
representation: string,
features: {[key: stringl: number | string}
coverage: ...,
timing: ...,
}

Figure 3: The OPENPBTSTATS line format.

(When running as an extension, TycHE is still fundamentally a web
application: VSCode can render web applications in an editor pane.)

The mosaic chart described in §5.2.1 is implemented with custom
HTML and CSS, but all other charts and visualizations are generated
with Vega-Lite [75]. Vega-Lite has good default layout algorithms
for most of the types of data we care about, although it could do a
better job at making edge cases like NaN obvious; we leave this for
future work.

6.1.2 Framework Integration. As discussed in §5, we worked with
the Hypothesis developers to make a few small changes to enable
TycHE; other PBT tools require similar changes. The Hypothesis
developers added a callback to capture data on each test run, and
we implemented a simple data transformer to translate that data for
TychE. This data is printed to a file in the OPENPBTSTATS format,
which we discuss in §6.2.

In Hypothesis specifically, we also adapted the event function to
have a richer API, described in §5.3.2.

6.2 OPENPBTSTATS Data Format

We designed an open standard for PBT data that helps PBT frame-
works integrate TycHE and related tools.

OPENPBTSTATS is based on JSON Lines [88]: each line in the file
is a JSON object that corresponds to one example. An example is
the smallest unit of data that a test might emit; each represents a
single test case. The JSON schema in Figure 3 defines the format
of a single example line. Each example has a run_start timestamp,
used to group examples from the same run of a property and dis-
ambiguate between multiple runs of data that are stored in the
same file. The property field names the property being tested and
the status field says whether this example "passed" or "failed",
or "discarded" meaning that the value did not pass assumptions.
The representation is a human-readable string describing the ex-
ample (e.g., as produced by a class’s __repr__ in Python). Finally,
the features contain the data collected for user-defined events.

The full format includes a few extra optional fields, including
some human-readable details (e.g., to explain why a particular value
was discarded), optional fields naming the particular generator that
was used to produce a value, and a freeform metadata field for any
additional information that might be useful in the example view. A
guide to using the format can be found online.?

8See [31]. Some field names have been changed to clarify the explanations in the paper.

TycHE: Making Sense of Property-Based Testing Effectiveness

6.3 Expanding the Ecosystem

The clean divide between TycHE and OPENPBTSTATs means that
PBT frameworks require only the modest work of implementing
OPENPBTSTATS to get access to the visualizations implemented by
TYCHE, and conversely that front ends other than TycHE will work
with any PBT tool that implements OPENPBTSTATS.

6.3.1 Supporting New Frameworks. Supporting a new PBT frame-
work is as simple as extending it with some lightweight logging in-
frastructure. Framework developers can start small: supporting just
five fields—type, run_start, property, status, and representation
—is enough to enable a substantial portion of TycHE’s features.
After that, adding features will enable user control of visualiza-
tions; coverage and timing may be harder to implement in some
programming languages, but worthwhile to support the full breadth
of TycHE charts.

So far, support for OPENPBTSTATSs exists in Hypothesis, Haskell
QuickCheck, and OCaml’s base-quickcheck. Our minimal Haskell
QuickCheck implementation is an external library comprising about
100 lines of code and took an afternoon to write.

6.3.2 Adding New Analyses. Basing OPENPBTSTATS on JSON Lines
and making each line a mostly-flat record means that processing
the data is very simple. This simplifies the TycHE codebase, but it
also makes it easy to process the data with other tools. For exam-
ple, getting started visualizing OPENPBTSTATs data in a Jupyter
notebook requires two lines of code:

import pandas as pd
pd.read_json(<file>, lines=True)

This means that if a developer starts out using TycHE but finds that
they need a visualization that cannot be generated by adding an
assumption or event, they can simply load the data into a notebook
and start building their own analyses.

In the open-source community, we also expect that developers
may find entirely new use-cases for OPENPBTSTATs data that are
not tied to TycHE. For example, OPENPBTSTATS data could be used
to report testing performance to other developers or managers (a
use-case mentioned by participants in our formative research).

7 EVALUATION

In this section, we evaluate TYCHE. §7.1 presents an online self-
guided study to assess TYCHE’s impact on users’ judgments about
the quality of test suites. §7.2 describes the concrete impact that
TycHE has already had through identifying bugs in the Hypothesis
testing framework itself.

7.1 Online Study

We designed this study to validate what we saw as the most critical
question about the design: whether the kinds of visual feedback
offered by TycHE led to improved understanding of test suites. We
regarded this question as most critical because we had less confi-
dence in the effectiveness of visual feedback for helping find bugs
than in other aspects of the TycHE design—indeed, it is a tall or-
der for any kind of feedback to provide an effective proxy for the
bug-finding power of tests. (By contrast, we felt our choices around

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

customizability, workflow integration, details on demand, and stan-
dardization were already on solid ground—these choices were more
conservative, and had previously received positive feedback from
developers and PBT tool builders.)

Accordingly, we designed a study to address the following re-
search questions:

RQ1 Does TycHE help developers to predict the bug-finding power
of a given test suite?

RQ2 Which aspects of TycHE do users think best support sense-
making about test results?

To go beyond qualitative feedback alone, we designed the study
to support statistical inference about whether we had improved
judgments about test distributions. This led us a self-guided, online
usability study that centered on focused usage of TYCHE’s visual
displays. The study allowed us to collect sufficiently many responses
from diverse and sufficiently-qualified programmers to support the
analysis we wanted.

7.1.1 Study Population. We recruited study participants both from
social media users on X (formerly Twitter) and Mastodon and from
graduate and undergraduate students in the computer science de-
partment of a large university, aiming to recruit a diverse set of
programmers ranging from relative beginners with no PBT experi-
ence to experts who may have some exposure (all participants but
one were at least “proficient” in Python programming).

In all, we recruited 44 participants. 4 responses were discarded
because they did not correctly answer our screening questions, leav-
ing 40 valid responses. All but one of these reported that they were
at least proficient with Python, with 12 self-reporting as advanced
and 9 as expert. Half reported being beginners at PBT, 13 proficient,
6 advanced, and 0 experts. Almost all participants reported being
inexperienced with the Python Hypothesis framework; only 7 re-
porting being proficient. To summarize, the average participant had
experience with Python but not PBT, and if they did know about
PBT it was often not via Hypothesis.

