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Abstract— This work reports an artificial intelligence (Al)
assisted method for implementation of multiport electromagnetic
(EM) structures. Utilization of Al in mm-wave circuit design is
rapidly gaining attraction. While many previous works relied
on surrogate modelling of a template, non-intuitive design spaces
that provide exponentially larger degrees of freedom can uncover
solutions that are not limited to the given template. Although
it can be challenging to train accurate predictors for such
design spaces, this issue can be tackled with a correct modelling
approach. Within this context, we demonstrate the extension
of previously laid out design framework to multiport EM
structure synthesis [1]. This aims to facilitate the application
of Al assisted methods for more comprehensive scenarios such
as multiport matching networks, power dividers, diplexers and
so on. To demonstrate the flexibility of this method, we show
examples for different design goals. Lastly, we report a compact
mm-wave amplifier with 3 dB gain bandwidth of 23.6-37.3 GHz,
implemented with three port asymmetric power dividers and
combiners that emerged through the Al-enabled method.

Keywords — mm-wave, 5G, inverse design, machine learning,
SiGe, power combining.

I. INTRODUCTION

In high frequency systems, the design of EM structures is
critical for optimum circuit performance. This is especially
prevalent in mm-wave systems where gain and power that
can be harvested from an active device is quite limited.
Traditionally, the design of EM structures to implement a
variety of functions relied on physics knowledge, intuition,
or experience. Moreover, the manual design method requires
considerable domain knowledge from the perspective of a
designer. While this is advantageous in terms of gaining
insight into circuit operation, it is not certain that resulting
EM structures will yield optimal results. Furthermore, each
EM design requires a time intensive design cycle. Given
these considerations, one can suggest that we should pursue
new design paradigms that can ease the designers’ job,
accelerate design cycles, and improve circuit performance.
In parallel to this, device and EM modelling, inverse design
algorithms, and heuristic optimizations have seen a surge of
interest [1]-[8]. Furthermore, moving towards non-intuitive
design spaces could open up new possibilities for circuit and
system performance. Particularly for EM structures, instead of
relying on templates, it is worthwhile to investigate topology
optimization/inverse design methods. These approaches have
been successfully deployed in the field of nanophotonics [9],
[10]. In this regard, discretizing a surface onto small pixels
lends itself as a convenient and manufacturable method for
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Fig. 1. (a) Concept and method for inverse design of multiport EM structures.
While here an example based on power combining is given, it is possible to
synthesize different functions on demand. (b) The choice of CNN architecture
is based on overall error performance. Average prediction error of S-Matrix
terms across frequency for the CNN architecture of choice. The comparison
is conducted between roughly ~10K HFSS simulations and CNN predictions.
The average error for this test does not exceed ~=0.28.
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Fig. 2. (a) Design space consists of pixelated structures where ports and
shorting pins can be placed along the edges. In this paper, we consider design
of power combiners/dividers which are useful for multistage mm-wave designs
such as power amplifiers. (b) It is also possible to use the same predictor model
for multiple design scenarios such as diplexers.

constructing large design spaces. Yet the bottleneck is that
possible number of designs exponentially increase as we go
to finer pixelations. For example, a 25 by 25 grid yields
~10'8 possible designs. It is impractical to sweep over
such a design space by doing electromagnetic simulations.
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Here, we suggest a deep neural network-based EM emulator
to replace simulations by rapidly predicting S-Parameters
over a broad range of frequencies. With this modelling
approach, the design process can be accelerated significantly.
Motivated by this, this work proposes a generalized deep
learning enabled inverse design method to synthesize multiport
EM structures on demand. Section II discusses the deep
learning-based modelling, inverse synthesis flow, and design
examples. Section III demonstrates the application of this
method to mm-wave systems as well as measurement results.

II. DEEP LEARNING BASED INVERSE DESIGN OF
MM-WAVE PASSIVE NETWORKS

A. Deep Learning Based Inverse Design Method

According to the Universal Approximation Theorem, a
neural network (NN) with at least one arbitrarily large
hidden layer can learn any function [11]. While this is an
empowering theoretical result, in practice, the ability of NNs
would be limited with training data and computation. In this
aspect, instead of relying on a vanilla NN, it is wiser to
consider different architectures and machine learning (ML)
tools. For the modelling problem we are interested in, a
convolutional neural network (CNN) would be preferable
for a number of reasons. Firstly, image-like representation
of pixelated structures lends itself conveniently. It is worth
noting that CNNs can outperform other ML tools for many
image processing problems [11]. Secondly, we can draw some
analogy between CNN operation and EM simulations, since
in both cases localized interactions are prominent.

As illustrated in Fig. 1-a, CNN based EM
emulator/predictor is the enabling component of algorithmic
design method we are utilizing. The accuracy of this CNN is
therefore critical. Main factors we identified for the prediction
performance is large training dataset and optimal architecture.

