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1 Introduction

Moduli stabilization is arguably one of the most important challenges in string phenomenology.
After tremendous progress since the early 2000’s, many constructions and scenarios have
been called into question in the last few years within the swampland program. This is not
only true for dS vacua with a positive cosmological constant, but also for supersymmetric
AdS vacua that give rise to low-energy effective theories whose AdS scale is separated from
the KK-scale. Four-dimensional Minkowski vacua either contain massless scalar fields for
N > 2 or are expected to receive corrections that potentially invalidate the very existence
of a solution for A/ < 1. So, there seem to be currently no agreed-upon compactifications
to lower dimensions without a moduli space.

Probably the simplest way of generating a scalar potential for moduli is by turning on
fluxes in the internal space. Such fluxes in type II string theory induce generically a charge
that needs to be canceled by O-planes. These O-planes together with the fluxes lead to a
scalar potential that depends on all the Ké&hler moduli for Calabi-Yau (CY) compactifications
of massive type ITA with smeared O6-planes [1]. Similarly, it depends on all complex structure
moduli for CY compactifications of type IIB in the presence of an O3/07 orientifold [2]. Rigid
CY-manifolds have h*! = 0 and therefore no complex structure moduli. They, therefore,
allow for the stabilization of all moduli in massive type ITA but it has not yet been possible to
find solutions with fully localized O6-planes, see [3-9] for recent efforts in that direction. For
type IIB on the other hand it is not too difficult to find fully localized solutions in which the



backreaction of the O3-planes is encoded in a non-trivial warp factor [2]. However, in that
case, the stabilization of the Kahler moduli would have to rely on non-perturbative effects [10].

An intriguing way to avoid the complication of having to deal with a combination of fluxes
and non-perturbative effects was proposed in [11]. The mirror dual of a rigid CY-manifold
has h'"! = 0 and therefore no Kéhler moduli at all. That means one can stabilize all moduli
in type IIB by using fluxes only. While there is no geometric interpretation of the internal
space in this case, one can study such setups using the language of Landau-Ginzburg (LG)
models [12-16]. This was done almost twenty years ago in [11, 17, 18] and has been recently
revisited and extended in [19-25]. This allows one to explore flux compactifications away
from the large volume, large complex structure, and even away from the weak coupling limit
and thus provides a very interesting new place to test swampland conjectures.

While one can study these LG models in the large complex structure limit and find AdS
vacua [11, 19, 20], including infinite families, the detailed properties of these solutions are
currently not under computational control unless one is also at weak coupling. However, for
Minkowski vacua, one can study many properties of the vacua at strong coupling. This is due to
the fact that string loop corrections only enter in the Kéhler potential. The superpotential W
in these models is exact and does not receive perturbative or non-perturbative corrections [11].
This makes it, in particular, possible to calculate the number of massive fields in Minkowski
vacua [21] as well as the number of massless fields that get stabilized via higher-order
interactions [24]. Such fields are similar to a massless scalar field ¢ with a ¢* interaction
term. In our case, higher order terms in the superpotential can constrain the dimensionality
of the solution space of the N' = 1 Minkowski equations W = 9;/W = 0 and can thereby
stabilize massless fields.

These supersymmetric Minkowski vacua in the non-geometric LG models share an
important feature with their geometric analogue vacua in GKP [2], namely the G3 flux has
to be imaginary-self-dual (ISD). This means that it contributes to the O3-plane tadpole with
the same sign as D3-branes. The fixed number of O3-planes provides then an upper bound
on the amount of flux that we can turn on. While early studies [26-28] seemed to confirm
the naive expectation that generically any chosen ISD G35 flux would stabilize all complex
structure moduli, this has been called into question recently. For example, in the context of
the sextic CY-fourfold, there is a tension between stabilizing all complex structure moduli
and satisfying the tadpole cancellation condition [29]. This and similar observations for other
compactifications have led to the so-called Tadpole Conjecture [30].

The Tadpole Conjecture states that the fluxes used to stabilize complex structure moduli
contribute to the tadpole an amount Nguy that grows unacceptably fast with the number of
moduli that are massive (or get stabilized). In particular, it is conjectured to be true that

1
Nﬂux > gnstab . (1.1)

For supersymmetric Minkowski vacua, this provides an upper bound on ngt,p, which is the
number of moduli we can stabilize. This is due to the O3-plane tadpole cancellation condition

N,
Niyx + Nps = % (1.2)

where Npg is the finite number of O3-planes and Npz > 0 the number of D3-branes.



The Tadpole Conjecture received a lot of attention recently and has been tested in many
setups [24, 31-41]. These tests have been performed in the asymptotics as well as the interior
of moduli space. However, none of these papers found a violation of the Tadpole Conjecture.
The 26 LG model that we study in this paper, however, allows for violations of the conjecture
as we will explain in this paper. This result was independently obtained in [42], where the
authors initiate a full classification of all flux configurations in this model.

While the Tadpole Conjecture is mostly relevant for compactifications with a large num-
ber of complex structure moduli, it was independently conjectured that all 10d supergravity
compactifications to 4d Minkowski solutions should always have a massless scalar field [43].
This so-called Massless Minkowski Conjecture is satisfied in all known supergravity compactifi-
cations but violated in this non-geometric 26 LG model [42]. The existence of 4d A" = 1 vacua
without massless fields is extremely interesting and shows how useful these non-geometric
LG models are in improving our understanding of the string theory landscape of vacua.

In this paper in section 2 we will review the 26 LG model, mostly following [11], adapted
to the notations of [24]. Then we will present a large number of different flux choices
and calculate the number of massive fields and some higher-order terms to check for the
stabilization of massless fields in section 3. We discuss our results in the context of moduli
stabilization and the above-mentioned swampland conjectures in section 4. We conclude

by summarizing our findings in section 5.

2 Review of the 26 model

The 2% Gepner model admits a Landau-Ginzburg description and lives in the would-be

Kahler moduli space of a rigid Calabi-Yau threefold with 90 Kéhler moduli. It is a tensor
3
2
which is trivial in the sense that it can be integrated out. The world-sheet superpotential

product of six minimal models, each with central charge ¢ = 5, and another factor theory

of the tensor theory is
6
W:Zx?—FzQ, (2.1)
i=1

and we orbifold by the Z, action freely generated by
g x> ixg Z =z . (2.2)

We will not integrate out the quadratic field z since it would require the action of the
orbifold on the chiral fields x; to be dressed by (—1)F which, in turn, would make the
construction of A-branes in the orbifoldized theory cumbersome. In order to obtain 4d
N = 1 supersymmetry, this theory should now be orientifolded. There are several choices
of orientifold projections, as explained in [11]. In this paper we choose the canonical choice,
denoted o¢ in [11], which acts as follows:

oo: (x1,...,26) = w(x1,...26) z iz (2.3)

27i
where w = e’s . It is easy to see that o3 = g.



