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Abstract—In this paper, we analyze the monotonicity of information 

aging in a remote estimation system, where historical observations of a 
Gaussian autoregressive AR(p) process are used to predict its future 
values. We consider two widely used loss functions in estimation: (i) 
logarithmic loss function for maximum likelihood estimation and (ii) 
quadratic loss function for MMSE estimation. The estimation error of the 
AR(p) process is written as a generalized conditional entropy which has 
closedform expressions. By using a new information-theoretic tool called 
ϵ-Markov chain, we can evaluate the divergence of the AR(p) process 
from being a Markov chain. When the divergence ϵ is large, the 
estimation error of the AR(p) process can be far from a non-decreasing 
function of the Age of Information (AoI). Conversely, for small divergence 
ϵ, the estimation error is close to a non-decreasing AoI function. Each 
observation is a short sequence taken from the AR(p) process. As the 
observation sequence length increases, the parameter ϵ progressively 
reduces to zero, and hence the estimation error becomes a non-
decreasing AoI function. These results underscore a connection between 
the monotonicity of information aging and the divergence of from being 
a Markov chain. 

I. INTRODUCTION 

Timely updates of sensor measurements are crucial for real-

time state estimation and decision-making in networked 

controlled and cyber-physical systems, such as UAV navigation, 

real-time surveillance, factory automation, and weather 

monitoring systems. To evaluate the timeliness of sensor 

measurements received from a remote sensor, the concept of 

Age of Information (AoI) was introduced in [1], [2]. Let U(t) be the 

generation time of the freshest sensor measurement delivered to 

the receiver by time t. The AoI ∆(t), as a function of time t, is 

defined as 

 ∆(t) := t − U(t), (1) 

which is the time difference between the current time t and the 

generation time U(t) of the most recently delivered sensor data. 

A smaller AoI indicates the presence of recently generated sensor 

data at the receiver. There has been a significant research efforts 

on analyzing and optimizing AoI on communication networks [2]–

[29]. 

In this paper, we investigate a remote estimation system where 

a time-varying target is estimated based on observations 

collected from a sensor. Due to communication delays and 

transmission errors, the observations delivered at the receiver 

may not be fresh. Previous studies assumed that system 

performance degrades monotonically as observations become 

stale [7], [9], [13], [15], [23]. This assumption was justified 
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for Markov sources [9]: However, recent machine learning 

experimental studies [24], [25], [27] showed that this 

monotonic assumption does not always hold. In certain 

scenarios, it was found that stale data with AoI > 0 can even 

achieve a smaller inference error than fresh data with AoI = 

0, which is counter-intuitive. Information-theoretic tools 

was developed in [24], [25], [27] to interpret such non-

monotonic information aging phenomena in machine 

learning experiments. To further understand in what 

scenarios information aging could be non-monotonic, we 

use a model-based approach to analyze information aging in 

this paper. Specifically, we derive closedform expressions for 

the remote estimation error of Gaussian autoregressive 

AR(p) processes and study how the monotonicity of 

information aging is affected by the parameters of the AR(p) 

process. The contributions of this paper are summarized as 

follows: 

• We analyze the impact of fresh observations on the 

remote estimation of a p-th order Gaussian 

autoregressive process (AR(p)). The AR(p) process is 

widely used in modeling channel state information 

[30], economic forecasting [31], biomedical signals 

[32], and control systems [14], [33], [34]. Our study is 

more general than the earlier model-based studies in 

AoI literature [14], [33], [34], which are centered on 

AR(1) processes. 

• The estimation error of the AR(p) process is formulated 

as a generalized conditional entropy (refer to Lemma 

1). Closed-form expressions are provided for 

computing the estimation error (see Propositions 1-2). 

These expressions are provided for two commonly 

used loss functions in machine learning and remote 

estimation: (i) quadratic loss and (ii) logarithmic loss. 

• By using a new information-theoretic tool called 

ϵMarkov chain [24]–[26], we evaluate the divergence 

of the AR(p) process from being Markovian. We then 

characterize the monotonicity of the estimation error 

with respect to AoI using the parameter ϵ (refer to 

Lemma 2). Specifically, if ϵ is close to zero, the target 
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process is close to being Markov and the estimation error 

becomes a non-decreasing function of AoI; otherwise, if ϵ 

deviates significantly from zero, the target process is far 

from being Markov and the estimation error can exhibit 

highly non-monotonic behavior in AoI. 

