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Abstract—In this paper, we analyze the monotonicity of information
aging in a remote estimation system, where historical observations of a
Gaussian autoregressive AR(p) process are used to predict its future
values. We consider two widely used loss functions in estimation: (i)
logarithmic loss function for maximum likelihood estimation and (ii)
quadratic loss function for MMSE estimation. The estimation error of the
AR(p) process is written as a generalized conditional entropy which has
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closedform expressions. By using a new information-theoretic tool call@@°-8-3503-8447-5/24/$31.00 ©2024 IEEE

€-Markov chain, we can evaluate the divergence of the AR(p) process
from being a Markov chain. When the divergence € is large, the
estimation error of the AR(p) process can be far from a non-decreasing
function of the Age of Information (Aol). Conversely, for small divergence
€, the estimation error is close to a non-decreasing Aol function. Each
observation is a short sequence taken from the AR(p) process. As the
observation sequence length increases, the parameter € progressively
reduces to zero, and hence the estimation error becomes a non-
decreasing Aol function. These results underscore a connection between
the monotonicity of information aging and the divergence of from being
a Markov chain.

I. INTRODUCTION

Timely updates of sensor measurements are crucial for real-
time state estimation and decision-making in networked
controlled and cyber-physical systems, such as UAV navigation,
real-time surveillance, factory automation, and weather
monitoring systems. To evaluate the timeliness of sensor
measurements received from a remote sensor, the concept of
Age of Information (Aol) was introduced in [1], [2]. Let U(t) be the
generation time of the freshest sensor measurement delivered to
the receiver by time t. The Aol A(t), as a function of time ¢, is
defined as

A(t) :=t - U(t), (1)

which is the time difference between the current time t and the
generation time U(t) of the most recently delivered sensor data.
A smaller Aol indicates the presence of recently generated sensor
data at the receiver. There has been a significant research efforts
on analyzing and optimizing Aol on communication networks [2]—
[29].

In this paper, we investigate a remote estimation system where
a time-varying target is estimated based on observations
collected from a sensor. Due to communication delays and
transmission errors, the observations delivered at the receiver
may not be fresh. Previous studies assumed that system
performance degrades monotonically as observations become
stale [7], [9], [13], [15], [23]. This assumption was justified

for Markov sources [9]: However, recent machine learning
experimental studies [24], [25], [27] showed that this
monotonic assumption does not always hold. In certain
scenarios, it was found that stale data with Aol > 0 can even
achieve a smaller inference error than fresh data with Aol =
0, which is counter-intuitive. Information-theoretic tools
was developed in [24], [25], [27] to interpret such non-
monotonic information aging phenomena in machine
learning experiments. To further understand in what
scenarios information aging could be non-monotonic, we
use a model-based approach to analyze information aging in
this paper. Specifically, we derive closedform expressions for
the remote estimation error of Gaussian autoregressive
AR(p) processes and study how the monotonicity of
information aging is affected by the parameters of the AR(p)
process. The contributions of this paper are summarized as
follows:

. We analyze the impact of fresh observations on the
remote estimation of a p-th order Gaussian
autoregressive process (AR(p)). The AR(p) process is
widely used in modeling channel state information
[30], economic forecasting [31], biomedical signals
[32], and control systems [14], [33], [34]. Our study is
more general than the earlier model-based studies in
Aol literature [14], [33], [34], which are centered on
AR(1) processes.

. The estimation error of the AR(p) process is formulated
as a generalized conditional entropy (refer to Lemma
1). Closed-form expressions are provided for
computing the estimation error (see Propositions 1-2).
These expressions are provided for two commonly
used loss functions in machine learning and remote
estimation: (i) quadratic loss and (ii) logarithmic loss.