When reporting education level, 4 participants had a high school
diploma, 15 an undergraduate degree, and 20 a graduate degree.
The majority of participants (24) described themselves as students;
7 were engineers; 3 were professors; 6 had other occupations. 28
participants self-identified as male, 5 as female, 2 as another gender,
and 5 did not specify.

We discuss the limitations of this sample in §7.1.5.

7.1.2 Study Procedure. We hypothesized that TycHE would im-
prove a developer’s ability to determine how well a property-based
test exercises the code under test—and therefore, how likely it is
to find bugs. At its core, our study consisted of four tasks, each
presenting the participant with a PBT property plus three sets of
sampled inputs for testing that property, drawn from three different
distributions respectively. The goal of each task was to rank the
distributions, in order of their bug-finding power, with the help
of either TYCHE or a control interface that mimicked the existing
user experience of Hypothesis. Concretely, the control interface
consisted of Hypothesis’s “statistics” output and a list of pretty-
printed test input examples; the statistics output included Hypoth-
esis’s warnings (e.g., when < 10% of the sample inputs were valid).
Both interfaces were styled the same way and embedded in HTML

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Background & Instructions

'

Sense Check Questions

Evaluation Tasks <
Dist. 2 Dist. 1 Dist. 3 Dist. 2 Dist. 1 Dist. 3

Charts Charts. EBamples

l=r = || {==

X4

y

Closing Questions

Figure 4: Task flow for the self-guided, online usability study.

iframes, so participants could interact with them as they would
if the display were visible in their editor; TYCHE was re-labeled
“Charts” and the control was labeled “Examples” to reduce demand
characteristics.

The distributions that participants had to rank were chosen
carefully: one distribution was the best we could come up with; one
was a realistic generator that a developer might write, but with some
flaw or inefficiency; and one was a low-quality starter generator
that a developer might obtain from an automated tool. To establish
a ground truth for bug-finding power, we benchmarked each trio
of input distributions using a state-of-the-art tool called Etna [76].
Etna greatly simplifies the process of mutation testing as a technique
for determining the bug-finding power of a particular generation
strategy: the programmer specifies a collection of synthetic bugs to
be injected into a particular bug-free program, and Etna does the
work of measuring how quickly (on average) a generator is able
to trigger a particular bug with a particular property. Prior work
has shown that test quality as measured by mutation testing is well
correlated with the power of tests to expose real faults [43]. These
ground truth measurements agreed with the original intent of the
generators, with the best ones finding the most bugs, followed by
the flawed ones, followed by the intentionally bad ones.

The study as experienced by the user is summarized in Figure 4.
We started by providing participants some general background on
PBT, since we did not require that participants had worked with
it before, and instructions for the study. After some “sense-check”
questions to ensure that participants had understood the instruc-
tions, we presented the main study tasks. In each, the participants
ranked three test distributions based on how likely they thought
they were to find bugs. Each of the four tasks was focused on a
distinct data structure and a corresponding property:

e Red—-Black Tree The property described in §2.1 about the
insert function for a red-black tree implementation.

Goldstein et al.

o Topological Sort A property checking that a topological sort-
ing function works properly on directed acyclic graphs.

e Python Interpreter A property checking that a simple Python
interpreter behaves the same as the real Python interpreter
on straight-line programs.

e Name Server A property checking that a realistic name
server [89] behaves the same as a simpler model implemen-
tation.

These tasks were designed to be representative of common PBT
scenarios: red-black trees are a standard case study in the litera-
ture [74, 76], topological sort has been called an ideal pedagogical
example for PBT [64], programming language implementations
are a common PBT application domain [69], and name servers are
a kind of system that is known to be difficult to test with PBT—
specifically, systems with significant internal state [40].

To counterbalance potential biases due to the order that dif-
ferent tasks or conditions were encountered, we randomized the
participants’ experience in three ways: (1) two tasks were randomly
assigned TycHE, while the other two received the control interface,
(2) tasks were shown to users in a random order, and (3) the three
distributions for each task were arranged in a random order.

Four participants took over an hour to complete the study; we
suspect this is because they started, took a break, and then returned
to the study. Of the rest, participants took 32 minutes on average
(o = 12) to complete the study; only one took less than 15 minutes.
Participants took about 3 minutes on average (o = 2.5) to complete
each task.

7.1.3 Results. To answer RQ1, whether or not TycHE helps de-
velopers to predict test suite bug-finding power, we analyzed how
well participants’ rankings of the three distributions for each task
agreed with the true rankings as determined by mutation testing.
Given a participant’s ranking, for example D, > D; > Ds, we
compared it to the true ranking (say, D; > D2 > Ds) by counting
the number of correct pairwise comparisons—here, for example,
the participant correctly deduced that D; > D3 and Dy > D3, but
they incorrectly concluded that Dy > Dj, so this counted as one
incorrect comparison.’

Figure 5 shows the breakdown of incorrect comparisons made
with and without TYCHE, separated out by task. To assess whether
TycHE impacted correctness, we performed a one-tailed Mann-
Whitney U test [59] for each task, with the null hypothesis that
TycHE does not lead to fewer incorrect comparisons. The results ap-
pear in Table 1. For three of the four tasks (all but Python Interpreter),
participants made significantly fewer incorrect comparisons when
using TycHE, with strong common language effect sizes, meaning
that participants were better at assessing testing effectiveness with
TycHE than without. Furthermore, a majority of participants got a
completely correct ranking for all 4 of the tasks with TycHE, while
this was only the case for 1 of the tasks without TycHE. (For Python
Interpreter, participants overwhelmingly found the correct answer

9This metric is isomorphic to Spearman’s p [79] in this case. Making 0 incorrect
comparisons equates to p = 1, making 1is p = 0.5,21is p = —0.5,and 3 is p = —1. We
found counting incorrect comparisons to be the most intuitive way of conceptualizing
the data.

9This corresponds to the probability that randomly sampled TycHE participant will
make fewer errors than a control participant, computed as r = Uy /(ny * nz).

