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Abstract

Incorporating human-perceptual intelligence into model
training has shown to increase the generalization capability
of models in several difficult biometric tasks, such as pre-
sentation attack detection (PAD) and detection of synthetic
samples. After the initial collection phase, human visual
saliency (e.g., eye-tracking data, or handwritten annota-
tions) can be integrated into model training through atten-
tion mechanisms, augmented training samples, or through
human perception-related components of loss functions.
Despite their successes, a vital, but seemingly neglected, as-
pect of any saliency-based training is the level of salience
granularity (e.g., bounding boxes, single saliency maps, or
saliency aggregated from multiple subjects) necessary to
find a balance between reaping the full benefits of human
saliency and the cost of its collection. In this paper, we
explore several different levels of salience granularity and
demonstrate that increased generalization capabilities of
PAD and synthetic face detection can be achieved by us-
ing simple yet effective saliency post-processing techniques
across several different CNNs.

1. Introduction
An ongoing challenge across biometric presentation at-

tack detection (PAD) involves obtaining sufficient model
generalization to unknown attack types, or unknown vari-
ants of known attacks. For real-world biometric system
implementations, this model generalization is crucial, as
new attack types show up frequently and cannot be mean-
ingfully represented with sufficient training samples, if at
all. Despite the accelerated gains made in recent years for
closed-set recognition tasks (all attack types, or their vari-
ants known during training), these trends have failed to fully
materialize in biometrics due to their appetite for mammoth
amounts of training data. As a consequence, state-of-the-art
(SOTA) biometric PAD performance is lackluster at best,

as evidence from the recurrent Liveness Detection (LivDet)
competitions for face [31], iris [41, 11, 35], and fingerprint
[43, 28, 6].

The incompetence of models on attack types trivial to a
human (e.g., doll eye for iris) can be mitigated by incor-
porating human-perceptual intelligence into model training
through attention mechanisms [26], human saliency-guided
data augmentations [3], or loss function components penal-
izing divergence of model’s saliency from human saliency
[5]. Despite their success, human saliency-based methods
are significantly diminished by the sheer costs associated
with acquisition (monetary, time, availability of human sub-
jects), often curtailing its practical use. However, a seem-
ingly obvious but universally unanswered question at the
cornerstone of all saliency-based methods is the level of de-
tail, or granularity, necessary to achieve the desired gen-
eralization. Salience granularity can be explored through
the initial acquisition phase (e.g., high-resolution eye fixa-
tion, or simply bounding boxes roughly approximating hu-
man salience), or through post-processing measures (e.g.,
averaging annotation maps from multiple experts, or using
a single expert).

Understanding the optimal level of salience granularity
leads to a better assessment of the costs associated with
salience acquisition. In addition, salience granularity val-
idates the ability of saliency-based methods to incorporate
salient information meaningfully into model training. With-
out this necessary foundation, how the collection and as-
sembly of saliency impacts the generalization performance
of saliency-based training downstream remains unclear. We
find that for iris PAD and synthetic face detection, sin-
gle saliency maps provide a sufficient amount of human-
sourced information, which suggests that the collection of
fine-grained salience may not be necessary. Additionally, it
answers the previous unrealized trade-off between the qual-
ity (granularity) and quantity of human salient-information
necessary for successful saliency-based training. Our re-
sults suggest that the quantity of saliency contributes more
to model generalization more than its quality (depending on
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the biometric modality). Furthermore, we explore salience
granularity across several different sources, including hu-
man subjects, models trained to mimic human saliency, and
domain-specific segmentation models. We find that sub-
stantial performance gains can be made within saliency-
based training by using optimal salience granularity with
no additional overhead.

We organized our paper around the following research
questions:

• RQ1: What is the optimal level of granularity of hu-
man saliency maps for saliency-based training of mod-
els detecting biometric spoofs?

• RQ2: Does the optimal level of granularity general-
ize across different biometric presentation attack in-
struments?

• RQ3: Do models trained to mimic human saliency of-
fer image annotations which – when used in saliency-
guided trained – lead to better generalization?

• RQ4: Can saliency be sourced from domain-specific
segmentation models instead of humans?