. By using a new information-theoretic tool called
€Markov chain [24]-[26], we evaluate the divergence
of the AR(p) process from being Markovian. We then
characterize the monotonicity of the estimation error
with respect to Aol using the parameter € (refer to
Lemma 2). Specifically, if € is close to zero, the target
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process is close to being Markov and the estimation error
becomes a non-decreasing function of Aol; otherwise, if €
deviates significantly from zero, the target process is far
from being Markov and the estimation error can exhibit
highly non-monotonic behavior in Aol.

. A closed-form expression is provided to compute € from
AR(p) process (see Proposition 3(a)). Additionally, we
characterize the parameter € as a function of the
observation time-sequence length. As the observation
timesequence length of the AR(p) process increases to p, €
reduces to zero, and hence the estimation error becomes a
non-decreasing function of Aol (See Proposition 3(b)). .
Numerical results verify our theoretical findings (see Fig. 2
and Table 1).

II.  SySTEM MODEL

Consider the remote estimation system composed of a sensor,
a transmitter, and an estimator, as illustrated in Fig. 1. The goal of
the system is to estimate a time-varying target Y: € R. We consider
that the target Y:evolves as

Ye= Xt + Nt, (2)

where X: € R follows a discrete-time p-th order autoregressive
(AR(p)) linear time-invariant system:

Xe= a1Xe-1+ azXe-2 + ... + apXe-p+ Wy, (3)

Nt€ R and W:€ R are i.i.d. Gaussian noises over time with zero

2 2
mean, and ax € R for all k = 1,2,..,p. Let “Y: and “X, be the
variances of Yrand X, respectively.

At every time slot t, the sensor observes X: and feeds the
observation to the transmitter. The transmitter progressively
sends the sensory data to the estimator through a
communication channel. Due to communication delays and
channel errors, the delivered sensor observations may not be
fresh. The most recently received sensor observation at the
estimator is

Xencet-a(A(pt)that was generated at time€ Z+ between the
generation timet-A(t). The time differ-t-A(t) and the

current time t is the Aol defined in (1). The estimator takes a
consecutive sequence of sensor observations (also called

Rfeature sequence): (Xt-a(6,X+t-as inputs and generates

ana(9-1,..,Xe-a9-1+1) € and the Aol A(t) €Z
— Al ! _
output © PXi_aey A1) € ‘A, where Xiaw =
[Xe-a(8),Xe-0(0)-1,...,Xt-a0)-1+1] is the feature sequence vector and
the estimator is represented by the function ¢ : Rix Z+— A7 . The
performance of the estimator is measured by a loss function L : R
2

x A 7— R, where L(y,a) is the incurred loss if the output a €
A is used for estimation when Y:=y. The loss function L is
determined by the goal of the remote estimation system.

We assume that the age process {A(t),t = 0,1,2,...} is
signal-agnostic and the signal process {(Y;Xo),t = 0,1,...} is
stationary. Under these assumptions, if A(t) = §, then the
minimum estimation error at time slot t can be expressed as
a function of Aol § and feature sequence length I [25], [27],
given by

errestimation(dl)
Ey xtp LY, X, 0
= dED Y. X! !Yt—xi. 5{ ( o ( ‘ ))]min
, (4)
where the set of functions @ consists of all functions that

map from R/ x Z*to A and Py.xi-sis the joint distribution of

the target Y:and the feature X!-s.
X t

Fig. 1: A remote estimation system.
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M. MONOTONICITY OF ESTIMATION ERROR WITH AOI: AN €-
MARKOV CHAIN APPROACH

In this section, we employ an information-theoretic
analysis and an e-Markov chain model introduced in [24],
[25], [27] to interpret how the estimation error
eITestimation(d,[) varies with the Aol § and the feature length
L

A. Information-theoretic Metrics for Estimation Error

We begin with the definitions of L-entropy and
Lconditional entropy. The L-entropy of a random variable Y
is defined as [25], [27], [35], [36]

Hi(Y) :=minaEy~pr[L(Ya)]. (5)ea

The L-conditional entropy of Y given X is defined as [25],
[27], [35], [36]