The chiral (c¢) and anti-chiral (a) fields in the left and right moving sectors of this 2d,
N = (2,2) superconformal field theory, determined uniquely by the superpotential (2.1),
possess a ring structure. These rings are the LG analogs of the cohomology rings of Calabi-Yau
manifolds. Spectral flow relates the (anti-)chiral fields to Ramond ground states, and the
U(1)-charges of the states determine the Hodge degrees of the harmonic forms [13, 15, 44].
In particular, the (c,c) ring arises solely from the states in the untwisted sector of the Hilbert
space. Concretely, it is the ring

Cla,. .., Za
R [1, ..., @] (2.4)
axZW (.’El, e ,1‘6)
It is a 182-dimensional complex vector space, spanned by monomials
xK = ght gk ghe (2.5)

with k = (k1,...,ke), ki € {0,1,2} for all ¢, and >~ k; = 0 mod 4. The elements with > k; =4
are — 15 monomials of the form x;x;x,2; with 4, j,k, 1 all distinct, 60 monomials of the form
a:?xjxk with 4, j, k all distinct, 15 monomials of the form mf:c? with ¢, 5 distinct. These 90
monomials span the space of marginal deformations of the theory. Concretely, introducing
deformation parameters t¥, we write

6 6

W({z;}) = fo — W({=i}; {tk}) = fo — Z thxk | (2.6)

i=1 =1 k

The parameters tX are analogues of complex structure moduli. In addition, there are 3
twisted sectors in the orbifold theory, twisted by e 2™/0 1 = 1,2,3. The states in the
v = 2 sector do not survive the U(1)-projection, while the other two sectors contribute no
non-trivial elements in the (a,c) ring. Therefore, there are no Ké&hler moduli in this model,
making it non-geometric. The total number of moduli is 91 — 90 complex structure moduli
t%, and the axio-dilaton 7 = Cp + ie ®.

2.1 Homology and cohomology

A-type D-branes in a Landau-Ginzburg model with one chiral field x are contours in the
x-space that map to a line of constant phase in the WW-plane emanating from the critical
value (assuming there is only one critical point, which is the case for the 26 model) of W [45].
Using an R-rotation, we look for preimages in the z-plane of the positive real line

ImW =0 (2.7)
in the complex W plane. For the minimal model of interest,
W=z, (2.8)

a homology basis is given by the four wedges Vj, V1, Va, and V3 (see figure 1), which satisfy
the relation

Vo+Vi+Va+V3=0. (2.9)
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Figure 1. The four contours (Vp, Vi, Vo, V3) in the complex z-plane.

The action (2.2) of Z4 on V,,, n = 0,1,2,3, is given by

g:Vnr ‘/(nJrl) mod 4 - (210)

The matrix representation of (2.10) is

Mat(g) = (2.11)

— o O O
o O O =
o O = O
o = O O

Following [45], the intersection (V;,|V,,) can be geometrically computed as the geometric
intersection between the two wedges, with V,, held fixed and V,,, rotated counter-clockwise
by a small angle:

1 -1 0 O
01 -1 0
(<Vm|Vn>)m’n:0,172’3 = 00 1 —1 =I- Mat(g) . (2'12)
-1 0 0 1
The matrix elements can be recast as
<Vm|Vn> = 6m,n - 5m+1,n ’ (2.13)

where the Kronecker delta is understood modulo 4 here and everywhere else below. The chiral
ring of the minimal model (2.8) is R = C[x]/2® which, as a vector space, is the span of 1, z, z2.

These basis elements correspond to the Ramond-Ramond ground states |I), [ = 1,2, 3,
gh=0h2 5 1=1,2,3) . (2.14)

Up to an overall factor, the states |I) will be the most useful ingredients in describing 3-form
fluxes in the orbifold theory. The non-geometric analogue of the integral of a 3-form flux



on a 3-cycle is the pairing between the middle-dimensional homology and cohomology. To
compute this, we need the overlap between the boundary states represented by the V,, and
the Ramond-Ramond ground states [45]:

a@m::/nﬂ—%—wzziww1—#ﬂ(i). (2.15)

Now we define the convenient “()-basis” [11, 23, 24] for the charge lattice, which enables fast
computation of the derivatives of the spacetime superpotential with respect to moduli in
the orbifoldized tensor theory. We choose the normalization

4
) = 1) (2.16)
r(1)
implying
(Voly) = i1 —it) . (2.17)

Comparing (2.13) and (2.17), we have defined
) =D 1" |Va), (2.18)

with the inverse relation

1 i
|MJ:Z§:1HQQ. (2.19)
l
For completeness, we record
() =4 6pya (1—1iY) . (2.20)

Reality of V,, and eq. (2.18) together imply the following conjugation rule on €;:
ﬁl = 9471 = Ql_’ (221)

where we have defined the conjugate index notation [ := 4 — . The astute reader may
have noticed that the factor of 4 is switched in equations (2.18) and (2.19) compared to
the conventions in the recent paper [24] on the 19 LG model. The present choice is made
following the conventions of! [11]. We will say more on this soon.

In the full tensor theory, the Ramond ground states are tensor products of the six
factors, labeled by |1I), 1= (I1,l2,...,ls), l; € {1,2,3}. The states that survive the orbifold
projection (2.2) are further restricted to have Y, l; = 6,10, 14, 18. Following [44], these can
be Hodge decomposed into classes H P9 p+ g =3, as shown in table 1.

Similar to the states |1), the 3-cycles are obtained by tensoring the wedges? V;,, and then
taking a Z-span. Concretely, Vi = Vi, X Vi, X ... X Vppo, n = (n1,n2, ..., n6), n; € {0,1,2,3}

!The concurrently published paper [42] also adopts the same normalization as ours.

2For the factor theory W = 22, there are two wedges that are overlapping straight lines oriented in opposite
directions. We suppress these straight wedges in our notation for tensored cycles henceforth but carefully
incorporate the sign-flip due to the Z4 action on them.



