

1 **Title: Underrepresentation of dietary-specialist larval Lepidoptera in small forest
2 fragments: testing alternative mechanisms**

3
4 **Authors:** James G. Mickley, Riley M. Anderson, David L. Wagner, Leone M. Brown, Christian
5 J. Connors, Miranda L. Davis, Chris S. Elphick, Howard Kilpatrick, Michael C. LaScaleia,
6 Courtney Marren, Hooman Musavi, Nikki L. Pirtel, Kathryn Weeks, Michael S. Singer, Robert
7 Bagchi

8
9 **Corresponding author:** Robert Bagchi (robert.bagchi@uconn.edu)

10
11 **Keywords:** specificity, trophic island biogeography, habitat fragmentation, insect decline,
12 habitat amount.

13

14 **Abstract**

- 15 1. Growing evidence suggests that organisms with narrow niche requirements are particularly
16 disadvantaged in small habitat patches, typical of fragmented landscapes. However, the
17 mechanisms behind this relationship remain unclear. Dietary specialists may be particularly
18 constrained by the availability of their food resources as habitat area shrinks. For herbivorous
19 insects, host plants may be filtered out of small habitat fragments by neutral sampling
20 processes and deterministic plant community shifts due to altered microclimates, edge
21 effects, and browsing by ungulates.
- 22 2. We examined the relationship between forest fragment area and the abundance of dietary-
23 specialist and dietary-generalist larval Lepidoptera (caterpillars) and their host plants in the
24 northeastern USA. We surveyed caterpillars and their host plants over three years in equal-
25 sized plots within 32 forest fragments varying in area between 3 and 1014 ha. We tested
26 whether the abundances and species richness of dietary specialists increased more than those
27 of dietary generalists with increasing fragment area, and, if so, whether the difference could
28 be explained by reduced host plant availability or increased browsing by white-tailed deer
29 (*Odocoileus virginianus*).
- 30 3. The overall abundance of dietary specialists was positively related to fragment area; the
31 relationship was substantially weaker for dietary generalists. There was notable variation
32 among species within diet breadth groups, however. There was no effect of fragment area on
33 the diversity of dietary-specialist or dietary-generalist caterpillars. Deer activity was not
34 related to the abundances of either dietary-generalist or dietary-specialist caterpillars.
- 35 4. Plant community composition was strongly associated with fragment area. Larger fragments
36 were more likely to include host plants for both dietary-specialist and dietary-generalist

37 caterpillars. Deer activity was correlated with decreased host plant availability for both
38 groups, with a slightly stronger impact on host plants of dietary specialists. Although dietary
39 specialists were more likely to lack host plants in fragments, the relationship between
40 fragment area and host availability did not depend on caterpillar diet breadth.

41 5. This study provides further evidence that decreasing patch area disproportionately impacts
42 specialist consumers. Because this relationship was derived from equal-sized plots, it is
43 robust to some criticisms levelled at fragmentation research. The mechanisms for specialist
44 consumer declines, however, remain elusive.

45

46 **Introduction**

47 The role of habitat fragmentation in driving biodiversity declines is controversial (Fahrig,
48 2017; Haddad et al., 2015, 2017; Riva et al., 2024; Watling et al., 2020). Theory on this topic
49 began with applications of island biogeography theory (MacArthur & Wilson, 1967), drawing
50 parallels between oceanic islands and habitat fragments remaining after habitat loss (Preston,
51 1962). In practice, the term “habitat fragmentation” is often used to refer to several simultaneous
52 changes to the landscape including habitat loss, edge creation, matrix degradation, and area
53 effects (Didham et al., 2012; Ries et al., 2004; Riva et al., 2024). It is particularly important to
54 separate habitat loss from the spatial configuration of remaining habitat (fragmentation *per se*),
55 especially given that these two aspects of change often covary. Furthermore, the effects of
56 habitat fragmentation often vary by taxon, guild, and life history (Damschen et al., 2008; Fischer
57 & Lindenmayer, 2006; Martinson & Fagan, 2014; Öckinger et al., 2010; Rossetti et al., 2017).
58 The direct effects of fragmentation on individual species may be modified by altered interactions
59 with resources, mutualists, competitors, and enemies (Aizen & Feinsinger, 1994a; Cordeiro &
60 Howe, 2003; Laurance, 2008; Magrach et al., 2014), with the impact of these indirect effects
61 sometimes exceeding those of direct effects (Feeley & Terborgh, 2008). These multifaceted
62 consequences of fragmentation cannot be captured by island biogeography theory, which
63 assumes species equivalency, ignores species interactions, and treats all habitat patches as
64 equally suitable. Such oversimplification has led to criticisms of fragmentation research, and
65 calls for refinement (Didham et al., 2012; Fischer & Lindenmayer, 2006; Laurance, 2008).