Hi(Y|X) 1= Ex~r[HL(Y |X = X)], (6)
where HL(Y |X = x) is given by
Hi(Y |X = x) = minqeA Ey~prx=[L(Y,a)]. (7)

Lemma 1. Estimation error erTestimation(6,]) is equal to

Lconditional entropy of Ytgiven X!, i.e.,
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8,0) = Hy (Y| X! _y), 8)

errestimation(

Proof. See Appendix A. O

Lemma 1 implies that we can directly use the Lconditional
entropy Hi(Y:X!'-5) to analyze the estimation error
€ITestimation(d,]) of @ remote estimation system. By directly using
the properties of L-information theoretic metrics [25], [27], the
estimation error can be analyzed conveniently. The information-
theoretic metrics in the prior studies [8]-[11], [37] cannot be
directly used to evaluate system performance.

B. Evaluating L-conditional Entropy

We will evaluate the L-conditional entropy associated with the
loss function L. The loss function L is determined based on the
objective of a remote estimation system. For example, in
minimum mean-squared estimation (MMSE), the loss function is
L2(yy") = (v -y")?, where the output a = )" is an estimate of the
target Y: = y. In maximum likelihood estimation of the target
distribution, the action a = Qv:is a distribution of Y:and the loss
function Liog(y,Qv:) = -log Qr:(y) is the negative log-likelihood of
the target value Y:=y.

1) Logarithmic Loss (log loss): For log loss Liog(y,Qyv) =
-logQv.(y), the L-entropy is the differential entropy [38], [39],
defined as

Hio(Y:) = f[ Py, (v) log py, (y) dy,
Jyer (9)

where py. is the density function of the distribution Py. of Y.
Because Y:is a Gaussian random variable with zero mean, one can
obtain [39]
1
Hye (Y;) = =log (2me E[Y;?
1 g( f) 2 Og( e [ t ]) (10)
The L-entropy for a discrete random variable associated with log
loss is the well known Shannon entropy [25], [27], [36]. The

Shannon entropy is always non-negative. However, the
differential entropy can be negative, positive, and zero [39].
l
Proposition 1. The L-conditional entropy Hiog (VX5 5) js
given by
1 det(Ry, xt ) |
Hyog (Y| X} _s) =zlog [ —— ="~
log( t| t—d) 9 g( d(\t(Rxlf)
1
+ =log2me,
2 (11)
where det(A) denotes the determinant of a square matrix A,
VTl
Rx! — E[(Xt)l Xt} (12)

is an I x l dimensional auto-correlation matrix of a random vector
X!, and

) VLX)

e Xt 51— E HYHXi

R (13)

3

is an (I +1)x(I +1) dimensional auto-correlation matrix of a
random vector[Yt- Xi._a} = [Yr~ Xty erdel].

Proof. See Appendix B. O
In the special case of feature length I = 1, from (11), it can
be shown that
Hyog(Yi| Xi—s5)

7 1 02 TE
Exz )t “).

(14)

2) Quadratic Loss: For quadratic loss function L2(yy") =
(v = y")?, the L-entropy of Y:is the variance of Y:, given by

Hy(Y,) = o3, (15)
Because E[Y¢] = 0, we have

Hz(Ye) = E[Y¢]. (16)

Proposition 2. The L-conditional entropy H2(Y:|X!t-6) is given
by

Hy(Y|X|_s5) = E[(Y: — E[Y:|X]_;])?]

= E[V7?]-E[X,X]_;](Rx;) " "E[X. X} ]",
(17)

E[X: X! ;] = [E[XtX,_,g} ..... IE[XLX!,g,;H]] is

where
a
1 x [ dimensional vector and Rxeis an [ x | dimensional auto-

correlation matrix of X!:defined in (12).

Due to space limitation, the proof of Proposition 2 is
relegated to our technical report [40].

In the special case of feature length I =1, from (17), it can
be shown that
E[X¢X]_°

Hy(Y,|X,—s) = E[Y?] — E[X?]