>oili 6 10 14 18
Hw®a | gBo) | g@1) | g2) | g03)

Table 1. Hodge decomposition of RR ground states in the 26 LG model.

foralli=1,2,...,6. The set {V,} is an over-complete basis due to the relation (2.9). In the
orbifoldized theory, an over-complete basis is induced by summing over Z, images:

[7m) = [Va) = [Vas1) + [Vat2) = [Vays) - (2.22)

Here and in what follows, 1 = (1,1,1,1,1,1), 2 = 2 -1, and so on. The minus signs in
the second and the fourth terms above are an artifact of the Z4 action (2.2) on z. Let us
now count the number of independent cycles in the middle-dimensional homology. With
n; € {0,1,2,3}, there are 45 = 4096 different choices of |y,). This number gets reduced by a
lot because of the relation (2.9) on each factor. Naively, there are (?) -4° = 6144 constraints if
one imposes (2.9) factor-by-factor. These are the vectors 3=, [Vi5, . ng))s @ =1,2,...,6, set to
zero. Clearly, since we have 4096 cycles |y, ) to begin with, many of these 6144 constraints are
linearly dependent. To correct for this, we reduce the number of constraints by (g) -4* = 3840,
which is the number of constraints satisfied by the constraints themselves.? This, again, is
an over-correction which we remedy by adding (g) - 43 = 1280. Continuing this way, it is

easy to see that the number of unconstrained cycles is*

46—<(15>~45+(g>-44—...+1:(4—1)6:729. (2.23)

The above argument can be captured abstractly in terms of a long exact sequence as was
done for the 19 model in [24] and for the quintic in [44]. Upon orbifolding, identifications
take place of cycles |yn) and, consequently, the constraints imposed on them. Each summand
in the left-hand side of (2.23) gets divided by a factor of 4 except the last one which counts a
Zy-invariant constraint. Therefore, one gets % + 1 = 183 independent cycles in the
sixth tensor power of the minimal model W = z*. Now including the W = 2?2 factor, one can
repeat the above counting exercise. We start with 183 x 2 cycles — the factor of 2 coming
from the two wedges of the z-theory — and we impose the constraint that the two straight
wedges in the z-theory add up to zero. This yields 183 x 2 — 1 cycles. Orbifolding by the

% — 1 =182. We will continue to use the same

Z4 action on z, this number reduces to
notation |y,), n = (n1,n9,...,ng), for the cycles even after the inclusion of the z-factor. In
summary, the rank of the lattice spanned by the |y,) in the full orbifoldized theory is 182.

The overlap (2.17) generalizes to

6

(yulu) =™ (1 - i), (2.24)

=1

3See appendix C of [44] for the same argument applied to the quintic.

*A much faster way to arrive at the number 729 is to restrict to n; € {0,1,2} from the beginning, since
Vs = —(Vo + Vi + W2), and realize that we have 3% = 729 choices for n. However, the effect of orbifolding is
easier to work out from (2.23).



with n.l := ", n;l;, where we have divided by a factor of 4 due to orbifolding. The 2-basis
in the tensor product is given by

Q) =Y Va) = D1 ) - (2.25)
n [n]

The intersection form in this basis is a generalization of (2.20):

6
() =4° dppa [J(1 1), (2.26)
i=1
where we have again divided by a factor of 4 due to orbifolding. This is the normalization
used in section 5 of [11]. Using the |yn), we have

<’7;1|’Yn> = (Var[Va) = (Vw111 Va) + (Vv 2[Va) — (Vi 4:3|Va) - (2.27)

The intersection matrix in the |y,)-basis is most conveniently computed by first going to
a truncated set and then carving out a full-rank sub-matrix, as described in [11]. We skip
the details here but point out that this matrix has rank 182, consistent with our discussion
on the rank of the lattice spanned by the |yq).

2.2 3-form fluxes

Having set up the basic ingredients and normalization conventions, we can now quickly
summarize the description of 3-form fluxes in the LG language. Just as in the 19 model [11, 24],
the complexified 3-form flux Gs = F3 — TH3 can be expressed in two equivalent ways:

Gy=) (N® —7M")pm=>_ AQ, (2.28)
1

n
where N®, M™ € Z, and A' € C. Supersymmetry requires Gs € H®V ¢ H3) with
(G3)mink € HZY (2.29)

The expansion in the integral cohomology basis vy, is non-unique since {7y, } is over-complete
to describe H®V @ H(O3) The set of flux numbers N®, M™ € Z is linearly dependent —
there are 182 x 2 = 364 of them, but their Z-span is a lattice of rank® 182. The expansion in
the Q-basis, with complex coefficients A!, is the most convenient for efficiently computing
higher order terms of the spacetime superpotential. Moreover, by allowing A! to be non-zero
only when ) ; l; = 10, we will restrict to G3 € H 2.1 Jeading to Minkowski solutions. Such
fluxes span a sub-lattice of rank 180. Dirac quantization of the fluxes reads

/ G3 = (m|G3) = Nn —TMyn, Nn, My €Z. (2.30)

n

Using (2.24) and the Q-basis expansion in (2.28),

6
(1a|Gs) = > AN [ —i%) = Ny — 7 My . (2.31)
1 =1

5The rank of the supersymmetric flux lattice can be derived by looking at the set of quantized “1-Q”
solutions as was done in [24] for the 17 model.



The O-plane associated with the orientifold projection (2.3) has charge 40 that must be
cancelled by the flux-tadpole Nfux, and Nps, the number of mobile D3-branes in the
background. Using the overlap (2.26) in the Q-basis, we compute

Niws = ——(Gs|G) = —Zm‘ P II0 -, (232

=1

while the tadpole cancellation condition is
Niwe = 40 — Np3 . (2.33)

The O-planes are able to contribute a much larger charge in the 26 model to the tadpole
than in the 1° model. This is because the 1° model corresponds to a toroidal orbifold with
non-vanishing B field, whereas, the 26 model corresponds to a toroidal orbifold with vanishing
B field [11]. We choose 7 = i and, for @ € H®D @ HO3) | the product [T%_,(1 —i~%) is
purely imaginary with a positive imaginary part. This confirms Ny, > 0.

2.3 The spacetime superpotential to all orders

The Gukov-Vafa-Witten (GVW) superpotential W [46] engendered by a flux G5 in geometric
compactifications is given by

W:/Gg/\Q:/(Fg—THg)/\Q, (2.34)

where (2 is the holomorphic 3-form in the internal space. This has an analogue in the LG
language. Identifying Q € H®9 with the RR ground state |1) according to table 1, we
have for the 26 LG model

W = (G3]1) = ZA‘ (1) . (2.35)

The overlaps in the factor theory, and consequently in the orbifoldized tensor theory, are
deformed under the “complex structure” deformations parameterized by® tX. This is through
the deformation of the worldsheet superpotential via (2.6). In a factor minimal model,
W +— x* — tx leads to the contour integral”

<Vn|l>deformed :/ xl_le_x4+txd$ . (2'36)

n

The overlap (2.36) can be expanded in a Taylor series around ¢ = 0, with coefficients

o7 o r+l—1 —axt N 1 -n(r+1) ] r 41
(a) ‘t:O<Vn’l>deformed = /Vn x e’ dr= 1 (1—i )F(T) ) (2.37)

In the full theory, the dependence of W on the deformation parameters ¥ introduced in (2.6)
is captured in a multi-variable Taylor expansion around tX = 0, with coefficients that are

5As per eq. (2.5), the vectors k are in one-to-one correspondence with 1 such that ; € H®Y _k=1-1.