TycHE: Making Sense of Property-Based Testing Effectiveness

Red-Black Trees Topological Sort

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Python Interpreter Name Server

15 1 B
o
C
310+ E
(0]
5- B
oL & - = J I .
o] 1 2 3 0] 1 2 3

Condition
Charts
B Examples

(0] 1 2 3 0 1 2 3

Incorrect Comparisons

Figure 5: Distribution of number of errors made for each task, where each incorrect relative ranking between two test suites

counts as one error. I = “Charts” = Tycue, Il - “Examples” = Control.

with both conditions—in other words, the task was simply too easy—
but precisely why it was too easy is interesting; see §7.1.4.) Despite
this difference in accuracy, participants took around the same time
with both treatments; the mean time to complete a task with TYcHE
was 183 seconds (o = 125), verses 203 seconds (o = 165) for the
control. These results support answering RQ1 with “yes,” TyCHE
helps users more accurately predict bug-finding power.

To answer RQ2 we used a post-study survey, asking participants
for feedback on which of TycHE’s visualizations they found use-
ful. The vast majority of participants (37/40) stated that TycHE’s
“bar charts” were helpful. (Unfortunately, we phrased this question
poorly: we intended for it to refer only to feature charts, but par-
ticipants may have interpreted it to include the mosaic chart as
well.) Additionally, 20/40 participants found the code coverage visu-
alization useful, 17/40 found the warnings useful, and 14/40 found
the listed examples useful. Only 4/40 found the timing breakdown
useful; we may need to rethink that chart’s design, although it may
also simply be that the tasks chosen for the study did not require
timing data to complete. These results suggest that the customizable
parts of the interface—the feature and/or mosaic charts—were the
most useful, followed by other affordances.

To get a sense of participants’ overall impression of TYCHE, we
also asked “Which view [TycHE or the control] made the difference
between test suites clearer?” with five options on a Likert scale.
All but one participant said TycHE made the differences clearer,
with 35/40 saying TycHE was “much clearer” (the maximum on the
scale).

Table 1: Values for Mann-Whitney U test measuring TYCHE’s
impact on incorrect comparisons of test suites’ bug-finding
power. All sample sizes were between 18 and 22, totaling 40,
depending on the random variation in the way conditions
were assigned; r is common language effect size, m is median
number of incorrect comparisons.

Task U P r MTycHE MExamples
Red-Black Trees 65 < 0.01 0.84 0 1
Topological Sort 127 0.01 0.68 0 1
Python Interp. 182 0.26 - 0 0
Name Server 91 < 0.01 0.77 0 1

7.1.4 Discussion. Overall, the online study implied that TycHE
improved developer understanding. In addition to the core observa-
tions above, we also made a couple of other smaller observations.

Confidence. Alongside each ranking, we asked developers how
confident they were in it, on a scale from 1-5 (“Not at all” = 1, “A lit-
tle confident” = 2, “Moderately confident” = 3, “Very confident” = 4,
“Certain” = 5). We found that reported confidence was significantly
higher with TycHE than without on two tasks (Red-Black Tree
and Topological Sort), as computed via a similar one-sided Mann-
Whitney U test to the one before (p < 0.01 and p = 0.03 respec-
tively), with no significant difference for the other tasks. However,
confidence ratings should be viewed with some skepticism. When
we computed Spearman’s p [79] between the confidence scores and
incorrect comparison counts, we found no significant relationship;
in other words, participants’ confidence was not, broadly, a good
predictor of their success.

Non-significant Result for “Python Interpreter” Task. As men-
tioned above, the Python Interpreter task seems to have been too
easy; participants made very few mistakes across the board. We
propose that this is, at least in part, because the existing statistics
output available in Hypothesis were already good enough. For the
worst of the three distributions, Hypothesis clearly displayed a
warning that “< 10% of examples satisfied assumptions,” an obvi-
ous sign of something wrong. Conversely, for the best distribution
of the three, Hypothesis showed a wide variety of values for the
variable_uses event, which was only ever 0 for the other two distri-
butions. Critically, the list displayed was visually longer, so it was
easy to notice a difference a glance. (We show an example of what
the user saw in Appendix B.) This result shows that Hypothesis’s
existing tools can be quite helpful in some cases: in particular, they
seem to be useful when the distributions have big discrepancies
that make a visual difference (e.g., adding significant volume) in
the statistics output.

7.1.5 Limitations. We are aware of two significant limitations of
the online study: sampling bias and ecological validity.

The sample we obtained under-represents important groups with
regards to both gender and occupation. For gender, prior work has
shown that user interfaces often demonstrate a bias for cognitive
strategies that correlate with gender [9, 82], so a more gender-
diverse sample would have been more informative for the study.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

For occupation, we reached a significant portion of students and
proportionally fewer working developers. Many of those students
are in computer science programs and therefore will likely be de-
velopers someday, but software developers are ultimately the popu-
lation we would like to impact so we would like to have more direct
confirmation that TycHE works for them.

The other significant limitation is ecological validity. Because
this study was not run in situ, aspects of the experimental design
may have impacted the results. For example, study participants did
not write the events and assumptions for the property themselves;
this means our outcomes assume that the participants could have
come up with those events themselves in practice. Additionally,
participants saw snippets of code, but they were not intimately
familiar with, nor could they inspect, the code under test. In a
real testing scenario, a developer’s understanding of their testing
success would depend in part on their understanding of the code
under test itself. We did control for other ecological issues: for
example, we used live instances of TYCHE in an iframe to maintain
the interactivity of the visual displays, and we developed tasks that
spanned a range of testing scenarios. We discuss plans to evaluate
TycHE in situin §8.1

7.2 Impact on the Testing Ecosystem

Since TYCHE is an open-source project that is beginning to en-
gage with the PBT community, we can also evaluate its design by
looking at its impact on practice. The biggest sign of this so far
is that TycHE has led to 5 concrete bug-fixes and enhancements
in the Hypothesis codebase itself. As of this writing, Hypothesis
developers have found and fixed three bugs—one causing test input
sizes to be artificially limited, another that badly skewed test input
distributions, and a third that impacted performance of stateful
generation strategies—and two long-standing issues pertaining to
user experience: a nine-year-old issue about surfacing important
feedback about the assume function and a seven-year-old issue ask-
ing to clarify terminal error messages. All five issues are threats
to developers’ evaluation of their tests. They were found and fixed
when study participants and other TYCHE users noticed deficiencies
in their test suites that turned out to be library issues.