(18)

By utilizing Propositions 1-2, one can evaluate the
Lconditional entropy of a data sequence that is generated
using a Gaussian AR(p) system. The L-conditional entropy for
an AR(4) model is depicted in Fig. 2. The model parameters
of the AR(4) model is presented in Section V. Fig. 2 reveals
that the L-conditional entropy can be a non-monotonic
function of Aol 6.

C. L-conditional Entropy vs. Aol

I l
Ifo © Xf—.“ < X"-—N—V is @ Markov chain for all v

> 0, by the data processing inequality [35, Lemma 12.1],
HL(Yﬂ.|X';—6) is a non-decreasing function of 6.
Nevertheless, the results in Fig. 2 show that the L-
conditional entropy is not always a non-decreasing function
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Y, & X!

t—p

ARS Xf r—vis not a Markov

of 8. This is because
chain for all

wv = 0, particularly when I < p and p = 2 in AR(p) process. A
relaxation of the data processing inequality is needed to analyze
howHL(Yt|X'}._5) varies with § for both Markovian and non-
Markovian time-series data. To that end, an e-Markov chain

model is proposed in [25], [27].

Definition 1 (e-Markov Chain). Given € = 0, a sequence of three
random variables Y,X, and Z is said to be an e-Markov chain,
denoted as Y &€ X €7, if

Diog (Y3 Z|X) = Diog (Py.x,z||Py|x Pzix Px) <€, (19)

where hog(Y ;Z|X) is Shannon conditional mutual information,
Diog (PY-X-ZHPYIXPZIXPX) is KL-divergence between two
distributions Pyxz and Py |xPzixPx, KL-divergence Diog(Py ||Qv )
between two distributions Pyand Qyis defined as

Dis(PlIQy) = | plo) lom (?Eﬁ)d
Juy ) Y,

p and q are the probability densities of Pyand Qy, respectively.

(20)
Notice that the KL-divergence in (19) can be also equivalently
expressed as
Diog(Pyxz|| Py |xPzxPx)
=Ex[Diog(Pxz|x|| Py |xPz|x)]

=Exz[Diog(Py xz|| Py X)], (21)

Lemma 2. The following assertions are true:

(a) If YeoeXly o<Xlu-vis an e-Markov chain for every p,v
> 0, then the L-conditional entropy is given by
HL(Y,|X}_5) = 91(6) + O(e?) (22)
where g1(6) is a non-decreasing function of 6, given by
§—1
g1 (0) =H(Yi|XD) + 3 I(YeX[ X)), (23
k=0

the L-conditional mutual information 1.(Y ;X|Z) between Y and X
given Z is

IL(Y;X|Z) = H(Y |Z) - Hi(Y | X,2). (24)

(b) Given® = 0, HL(Yf,\Xi—a) is a non-increasing function
of feature length I, i.e., forall 1 <1< I,

Hy (Vi[X! 5) = Hy (VX2 ) (25)

Lemma 2 was introduced in our earlier work [25], [26] for
discrete random variables. To ensure completeness of the paper,
we restate Lemma 2 for continuous random variables.

According to Lemma 2(a), the

monotonicity of
« X!

t—p—u

« X!

t—p

then Y;
4

HL(Y‘Xf 5) in o) is characterized
by the parameter € = 0 in the e-Markov chain
model. If € is close to zero, ¢ €

I
is close to a Markov chain, and HL(YL|Xt—{s) is non-
decreasing in Aol 6. If € is large, then

Y & X & Xf n—v is far from a Markov chain, and

t—p
Hp (Y, |X[—{i could be non-monotonic in Aol 6.

Lemma 2(b) states that Hi(Y:X!-s5) decreases with
increasing feature length 1. A longer feature sequence adds
more information that results in better estimation.
Nevertheless, increasing the feature length also increases
data size, necessitating more communication resources. For
example, a longer feature sequence may require a longer
transmission time and may end up being stale when
delivered, thus resulting in worse inference performance.
Recently, a study [26] has investigated a learning and
communications co-design problem that jointly optimizes
the timeliness and length of feature sequences.