We release our source codes, model weights and saliency
maps to allow others to replicate all the experiments.1

2. Related Work
Incorporating human-perception into the training of deep

learning models has shown to increase generalization per-
formance [5, 4, 39], create more human-interpretable out-
puts [9, 39], increase overall training efficiency by requiring
less samples [38], and even help ease regulatory tensions
within high-risk AI [8]. Domains such as medical imaging
and biometrics largely benefit from incorporating human-
salient information into training since these scenarios pose
challenging constraints not common within general vision
tasks. For biometric presentation attack detection, models
often operate within open-set contexts where it is unrealis-
tic or otherwise impossible to obtain training samples for
every possible attack type. As a result, human-perceptual
components have proven invaluable towards increasing gen-
eralization capabilities by augmenting training samples [4],
attention modules [26, 39], or through loss function compo-
nents [5, 30, 38].

While methods on how to effectively incorporate human
saliency into model training are important, arguably a more
crucial aspect of saliency-based training is how to effec-
tively source and assembly the raw saliency, which is often
overlooked. Many saliency-based rely upon eye-tracking
[38], gaze patterns [39], or written annotations [5, 4]. Af-
ter the initial collection phase, most post-processing meth-
ods include averaging correctly classified samples together

1
https://github.com/CVRL/GrainsOfSaliency

into a single saliency map. However, this vastly reduces
the number of available saliency and leaves unanswered
questions as to how this might affect models trained down-
stream.

3. Methodology
In this section, we first describe the training, valida-

tion, and testing datasets. Second, we define three levels of
salience granularity and describe several sources of salience
used within saliency-based training. Finally, we describe
the training and evaluation procedure used to evaluate the
research questions presented in the Introduction.

3.1. Datasets
We evaluate the affect of salience granularity from sev-

eral sources for iris-PAD and synthetic face detection tasks.
These tasks were selected due to their availability of human
annotations necessary to explore granularity across consis-
tent amounts of salient-information, and have proven useful
using the CYBORG loss function [5].

Training & Validation Set For the iris-PAD task, train-
ing and validation images were sampled from a super-
set composed of various live iris and iris PAD datasets
[1, 24, 14, 22, 44, 37, 23, 40, 36, 42, 12]. The training set
consisted of 765 samples comprising of bona fide (live) and
seven spoof attack types (artificial, diseased, post mortem,
paper print outs, synthetic, textured contact lens, textured
contact lens & printed), offered by [4]. The validation
set comprised of 23,312 samples, completely disjoint from
training and testing sets.

For the synthetic face detection task, we follow the
training splits introduced in [5]2. The training set consisted
of 1821 (919 real and 902 synthetic), and the validation set
consisted of 20,000 samples (10,000 real and 10,0000 syn-
thetic) extracted from the FRGC-Subset [29], SREFI [2]
and StyleGAN2-generated acquired from thispersondoes-
notexist.com.

Each training set was accompanied by human saliency
maps (i.e. every training sample has a corresponding
saliency map), as described in the next section. No saliency
accompanied the validation set.

Test Set For the iris-PAD task, we use LivDet-2020 to
benchmark model generalization performance [11]. This
edition of LivDet is particularly useful within saliency-
based training as a variety of attack types can be meaning-
fully annotated by human subjects (i.e. post mortem), which
translate downstream to raise generalization performance.

2The authors of this paper would like to thank the authors of [5] for
sharing their data and training splits with us.
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Figure 1. Examples of salience granularity used in saliency-based training defined within this paper: Boundary of Interest (BOI), Area of
Interest (AOI), Features of Interest (FOI), sourced from either human subjects or models that were trained to mimic the human subjects.
“Seg” indicates segmentation masks sourced from domain-specific segmentation models; (i) iris presentation attack detection task and (ii)
synthetic face detection task.

Our paper aims to explore the optimal salience granular-
ity (by first using configurations that have already proven
to work), and not introduce attack-type specifics that dis-
tract from our analysis. For the synthetic face detection
task, we sub-sampled the test set provided by [5] to reduce
computational overhead. 500 images were randomly with-
out replacement from two live (FFHQ [18] and CelebA-HQ
[18]) and 1000 images from six synthetic, GAN-generated
sources (ProGAN [18], StarGANv2 [7], StyleGAN [18],
StyleGAN2 [21], StyleGAN2-ADA [19], and StyleGAN3
[20]. In total, the synthetic face detection test set comprised
of 7,000 (1000 live and 6000 synthetic) test images.