The ongoing development of TycHE has the support of the Hy-
pothesis developers, and it has also begun to take root in other
parts of the open-source testing ecosystem. One of the authors
was contacted by the developers of PyCharm, an IDE focused on
Python specifically, to ask about the OPENPBTSTATS format. They
realized that the coverage information therein would provide them
a shortcut for code coverage highlighting features that integrate
cleanly with Hypothesis and other testing frameworks.

8 CONCLUSIONS AND FUTURE WORK

TycHE rethinks the PBT process as more interactive and empower-
ing to developers. Rather than hide the results of running properties,
which may lead to confusion and false confidence, the OPENPBT-
StATs protocol and interfaces like TycHE give developers rich in-
sight into their testing process. TYCHE provides visual feedback,
integrates with developer workflows, provides hooks for customiza-
tion, shows details on demand, and works with other tools in the
ecosystem to provide a standardized way to evaluate testing success.

Goldstein et al.

Our evaluation shows that TycHE helps developers to tell the differ-
ence between good and bad test suites; its demonstrated real-world
impact on the Hypothesis framework confirms its value.

Moving forward, we see a number of directions where further
research would be valuable.

8.1 Evaluation in Long-Term Deployments

Our formative research and online evaluation study have provided
evidence that TycHE is usable, but there is more to explore. For
one thing, we would like to get in-situ empirical validation for the
second half of the loop in Figure 2. As TycHE is deployed over
longer periods of time in real-world software development settings,
we are excited to assess its usability and continued impact.

8.2 Improving Data Presentation for TycHE

As the TyCHE project evolves, we plan to add new visualizations and
workflows to support developer exploration and understanding.

Code Coverage Visualization. The visualization we provide for
displaying code coverage over time was not considered particu-
larly important by study participants: it may be useful to explore
alternative designs or cut that feature entirely.

One path forward is in-situ line-coverage highlighting, like that
provided by Tarantula [42]. Indeed, it would be easy to implement
Tarantula’s algorithm, which highlights lines based on the pro-
portion of passed versus failed tests that hit that line in TycHE
(supported by OPENPBTSTATS). In cases where no failing examples
are found, each line could simply be highlighted with a brightness
proportional to the number of times it was covered.!’

Line highlighting is can answer some questions about particular
parts of the codebase, but developers may also have questions about
how code is exercised for different parts of the input space. To
address these questions, we plan to experiment with visualizations
that cluster test inputs based on the coverage that they have in
common. This would let developers answer questions like “which
inputs could be considered redundant in terms of coverage?” and
“which inputs cover parts of the space that are rarely reached?”

Mutation Testing. In cases where developers implement muta-
tion testing for their system under test, we propose incorporating
information about failing mutations into TycHE for better inter-
action support. Recall that in §7.1, we used mutation testing, via
the Etna tool, as a ground truth for test suite quality; mutation
testing checks that a test suite can find synthetic bugs or “mutants”
that are added to the test suite. Etna is powerful, but its output is
not interactive: there is no way to explore the charts it generates,
nor can you connect the mutation testing results with the other
visualizations that TycHE provides. Thus, we hope to add optional
visualizations to TYCHE, inspired by Etna, that tell developers how
well their tests catch mutants.

Longitudinal Comparisons of Testing Effectiveness. Informal con-
versations with potential industrial users of TycHE suggest that
developers want ways to compare visualizations of test performance
for the same system at different points in time—either short term,
to inspect the results of changes—or longer term, to understand

OUnit-test frameworks could also report simple OPENPBTSTATS output (see §6.3.1)
with one line per example-based test, enabling per-test coverage visualization for
almost any test suite.

TycHE: Making Sense of Property-Based Testing Effectiveness

how testing effectiveness has evolved over time. These comparisons
would make it clear if changes over time have improved test quality,
or if there have been significant regressions.

Interestingly, the design of the online evaluation study acciden-
tally foreshadowed a design that may be effective: allowing two
instances of TYCHE, connected to different instances of the system
under test, to run side-by-side so the user can compare them. Since
developers were able to successfully compare two distributions
side-by-side with TYcHE in the study, we expect they will also be
able to if presented the same thing in practice. This is simple to
implement and provides good value for developers.

8.3 Improving Control in TYCHE

TyCHE is currently designed to support existing developer work-
flows and provide insights into test suite shortcomings. But partici-
pants in the formative research (P1, P4) did speculate about some
ways that TycHE could help developers to adjust their random
generation strategies after they notice something is wrong.

Direct Manipulation of Distributions. When a developer notices,
with the help of TycHE, that their test input distribution is sub-
par, they may immediately know what distribution they would
prefer to see. In this case, we would like developers to be able to
change the distribution via direct manipulation—i.e., clicking and
dragging the bars of the distribution to the places they should be,
automatically updating the input generation strategy accordingly.
One potential way to achieve this would be to borrow techniques
from the probabilistic programming community, and in particular
languages like Dice [38]. Probabilistic programming languages and
random data generators are quite closely related, but the potential
overlap is under-explored. Alternatively, reflective generators [26]
can tune a PBT generator to mimic a provided set of examples. If
a developer thinks a particular bar of a chart should be larger, a
reflective generator may be able to tune a generator to expand on
the examples represented in that bar.

Manipulating Strategy Parameters in TycHE. Occasionally direct
manipulation as discussed above will be computationally impossible
to implement; in those cases TYCHE could still provide tools to help
developers easily manipulate the parameters of different generation
strategies. For example, if a generation strategy takes a max_value
as an input, TYCHE could render a slider that lets the developer
change that value and monitor the way the visualizations change,
resembling interactions already appearing in HCI programming
tools (e.g., [30, 46]). Of course, running hundreds of tests on every
slider update may be slow; to speed it up, we propose incorporating
ideas from the literature of self-adjusting computation [1], which
has tools for efficiently re-running computations in response to
small changes of their inputs.

8.4 TycHE Beyond PBT

The ideas behind TycHE may also have applications beyond the
specific domain of PBT. Other automated testing techniques—for ex-
ample fuzz testing (“fuzzing”)—could also benefit from enhanced un-
derstandability. Fuzzing is closely related to PBT,!! and the fuzzing

1 Generally speaking, fuzzers operate on whole programs and run for extended periods
of time, whereas PBT tools operate on smaller program units and run for shorter times.
Instead of testing logical properties, fuzzers generally try to make the program crash.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

community has some interesting visual approaches to commu-
nicating testing success. One of the most popular fuzzing tools,
AFL++ [18], includes a sophisticated textual user-interface giving
feedback on code coverage and other fuzzing statistics over the
course of (sometimes lengthy) “fuzzing campaigns.” But current
fuzzers suffer from the same usability limitations as current PBT
frameworks, hiding information that could help developers evalu-
ate testing effectiveness. We would like to explore adapting TYCHE
and expanding OPENPBTSTATS to work with fuzzers and other au-
tomated testing tools, bringing the benefits of our design to an even
broader audience.