In this work we consider 3-port EM structures that are
discretized over a 25x25 grid within a 400x400 pm box, as
shown in Fig. 2-a. A dense discretization consisting of square
pixels would be able to approximate almost any structure
that could be implemented in the given area and chip layer.
Moreover, compared to circular pixels, rectangular shapes can
pass design rule checks more easily. Based on these, we use
square pixels. The bounding box size is the result of the
tradeoff between the lowest operation frequency and chip area.
While 400 pm is only =M16 at 24 GHz, using large chip area
is generally undesirable. Therefore, the box size could be made
a design parameter depending on the target frequency band and
design goals. Ports and AC shorts can be arbitrarily placed on
the edges, allowing great flexibility.

Once a predictor is trained it can be re-used for different
synthesis runs, as illustrated in Fig. 2-b. Training dataset
for this design space consists of simulation of randomly
generated pixelated structures. Thus, it is desirable to reduce
the computational burden required for these simulations. In
this aspect, we adopt 2 step transfer learning [12]. The
initial set of simulations were conducted with coarse mesh
settings, hence large number of simulations are more easily
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Fig. 3. Design examples for different set of S-Parameter targets. Once the
synthesis is completed, EM structures were simulated in HESS. (a) Broadband
un-equal amplitude splitter designed with deep learning assisted inverse
synthesis method. (b) Phase difference between 2 output ports is close to the
0° target. (c) Ideal response for the given unequal splitting ratio (-6 dB — -1.3
dB) lies on the 0 dB total transmissivity circle. Considering the mismatch and
insertion losses, realistic response should lay over the black dotted line, which
indicates perfect amplitude balance. Moreover, total transmissivity should be
maximized. This example achieves greater than -1.6 dB total transmissivity
between 24-72 GHz. (d) Broadband equal amplitude splitter (-3 dB — -3 dB).
(e) Phase difference between 2 output ports is close to 0°. (f) Equal split is
achieved with almost perfect amplitude balance and greater than -1.5 dB total
transmissivity between 25-79 GHz.

achievable. Roughly 236K simulation results were divided
into train-validation-test sets of 200-18-18K. A randomly
initialized CNN is trained with this simulation data. At the
second step, more accurate simulations with fine mesh were
used to tune this initial model. Moreover, data augmentation
based on geometric transformations is applied to training
sets to further alleviate the problem [13]. Roughly 150K
simulation results were augmented to =250K and divided
into train-validation-test sets of 210-20-20K for this step.
We observed that without conducting the initial training, the
second set of simulations did not suffice for a good predictor.

As the training framework has been laid out, architecture
optimization for CNN layers could be carried out. As opposed
to an exhaustive search, several layer parameters and properties
were fixed according to established guidelines [1], [11]. An
important rule of thumb is that a deeper network is preferable
over a wider network [11]. In parallel to this, we deployed
more than 10 convolutional layers and 4-6 FC layers in all
candidate architectures. Each convolutional and FC layer was
followed by batch normalization and leaky ReLU operation
[1]. In addition to these, FC layers are appended with a dropout
layer after ReLU operation [1]. Convolutional layers have a
width of 64 filters while FC layers contain 1000 neurons,
except for the output layer, whose width should match the
number of terms in the S-Matrix. Here 9 frequency points
between 24-80 GHz were predicted. As passive structures
are reciprocal, it is sufficient to consider only a part of the
S-Parameters (6 entries per frequency). Since each entry in
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Fig. 5. Input divider performance. Power delivered to top and bottom
arms of the input stage was denoted with s3; and s3;. (b) Output combiner
performance. Low loss output combiner provides close to optimum impedance
across frequency to both top and bottom arms (black and blue contours). This
was demonstrated with 1 dB gain circles.

the S-Matrix consists of real and imaginary parts, output
layer has 108 neurons. Filter sizes for convolutional layers
decrease as we go deeper from the input. A coarse architecture
optimization was conducted by adjusting the number of
FC layers and starting filter size. Finally, we choose 11
convolutional layers with 6 FC layers. Filter sizes vary between
12x12 to 3x3. Error over S-Matrix components for this choice
is illustrated in Fig. 1-b. Here error terms are expressed as
the average of |Sarng;,, — SMNp..q]- The average error for
different S-Matrix terms, do not exceed =20.28.

B. Design Examples

As design examples, un-equal and equal power splitters for
5082 ports were optimized over a wide frequency range in Fig.
3. Following cost function was minimized for synthesis:

=" a1 i) x s (i) ~ %2 (@)l +

'Xzswi—.s°i aier—i

a2 0) % 155 () ~ 156 () +.05 ) x [arg (2L0)) — o i)
| ) |86 s () [526)
T 20 %0 w0 56| | P

In this equation, summation is performed over discrete
frequency points where S-Parameters are predicted by CNN.
835 (1) and s3; (7) indicates targeted S-Parameter amplitude
across frequency bins. s$,(i) and s$;(:) are CNN predicted
complex valued S-Parameters. ¢ (¢) denotes the target absolute
phase difference between s, () and s$; (7). a1 (7) . .. aq (i) are
frequency dependent weighting coefficients. While the first 3
terms in this equation are easy to understand, we observed
that adding the last term enhances the amplitude balance. As
an example, in Fig. 3-a, s3; () = 0.86, s3; (i) = 0.5 and
(1) = 0 for the frequency range of interest.