"The contour integral has convergence issues unless Ret > 0. However, the derivatives are all well defined
at t = 0. This is consistent with the fact that we can only compute the superpotential and its derivatives at
the Fermat point.



derivatives of the overlaps (/1) in (2.35) to be computed using (2.37) as a starting point.
Without belaboring this calculation, we quote the result:

o 0 0 1 6 L
. = Z A 1— :L; (= 9.
otkr otka otkr tk:oW lz 9 1 z:l_[l( i) (4) ) (2.38)
= 1=L mod 4
where we have defined
L:= z ko +1. (2.39)
a=1

W also depends linearly on the axio-dilaton 7 through G3. Therefore, we can also compute

o 8 0 ) —i 6 oo (L
w= > mAl H(l—le)r<4>

Ot Otk gtke = ke

tk=0

=710 ~ 1: =1
1=L mod 4
— A 1—i)r (= 2.40
£ gy A (). o)
1=L mod 4

while obviously

(8>p225) 0 0

or otk otkz " Htkr

W=0. 2.41
o (2.41)
T=T0

Using (2.38) and (2.40), we have

e (B T a T (5) G i)

1 r=1"" \{tka} with 1=L =1

6 6 ; T — T(
+io Y [Itede. oA JJa -k (i”) M) . (242)

{tka} with 1=L =1 i=1

where we will set 79 = i and we refer to 7 — 7y as t9.

3 Moduli stabilization at higher order

In this section, we examine the stabilization of massless fields via the higher-order terms in
the superpotential [21]. Such an analysis was performed recently in [24] for many different
flux configurations in the 1° LG model. The authors of that paper studied higher-order
terms in the superpotential up to 6th order in the moduli. They found that, for some flux
configurations, no massless fields get stabilized via higher-order terms although all moduli
do appear in the superpotential. For other flux choices, more and more fields get stabilized
at higher order but the number of newly stabilized massless fields seems to quickly tend to
zero (see table 2 on page 35 of [24]). Here we perform a similar analysis for the 2% model,
which produces new and surprising results.

,10,



3.1 Review of higher-order stabilization

To illustrate the algorithm, which is explained in detail in [24], we study a toy model.
Consider the following superpotential

W= (s-u?), (3.1)

where ¢ and 1) are complex fields. It necessarily vanishes at its critical points and its vanishing
locus is given by ¢ = 12. We expand this superpotential order-by-order around a critical point
to arrive at the same conclusion. Whilst this is redundant for a function as simple as the one
in (3.1), it will be relevant for our analysis later as we will only be able to find supersymmetric
Minkowski critical points of the GVW superpotential and compute its derivatives at a specific
point in the moduli space. The origin, (¢,7) = (0,0) is clearly a critical point of the
superpotential where it vanishes. As a result, expanding around the origin we have,

1 o 1 o 1 .
W = ﬁaﬁjWhti}:Ot’t] + gaiﬁjakW\{ti}zotltjtk + Iaﬁj&k&W!{ti}zotztft’“tl , (3.2)

where t' € {¢,1}. The series truncates in this simple example but for the supersymmetric
Minkowski critical points that we will study, the superpotential does not truncate when
expanding around the critical points. As a result, schematically we will always have

W=> W, (3.3)
n>2

where W, = (9., W)t ... t'». We would first like to ascertain the rank of the deformation
space of the critical point after including terms up to quadratic order in the fields in W.
This is done by studying the critical point equations,

OWa = ¢ =0
8¢W2 =0.

At this quadratic order, we find that one field (¢) is fixed up to linear order in the unfixed field
(v). Although it is not possible to determine which field directions are fixed without knowing

(3.4)

the canonically normalized kinetic terms, we can count the number of fields that are fixed.
The number of fields that are fixed at the quadratic order is equal to the rank of the Hessian
of the superpotential [21] and so we will refer to these fields as being massive. The field ¢
is fixed up to linear order in the massless fields due to (3.4) but could receive higher order
corrections. The more precise statement would hence be that the critical point equations are
evaluated as order-by-order expansions of the stabilized fields in terms of the unfixed fields,

¢ =dn)+ b +d@) +--- (3.5)

and we have determined that ¢y vanishes. The higher-order terms will get fixed sequentially
as we include higher-order contributions in the superpotential. Now we wish to inspect
whether the massless field gets lifted as we include higher-than-quadratic terms in W. First,
we include cubic terms and analyze the critical point equations after truncating to quadratic
order in the unfixed fields,

Wa + 0sW3 = d1y + d2) — > =0

(3.6)
8¢W2 + (9¢,W3 = —2(;3(1)1/1 =0
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Since ¢(1) = 0, the first equation fixes ¢(z) = )2 and the second equation trivially vanishes.
The field ¥ remains unfixed. After including quartic terms in the superpotential and truncating
the critical point equations to cubic order in the unfixed fields we get

DWa + 0sW3 + 0sWa = b1y + d2) — ¥° + 3y =0

(3.7)
OyWa + OypW3 + 0y Wy = —Q(b(l)w - 2¢(2)¢ + 2¢3 =0.

Once we evaluate these equations at ¢1) =0, @) = Y2, we find ¢@3y) = 0. Since the series
truncates at this order and the field v is unfixed, we conclude that there is one flat direction
and the origin is not an isolated critical point.

The critical points of the superpotential in equation (2.42) that we will study have some
similarities to the example we discussed above but in general will be more complicated. As
was explained in [24], this algorithm has some limitations. For instance, since the series
expansion around the critical point does not truncate in general, we will only be able to make
definitive statements about the number of stabilized fields at a given order. The fields that
remain unfixed are not necessarily flat directions and may be lifted at some higher order that
we have not analyzed due to computational constraints. Another potential limitation is the
appearance of branches. When solving the polynomial equations that arise as non-trivial
critical point equations we find multiple branches of solutions which can lead to different
numbers of stabilized fields. For example, consider the two equations

xy =20, xz=0. (3.8)

They are solved by either x = 0 or y = z = 0. We will see explicit examples where this occurs
in section 3.3. The occurrence of these branches of solutions provides a challenge to single
out the exact number of fields stabilized up to a given order in the superpotential. As a
remedy to this issue, it was proposed in [24] that the minimum number of fields stabilized
across the different branches be taken as the number of stabilized fields at the critical point.
For a more thorough mathematical discussion in terms of the Zariski and Krull co-dimensions
of the critical points, we refer the reader to [24].

3.2 One to three  flux choices

In this subsection we study the simplest flux configurations, i.e., we turn on only 1, 2, or
3 different flux components in the {2-basis. While this makes some things very easy, it also
has severe drawbacks as we describe below. We do not only consider physical solutions with
Naux < 40 but also two unphysical ones.