ACKNOWLEDGMENTS

Research reported in this publication was supported by an Amazon
Research Award Fall 2023. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not reflect the views of Amazon. This work was also
supported by the National Science Foundation under grant NSF
#2402449, SHF: Medium: Usable Property-Based Testing. We would
like to thank Liam DeVoe for his feedback on early designs for
TycHE, and Sarah Chasins, Justin Lubin, and Michael Coblenz for
their advice on study designs and evaluation considerations.

REFERENCES

[1] Umut A. Acar. 2009. Self-adjusting computation: (an overview). In Proceedings of
the 2009 ACM SIGPLAN workshop on Partial evaluation and program manipulation
(PEPM °09). Association for Computing Machinery, New York, NY, USA, 1-6.
https://doi.org/10.1145/1480945.1480946

[2] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. 2002.
Evaluating the “Small Scope Hypothesis”. (2002).

[3] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. 2006. Testing tele-
coms software with quviq QuickCheck. In Proceedings of the 2006 ACM SIGPLAN
workshop on Erlang (ERLANG °06). Association for Computing Machinery, New
York, NY, USA, 2-10. https://doi.org/10.1145/1159789.1159792

[4] Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. 2015. Testing AU-
TOSAR software with QuickCheck. In 2015 IEEE Eighth International Confer-
ence on Software Testing, Verification and Validation Workshops (ICSTW). 1-4.
https://doi.org/10.1109/ICSTW.2015.7107466

[5] Ann Blandford, Dominic Furniss, and Stephann Makri. 2016. Analysing Data.
In Qualitative HCI Research: Going Behind the Scenes, Ann Blandford, Dominic
Furniss, and Stephann Makri (Eds.). Springer International Publishing, Cham,
51-60. https://doi.org/10.1007/978-3-031-02217-3_5

[6] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard
Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob
Van Geffen, and Andrew Warfield. 2021. Using Lightweight Formal Methods
to Validate a Key-Value Storage Node in Amazon S3. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (SOSP *21). Association
for Computing Machinery, New York, NY, USA, 836-850. https://doi.org/10.
1145/3477132.3483540

[7] Darren Brown, Margaret Burnett, Gregg Rothermel, Hamido Fujita, and Fumio Ne-
goro. 2003. Generalizing WYSIWYT visual testing to screen transition languages.
In IEEE Symposium on Human Centric Computing Languages and Environments,
2003. Proceedings. 2003. IEEE, 203-210.

[8] Brian Burg, Richard Bailey, Amy J. Ko, and Michael D. Ernst. 2013. Interactive
Record/Replay for Web Application Debugging. In Proceedings of the Symposium
on User Interface Software and Technology. ACM, 473-483.

[9] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beck-
with, Irwin Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag: A
Method for Evaluating Software’s Gender Inclusiveness. Interacting with Com-
puters 28, 6 (2016), 760-787.

[10] Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller. 2010. GUI testing using
computer vision. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1535-1544.

[11] Koen Claessen, Jonas Duregérd, and Michal H. Palka. 2015. Generating con-
strained random data with uniform distribution. J. Funct. Program. 25 (2015).
https://doi.org/10.1017/S0956796815000143

[12] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

[13

[14]

[15

[16]

[17]
(18]

[19

[20]

[21]

[22

[23

[24]

[28]

[29

[30

[31]

[32

[33

[34]

[35

[36

International Conference on Functional Programming (ICFP "00), Montreal, Canada,
September 18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, Montreal,
Canada, 268-279. https://doi.org/10.1145/351240.351266

Create React App [n.d.]. Retrieved March 23, 2024 from https://github.com/
facebook/create-react-app

Matthew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Sunshine.
2023. NaNoFuzz: A Usable Tool for Automatic Test Generation.

Daniel Drew, Julie L Newcomb, William McGrath, Filip Maksimovic, David Mellis,
and Bjorn Hartmann. 2016. The toastboard: Ubiquitous instrumentation and
automated checking of breadboarded circuits. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology. 677-686.

ITan Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unifed Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In Proceedings of the CHI Conference on Human Factors
in Computing Systems. ACM. Paper 315.

Nicolas Dubien. 2024. fast-check. https://fast-check.dev/

Andrea Fioraldi, Dominik Maier, Heiko Eiffeldt, and Marc Heuse. 2020. {AFL++}
: Combining Incremental Steps of Fuzzing Research. https://www.usenix.org/
conference/woot20/presentation/fioraldi

Andrew Gallant. 2024. BurntSushi/quickcheck. https://github.com/BurntSushi/
quickcheck original-date: 2014-03-09T07:29:09Z.

Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C. Miller.
2015. OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale. ACM Transactions on Computer-Human Interaction 22, 2 (March
2015), 7:1-7:35. https://doi.org/10.1145/2699751

Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C. Miller.
2015. OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale. 22, 2 (2015), 7:1-7:35.

Elena L. Glassman, Tianyi Zhang, Bjérn Hartmann, and Miryung Kim. 2018.
Visualizing API Usage Examples at Scale. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/3173574.3174154
Elena L. Glassman, Tianyi Zhang, Bjérn Hartmann, and Miryung Kim. 2018.
Visualizing API Usage Examples at Scale. In Proceedings of the CHI Conference on
Human Factors in Computing Systems. ACM. Paper 580.

Harrison Goldstein. 2023. Tyche: In Situ Exploration of Random Testing Effec-
tiveness (Demo). In ACM Symposium on User Interface Software and Technology
(UIST). https://harrisongoldste.in/papers/uist23.pdf

Harrison Goldstein, Joseph W Cutler, Daniel Dickstein, Benjamin C Pierce, and
Andrew Head. 2024. Property-Based Testing in Practice. In International Confer-
ence on Software Engineering (ICSE).