• A closed-form expression is provided to compute ϵ from 

AR(p) process (see Proposition 3(a)). Additionally, we 

characterize the parameter ϵ as a function of the 

observation time-sequence length. As the observation 

timesequence length of the AR(p) process increases to p, ϵ 

reduces to zero, and hence the estimation error becomes a 

non-decreasing function of AoI (See Proposition 3(b)). • 

Numerical results verify our theoretical findings (see Fig. 2 

and Table I). 

II. SYSTEM MODEL 

Consider the remote estimation system composed of a sensor, 

a transmitter, and an estimator, as illustrated in Fig. 1. The goal of 

the system is to estimate a time-varying target Yt ∈ R. We consider 

that the target Yt evolves as 

 Yt = Xt + Nt, (2) 

where Xt ∈ R follows a discrete-time p-th order autoregressive 

(AR(p)) linear time-invariant system: 

 Xt = a1Xt−1 + a2Xt−2 + ... + apXt−p + Wt, (3) 

Nt ∈ R and Wt ∈ R are i.i.d. Gaussian noises over time with zero 

mean, and ak ∈ R for all k = 1,2,...,p. Let   and   be the 

variances of Yt and Xt, respectively. 

At every time slot t, the sensor observes Xt and feeds the 

observation to the transmitter. The transmitter progressively 

sends the sensory data to the estimator through a 

communication channel. Due to communication delays and 

channel errors, the delivered sensor observations may not be 

fresh. The most recently received sensor observation at the 

estimator is 

Xencet−∆(∆(t)t)that was generated at time∈ Z+ between the 

generation timet−∆(t). The time differ-t−∆(t) and the 

current time t is the AoI defined in (1). The estimator takes a 

consecutive sequence of sensor observations (also called 

Rfeature sequence)l (Xt−∆(t),X+t−as inputs and generates 

an∆(t)−1,...,Xt−∆(t)−l+1) ∈ and the AoI ∆(t) ∈ Z 

output , where  

[Xt−∆(t),Xt−∆(t)−1,...,Xt−∆(t)−l+1] is the feature sequence vector and 

the estimator is represented by the function ϕ : Rl × Z+ → A7 . The 

performance of the estimator is measured by a loss function L : R 

× A 7→ R, where L(y,a) is the incurred loss if the output a ∈ 

A is used for estimation when Yt = y. The loss function L is 

determined by the goal of the remote estimation system. 

We assume that the age process {∆(t),t = 0,1,2,...} is 

signal-agnostic and the signal process {(Yt,Xt),t = 0,1,...} is 

stationary. Under these assumptions, if ∆(t) = δ, then the 

minimum estimation error at time slot t can be expressed as 

a function of AoI δ and feature sequence length l [25], [27], 

given by 

errestimation(δ,l) 

 := min

 , (4) 

where the set of functions Φ consists of all functions that 

map from Rl × Z+ to A and PYt,Xlt−δ is the joint distribution of 

the target Yt and the feature Xlt−δ. 

 -%(’&#(. !  
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Fig. 1: A remote estimation system. 

III. MONOTONICITY OF ESTIMATION ERROR WITH AOI: AN ϵ-

MARKOV CHAIN APPROACH 

In this section, we employ an information-theoretic 

analysis and an ϵ-Markov chain model introduced in [24], 

[25], [27] to interpret how the estimation error 

errestimation(δ,l) varies with the AoI δ and the feature length 

l. 

A. Information-theoretic Metrics for Estimation Error 

We begin with the definitions of L-entropy and 

Lconditional entropy. The L-entropy of a random variable Y 

is defined as [25], [27], [35], [36] 

HL(Y ) := mina EY ∼PY [L(Y,a)]. (5) ∈A 

The L-conditional entropy of Y given X is defined as [25], 

[27], [35], [36] 

HL(Y |X) := Ex∼PX[HL(Y |X = x)], 

where HL(Y |X = x) is given by 

(6) 

HL(Y |X = x) = mina∈A EY ∼PY|X=x[L(Y,a)]. (7) 

Lemma 1. Estimation error errestimation(δ,l) is equal to 

Lconditional entropy of Yt given Xlt−δ, i.e., 

! "#$%&’(()" 

*+ #$$), 

/)$%." 
X t X l t − ∆ ( t ) 
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 errestimation . (8) 

Proof. See Appendix A.  

Lemma 1 implies that we can directly use the Lconditional 

entropy HL(Yt|Xlt−δ) to analyze the estimation error 

errestimation(δ,l) of a remote estimation system. By directly using 

the properties of L-information theoretic metrics [25], [27], the 

estimation error can be analyzed conveniently. The information-

theoretic metrics in the prior studies [8]–[11], [37] cannot be 

directly used to evaluate system performance. 