Finally, no saliency accompanied the testing sets.

3.2. Acquisition of Salience
In this section, we first define three levels of salience

granularity (Boundary of Interest, Area of Interest, and Fea-
tures of Interest), aimed to provide a varied amount of
salience. Next, we describe three sources of salience (hu-
man subjects, models trained to mimic human subjects,
and domain-specific segmentation models). These config-
urations allow for a cross-sectional analysis surrounding
the optimal salience granularity and from which particular
source. For our experiments, we use the human saliency
provided by previous works for iris-PAD [4] and synthetic
face detection [5], for its history of success in implementa-
tion, despite not explicitly including expert annotators.

Granularity of Human Salience As described in Sec.2,
previous work spent little time exploring effective means of
assembling salience from human annotations. Most works
simply averaged annotations from correctly classified sam-

ples, aggregating these samples into a single saliency map
[4, 5]. As a consequence, the number of training samples
with accompanying saliency maps was pruned to a meager
few hundred samples. In Boyd et al., 10,750 saliency maps
collected were reduced to only 1,821 [5]. This configura-
tion prioritizes fine-grained, human-salient features at the
expense of an abundant supply. However, to our knowledge,
no prior work has viewed human saliency under a variable
approach, or within different levels of granularity.

In this work, we evaluate salience (sourced by human
subjects and models trained to mimic human subjects) un-
der the following levels of granularity (see Fig. 1):

• Boundary of Interest (BOI): a rectangular box that
indicates a general boundary pertaining to human
saliency.

• Area of Interest (AOI): a binarized region that indi-
cates human saliency uniformly.

• Features of Interest (FOI): regions that indicate fine-
grained, variable amounts human saliency within spe-
cific regions of the input sample.

Since previous works average saliency maps together to
obtain fine-grained detail within each sample, we describe
this as Features of Interest (FOI). This assembly prioritizes
sample-level features pertinent towards solving the larger
task. In an effort to standardize the amount of salient-
information contained within each sample while maintain-
ing a varied degree of granularity, Boundary of Interest
(BOI) and Area of Interest (AOI) salience was derived from
the FOI salience. AOI salience was generated by first bina-
rizing FOI salience, wherein pixels with values greater than
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0 were set to 255. For BOI salience, a minimally enclosing
rectangle was drawn that encompasses all salient regions
found within the FOI salience. The same process was con-
ducted from salience generated by both human subjects and
models trained to mimic human subjects (described in the
section below).

Models Mimicking Human Subjects Given the con-
straints associated with collecting salience from human sub-
jects, a more efficient use of human saliency is to train
a model to generate or emulate human saliency. Under
this scenario, an autoecoder-type model is trained to learn
human-salient features given a cooresponding input image.
Once trained, the model can generate salience easily at scale
(unlike human saliency). To explore the potential sources of
salience, autoencoders were trained using human-sourced
(FOI) saliency maps (described above) and used to gener-
ate salience for a second training split. To make fair com-
parisons, this generated split was comprised of the same
size (764 samples for iris-PAD, 1821 samples for synthetic
face) and sources as detailed above. AOI and BOI saliency
were derived from the FOI saliency sourced by the autoen-
coder for both respective tasks. For iris-PAD, AOI saliency
was derived by binarizing the FOI saliency with a thresh-
old of 0.5, wherein pixels with values greater than 127
were set to 255 and lesser or equal values were set to 0.
BOI saliency was drawn with a minimally enclosing rectan-
gle over the salient regions found within the AOI saliency
eroded by a 3 ⇥ 3 kernel, initialized uniformly at 1.0 for
a single iteration. For the synthetic face detection task,
AOI saliency was likewise derived by binarizing the FOI
saliency with a threshold of 0.5. BOI saliency was also gen-
erated from the AOI saliency, except no erosion was applied
prior to computation. For convenience in training the au-
toencoders, a lightweight parameter sweep was performed
using RayTune for efficient traning of the autoencoder for
each respective task[25]. For iris-PAD, a DenseNet-161-
based UNET [16, 32] was trained using the Adam opti-
mizer (lr = 0.0001) for 50 epochs and a batch size of
20. For the synthetic face detection task, an Inception-V4-
based UNET [33, 32] was trained using the Adam optimizer
(lr = 0.0001) for 50 epochs and a batch size of 10. Both
models were trained using a sigmoid activation function,
initialized with ImageNet weights [13], and using a Mean
Squared Error (MSE) loss, sourced from [17].