There are three Sg distinct single €2 solutions whose shortest, properly quantized, flux
vectors are

1
G = 32 D12222, (3.9)
a2=Lg (3.10)
— 16 1,1,1,2,2.3 .
1
G? = 3 Q111133 - (3.11)
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The last solution G2 has Ngu = 64 and it is thus unphysical. However, these three solutions
(and their Sg permutations) are the building blocks for all other solutions so we analyzed
all three.

For the first flux choice G' which has Ny = 16 we find 36 massive fields and no higher
order stabilization even when going to the 6th power in the superpotential. For the second
flux choice G? with Ny, = 32 we actually find higher order stabilization already when
including the cubic terms in the superpotential. However, we get 34 non-trivial quadratic
constraints involving 34 massless fields. Unfortunately, we have not been able to solve
these equations and therefore we do not know how many of the massless fields actually get
stabilized at 3rd power in the superpotential. This is a recurring problem for these simple
flux configurations with a small number of {2 components turned on. If they stabilize fields
at higher orders, then there are many corresponding constraint equations that involve a
large number of fields and we cannot solve them using standard techniques in, for example,
Mathematica. Solution G® has Ny = 64 and is therefore unphysical. It has 21 massive
fields and 52 non-trivial quadratic constraints in 52 variables when including cubic terms in
the superpotential. We are again unable to solve these. It would be interesting to understand
why for certain flux configurations we find no moduli stabilization [47], but for now we
simply present it here as an observation.

We studied the following flux choices with two €2 components and found similar results

1 i 1 i
( @ 4> M12222+ (64 + 64) D2211,2,2, (3.12)
1 i 1 i
G® = ( 674 ) M12222 — (64 - 64> D21,222, (3.13)
= L1q Lo (3.14)
BETRLNESEE RS URRERER .
1 1
7
= Q — 0 1
G 16 utss — 5 Puissn (3.15)
=g +1lo (3.16)
33 11228+ 55 Qg2 .
1 i 1 i
9
(= Q —_ o 1
G ( 16 + 16) 1,1,1,1,3,3 — (64 64) 1,1,2,2,2,2 5 (3.17)
1 i 1 i
G0 = (_16 + 16) D11,1,33 — <32 - 32> M11223, (3.18)
1 i 1 1
Gl = <_16 + 16) Q111,133 — <32 - 32> Q112312 (3.19)

A summary of the results for all the above flux choices and the one three 2 flux configuration

1 i 1 i
G'% = <32 — 32> Q111,133 + Q1,2,1,2,2 2 + <32 35 ) Q131311 (3.20)

is presented in table 2.
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Model | Ngux | massive | 3rd power | 4th power | 5th power | 6th power
e 16 36 0 0 0 0
G? 32 28 £0
G? 64 21 £0
G* 16 52 0
G 16 36 0
G5 32 28 £0
G” 32 36 £0
G® 16 36 0 0 0 0
G 40 44 £0
G0 48 28 £0
Gt 48 41 £0
G2 20 48 0 0 0 0

Table 2. A summary of the different most simple flux choices that we have analyzed. The second
column lists Ngyyx, the tadpole contribution of the particular flux configuration. The third column
lists the number of massive fields and the following columns the number of fields that are massless
but do get fixed due to terms of the r-th power in the superpotential that are polynomials. Whenever
fields get stabilized we were not able to solve the corresponding constraints and could not pursue that
flux choice to higher order.

The clear result of the table is that solutions with Ngyux = 16, which is really low, seem to
have no further stabilization at higher order. However, solutions with Ngyu > 32 generically
lead to the stabilization of massless fields through cubic interactions. For that reason, we
have included here the 3 € solution G'? with Ny, = 20 to check at which point higher
order stabilization takes place. We see that for this particular three € solution there are
still no non-trivial higher-order constraints that stabilize massless fields. However, as we
show in the next subsection, for a particular four 2 solution with Ngux = 28 there are higher
order constraints that we can actually analyze.

Before ending this subsection we state the super important result that the flux choice
G* has Nyux = 16 and 52 massive fields. To our knowledge, this is the first instance in the
literature that violates the tadpole bound: Ngu.x > %nstab. Thus the 26 LG model seems
to violate the Refined Tadpole Conjecture in its original form [30].®> We comment on this
further in section 4 below.

3.3 A four Q flux choice

Given the slightly disappointing outcome for the stabilization at higher order for the simplest
solutions in the 2 model, we now turn to an intermediate solution that is much more
interesting. This flux choice was discovered by the authors of [42] and they kindly allowed

8The tadpole condition in this example is not satisfied and requires the presence of 24 D3-branes. Those
might have moduli associated with themselves but that is irrelevant for the fact that 52 complex structure
moduli are massive for this simple flux choice.
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us to study the higher-order stabilization for it, already before they published their paper.
The flux choice is

1 i 1 1 1 i
GBl=(=4+—)0Q —+—)Q —0 —Q 3.21
(32 + 32) 1,1,1,1,3,3 + <32 + 32> 1,3,1,3,1,1 T 39" 322111 + 61" 112,222 ( )

and it leads to Npux = 28 and 75 massive fields. After including cubic terms in the
superpotential we find the following non-trivial quadratic constraints,

B348T _
133186 _

118152 _

AT _

33151 _

34452 _ )

18451 | 17452 _

150451 (1 — )¢52458 = 0
$18452 (1 — )58 = 0
133438 _ (1 — )34 = 0

£34436 _ (1 — )34 = ¢

t51t52 + 2it34t86 + 2it33t87 =0

(51462 4 438,86 1- i)t44t87 —0

£52464 4 436487 _ (1 _ )44486 — g

2 4 (1= )T 4 (1 —1)e%%% 4 20155 = 0
4T 4 (1 — )8 4 (1 — )35 4 2T = 0 (3.22)

Solving the above constraints leads to multiple branches of solutions. There are branches
which fix 8, 9, 10, and 12 fields. The branches that stabilize 9,10 and, 12 fields already
violate the bound of the Refined Tadpole Conjecture. However, the branches that stabilize
8 fields do not violate the bound. As explained in [24], when such branches with different
numbers of stabilized fields appear, we pick the branch with the least number of stabilized
fields. So at cubic order, we do not have a violation of the bound yet. We then analyse the
non-trivial cubic constraints arising after the inclusion of quartic terms in the superpotential.
The minimum number of stabilized fields occur on branches that had 8 or 9 fields stabilized
at cubic order. There are branches that had stabilized 9 fields at cubic order, that stabilize
no fields at quartic or quintic order, leaving us with 7549 4 04 0 = 84 = 28 - 3 stabilized
fields. So, this would violate the original Refined Tadpole Conjecture with a@ < 1/3. All
branches that stabilized 8 fields at cubic order stabilize at least 1 field at quartic order, thus
leading to 75 +8 + 1 = 84 = 28 - 3 and the same conclusion as above.
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Model | Ngux | massive | 3rd power | 4th power
G13 28 75 8 1
G3 28 75 8 2
G113 28 75 8 3
G113 28 75 9 0
G3 28 75 9 1
a3 28 75 9 2
G13 28 75 9 3
g3 28 75 10 0
a3 28 75 10 1
G13 28 75 10 2
a3 28 75 12 0

Table 3. A summary of the different branches for the flux choice G'2. The second column lists Ngux
the tadpole contribution of this particular flux configuration. The third column lists the number of
massive fields and the following columns the number of fields that are massless but do get fixed due to
terms of the r-th power in the superpotential that are polynomials. We find different components that
either fix the same or different numbers of fields, as indicated in the multiple rows for this single model.