B. Evaluating L-conditional Entropy 

We will evaluate the L-conditional entropy associated with the 

loss function L. The loss function L is determined based on the 

objective of a remote estimation system. For example, in 

minimum mean-squared estimation (MMSE), the loss function is 

L2(y,yˆ) = (y −yˆ)2, where the output a = yˆ is an estimate of the 

target Yt = y. In maximum likelihood estimation of the target 

distribution, the action a = QYt is a distribution of Yt and the loss 

function Llog(y,QYt) = −log QYt(y) is the negative log-likelihood of 

the target value Yt = y. 

1) Logarithmic Loss (log loss): For log loss Llog(y,QYt) = 

−logQYt(y), the L-entropy is the differential entropy [38], [39], 

defined as 

  (9) 

where pYt is the density function of the distribution PYt of Yt. 

Because Yt is a Gaussian random variable with zero mean, one can 

obtain [39] 

  . (10) 

The L-entropy for a discrete random variable associated with log 

loss is the well known Shannon entropy [25], [27], [36]. The 

Shannon entropy is always non-negative. However, the 

differential entropy can be negative, positive, and zero [39]. 

Proposition 1. The L-conditional entropy  is 

given by 

! 

(11) 

where det(A) denotes the determinant of a square matrix A, 

 RX  (12) 

is an l × l dimensional auto-correlation matrix of a random vector 

Xlt, and 

 R  (13) 

is an (l +1)×(l +1) dimensional auto-correlation matrix of a 

random vector . 

Proof. See Appendix B.  

In the special case of feature length l = 1, from (11), it can 

be shown that 

 . (14) 

2) Quadratic Loss: For quadratic loss function L2(y,yˆ) = 

(y − yˆ)2, the L-entropy of Yt is the variance of Yt, given by 

 . (15) 

Because E[Yt] = 0, we have 

 H2(Yt) = E[Yt2]. (16) 

Proposition 2. The L-conditional entropy H2(Yt|Xlt−δ) is given 

by 

 

where   is 

a 

1 × l dimensional vector and RXlt is an l × l dimensional auto-

correlation matrix of Xlt defined in (12). 

Due to space limitation, the proof of Proposition 2 is 

relegated to our technical report [40]. 

In the special case of feature length l = 1, from (17), it can 

be shown that 

 . (18) 

By utilizing Propositions 1-2, one can evaluate the 

Lconditional entropy of a data sequence that is generated 

using a Gaussian AR(p) system. The L-conditional entropy for 

an AR(4) model is depicted in Fig. 2. The model parameters 

of the AR(4) model is presented in Section V. Fig. 2 reveals 

that the L-conditional entropy can be a non-monotonic 

function of AoI δ. 

C. L-conditional Entropy vs. AoI 

If  is a Markov chain for all µ,ν 

≥ 0, by the data processing inequality [35, Lemma 12.1], 

  is a non-decreasing function of δ. 

Nevertheless, the results in Fig. 2 show that the L-

conditional entropy is not always a non-decreasing function 
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of δ. This is because  is not a Markov 

chain for all 

µ,ν ≥ 0, particularly when l < p and p ≥ 2 in AR(p) process. A 

relaxation of the data processing inequality is needed to analyze 

how   varies with δ for both Markovian and non-

Markovian time-series data. To that end, an ϵ-Markov chain 

model is proposed in [25], [27]. 

Definition 1 (ϵ-Markov Chain). Given ϵ ≥ 0, a sequence of three 

random variables Y,X, and Z is said to be an ϵ-Markov chain, 

denoted as Y ↔ϵ X ↔ϵ Z, if 

 

where Ilog(Y ;Z|X) is Shannon conditional mutual information,

  is KL-divergence between two 

distributions PY,X,Z and PY |XPZ|XPX, KL-divergence Dlog(PY ||QY ) 

between two distributions PY and QY is defined as 

  dy, (20) 

p and q are the probability densities of PY and QY , respectively. 