66 An important theoretical extension of island biogeography theory, trophic island
67 biogeographic theory (Gravel et al., 2011; Holt, 1996), predicts that species’ trophic position and
68 dietary specialisation affect their sensitivity to fragment area. For a species to colonise and

69 persist in a habitat patch, the species it consumes must also be present (Gravel et al., 2011; Holt,
70 1996). Simply by chance, small habitat fragments are less likely to encompass scarce resources
71 like specific host plants (Gravel et al., 2011; Holt, 1996, 2010). Loss of host plant species from
72 small habitat fragments through these neutral processes disproportionately affects dietary
73 specialists because, by definition, they have fewer alternatives. In contrast, dietary generalists are
74 likely to find at least some of their host plants in most habitat fragments. Consequently, the
75 abundances and species richness of specialist herbivore species may decline more steeply with
76 decreasing fragment area than the abundances and species richness of generalist species.

77 Plant community composition can also vary deterministically with fragment area, for
78 instance, due to altered abundances of predators, browsing herbivores, or invasive species (Allen
79 et al., 2013; Anderson et al., 2019; Fenoglio et al., 2012; Terborgh et al., 2001). Increased
80 browsing by hyperabundant ungulates in small fragments may reduce food availability for insect
81 herbivores, filter out palatable species, and alter microclimates (Alverson et al., 1988; Gorchov
82 et al., 2021; Rooney & Waller, 2003). Even though browsing by herbivores can either increase or
83 decrease overall plant diversity (Mortensen et al., 2018; Trepel et al., 2024), some studies
84 suggest that browsing by deer disproportionately impacts plant species with particularly
85 abundant and rich specialist insect-herbivore faunas (Bagchi et al., 2018; e.g., pin cherry, *Prunus*
86 *pensylvanica*, in northeastern America, Wheatall et al., 2013). Again, because dietary specialists
87 have few alternative hosts to switch to, broad-scale deer browsing is likely to have a more
88 negative impact on dietary-specialist than dietary-generalist herbivores. Such deterministic
89 effects of fragment area will predominantly impact herbivore species that rely on plant species
90 that are consistently suppressed in smaller fragments (e.g., deer-sensitive plant species), with
91 insects that consume plant species that tolerate, or thrive in, small fragments affected less, or

92 even benefitting. In contrast, because neutral processes remove plant species at random, which
93 herbivore species are affected will vary among fragments, but the expected effect of fragment
94 area will be consistent among species with the same diet-breadth. Therefore, deterministic effects
95 of fragment area should generate more variation in abundance-fragment area relationships
96 among herbivore species within diet-breadth categories area relationships than neutral effects.

97 Several empirical studies, many from insect-herbivore systems, indicate that dietary-
98 specialist, poor-dispersing, and less-fecund insect species are particularly sensitive to habitat
99 loss, and decreases in fragment area (Martinson & Fagan, 2014; Öckinger et al., 2010; Rossetti et
100 al., 2017). One challenge in understanding the drivers of these patterns is distinguishing how
101 much of the changes in small fragments stem from shifts in the demography of species within
102 them (ecosystem decay) as opposed to reductions in sample sizes in small fragments (passive
103 sampling; Chase et al., 2020). It is also important to control for the potentially confounding
104 effects of habitat amount at larger spatial scales (Riva et al., 2024). Existing studies examining
105 how species traits influence the effects of fragment area on insect herbivores have not used
106 equally sized plots (most are meta-analyses), which makes it difficult to rule out the effects of
107 passive sampling (Chase et al., 2020). Furthermore, there is a dearth of studies that test
108 mechanisms for trait-based variation in area sensitivity among species. For example, although
109 the proportion of insect herbivore species with narrow diet breadth often declines with fragment
110 area (Bagchi et al., 2018; Martinson & Fagan, 2014; Öckinger et al., 2010; Rossetti et al., 2017),
111 few studies link those declines to reduced availability of suitable host plants in small habitat
112 fragments (but see Cirtwill & Stouffer, 2016).