Segmentation Models Domain-specific segmentation
models offer feature-level masks that may be useful
in saliency-based training, requiring no overhead and
essentially for free. Additionally, if domain-specific
segmentation models can achieve comparable performance
to human subjects, human salience collections may be
antiquated and completely unnecessary. We explore the

validity of SOTA segmentation-sourced saliency for iris-
PAD using CC-NET [27, 10], and the BiSeNet-based face
parser [46, 45] for synthetic face. Models were evaluated
off the shelf (without any fine-tuning or training), and
segmentations were generated using the original training
split described in Sec.3.1 (see column “Seg” in Fig. 1).

3.3. Training & Evaluation Configurations
The various configurations of salience granularity and

salience sources was evaluated across three CNN architec-
tures, ResNet50 [15], DenseNet-121 [16], and Inception-V3
[34] using the CYBORG loss function [5]. The CYBORG
loss parameter weighting human-guidance and classifica-
tion performance was given equal weight (↵ = 0.5) for all
salience granularity experiments (BOI, AOI, and FOI), as in
[5]. Baseline training without the use of any salience was
performed with cross-entropy loss (“None” in Tab. 1 and
Tab. 3) under the same training configurations for additional
comparison. All models were initialized with ImageNet
weights [13], trained with a batch size of 20 using Stochas-
tic Gradient Descent (SGD) for 50 epochs, with learning
rate of 0.005, modified by a scheduler, which reduced the
learning rate by a factor of 0.1 every 12 epochs. We evalu-
ate the generalization performance on the test set using Area
Under the ROC Curve (AUC). For the iris-PAD task, the
means and standard deviations of AUC are reported across
3 independent runs in Tab. 1, whereas the synthetic face
detection models are reported across 5 independent runs
(Tab. 3). Since our analysis is focused solely on measuring
granularity, we do not include generalization results from
previous work as they use the same granularity of salience
for all experiments (FOI granularity).

4. Results
This section describes the results, organized by the re-

search questions presented in the Introduction. Results for
all variants are summarized in Tab. 1 and Tab. 3, and ROC
curves are displayed in Fig. 2 and Fig. 3.

4.1. RQ1: What is the optimal level of granularity?
Focusing first on salience sourced from human subjects,

granularity has a sizable impact on generalization perfor-
mance for iris-PAD (see Tab. 1). The conventional configu-
ration of salience, FOI, common previous works, translated
downstream to sub-optimal model generalization (aver-
age AUC=0.898), compared to AOI (average AUC=0.910)
across all three architectures. More specifically, DenseNet
had the largest improvement over the conventional saliency
selection. These results suggest that strong generaliza-
tion can be achieved through simpler salience granularity
indicating merely Areas of Interest (AOI), which signifi-
cantly reduces the overhead associated with human sub-
ject collection. More specifically, it suggests that detailed
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Table 1. Three CNN architectures (ResNet50, DenseNet-121, and Inception-V3) generalization performance with saliency-based training
across various sources of saliency (Human Subjects, Models Mimicking Human Saliency, Segementation Models, or None) across three
different salience granularities (only applicable for Human Subjects and Models Mimicking Human Saliency) for iris-PAD task. Means
and standard deviations of Area Under the Curve (AUC) are reported across 3 independent runs. Optimal saliency configuration for each
backbone is bolded, and the optimal average configuration across backbones is underlined.