3.4 Close to full rank solutions

In this section, we present our study of 175 different solutions with a tadpole contribution
of Ngux = 39 or Ngux = 40. They all have close to full mass matrix rank with between 86
and 90 massive fields. Since all of these solutions have many different {2 components with
non-vanishing coefficients, it is not possible to present them all here and we have thus enclosed
them in a Mathematica notebook that we attached as supplementary material to this paper.

For the curious reader, let us briefly mention how we obtained these high rank solutions.
There is a straightforward algorithm to obtain an integral basis of the supersymmetric flux
lattice in the present model. It is the same algorithm that was used in [23] to derive an
integral basis for Minkowski fluxes in the 1° model. See also [24] for a detailed description.
We employed this algorithm in the 25 model to obtain 180 basis elements for the Minkowski
lattice. Using “small linear combinations” — with four or five basis vectors linearly combined
with small integer coefficients (between —2 and 2) — it was possible to generate solutions
with a large variety of (Nfux, nmassive) values. All of our high rank solutions were obtained
this way, with a remarkably small computational effort. The authors of [42], in their attempt
to extensively test the tadpole conjecture, use this as one of the methods to generate a
large number of solutions.

For all of these high rank flux configurations, we have checked the potential stabilization
of massless fields via cubic and quartic terms in the superpotential. For several, there seems
to be no further stabilization, but we also find several models where 1, 2, 3, or 4 fields get
stabilized either through cubic, quartic, or quintic terms in the superpotential. Surprisingly,
we have never found an example where fields get stabilized at cubic and quartic levels,
contrary to what was found for the 19 model in [24].
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For concreteness, we present here one example of a flux configuration with Ng, = 40
that has 87 massive fields

1 1 1 i
G = o) {—291,1,1,1,3,3 + *91,1,3,3,1,1 — *91,3,1,3,1,1
+(1+ )Q +(1+')Q 20
1T 1) sz 1T 1) sz 1,3,2,2,1,1

1 1 i 1 i
Q133,111 + <4 + 4> Q211,123 + <4 + 4) Q211,132

1 i 1 i 1 i
- Q ~—+-1Q —[===1]Q
4 ) 2,1,2,3,1,1 — <4 + 4) 2,1,3,2,1,1 <4 4) 2,2,1,3,1,1

1 i
-1 Q
+ 4> 222211

222112 — *Qz 22121+ <4

2
i
4
1 i 1 i 1 i
- Q —[(=4+=19Q —[=4+=19Q
<4 ) 2,2,3,1,1,1 <4 + 4) 2,3,1,1,1,2 <4 + 4) 2,3,1,1,2,1
B LI P L P
1 2,3,1,2,1,1 1T 7)) 8211 T 58
_1g Q + <1 + i) Q
5°i31,1,1,22 3,1,1,1,3,1 5 T3 ) 1131
1 i 1 1 i
— (=== Y —+-1Q
<4 4> 3,1,2,1,1,2 <4 4> 3,1,2,1,2,1 + <2 + 2) 3,1,3,1,1,1
1
0 0 — —Q — —Q . 3.23
+2 321112+2 321,121~ 580321211 — 5 3,2,2,1,1,1] ( )

The above flux choice has 32 2 components turned on and satisfies the tadpole cancellation
condition without the requirement of adding D3-branes. It has close to full mass matrix rank,
which means that the 87 massive fields solve 87 of the 91 equations 0;W = 0. After solving
these 87 equations for the massive fields, we can plug the answer into the remaining four
equations that are then functions of the four unstabilized fields only, which makes them easy
to solve. When calculating 0;(Wa2 + W3) = 0 we find that these four equations are trivially
satisfied. For 0;(Wy + W3 + Wy) = 0 we find that 3 massless fields get stabilized and there
are no further constraints when including Ws. Thus this model has, up to including Wi,
a total of 87+0+340=90 stabilized fields. One might be encouraged by this and look for
other examples that get to 91 or try to push this model to higher order in the fields. We
did the former and studied 140 different flux configurations with Ng,x = 40 and found a
variety of different stabilization patterns at higher order as is summarized in table 4. In
this table 4 we did not pursue all different branches for all of these flux choices but only
the one that stabilizes the least number of massive fields.

The flux choices in table 4 all have Ng,x = 40 and a mass matrix rank between 86-90
but are otherwise distinct and in a certain sense generated randomly. We might thus be
tempted to do some statistical interpretation of our results. The table indicates that the
stabilization of massless fields at higher order is less likely than no stabilization (at least
to the order we work). Stabilizing fewer fields seems also more likely than stabilizing more
fields. However, probably the most surprising result is that higher-order stabilization for all
mass matrix ranks from 86-90 seems to not lead to all fields being stabilized. The maximum
number of massless, stabilized field is given by 90 minus the entry in the “massive” column.
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Multiplicity | Ngyx | massive | 3rd power | 4th power | 5th power
78 40 90 0 0 0
1 40 89 1 0 0
2 40 89 0 1 0
13 40 89 0 0 0
1 40 88 2 0 0
5 40 88 0 1 0
2 40 88 0 0 1
5 40 88 0 0 0
1 40 87 3 0 0
2 40 87 0 3 0
8 40 87 0 2 0
1 40 87 1 0 1
5 40 87 0 1 0
2 40 86 0 4 0
4 40 86 0 2 0
3 40 86 0 1 0
7 40 86 0 0 0

Table 4. A summary of 140 different flux choices with Ngux = 40 that we have analyzed. The first
column lists the number of Sg distinct solutions that exhibit the shown pattern of massive fields and
massless stabilized fields at the r-th power in the superpotential. It is of course possible that these
different flux choices behave differently and split further if one were to go to even higher powers in
the superpotential.

We have also generated a set of 33 solutions with Ny = 39 and mass matrix ranks 86,
87, 88, and 89. We again studied higher-order stabilization and our results are summarized
in table 5. In this table 5 we did not pursue all different branches for all of these flux choices
but only the one that stabilizes the least number of massless fields.