Harrison Goldstein, Samantha Frohlich, Meng Wang, and Benjamin C. Pierce.
2023. Reflecting on Random Generation. In Proceedings of ACM Programming
Languages. Seattle, WA, USA. https://doi.org/10.1145/3607842

Harrison Goldstein, John Hughes, Leonidas Lampropoulos, and Benjamin C.
Pierce. 2021. Do Judge a Test by its Cover. In Programming Languages and Systems
(Lecture Notes in Computer Science), Nobuko Yoshida (Ed.). Springer International
Publishing, Cham, 264-291. https://doi.org/10.1007/978-3-030-72019-3_10
Harrison Goldstein and Benjamin C. Pierce. 2022. Parsing Randomness. Pro-
ceedings of the ACM on Programming Languages 6, OOPSLA2 (Oct. 2022), 128:89—
128:113. https://doi.org/10.1145/3563291

J. A. Hartigan and B. Kleiner. 1981. Mosaics for Contingency Tables. In Computer
Science and Statistics: Proceedings of the 13th Symposium on the Interface, William F.
Eddy (Ed.). Springer US, New York, NY, 268-273. https://doi.org/10.1007/978-1-
4613-9464-8_37

Bjorn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer.
2008. Design as Exploration: Creating Interface Alternatives through Parallel
Authoring and Runtime Tuning. In Proceedings of the Symposium on User Interface
Software and Technology. ACM, 91-100.

Zac Hatfield-Dodds. 2024. Observability Tools & Hypothesis 6.99.13.
//hypothesis.readthedocs.io/en/latest/observability.html

Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Bjorn Hartmann. 2017. Writing Reusable Code Feedback at
Scale with Mixed-Initiative Program Synthesis. In Proceedings of the Conference
on Learning at Scale. ACM, 89-98.

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the Symposium on User Interface
Software and Technology. ACM, 281-292.

Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code
with In Situ Visualizations to Aid Program Understanding. In Proceedings of the
CHI Conference on Human Factors in Computing Systems. ACM. Paper 532.
Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M.
Drucker. 2019. Gamut: A Design Probe to Understand How Data Scientists
Understand Machine Learning Models. In Proceedings of the CHI Conference on
Human Factors in Computing Systems. ACM. Paper 579.

Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur Patel. 2020.
Understanding and Visualizing Data Iteration in Machine Learning. In Proceedings
of the CHI Conference on Human Factors in Computing Systems. ACM. Paper 50.

https:

[37

[38

[39

[40]

[41]

[42]

[43

(44

[45

[46

N
=

[48

[49

o
=

[51

(52

(53]

[55

Goldstein et al.

Paul Holser. 2024. pholser/junit-quickcheck. https://github.com/pholser/junit-
quickcheck original-date: 2010-10-18T22:33:36Z.

Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact
Inference for Discrete Probabilistic Programs. Proceedings of the ACM on Program-
ming Languages 4, OOPSLA (Nov. 2020), 1-31. https://doi.org/10.1145/3428208
arXiv:2005.09089 [cs].

John Hughes. 2007. QuickCheck Testing for Fun and Profit. In Practical Aspects of
Declarative Languages (Lecture Notes in Computer Science), Michael Hanus (Ed.).
Springer, Berlin, Heidelberg, 1-32. https://doi.org/10.1007/978-3-540-69611-7_1
John Hughes. 2016. Experiences with QuickCheck: Testing the Hard Stuff and
Staying Sane. In A List of Successes That Can Change the World: Essays Dedicated
to Philip Wadler on the Occasion of His 60th Birthday, Sam Lindley, Conor McBride,
Phil Trinder, and Don Sannella (Eds.). Springer International Publishing, Cham,
169-186. https://doi.org/10.1007/978-3-319-30936-1_9

John Hughes, Benjamin C. Pierce, Thomas Arts, and Ulf Norell. 2016. Mysteries
of DropBox: Property-Based Testing of a Distributed Synchronization Service. In
2016 IEEE International Conference on Software Testing, Verification and Validation
(ICST). 135-145. https://doi.org/10.1109/ICST.2016.37

James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the
tarantula automatic fault-localization technique. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’05). Association for Computing Machinery, New York, NY, USA, 273-282.
https://doi.org/10.1145/1101908.1101949

René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654-665.

Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented Live
Programming Environment with Always-On Run-Time Value Visualizations. In
Proceedings of the Symposium on User Interface Software and Technology. ACM,
737-745.

Marcel R Karam and Trevor J Smedley. 2001. A testing methodology for a
dataflow based visual programming language. In Proceedings IEEE Symposia on
Human-Centric Computing Languages and Environments (Cat. No. 01TH8587).
IEEE, 280-287.

Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid moves between code and graphi-
cal work in computational notebooks. In Proceedings of the Symposium on User
Interface Software and Technology. ACM, 140-151.

Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan Nagappan. 2017.
Code Coverage and Postrelease Defects: A Large-Scale Study on Open Source
Projects. IEEE Transactions on Reliability 66, 4 (Dec. 2017), 1213-1228. https:
//doi.org/10.1109/TR.2017.2727062 Conference Name: IEEE Transactions on
Reliability.

Shriram Krishnamurthi and Tim Nelson. 2019. The Human in Formal Methods. In
Formal Methods — The Next 30 Years (Lecture Notes in Computer Science), Maurice H.
ter Beek, Annabelle Mclver, and José N. Oliveira (Eds.). Springer International
Publishing, Cham, 3-10. https://doi.org/10.1007/978-3-030-30942-8_1

D. Richard Kuhn, James M. Higdon, James Lawrence, Raghu Kacker, and Yu
Lei. 2012. Combinatorial Methods for Event Sequence Testing. In Fifth IEEE
International Conference on Software Testing, Verification and Validation, ICST 2012,
Montreal, QC, Canada, April 17-21, 2012, Giuliano Antoniol, Antonia Bertolino,
and Yvan Labiche (Eds.). IEEE Computer Society, 601-609. https://doi.org/10.
1109/ICST.2012.147

Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Ben-
jamin C. Pierce, and Li-yao Xia. 2017. Beginner’s Luck: a language for property-
based generators. Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017 (2017),
114-129. http://dl.acm.org/citation.cfm?id=3009868

Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019. Coverage
guided, property based testing. PACMPL 3, OOPSLA (2019), 181:1-181:29. https:
//doi.org/10.1145/3360607

Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2017.
Generating good generators for inductive relations. Proceedings of the ACM on
Programming Languages 2, POPL (2017), 1-30. https://dl.acm.org/doi/10.1145/
3158133 Publisher: ACM New York, NY, USA.