Source of Saliency ResNet DenseNet Inception Average
Backbones Used in Saliency-Based Training

Human Subjects
Boundary of Interest (BOI) 0.886±0.015 0.903±0.010 0.873±0.023 0.887±0.016
Area of Interest (AOI) 0.909±0.006 0.921±0.013 0.900±0.005 0.910±0.008
Features of Interest (FOI) 0.908±0.005 0.895±0.018 0.890±0.015 0.898±0.013

Models Mimicking Human Subjects
Boundary of Interest (BOI) 0.939±0.008 0.933±0.016 0.953±0.007 0.942±0.010
Area of Interest (AOI) 0.956±0.006 0.962±0.005 0.962±0.013 0.960±0.008
Features of Interest (FOI) 0.945±0.007 0.955±0.003 0.958±0.007 0.953±0.006

Segmentation Models
Iris Segmentations 0.894±0.010 0.884±0.004 0.878±0.022 0.885±0.012

None
Baseline 0.875±0.013 0.893±0.019 0.889±0.006 0.886±0.010

Table 2. Same as Tab. 1, except the Equal Error Rate is reported.
Source of Saliency ResNet DenseNet Inception Average

Backbones Used in Saliency-Based Training

Human Subjects
Boundary of Interest (BOI) 0.197±0.013 0.182±0.011 0.202±0.023 0.194±0.018
Area of Interest (AOI) 0.174±0.005 0.163±0.017 0.183±0.005 0.173±0.013
Features of Interest (FOI) 0.178±0.007 0.189±0.017 0.196±0.016 0.188±0.015

Models Mimicking Human Subjects
Boundary of Interest (BOI) 0.140±0.009 0.143±0.018 0.120±0.008 0.134±0.016
Area of Interest (AOI) 0.115±0.006 0.107±0.008 0.102±0.021 0.108±0.014
Features of Interest (FOI) 0.131±0.013 0.114±0.005 0.111±0.012 0.119±0.013

Segmentation Models
Iris Segmentations 0.187±0.009 0.199±0.003 0.203±0.017 0.196±0.013

None
Baseline 0.206±0.015 0.191±0.025 0.193±0.004 0.197±0.017

saliency methods (i.e. averaging saliency maps from multi-
ple annotators, or collecting salience through eye-tracking)
does not reap additional generalization benefits for iris-
PAD. Furthermore, simply collecting a boundary of salience
(BOI in 1) proves insufficient in generalization performance
(AUC=0.887), and is on par with using no saliency at all
(AUC=0.886). Thus, the answer to RQ1 is Area of Inter-
est (AOI) salience granularity for iris-PAD.

4.2. RQ2: Does optimal granularity generalize
across different presentation attack instru-
ments?

Tab. 3 indicates that optimal salience granularity gen-
eralizes differently for synthetic face detection compared to
iris-PAD. More specifically, the results suggest that salience
granularity for synthetic face detection tasks are more de-
pendent on the architectures themselves. The optimal
salience granularity using human subjects-sourced salience
for ResNet architectures was BOI (AUC=0.604), whereas
optimal granularity for both DenseNet and Inception archi-
tectures was FOI (0.643 and 0.641, respectively). However,
it’s worth noting the wide standard deviations reported in-
dicate the differences in salience granularity may not be
statistically significant for synthetic face detection. These

results could also indicate that the human annotations col-
lected for this specific synthetic face detection may not be
as valuable as for iris-PAD. However, unlike iris-PAD, in-
cluding any type of salience during training (BOI, AOI, or
FOI) for synthetic face detection on average boosted gener-
alization performance across all architectures (compared to
the Baseline, bottom row Tab. 3), suggesting that saliency-
based gains can be made with quite simple salience over the
baseline.

The answer to RQ2 is negative: optimal salience gran-
ularity is different across biometric modalities (iris-PAD
and synthetic face detection), and the use of saliency-based
training necessitates thoughtful consideration pertaining to
salience granularity and the corresponding architectures
used within saliency-based training.

4.3. RQ3: Do models trained to mimic human
saliency offer image annotations which, when
used in saliency-guided trained, lead to better
generalization?

Arguably the most interesting finding from our experi-
ments is that models trained to mimic human saliency of-
fer impressive gains in generalization performance, includ-
ing over the human subjects. The majority of model back-
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Table 3. Same as Tab. 1, except for synthetic face detection task, where results are reported across 5 independent runs. Per class
accuracy (Real / Synthetic) is also reported for additional comparisons.