3.5 Fully stabilized Minkowski vacua

Lastly, we present two solutions that were part of our randomly generated set of solutions
with Np,x = 40 and that actually do stabilize all fields through higher order terms. Given
that there are only 2 out of 142 examples, this shows that these are rare but they do exist.
These two solutions provide to our knowledge the first Minkowski vacua without any flat
directions (besides 11d supergravity). They both have 86 massive fields, 0 stabilized fields
when including cubic terms via W3, and finally 5 stabilized fields when including Wy. At
that point, we do not need to worry about higher-order terms since we cannot stabilize any
more fields and 0;W,, = 0 is automatically satisfied for all n since all moduli are stabilized
at the origin of moduli space. Note that these solutions have Ng. = 40 and 91 stabilized
fields. They are thus not in tension with the Refined Tadpole Conjecture that would allow
the stabilization of up to 119 fields for Np,x = 40.
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Multiplicity | Ngyx | massive | 3rd power | 4th power | 5th power
2 39 89 0 1 0
3 39 89 0 0 0
1 39 88 1 0 1
1 39 88 1 0 0
2 39 88 0 1 0
2 39 88 0 0 1
1 39 88 0 0 0
3 39 87 0 2 0
2 39 87 0 1 0
1 39 87 0 0 0
2 39 86 0 2 0
2 39 86 1 0 0
4 39 86 0 1 0
7 39 86 0 0 0

Table 5. A summary of the different flux choices with Ngux = 39 that we have analyzed. The first
column lists the number of S distinct solutions that exhibit the shown pattern of massive fields and
massless stabilized fields at the r-th power in the superpotential. It is of course possible that these
different flux choices behave differently and split further if one were to go to even higher powers in
the superpotential.

The two solutions are

1 1 i 1 i 1 i
o= [ D (e s (-2
39 171 1,1,2,3,12 + 171 1,2,2,1,3,1 + 11 1,2,3,2,1,1
(1 + i) Q + =Q 1(2
1)tz T othse e = othizon0
1 i 1 i 1
- Q 4+ -0 ~-Q
+ (4 4) 2,1,1,31,2 — (4 + 4> 2,1,2,1,3,1 + 100212212
1 i 1 i 1 i
—— Y] B e —— Y —([=+-10
+ (4 4> 2,1,2,3,1,1 (4 4> 2,1,3,2,1,1 (4 + 4> 2,2,1,1,3,1
i 1 i 1
+ 192,2,1,2,1,2 -3 + 1 Do2211,2+ 192,2,2,1,2,1
) . (3.24)
1Q (1 1> 0 (1 1> 0
1 1222211 1 1) 23 1 1) ez
1 1 i 1 i
—-0 4+ -0 —+-)Q
+ 592,311,211 + (4 + 4> 2,3,1,2,1,1 + <2 + 2) 3,1,1,1,3,1
1 1 i 1 i
- Q —— =)0 B e —— Y
(4 + > 3,1,1,2,1,2 — (2 2> 3,1,1,3,1,1 (4 4> 3,1,2,1,1,2
1 1 1
+ 3~ 9313111-1-29321112—*9321121
1 1 i 1 i
- Q- ) 0. B (T Ko %
+ (4 > 3,2,1,2,1,1 + <4 + 4> 3,2,2,1,1,1 (2 + 2> 3,3,1,1,1,1]
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and

1 i 1 i 1 i
4+ -0 ~——1Q —|=+-)Q
{(4 + 4) 1,1,2,321 + (4 4> 12,2113 (4 + 4> 12,3211
(1 1) Q +ig Q
1 1) thsrzzatothseiig 1,3,2,1,2,1
1 i 1 i i
—+-1Q —|=-==)Q - -0
<4 + 4> 2,1,1,3,2,1 <4 4> 212113 = 75212221
1 i 1 i 1 i
Y - Q —|=-==)Q
<4 + 4> 2,1,2,31,1 + <4 + 4> 2,1,3,2,1,1 <4 4) 2,2,1,1,1,3
1 1 i
+ 21221 - *92 22112~ | 7~ 7 ) Q222121 (3.25)

y Ly Ly Ly Ly

1
+ 922 2.2,1,1 + (4 + 4) D2231,1,1 — *92 3,1,1,1,2

1 1 1 i
- Q e —— Y - ——]Q
+ <4+4> 2,3,1,1,2,1 + <4 4> 2,3,1,2,1,1 + (2 2) 3,1,1,1,1,3
1 1 1 i
e —— Y Q ~1Q
<4 4> 3,1,1,2,2,1 + <2 2> 3,1,1,3,1,1 + <4 + 4) 3,1,2,1,2,1
L + i Q + iQ iQ
5 T )3+ 58821002 = 5301121
i

1 1 i 1 i
—( = Q — -2 —|===)Q )
(4 + 4> 3,2,1,2,1,1 + (4 4> 3,2,2,1,1,1 (2 2) 3,3,1,1,1,1}

In a paper that appeared at the same time as ours [42], the authors found many flux
configurations in this model that have Ngu = 40 and full rank 91 for the mass matrix. So,
these solutions in [42] are the first Minkowski vacua in which all scalar fields are massive. We
comment further on the significance of these and our solutions in the next section.

4 Implications for the swampland and the landscape

In this section, we discuss the implications of the different flux compactifications of the 26
LG model for our understanding of the landscape and the swampland conjectures.

4.1 Full moduli stabilization and 4d A/ = 1 vacua

Full moduli stabilization, i.e. finding isolated vacua in the string landscape, is arguably
one of the greatest challenges in string phenomenology today. Roughly twenty years ago
many scenarios were put forward like KKLT [10], LVS [48, 49] and DGKT [1] to name a
few. However, throughout the last decade, all of these constructions have been scrutinized
and certain aspects have been called into question within the swampland program. This
means that there are currently no constructions that are agreed upon by the entire string
phenomenology community which leaves us in a dire spot. Note that this is not related to
the presence or absence of supersymmetry or the value of the cosmological constant.
Finding new simple models with full moduli stabilization has thus become an important
goal in string phenomenology. Non-geometric LG models provide an intriguing way of doing
so. On the one hand, they allow us to bring the full strength of string theory to the problem.
On the other hand, they give rise to very simple 4d N = 1 supergravity theories that depend,
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in the presence of fluxes, on all moduli. The initial study of the simplest of these models, the
19 model, has discovered the presence of many massless fields and potential directions that
do not get lifted even at higher order [24]. However, the next more complicated example,
the 26 model that is studied here and at the same time in [42] has completely changed the
picture. Fully stabilized, isolated Minkowski vacua have been found in this paper albeit with
some massless fields. The authors of [42] found isolated Minkowski vacua without massless
fields. Thus, there are now new constructions of moduli stabilization for the community to
understand better and scrutinize in the future.