In Fig. 3, genetic algorithm was used as the optimization
tool. A population (size of 4096) evolved over 100 generations.
While 8 best performing population members were directly
transferred from generation N to N+1, the rest of the

186

Wacssn ST ea

" Co-aptimize ="

Co-optimizez=™""
S -
DC Block

Total
Transmissivity

Phase
Amplitude  pifference
Balance

(b)

Fig. 6. (a) Evaluation of population members for output combiner synthesis.
Once all the parasitic capacitances are lumped into the pixelated structure,
transmissivity from real source impedances to 50£2 output load was calculated.
(b) Evaluation of population members for input divider synthesis. A pair of
series capacitance is optimized along with pixelated structure. To find the
optimal capacitance values, predicted S-Parameters are cascaded with a set
of capacitance combinations, and cost values are found for each combination.
Minimum cost value is then assigned to population member that is being
evaluated. The cost calculation for this sweep is performed by lumping the
parasitic capacitances into the EM structure.

population was obtained through crossing over between
2 parents and random mutations. Parent selections were
performed repeatedly for each member of the generation
N+1. To select a pair of parents, a subset of generation
N was randomly sampled (256 out of 4096) and 2 best
performing samples were picked. After the crossing over,
random mutations were performed. It is worth noting that
processing each generation takes around =3 seconds including
S-Parameter prediction. As a result, the optimization algorithm
emulates simulation of ~400K EM structures within 5
minutes. This exploratory strategy and large amounts of
samples could help push boundaries for mm-wave designs.
As we will show in the next section, it is possible to use this
method for the design of active circuits.

IT1. MM-WAVE AMPLIFIER IMPLEMENTATION

To showcase the application of this method for mm-wave
systems, we designed a 2-stage mm-wave amplifier that targets
the FR-2 spectrum. Chip was designed with Global Foundries
90 nm SiGe BiCMOS process. Fig. 4-a shows the die photo.
Detailed schematic of the circuit is available in Fig. 4-b.
While high performance BJTs in this process have a BVcgo
of =1.7 V, presence of a base resistor (BVcgr) allows us to
use Vcg voltages around 1.8-1.9 V. As it can be seen, we
rely on an inversely designed splitter (400x400 pm) to divide
the input signal into 2 arms while simultaneously performing
input matching. Fig. 5-a illustrates input matching network
(IMN) performance. Within the operation band, amplitude
imbalance is less than 1.3 dB while insertion loss varies
between 1.5-4 dB. Interstage MN was designed with m-section
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transmission line stubs. The output stage consists of 2 common
emitter stacks that are optimized for the frequency band of
interest. Here, output combiner (400x400 pum) provides close
to optimum impedance across 24-40 GHz, as shown in Fig.
5-b, while the insertion loss is better than -1.2 dB.

A. Design of Output Matching Network

Once output stage stacks have been designed, desired
impedance target for high gain could be decomposed into
a parallel RC circuit, where R and C could be frequency
dependent. For the ease of analysis, all the parasitic
capacitances (including GSG pad capacitance) are lumped to
the CNN predicted S-Parameters of the pixelated structure
during the cost function evaluation for each of the population
members. Under this condition, total transmissivity from 2
input ports to output was calculated, assuming optimal phase
and equal amplitude excitation [14]. Transmissivity values that
are below -1 dB were penalized between 24-40 GHz. As a side
objective, connection between AC short (implemented with a
bypass capacitor array as Vgc feed) location and input ports
were checked. If no direct connection was found, extra penalty
incurred. Fig. 6-a illustrates these.

B. Design of Input Matching Network

For the IMN, it is desirable to ensure amplitude symmetry
and optimal phase difference between 2 outputs of the
networks. Moreover, a series capacitor must be present to
provide DC isolation. In parallel to these, a sweep over
series capacitor values were performed for every member of
the population to calculate cost function. For a given series
capacitor pair, parasitic capacitances could be lumped into
the IMN and transmissivity from input to output ports could
be calculated using generalized S-Parameters. Once these
transmissivity values are found, the cost function introduced
in Section-II was used to perform optimization. Weighting
coefficients over the frequency were adjusted to ensure flat
frequency response for the full chain. Fig. 6-b illustrates these.

C. Measurement Results

In parallel to design specification, a 3 dB bandwidth of
23.6-37.3 GHz was achieved with a peak gain of 17.5 dB
(Fig. 4-c¢). Good agreement is observed when small signal
measurement is compared to full die EM simulation (Fig. 4-c).
67 GHz Z-Probes were used for on wafer measurement with
an Anritsu VNA (MS4647B). Measured stability metrics p and
w1’ are above 1 within the sweep range.

IV. CONCLUSION

We demonstrate a deep learning assisted design method
for multiport EM structure synthesis. Once the initial training
is completed, EM emulator could be reused for the synthesis
of different design targets. Enabled by the fast EM emulator
that can accurately predict multiport S-Parameters, we show
different design examples that are product of rapid synthesis.
As proof of concept, a mm-wave amplifier was designed in
90 nm SiGe BiCMOS. This approach could be used in power
combining or backoff efficient power amplifier designs.
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