V. CHARACTERIZING THE PARAMETER € OF AN e-MARKOV
CHAIN

In this section, we show how to evaluate the value of the
parameter € from an AR(p) process. We also analyzed the
impact of feature length I on the parameter €.

The parameter € in Y: &€ X!y &€ X!-u-v depends on (v,
and I. We denote €y([) as the minimum value of € for which

Yi 4 Xf Iz & X?‘ n—vis an e-Markov chain. By using

Definition 1, we have

€, r/

\/I]r)g va 1 —p— 1;|X.' ,u (26)

We also denote €(I) as the minimum value of € for which
Yi o€ X!y o< X!-u-vis an e-Markov chain for all y,v = 0. Then,
we can write

e(l) = max €, (1)

pv=0 (27)

Proposition 3. The following assertions are true for the
Gaussian AR(p) model defined in (2)-(3).

(a) The minimum value of € for which the data sequence

I I
(Y2, X5 u‘X' —p— u)satisﬁes an e-Markov chain property,

ie.,
Y & X!

t—u

& X n—v, for all u,v 2 0 is given by

€() = max €uv(D), (28) =0

where €u(1) is determined by
1 ( dCt (R[XI 1)(.!

enu(l) =

21 p—p 1
98 det(Rx: )det(Ryy, x: x!
o :

t—p—u? r,—p]

)
(29)

’J)det(R[s’t.xg “]))
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(b) Hiog(Y:|X{_s) vs. Aol (6)

Fig. 2: L-conditional entropy vs. Aol with (a) quadratic loss function and (b) log loss function (base 2). The L-conditional entropy
is not always a monotonic function of Aol. An AR(4) model as discussed in Section V is considered for this simulation.

det(A) denotes the determinant of a square matrix A, and Rx =
E[X"X] is the auto-correlation matrix of a random vector X.
(b) If 1= p, then

e =0. (30)

Due to space limitation, the proof of Proposition 3 is relegated
to our technical report [40].

In Proposition 3(a), we present a closed-form expression for
computing the parameter €(I). Utilizing Proposition 3(a), one can
derive €(I) from the auto-correlation function of a data sequence
generated from the AR(p) model. Proposition 3(b) implies that if
the feature length [ is greater than or equal to the order p of the
AR(p) model, then €(I) equals 0. By integrating Proposition 3(b)
with Lemma 2, we can conclude that if the feature length I is
greater than or equal to the order p, the L-conditional entropy
becomes a non-decreasing function of Aol. However, transmitting
longer features demands more communication resources [26].

V. NUMERICAL RESULTS

In this section, we utilize Proposition 1-3 to compute the
estimation error and the parameter €(I) for the following AR(4)
process:

Xe=0.1X-1+ 0.8X-p+ W, (31)

Yi=Xe+ N, (32)
where W:€ R and N:€ R are i.i.d. Gaussian noises over time with
zero mean and variances 0.01 and 0.001, respectively. The goal
is to estimate Y: feature

[Xe-6,Xt-6-1,..., Xt-6-1+1].

using a sequence X/-5 =
A. Evaluating L-conditional Entropy Using Propositions 1-2

We compute the L-conditional entropy of Y:given X/--sfor two
different loss functions: (a) quadratic loss and (b) log loss, using
(17) and (11), respectively. In Fig. 2, we illustrate the

5

Lloss and the-conditional entropyL-conditional

entropyH2(Y:|X!-s)Hassociated with quadraticiog(Ye|Xic-s)
associated

with log loss (base 2). Both
H2(Yt|Xi_.s) and HIUE(Y}JXL&-) exhibit similar behavior
with respect to Aol 6 and feature length [, but they are
measured in different scale and are used in different
applications.