113 In this study, we examined whether reduced fragment area disproportionately impacted
114 dietary-specialist lepidopteran larvae (caterpillars), and investigated the contributions of shifting

115 plant communities and deer activity to those impacts. We predicted that as fragment area
116 decreased, host plants required by dietary-specialist caterpillars would become less common. We
117 hypothesised that declines in dietary specialists could result from both deterministic filtering out
118 (e.g., by deer) of plant species favoured by specialists in small fragments or, alternatively, from a
119 neutral sampling process where small fragments lose suitable host plant species by chance. The
120 deterministic hypothesis additionally predicts the opposite trend for some dietary-specialist
121 species: small fragments should contain more caterpillars that specialise on host plants that are
122 more common in small fragments (such as exotic plants), a pattern that can be quantified by the
123 variation among specialists in their responses to fragment area. Because smaller populations are
124 more likely to be extirpated, we expected that species richness of dietary-specialist caterpillars
125 would be disproportionately reduced in small fragments relative to richness of generalists
126 (Gravel et al., 2011). We also hypothesised that increased browsing by deer, often more common
127 in small fragments (Alverson et al., 1988), would impact dietary-specialist species more than
128 dietary generalists. This expectation is based on the observation that some plant species preferred
129 by deer are associated with abundant and species-rich assemblages of specialist insect herbivores
130 (Bagchi et al., 2018; Wheatall et al., 2013). To test our hypotheses, we focussed on assemblages
131 of forest-dwelling caterpillars feeding on woody host plants and assessed the following
132 predictions (Figure 1):

133 1. The (a) abundance and (b) species richness of dietary-specialist caterpillars will be more
134 positively correlated with forest fragment area than the abundance and species richness of
135 dietary generalists.

136 2. The composition of plant communities will respond to reduced fragment area and
137 increased deer activity with increasing abundances of exotic and deer-resistant species.

- 138 3. Increased deer activity will decrease the abundance of dietary-specialist caterpillars more
139 than dietary generalists.
- 140 4. The availability of host plants of dietary specialists will (a) increase with fragment area
141 and (b) decrease with deer activity more than the availability of host plants of dietary
142 generalists.

143 We evaluated these predictions at a landscape scale with a 3-year survey of caterpillar
144 assemblages in 32 forest fragments in Connecticut, northeastern USA. We assessed effects of
145 fragment area on dietary-specialist and dietary-generalist Lepidoptera by sampling equal areas of
146 forest in each fragment (to identify ecosystem decay). We used spatial blocking of fragments of
147 contrasting area to control for the confounding effects of total forest cover at large spatial scales
148 (50 km^2).

149 **Methods**

150 *Sampling Design*

151 We sampled plant and caterpillar assemblages in temperate forest fragments across a
152 $3,500 \text{ km}^2$ area of central and eastern Connecticut, USA (mean annual temperature 9.7°C , mean
153 annual precipitation 1,264 mm; US National Weather Service, 2006 – 2020). Using a 2015
154 forested land cover database (Arnold et al., 2020) and restricting our sample to core forest (>100
155 m from any edge), we selected 32 forest fragments within 13 blocks, wherein each block
156 contained 2 – 3 neighbouring forest fragments of different area classes ($<100 \text{ ha}$, $100\text{-}200 \text{ ha}$
157 and $>200 \text{ ha}$ of core forest; [Figure 2A](#)). We calculated the area of core forest in each fragment as
158 the number of contiguous raster cells $> 100 \text{ m}$ from the edge. Fragment areas ranged between 3
159 ha and 1,014 ha.

160 Within each forest fragment, we established three 10×10 m vegetation sampling plots,
161 one at each vertex of a 25 m-sided equilateral triangle located in the fragment's interior, avoiding
162 water-logged and open areas. We established four 5×5 m caterpillar sampling plots adjacent to
163 each of the three vegetation plots, for a total of twelve caterpillar plots (300 m^2) per fragment
164 (Figure 2B).

165 *Vegetation Surveys*

166 We recorded the species identity (or greatest taxonomic resolution possible) of every
167 woody plant >1 m tall within the three vegetation plots at each fragment. We measured diameter
168 at breast height (dbh, measured at 1.3 m above ground) for trees >1.3 m tall and height of smaller
169 stems. Vegetation surveys were conducted only once in each fragment, during July – October of
170 2017 – 2019, because turnover in woody plant composition is relatively slow.

171 *Caterpillar Sampling and Identification*

172 During each June of 2017 – 2019, we sampled the twelve caterpillar plots in each
173 fragment. In each plot, we sampled up to five branches 1–2 m above the ground of each woody
174 plant species present. Host plants were identified to species when sampled.