Source of Saliency ResNet DenseNet Inception Average AUC Average Accuracy
Backbones Used in Saliency-Based Training Real Synthetic

Human Subjects
Boundary of Interest (BOI) 0.604±0.048 0.546±0.059 0.617±0.062 0.589±0.056 0.001±0.002 1.0 ±0.001
Area of Interest (AOI) 0.579±0.035 0.577±0.045 0.639±0.029 0.598±0.036 0.003±0.002 0.999±0.001
Features of Interest (FOI) 0.590±0.023 0.643±0.033 0.641±0.046 0.629±0.037 0.01±0.009 0.997±0.001

Models Mimicking Human Subjects
Boundary of Interest (BOI) 0.584±0.031 0.583±0.054 0.539±0.034 0.569±0.040 0.001 ± 0.001 1.0±0.0
Area of Interest (AOI) 0.614±0.056 0.640±0.046 0.608±0.071 0.621±0.058 0.0±0.0 1.0±0.0
Features of Interest (FOI) 0.600±0.025 0.619±0.033 0.632±0.019 0.617±0.026 0.001 ± 0.001 1.0 ± 0.0

Segmentation Models
Face Segmentations 0.548±0.048 0.451±0.050 0.579±0.040 0.526±0.046 0.002±0.001 1.0±0.0

None
Baseline 0.572±0.047 0.535±0.075 0.540±0.037 0.549±0.053 0.057±0.03 0.971±0.015

Table 4. Same as Tab. 3, except the Equal Error Rate (EER) is reported.
Source of Saliency ResNet DenseNet Inception Average

Backbones Used in Saliency-Based Training

Human Subjects
Boundary of Interest (BOI) 0.429±0.035 0.462±0.043 0.413±0.048 0.435±0.045
Area of Interest (AOI) 0.440±0.022 0.442±0.032 0.390±0.025 0.424±0.035
Features of Interest (FOI) 0.433±0.023 0.391±0.029 0.390±0.035 0.405±0.034

Models Mimicking Human Subjects
Boundary of Interest (BOI) 0.594±0.147 0.458±0.066 0.468±0.032 0.507±0.109
Area of Interest (AOI) 0.408±0.039 0.388±0.043 0.405±0.059 0.400±0.045
Features of Interest (FOI) 0.515±0.123 0.449±0.097 0.384±0.018 0.449±0.101

Segmentation Models
Iris Segmentations 0.462±0.037 0.537±0.037 0.440±0.032 0.480±0.054

None
Baseline 0.444±0.034 0.491±0.045 0.453±0.006 0.463±0.037

bones across both tasks (except DenseNet and Inception for
synthetic face detection) performed best when models were
trained using saliecy sourced from models mimicking hu-
man saliency. For iris-PAD, all models held a substantial
gains across all granularities (cross model AUC averages
include BOI=0.942, AOI=0.960, FOI=0.953) compared
to human subjects (BOI=0.887, AOI=0.910, FOI=0.898).
Similar to the findings of RQ2, the synthetic face mod-
els offered a mixed result of improvement, largely depend-
ing on the architecture. Models mimicking human subjects
achieved the best average performance out of all salience
configurations for ResNet (AOI=0.614), whereas DenseNet
and Inception benefited best from fined-grained saliency
sourced from human subjects (0.643 and 0.641, respec-
tively). The performance gains using saliency offered by
models mimicking human subjects over the human subjects
directly can be a result of supplemental salient-information
incorporated by the autoencoder (see the differences be-
tween BOI, AOI, and FOI between human subjects and
models mimicking human subjects in Fig. 1). Although
the autoencoder was trained to mimic the human annota-
tions, it still has agency in deciding which salient regions to
annotate while satisfying the initial human annotation. This
process allows an interweaving of complementary human
and model salient-information to be encoded directly within
the generated saliency map, which can boost model general-
ization performance downstream with saliency-based train-

ing. Finally, these results suggest that the availability of
human saliency collections can be expanded without the
scaling limitations associated with collection from human
subjects. More specifically, these models largely benefited
from AOI granularity, which strikes a necessary balance be-
tween fine-grained, feature level saliency (FOI) and the un-
focused, blanket saliency of BOI.