B. Evaluating €(I) Using Proposition 3

We determine €(I) through the following steps: Firstly, we
calculate €,v(1) using (29) given y,v, and L. Subsequently, we
compute €(I) by maximizing €.v(I) over all u,v = 0. However,
this needs to compute €uv(]) for an infinite number of . and
v, which is not possible. We find that when p or v exceed a
large value, €,v(I) becomes either 0 or close to 0 for all I.
Therefore, we can choose an upper bound denoted as M and
compute €(I) by maximizing €uv([) overall 0 < u,v < M. In our
simulation, we set M = 50. The outcomes of €(I) for feature
length I =1,2,3,4,5 are presented in Table I.

Feature length | 1 2 3 4 | 5

e(]) 1.55 149 | 139 | 0O
TABLE I: ¢(I) for 1 =1,2,3,4,5.

C. Analysis of the Numerical Results

Fig. 2 and Table I illustrate that as the feature length [
increases, the parameter €(I) tends to zero, and the
Lconditional entropy becomes a monotonic function of Aol
6. Specifically, when the feature length I reaches the order p
of the AR(p) process, the parameter €(I) equals zero and
hence, the L-conditional entropy becomes a monotonic
function of Aol. Moreover, as the feature length I increases,
the Lconditional entropy reduces. However, beyond the
order p, further increases in feature length do not result in
the reduction of the L-conditional entropy. It is evident from
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Fig. 2 that the L-conditional entropy for I = 4 and I = 5 remains

the same for the AR(4) model.

VI. CONCLUSION

This paper investigates the impact of information freshness on
the remote estimation of AR(p) processes. Employing a new e-
Markov chain model, we demonstrate that the estimation error
does not always degrade monotonically as the observations
become stale. We provide closed-form expressions for computing
both the estimation error and the parameter € for AR(p)
processes. Both theoretical analyses and numerical results
illustrate that, with an increasing feature length, € converges to
zero and the estimation error converges to a nondecreasing

function of Aol.

APPENDIX A PROOF OF LEMMA 1

By using (5)-(7), we can obtain from (4) that

o)

errestimation(é‘;l)

=minEy x:.,
MR Ly Xi~py,

= Exiwpxi . [0(2_5}?;1)164 IEY’“Pv,,|Xi_5—xf [L(Y, @(:@’_6))“

=g [miﬁE‘””’“nxf o= {L(Y’ K ”

ae

. [HL(Yi|X] 5 =x")]

= Exi NPxi

= Hi(Yi|Xi_s), (33)
where the second equality holds because ® contains all functions

that map from R/ x Z*to A.

APPENDIX B PROOF OF PROPOSITION 1

We begin with the definitions of L-divergence and L-mutual
information. The L-divergence D.(Py ||Qy) of Pyfrom Qvcan be

expressed as [25], [36], [41]
Di(Pr||Qv)

=Ey~py[L(Yary)] - Ev~py[L(Yaqr)], (34)

where apris the optimal solution to
minEy~pv[L(Ya)]. (35) aea

The L-mutual information 1.(Y ;X) is defined as [25], [36], [41]
IL(Y;X) =Ex~py (DL (Pyix||Py)]

=H (Y) - Hp(Y|X) >0, (36)

which measures the performance gain in estimating Y by
observing X. The L-conditional mutual information I.(Y ;X|Z) is

given by
IL(Y; X|Z) =Ex z~py, DL (Pyix,z||Pyiz)]
—H,(Y|Z) - H,(Y|X.Z)>0. (37)

Using (36), the L-conditional entropy Hiog(Y:|X-5) associated

with log loss can be expressed as

Hiog(Yi|X{_s) = Hiog(Yt) = log(Yi: Xi_5), (38)
For jointly Gaussian random vectors Y € Rmand X € R, we
can obtain [39]
det(Xx )det(Xvy)
det(Xx,v]) , (39)

1
Ilog(Y;X) = 2

where Xx := E[(X - E[X])]E[(X - E[X])] denotes the
covariance matrix of the row vector X. If E[X] = 0, then

2x=Rx. .
S EM =0 EX )= 0

(39), we obtain (11).

using, (10), (38), and
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