Notice that the KL-divergence in (19) can be also equivalently 

expressed as 

Dlog(PY,X,Z||PY |XPZ|XPX) 

=EX[Dlog(PY,Z|X||PY |XPZ|X)] 

 =EX,Z[Dlog(PY |X,Z||PY |X)], (21) 

Lemma 2. The following assertions are true: 

(a) If Yt ↔ϵ Xlt−µ ↔ϵ Xlt−µ−ν is an ϵ-Markov chain for every µ,ν 

≥ 0, then the L-conditional entropy is given by 

  (22) 

where g1(δ) is a non-decreasing function of δ, given by 

 

the L-conditional mutual information IL(Y ;X|Z) between Y and X 

given Z is 

 IL(Y ;X|Z) = HL(Y |Z) − HL(Y |X,Z). (24) 

(b) Given   is a non-increasing function 

of feature length l, i.e., for all 1 ≤ l1 ≤ l2, 

 . (25) 

Lemma 2 was introduced in our earlier work [25], [26] for 

discrete random variables. To ensure completeness of the paper, 

we restate Lemma 2 for continuous random variables. 
According to Lemma 2(a), the

 monotonicity of 

 in δ is characterized
 by the parameter ϵ ≥ 0 in the ϵ-Markov chain 
model. If ϵ is close to zero, ϵ ϵ 

is close to a Markov chain, and   is non-

decreasing in AoI δ. If ϵ is large, then 

 is far from a Markov chain, and 

 could be non-monotonic in AoI δ. 

Lemma 2(b) states that HL(Yt|Xlt−δ) decreases with 

increasing feature length l. A longer feature sequence adds 

more information that results in better estimation. 

Nevertheless, increasing the feature length also increases 

data size, necessitating more communication resources. For 

example, a longer feature sequence may require a longer 

transmission time and may end up being stale when 

delivered, thus resulting in worse inference performance. 

Recently, a study [26] has investigated a learning and 

communications co-design problem that jointly optimizes 

the timeliness and length of feature sequences. 

IV. CHARACTERIZING THE PARAMETER ϵ OF AN ϵ-MARKOV 

CHAIN 

In this section, we show how to evaluate the value of the 

parameter ϵ from an AR(p) process. We also analyzed the 

impact of feature length l on the parameter ϵ. 

The parameter ϵ in Yt ↔ϵ Xlt−µ ↔ϵ Xlt−µ−ν depends on µ,ν, 

and l. We denote ϵµ,ν(l) as the minimum value of ϵ for which

is an ϵ-Markov chain. By using 

Definition 1, we have 

 . (26) 

We also denote ϵ(l) as the minimum value of ϵ for which 

Yt ↔ϵ Xlt−µ ↔ϵ Xlt−µ−ν is an ϵ-Markov chain for all µ,ν ≥ 0. Then, 

we can write 

 . (27) 

Proposition 3. The following assertions are true for the 

Gaussian AR(p) model defined in (2)-(3). 

(a) The minimum value of ϵ for which the data sequence 

 satisfies an ϵ-Markov chain property, 

i.e., 

, for all µ,ν ≥ 0 is given by 

ϵ(l) = max ϵµ,ν(l), (28) µ,ν≥0 

where ϵµ,ν(l) is determined by 
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det(A) denotes the determinant of a square matrix A, and RX = 

E[XTX] is the auto-correlation matrix of a random vector X. 

(b) If l ≥ p, then 

 ϵ(l) = 0. (30) 

Due to space limitation, the proof of Proposition 3 is relegated 

to our technical report [40]. 

In Proposition 3(a), we present a closed-form expression for 

computing the parameter ϵ(l). Utilizing Proposition 3(a), one can 

derive ϵ(l) from the auto-correlation function of a data sequence 

generated from the AR(p) model. Proposition 3(b) implies that if 

the feature length l is greater than or equal to the order p of the 

AR(p) model, then ϵ(l) equals 0. By integrating Proposition 3(b) 

with Lemma 2, we can conclude that if the feature length l is 

greater than or equal to the order p, the L-conditional entropy 

becomes a non-decreasing function of AoI. However, transmitting 

longer features demands more communication resources [26]. 

V. NUMERICAL RESULTS 

In this section, we utilize Proposition 1-3 to compute the 

estimation error and the parameter ϵ(l) for the following AR(4) 

process: 

Xt = 0.1Xt−1 + 0.8Xt−p + Wt, (31) 

Yt = Xt + Nt, (32) 

where Wt ∈ R and Nt ∈ R are i.i.d. Gaussian noises over time with 

zero mean and variances 0.01 and 0.001, respectively. The goal 

is to estimate Yt using a feature sequence Xlt−δ = 

[Xt−δ,Xt−δ−1,...,Xt−δ−l+1]. 