175 We sampled caterpillars at least 10 mm long using a beat sheet survey (Wagner, 2005)
176 with 1- m^2 beat sheets (ripstop nylon, Bioquip Products #2840R). Caterpillars unidentified in the
177 field (approximately 10% of individuals, mostly early instars or visually indistinguishable taxa)
178 were transported to the University of Connecticut and individually reared on leaves from the
179 plant species they were collected on until they were identified or died.

180 Caterpillars unidentified during rearing were DNA barcoded using the cytochrome C
181 oxidase subunit 1 gene (CO1, Hebert et al., 2003) to determine species identity. Fifty-five
182 samples were barcoded by Barcode of Life Data (BOLD) System facility at Guelph University

183 (Ratnasingham & Hebert, 2007). For the remaining 247 samples, DNA was extracted using the
184 arthropod lysis buffer (Ivanova et al., 2006), and purified with magnetic Sera-Mag™
185 SpeedBeads (GE Healthcare 65152105050250) on a magnetic plate (Ambion™ AM10027).
186 Sanger sequencing was performed by Eurofins Genomics. Sequences were checked against
187 BOLD ((Ratnasingham & Hebert, 2007) to determine species identity, and where alternatives
188 were unlikely, identifications were extended to caterpillars the same morphotype.

189 *Diet Breadth*

190 To quantify diet breadth, we calculated a weighted mean of pairwise phylogenetic
191 distance of all host plants on which a caterpillar species was found (adding records from 2015,
192 Bagchi et al., 2018). Means were weighted by the number of records on each host to account for
193 host preference and to down-weight sporadic erroneous host records. Phylogenetic distance was
194 derived from an angiosperm phylogeny including all of our host species (Smith & Brown, 2018).
195 Weighted mean phylogenetic distance was strongly bimodal, with a clear separation between
196 dietary specialists and dietary generalists ([Figure S1](#)). Therefore, to simplify models, we used
197 discrete diet breadth categories of “specialist” and “generalist”, where generalists had a weighted
198 mean phylogenetic distance >100 million years (Anderson et al., 2019). We used this approach
199 for all species with at least five individuals. Species with 3 – 5 records were classified based on
200 expert opinion (D. L. Wagner, M. S. Singer, S. Jaffe and J. Dombroskie) of whether the species
201 has been observed feeding on a single plant family (specialists) or more families (generalists)
202 within southern New England, USA. We excluded species with < 3 individuals because initial
203 models suggested including them led to poor model diagnostics. Our classification of dietary
204 specialists depended on host use across southern New England. We used this approach because,
205 while some species we classified as dietary specialists (e.g., *Morrisonia evicta* and *Nadata*

206 *gibbosa*) may have broader diets across their entire geographic range (Fox & Morrow, 1981),
207 their dietary requirements in southern New England probably limit the availability of suitable
208 host plants within the fragments that we studied.

209 *Leaf Area*

210 To account for differences among plots in the amount of foliage sampled per plant
211 species, we either counted the number of leaves per branch, or measured branch length and
212 diameter. To estimate leaf number from branch length and diameter, we recorded both leaf
213 counts and branch measurements on the same branch for 1-73 branches per plant species for 40
214 species (38 species had ≥ 4 branches). We used a negative-binomial mixed model to predict the
215 number of leaves from branch length, diameter, their interaction, and random intercepts for plant
216 species nested within family. We also allowed the effect of branch diameter to vary among
217 species. The family-level random effects allowed predictions of leaf number for species without
218 sufficient data for a single-species model. We also scanned >40 leaves per plant species,
219 measured their area using *ImageJ* (Rasband, 1997), and constructed a model predicting leaf area
220 (cm^2) from a random effect of plant species nested within plant family. These two models (Table
221 S1) were used to predict total leaf area (foliage) of branches.

222 *Assessment of deer activity*

223 Deer activity was assessed using three approaches: (1) camera trapping; (2) scat surveys;
224 (3) deer browse surveys. Five camera traps were located within the 1-ha square surrounding the
225 caterpillar plots at each fragment. One camera trap was located at a random location within each
226 quarter of this area, with the fifth camera randomly located within the 1-ha area. Cameras were
227 installed for two weeks at each fragment between 22 January and 19 March 2018, with eight
228 fragments monitored concurrently. Fragments within a block were monitored simultaneously,

229 with block order determined randomly. Images were independently examined by two researchers
230 for deer, and captures occurring within 15 minutes of each other were considered the same
231 record. Disagreements among researchers were resolved by re-examination of the image by a
232 researcher more experienced in mammal identification. We summed the number of deer
233 observations across camera traps within a fragment.