Let us already provide here a few comments on why we believe this moduli stabilization
scenario is trustworthy. We have solved the equations W = 0;W = 0, which do not depend on
the Kéhler potential at all but only on the superpotential W. For non-geometric LG models
it was shown in [11] that the superpotential is exact and does not receive any perturbative
or non-perturbative corrections. For example, the absence of the standard ED3 instanton
corrections follows from hl'' = 0, i.e., the absence of 4-cycles. For D(-1) instantons it was
likewise argued that they vanish in these models. This is consistent with the recent results
in [50], where it was shown that they are only non-zero in models where the D7-brane charge
is not canceled locally. Since the LG models have no D7-branes or O7-planes there is no
such charge at all. Thus, the superpotential does not receive any corrections at all and any
Minkowski vacuum is actually trustworthy. This reasoning applies to the two solutions above
in equations (3.24) and (3.25) that have 86 massive and 5 massless but stabilized scalar fields.
It also applies equally to the Minkowski vacua found in the paper [42] that have 91 massive
fields and therefore do not require any stabilization at higher order.

4.2 The massless Minkowski conjecture

The Massless Minkowski Conjecture states that 10d supergravity compactifications to 4d
Minkowski space always have a massless scalar field [43]. Here we are not dealing with
compactifications of type IIB supergravity so we might be violating an important assumption
of the conjecture. So, strictly speaking, the LG models cannot violate this conjecture.
However, let us nevertheless entertain the possibility that all Minkowski vacua have a massless
scalar field.

To our knowledge, the only known Minkowski vacuum without a massless scalar field was
11d supergravity or M-theory. When talking about compactifications to lower dimensions,
one necessarily faces the challenges of giving masses to all the resulting scalar fields. As
discussed in the previous subsection, moduli stabilization is hard and the most trustworthy
(simple) models could therefore always contain massless fields. The presence of massless
fields would then be a lamppost effect and by studying more complicated setups one would
be able to eventually find fully stabilized models.”

One can then set out to find more and more intricate constructions that eventually lead
to Minkowski vacua without flat directions. Before doing so one would however have to
contemplate the following problem, which we spell out for 4d solutions. If one allows for

9We are not implying that the Massless Minkowski Conjecture is the result of a lamppost effect. It is
motivated by a universal tachyon in certain dS solutions [51]. This tachyon becomes massless when sending
the cosmological constant to zero.
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N > 2, then vector multiplets contain scalar fields as well. Large amounts of supersymmetry
do protect the corresponding moduli space from perturbative and even non-perturbative
corrections and we can fully trust these solutions but there is no clear way of having no
massless scalar fields at all. One intriguing idea that was pursued recently in [52] is the study
of asymmetric orbifolds that give rise to models with no hypermultiplets. If among those
one would find models without vector multiplets, i.e. theories that are pure supergravities
then one would have succeeded. This has not yet been possible although the existence of a
potential pure supergravity in 5d is discussed in that paper. With less or no supersymmetry,
one faces the problem of perturbative and non-perturbative corrections. For example, even in
4d theories with A/ = 1, the superpotential is not protected from receiving corrections. Thus,
there is usually an infinite number of unknown corrections that can affect any Minkowski
vacuum. If these corrections would change the value of the scalar potential at the minimum
away from zero, then the solution would be no longer a Minkowski vacuum. Stated differently,
for N <1 an infinite number of corrections would have to sum to zero, making Minkowski
vacua seemingly infinitely fine-tuned.

As we discussed in the previous subsection, there are no perturbative or non-perturbative
corrections for these non-geometric LG models. Thus, due to these powerful non-
renormalization theorems, we do not have to worry about infinite numbers of corrections
and can trust the fully stabilized Minkowski vacua we found in this paper. This reasoning
of course also applies to the Minkowski vacua found in the paper [42] that have 91 massive
fields and do not even require any stabilization at higher order.

4.3 The Tadpole Conjecture

The Tadpole Conjecture postulates a surprising relation between the length of an ISD flux
G € H*! and the number ng,p of complex structure moduli that the flux lifts. In particular,
it states that

1

T—T

Nﬁux =

/G3 A ég > ¢ Ngtab , (4.1)

with o > £ in its original refined formulation [30]. While this was not explicitly specified it
probably makes sense to take ngi,, here to be the total number of stabilized fields and not
just the number of massive fields nmassive. However, in principle, one could also entertain
the conjecture

1 _
Niux = :/GS A G3 > O Nmassive » (42)

which is weaker since Ngiab > Mmassive-
Either form of the conjecture is violated by our flux choice above in equation (3.12).
That flux choice had Nyux = 16 and 52 massive fields, which gives

N, 1
i 308 < 3 (4.3)

TNmassive

One might thus be tempted to conclude that the Tadpole Conjecture is not correct or does
not apply to this 26 LG model.

— 922 —



However, the authors of [24] generated a large set of flux configurations in the 1° LG
model and found a spectacular confirmation of the Tadpole Conjecture (see figure 2 on page
22 of that paper). A similar study for the 26 LG model was undertaken in the paper [42]
that appeared at the same time as ours. The authors kindly shared their results with us
and those do clearly show a confirmation of a bound like the one in equation (4.1) albeit
with a smaller coefficient. The authors of [42] propose o« = 1/4 and it could be that this
is the correct statement.

5 Conclusion

In this paper, we have studied flux compactifications on an orientifold of the 26 Landau-
Ginzburg model. We focused on 4d N' = 1 Minkowski vacua that arise for G5 fluxes that are
imaginary-self-dual. We demonstrated that, for several flux choices, there is non-trivial moduli
stabilization from higher-than-quadratic order terms in the expansion of the superpotential
around a critical point. This means that there are massless fields that are stabilized by higher
order interaction terms, similar to a massless ¢* scalar field that has no flat direction. Unlike
in the 1° Landau-Ginzburg model [24], it is not tractable to study all flux examples beyond
terms in the superpotential that are cubic in the complex structure moduli. However, we
find two interesting solutions in the 26 model that violate the Refined Tadpole Conjecture.
One example has 52 massive fields for a flux choice that only contributes Ngu = 16 to
the O3 tadpole condition. Another example has Npu = 28, and 75 massive fields but has
at least 84 = 3 - 28 stabilized fields, which again violates the Refined Tadpole Conjecture.
Nevertheless, it seems that this model is actually confirming the original Tadpole Conjecture,
with a modified bound, as is shown by studying a large number of flux configurations in [42].

Even more interestingly, we provide examples where supersymmetric Minkowski critical
points without full mass matrix rank turn out to be isolated vacua once we include higher
order terms in the superpotential. Specifically, we have two flux choices for which 86 out of
the 91 fields are massive and the 5 remaining fields get stabilized at higher order. Due to
the non-renormalization theorem for the superpotential W that was derived in [11], these
isolated supersymmetric Minkowski vacua should be fully controlled and are arguably the
simplest four-dimensional solutions of string theory without a moduli space.
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