A. Evaluating L-conditional Entropy Using Propositions 1-2 

We compute the L-conditional entropy of Yt given Xlt−δ for two 

different loss functions: (a) quadratic loss and (b) log loss, using 

(17) and (11), respectively. In Fig. 2, we illustrate the 

Lloss and the-conditional entropyL-conditional 

entropyH2(Yt|Xlt−δ)Hassociated with quadraticlog(Yt|Xlt−δ) 

associated 

with log loss (base 2). Both 

 exhibit similar behavior 

with respect to AoI δ and feature length l, but they are 

measured in different scale and are used in different 

applications. 

B. Evaluating ϵ(l) Using Proposition 3 

We determine ϵ(l) through the following steps: Firstly, we 

calculate ϵµ,ν(l) using (29) given µ,ν, and l. Subsequently, we 

compute ϵ(l) by maximizing ϵµ,ν(l) over all µ,ν ≥ 0. However, 

this needs to compute ϵµ,ν(l) for an infinite number of µ and 

ν, which is not possible. We find that when µ or ν exceed a 

large value, ϵµ,ν(l) becomes either 0 or close to 0 for all l. 

Therefore, we can choose an upper bound denoted as M and 

compute ϵ(l) by maximizing ϵµ,ν(l) over all 0 ≤ µ,ν ≤ M. In our 

simulation, we set M = 50. The outcomes of ϵ(l) for feature 

length l = 1,2,3,4,5 are presented in Table I. 

Feature length l 1 2 3 4 5 

ϵ(l) 1.55 1.49 1.39 0 0 

TABLE I: ϵ(l) for l = 1,2,3,4,5. 

C. Analysis of the Numerical Results 

Fig. 2 and Table I illustrate that as the feature length l 

increases, the parameter ϵ(l) tends to zero, and the 

Lconditional entropy becomes a monotonic function of AoI 

δ. Specifically, when the feature length l reaches the order p 

of the AR(p) process, the parameter ϵ(l) equals zero and 

hence, the L-conditional entropy becomes a monotonic 

function of AoI. Moreover, as the feature length l increases, 

the Lconditional entropy reduces. However, beyond the 

order p, further increases in feature length do not result in 

the reduction of the L-conditional entropy. It is evident from 

 

  vs. AoI (δ)  vs. AoI (δ) 

Fig. 2: L-conditional entropy vs. AoI with (a) quadratic loss function and (b) log loss function (base 2). The L-conditional entropy 

is not always a monotonic function of AoI. An AR(4) model as discussed in Section V is considered for this simulation. 
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Fig. 2 that the L-conditional entropy for l = 4 and l = 5 remains 

the same for the AR(4) model. 

VI. CONCLUSION 

This paper investigates the impact of information freshness on 

the remote estimation of AR(p) processes. Employing a new ϵ-

Markov chain model, we demonstrate that the estimation error 

does not always degrade monotonically as the observations 

become stale. We provide closed-form expressions for computing 

both the estimation error and the parameter ϵ for AR(p) 

processes. Both theoretical analyses and numerical results 

illustrate that, with an increasing feature length, ϵ converges to 

zero and the estimation error converges to a nondecreasing 

function of AoI. 

APPENDIX A PROOF OF LEMMA 1 

By using (5)-(7), we can obtain from (4) that 

errestimation(δ,l) 

 
where the second equality holds because Φ contains all functions 

that map from Rl × Z+ to A. 

APPENDIX B PROOF OF PROPOSITION 1 

We begin with the definitions of L-divergence and L-mutual 

information. The L-divergence DL(PY ||QY ) of PY from QY can be 

expressed as [25], [36], [41] 

DL(PY ||QY ) 

 =EY ∼PY [L(Y,aPY )] − EY ∼PY [L(Y,aQY )], (34) 

where aPY is the optimal solution to 

minEY ∼PY [L(Y,a)]. (35) a∈A 

The L-mutual information IL(Y ;X) is defined as [25], [36], [41] 

  (36) 

which measures the performance gain in estimating Y by 

observing X. The L-conditional mutual information IL(Y ;X|Z) is 

given by 

 

Using (36), the L-conditional entropy Hlog(Yt|Xlt−δ) associated 

with log loss can be expressed as 

 . (38) 

For jointly Gaussian random vectors Y ∈ Rm and X ∈ Rn, we 

can obtain [39] 

 Ilog(Y;X) = , (39) 

where ΣX := E[(X − E[X])]TE[(X − E[X])] denotes the 

covariance matrix of the row vector X. If E[X] = 0, then 

ΣX = RX. 

By using, (10), (38), and 

(39), we obtain (11). 
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