J Lawrance, Steven Clarke, Margaret Burnett, and Gregg Rothermel. 2005. How
well do professional developers test with code coverage visualizations? an em-
pirical study. In 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’05). IEEE, 53-60.

Sorin Lerner. 2020. Projection boxes: On-the-fly reconfigurable visualization for
live programming. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. 1-7.

David R Maclver, Zac Hatfield-Dodds, and others. 2019. Hypothesis: A new
approach to property-based testing. Journal of Open Source Software 4, 43 (2019),
1891. https:/joss.theoj.org/papers/10.21105/joss.01891.pdf

TycHE: Making Sense of Property-Based Testing Effectiveness

[56]

[57

[58

[59

[60]
[61]

(62

[63

[64

[70

(71

[72]

(73

[74

[75]

[76]

[77]

Mikaél Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. 2015. User Interac-
tion Models for Disambiguation in Programming by Example. In Proceedings of
the Symposium on User Interface Software and Technology. ACM, 291-301.

Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell
Karchemsky, David Mellis, and Bjérn Hartmann. 2017. Bifrost: Visualizing and
checking behavior of embedded systems across hardware and software. In Pro-
ceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology. 299-310.

William McGrath, Jeremy Warner, Mitchell Karchemsky, Andrew Head, Daniel
Drew, and Bjoern Hartmann. 2018. Wifrdst: Bridging the information gap for
debugging of networked embedded systems. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology. 447-455.

Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini
encyclopedia of psychology (2010), 1-1. Publisher: Wiley Online Library.
Microsoft. 2024. Visual Studio Code. https://code.visualstudio.com/

Robert C Miller and Brad A Myers. 2001. Outlier finding: Focusing user attention
on possible errors. In Proceedings of the 14th annual ACM symposium on User
interface software and technology. 81-90.

Agustin Mista, Alejandro Russo, and John Hughes. 2018. Branching processes for
QuickCheck generators. In Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell, Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17,
2018, Nicolas Wu (Ed.). ACM, 1-13. https://doi.org/10.1145/3242744.3242747
Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur
Naik, and Mukund Raghothaman. 2021. Sporq: An interactive environment for
exploring code using query-by-example. In The 34th Annual ACM Symposium on
User Interface Software and Technology. 84-99.

Tim Nelson, Elijah Rivera, Sam Soucie, Thomas Del Vecchio, John Wrenn, and
Shriram Krishnamurthi. 2021. Automated, Targeted Testing of Property-Based
Testing Predicates. The Art, Science, and Engineering of Programming 6, 2
(Nov. 2021), 10. https://doi.org/10.22152/programming-journal.org/2022/6/10
arXiv:2111.10414 [cs].

Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. recode:
A lightweight find-and-replace interaction in the ide for transforming code by
example. In The 34th Annual ACM Symposium on User Interface Software and
Technology. 258-269.

Rickard Nilsson. 2024. ScalaCheck. https://scalacheck.org/

Donald A Norman and Stephen W Draper. 1986. User centered system design; new
perspectives on human-computer interaction. L. Erlbaum Associates Inc.
Stephen Oney and Brad Myers. 2009. FireCrystal: Understanding Interactive
Behaviors in Dynamic Web Pages. In Proceedings of the Symposium on Visual
Languages and Human-Centric Computing. IEEE, 105-108.

Micha\l H. Pa\lka, Koen Claessen, Alejandro Russo, and John Hughes. 2011.
Testing an Optimising Compiler by Generating Random Lambda Terms. In Pro-
ceedings of the 6th International Workshop on Automation of Software Test (AST
’11). ACM, New York, NY, USA, 91-97. https://doi.org/10.1145/1982595.1982615
event-place: Waikiki, Honolulu, HI, USA.

Kevin Pu, Rainey Fu, Rui Dong, Xinyu Wang, Yan Chen, and Tovi Grossman. 2022.
SemanticOn: Specifying content-based semantic conditions for web automation
programs. In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology. 1-16.

pytest-watch [n.d.]. Retrieved March 23, 2024 from https://github.com/joeyespo/
pytest-watch

Gregg Rothermel, Lixin Li, Christopher DuPuis, and Margaret Burnett. 1998. What
you see is what you test: A methodology for testing form-based visual programs.
In Proceedings of the 20th international conference on Software engineering. IEEE,
198-207.

Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. 2018. Aiding
Collaborative Reuse of Computational Notebooks with Annotated Cell Folding.
In Proceedings of the Conference on Computer-Supported Cooperative Work and
Social Computing. ACM. Article 150.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and
lazy smallcheck: automatic exhaustive testing for small values. ACM SIGPLAN
Notices 44, 2 (Sept. 2008), 37-48. https://doi.org/10.1145/1543134.1411292
Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (Jan. 2017), 341-350. https://doi.org/10.
1109/TVCG.2016.2599030 Conference Name: IEEE Transactions on Visualization
and Computer Graphics.

Jessica Shi, Alperen Keles, Harrison Goldstein, Benjamin C Pierce, and Leonidas
Lampropoulos. 2023. Etna: An Evaluation Platform for Property-Based Testing
(Experience Report). Proc. ACM Program. Lang. 7 (2023). https://doi.org/10.1145/
3607860

Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A fluent code
explorer for data wrangling. In The 34th Annual ACM Symposium on User Interface
Software and Technology. 198-207.

[78

[79]

[80

=)
=

(82

[83

[92]

[93

[94

[95

[96

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske, and An-
dreas Zeller. 2020. Inputs from Hell: Learning Input Distributions for Grammar-
Based Test Generation. IEEE Transactions on Software Engineering (2020).
https://doi.org/10.1109/TSE.2020.3013716 Publisher: IEEE.

C Spearman. 1904. The Proof and Measurement of Association between Two
Things. American Journal of Psychology 15 (1904), 72-101. Publisher: University
of Illinois Press, etc..