4.4. RQ4: Can saliency be sourced from domain-
specific segmentation models instead of hu-
mans?

Given our findings in RQ3, a question arises whether
saliency collection from human subjects is necessary at
all, and whether domain-specific segmentation models can
be used instead of human-sourced (i.e. by human subjects
or models mimicking human subjects). We found that
saliency-based training using segmentation models signif-
icantly falls short of human-sourced saliency, but is occa-
sionally an improvement from no salience use at all. For
iris-PAD, using iris segmenter-based saliency offered the
worst average model performance (AUC=0.885), includ-
ing the baseline with no saliency use at all (AUC=0.886).
These results bolster the need for human subjects within the
saliency-generation pipeline (either sourced directly from
human subjects, or training models to mimic human sub-
jects) for presentation attack detection and related synthetic
detection tasks. Domain-specific segmentation models are
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trained to simply locate basic features of the input sample
(i.e. annular iris, or nose for faces), which is insufficient in-
formation required to solve these tasks. Often the informa-
tion necessary to correctly classify the PAD sample goes be-
yond simple feature matching, and requires models to look
elsewhere (i.e. corners of the sample for post mortem at-
tack types). Unlike domain-specific segmentation masks,
human subjects locate these anomalous regions (as do mod-
els trained to mimic the human subjects), guiding the mod-
els towards salient-regions necessary to solve the PAD task.

The answer to RQ4 is negative: saliency is best sourced
directly from humans (human subjects or models mimick-
ing human subjects). However, our findings suggest that
using saliency from segmentation models may provide gen-
eralization gains over traditional configurations where no
saliency is used during training.

5. Conclusion
Efforts to raise generalization in challenging biomet-

ric tasks have often incorporated human-perceptual infor-
mation into the training of CNN models, most commonly
through saliency-based training. Despite their ability to im-
prove generalization in iris-PAD and synthetic face detec-
tion tasks, obtaining fine-grained salience from human sub-
jects remains an ongoing obstacle. However, our results in-
dicate this challenge may be an illusion for some biometric
modalities. In this paper, we find that model generalization
can be improved through more manageable collection and
assembly. First, we define three levels of salience granu-
larity: Boundary of Interest (BOI), Area of Interest (AOI),
and Features of Interest (FOI), which all have varying de-
grees of detail and associated acquisition costs. Second, we
show that traditional salience granularity methods (FOI) is
often inferior to more simpler methods (AOI) for iris-PAD
tasks. For synthetic face detection, we found that optimal
granularity is largely architectural dependent, though mod-
els benefited from the use of any level of salience (BOI,
AOI, FOI) over no salience use at all during training. Third,
we showcase how substantial generalization gains can be
made using salience generated by models that mimic hu-
man subjects, which combine the complementary informa-
tion between human subjects and the model. Finally, we
show the ineffectiveness of salience sourced from domain-
specific models within saliency-based training, encouraging
for a human to be involved in the salience curating process.

We acknowledge a performance gap between the bio-
metric domains explored, correlating with human perfor-
mance; iris-PAD anomalies are easier for both humans and
CNNs to detect compared to synthetic faces, whose fidelity
is near to that of real faces. Despite this, our results illustrate
that optimizing saliency granularity is an effective path to
raising generalization in real-world biometric applications.
Our findings suggest saliency-based training is limited by

the necessity of salience collection, the domain of appli-
cation, and the architecture of implementation. Our paper
calls attention to an important, but remarkably missed com-
ponent to all saliency-based training methods and suggests
that generalization performance can be improved through
less taxing means of acquisition.
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(c) Inception
Figure 2. Mean ROC curves and bands representing standard deviations (along the True Positive Rate axis) for all backbones used in
saliency-based training with varied configurations of saliency for iris-PAD (top row) and synthetic face detection (bottom row) tasks. For
human subjects and models mimicking human subjects, the optimal granularity (BBOI, AOI, FOI) is selected, indicating that generalization
performance improves having human subjects within the saliency generation pipeline. Means and standard deviations of Area Under the
Curve (AUC) are reported in brackets.
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Figure 3. Same as in Fig. 2, except for synthetic face detection.
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