Dominic Steinhéfel and Andreas Zeller. 2022. Input invariants. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 583-594. https://doi.org/10.1145/
3540250.3549139

Donald Stewart, Koen Claessen, Nick Smallbone, and Simon Marlow. 2024.
Test.QuickCheck — hackage.haskell.org. https://hackage.haskell.org/package/
QuickCheck-2.14.3/docs/Test-QuickCheck.html#v:label

Neeraja Subrahmaniyan, Laura Beckwith, Valentina Grigoreanu, Margaret Bur-
nett, Susan Wiedenbeck, Vaishnavi Narayanan, Karin Bucht, Russell Drummond,
and Xiaoli Fern. 2008. Testing vs. code inspection vs. what else? Male and fe-
male end users’ debugging strategies. In Proceedings of the SIGCHI Conference on
human factors in computing systems. 617-626.

Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan Reis, Melina
Mongiovi, Loris D’Antoni, and Bjérn Hartmann. 2017. TraceDiff: Debugging un-
expected code behavior using trace divergences. In Proceedings of the Symposium
on Visual Languages and Human-Centric Computing. IEEE, 107-115.

Steven L. Tanimoto. 1990. VIVA: A Visual Language for Image Processing. 1, 2
(1990), 127-139.

Jordan Walke. 2024. React. https://react.dev/

April Yi Wang, Will Epperson, Robert A DeLine, and Steven M Drucker. 2022.
Diff in the loop: Supporting data comparison in exploratory data analysis. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1-10.

Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J
Ko. 2021. Falx: Synthesis-powered visualization authoring. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1-15.

Tan Ward. 2024. JSON Lines. https://jsonlines.org/

Wikipedia. 2024. Name server — Wikipedia, The Free Encyclopedia.
//en.wikipedia.org/w/index.php?title=Name%20server&oldid=1215654110
Wikipedia. 2024. Red-black tree — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Red%E2%80%93black%20tree&
oldid=1215636980

Aaron Wilson, Margaret Burnett, Laura Beckwith, Orion Granatir, Ledah Casburn,
Curtis Cook, Mike Durham, and Gregg Rothermel. 2003. Harnessing curiosity
to increase correctness in end-user programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI "03). Association for
Computing Machinery, New York, NY, USA, 305-312. https://doi.org/10.1145/
642611.642665

J. Wing, D. Jackson, and C. B. Jones. 1996. Formal Methods Light. Computer 29,
04 (apr 1996), 20-22. https://doi.org/10.1109/MC.1996.10038

Litao Yan, Elena L. Glassman, and Tianyi Zhang. 2021. Visualizing Examples
of Deep Neural Networks at Scale. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (CHI °21). Association for Computing
Machinery, New York, NY, USA, 1-14. https://doi.org/10.1145/3411764.3445654
Litao Yan, Elena L Glassman, and Tianyi Zhang. 2021. Visualizing examples
of deep neural networks at scale. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. 1-14.

Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L Glassman. 2020.
Interactive program synthesis by augmented examples. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. 627-648.
Valerie Zhao, Lefan Zhang, Bo Wang, Michael L Littman, Shan Lu, and Blase Ur.
2021. Understanding trigger-action programs through novel visualizations of
program differences. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems. 1-17.

http:

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Goldstein et al.

A TABLE OF TEST EVALUATION AFFORDANCES IN EXISTING FRAMEWORKS

Table 2: Breakdown of existing test evaluation affordances in popular PBT frameworks.

‘Hypothesis fast-check quickcheck (Rust) ScalaCheck junit-quickcheck QuickCheck (Haskell)

Tests Run v Vv v v
Tests Discarded N v N N4
Events / Labels v v v v
Generation Time v
Warnings v

B CONTROL VIEW FOR PYTHON INTERPRETER STUDY TASK

suitel.py::test_evaluate_equiv_to_python:

» during generate phase (182,90 seconds):
Typical runtimes: ~ 69-314 ms, of which ~ 68-311 ms
in data generation
52 passing examples, 0 failing examples, 948 invalid
examples
Events:

o

°

o

- J
= [Stopped because settings.max_examples=100, but < 10% of
examples satisfied assumptions

test_evaluate eguiv_to python(
p=
<START>

o
<END>,

suite2.py::test_evaluate_equiv_to_python:
= during generate phase {(19.88 seconds):
Typical runtimes: ~ 20-703 ms, of which ~ 19-694 ms
in datz generation
100 passing examples, 0 failing examples, 7 invalid
examples
Events:
= 93.46%, variable_uses: 0
= Stopped because settings.max_examples=100

&

°

o

test_evaluate_equiv_to_python(
o=
<START>

<EHND>,

test evaluate eguiv to pvthont

suite3. py::test_evaluate_equiv_to_python:
» during generate phase (14.89 seconds):
o Typical runtimes: ~ 35-229 ms, of which ~ 33-225 ms
in data generation
o 100 passing examples, 0 failing examples, 2 invalid
e
o Events:
21.57%, variable_uses: 2
16.67%, variable_uses: 3
13.73%, variable_uses: 0
10.78%, variable_uses: 1
10.78%, variable_uses: 4
6.86%, variable_uses: 8
5.88%, vaniable_uses: 10
5.88%, variable_uses: 5
3.92%, variable_uses: 6
0.98%, variable_uses: 7
0.98%, variable_uses: 9

= Stopped Eel:ause settings.max_examples=100

	Abstract
	1 Introduction
	2 Background
	2.1 Property-Based Testing
	2.2 PBT Process and Pitfalls

	3 Related Work
	3.1 Current Affordances
	3.2 Interactive Tools for Testing
	3.3 Making Sense of Program Executions
	3.4 Formal Methods in the Editor

	4 Formative Research
	4.1 Methods
	4.2 Testing Goals and Strategies
	4.3 Design Considerations

	5 System
	5.1 Interaction Model
	5.2 Visual Feedback
	5.3 Reactivity and Customizability

	6 Implementation
	6.1 UI Implementation
	6.2 OpenPBTStats Data Format
	6.3 Expanding the Ecosystem

	7 Evaluation
	7.1 Online Study
	7.2 Impact on the Testing Ecosystem

	8 Conclusions and Future Work
	8.1 Evaluation in Long-Term Deployments
	8.2 Improving Data Presentation for Tyche
	8.3 Improving Control in Tyche
	8.4 Tyche Beyond PBT

	Acknowledgments
	References
	A Table of Test Evaluation Affordances in Existing Frameworks
	B Control View for Python Interpreter Study Task