234 In May of 2017 and 2018, in the same 1 ha-square plot, we recorded deer scat density and
235 browsing within 25 1.2 m-radius circular plots on a grid with 50 m between plots. In each plot,
236 we counted deer scat piles found above the previous autumn's leaf layer. We summarised the
237 number of scat piles in each fragment as the mean number of scat piles across the 25 plots and
238 two years. In the same plots, we counted the proportion of seedlings in the genera *Acer*, *Betula*,
239 *Fagus*, *Kalmia*, *Prunus*, and *Quercus* with evidence of deer browsing in 2017, and of all woody
240 plant species with evidence of deer browsing in 2018. We converted these data into a measure of
241 deer browsing by fitting an intercept-only binomial model of the probability of a seedling being
242 browsed as a function of nested, normally distributed random effects for block, fragment, and
243 survey point, and another random intercept for plant species. We used this model to predict the
244 probability that a generic seedling would be browsed in each fragment. We scaled all deer
245 metrics by subtracting their mean and dividing by their standard deviation. For each fragment,
246 we calculated a combined metric of deer activity by taking the mean across the three scaled
247 metrics. In our analyses, we also considered alternative models where each individual metric was
248 used instead of the combined one.

249 *Statistical Analyses*

250 We used generalised linear mixed-effects models to evaluate our predictions that
251 fragment area (prediction 1) and deer activity (prediction 3) would affect the abundance and

252 species richness of dietary-specialist and dietary-generalist caterpillars differently. To address
253 prediction 1a, we modelled caterpillar counts per species in each fragment and host plant species
254 combination, assuming a negative-binomial error distribution (Table S2, Model 1a). As potential
255 predictors, we included diet breadth (generalist or specialist), fragment area (centred by
256 subtracting the midpoint value of 500 ha and dividing by the observed standard deviation), and
257 their interaction. To control for variation in foliage sampled per plot, we added log leaf area as
258 an offset term, thereby expressing caterpillar abundance as density (number per cm² of leaf area).
259 The models for species richness (prediction 1b) were like the models for abundance except the
260 response was number of species within each dietary category (Table S2, Model 1b). We also
261 fitted similar models with Simpson's and Shannon-Weiner indices as a response to incorporate
262 species evenness. All models also included categorical terms for year, normally distributed
263 random intercepts for caterpillar species (except the species richness model), and nested random
264 intercepts for fragment within block.

265 We additionally fitted a model of the effects of diet breadth and fragment area on
266 caterpillar abundance with a random slope for fragment area for each lepidopteran species, in
267 addition to the random intercept (Table S2, Model 1c). A random slope changes the
268 interpretation of the population-level parameter to the effect of fragment area on the average
269 species, while reducing the influence of more abundant species. The random-intercept-only
270 model, in contrast, controls for differences in abundances of species and quantifies the
271 aggregated response within dietary categories. This random intercept and slope model allowed us
272 to assess variation among species within diet categories in their responses to fragment area. We
273 quantified variation among years and species by comparing the deviance explained by these
274 terms to χ^2 distributions.

275 To test whether plant composition was associated with fragment area (prediction 2), we
276 used non-metric multidimensional scaling (NMDS) to visualise the major axes of variation in
277 plant composition among fragments. We pooled the plant composition data from the three
278 vegetation plots at each fragment and filtered out plant species that occurred fewer than five
279 times across all fragments. We applied a Wisconsin double standardisation and square-root
280 transformation to the abundance data and computed Bray's dissimilarity between each pair of
281 fragments. We used NMDS to find three axes that best preserved the rank order of dissimilarities
282 among the 32 fragments using 20 random starting points. We quantified the relationship between
283 woody plant composition and fragment area and deer activity (using the mean across the three
284 scaled metrics of deer activity) using PERMANOVA with 999 permutations.

285 To examine effects of fragment area (prediction 4a) and deer activity (prediction 4b) on
286 each lepidopteran species' host plant availability, we summed the basal areas at each fragment of
287 plants on which that caterpillar species was observed more than once in our surveys. Stems
288 between 1 m and 1.3 m tall were given a nominal dbh of 1 mm for the basal area calculation. We
289 modelled the total basal area of each caterpillar species' host plants as a function of dietary
290 specialisation and its two-way interactions with fragment area and deer activity, with random
291 intercepts for fragment nested within block (Table S2, Model 2). We fitted this model assuming
292 a zero-hurdle gamma distribution, which accommodated lepidopteran species without hosts in
293 some fragments. We modelled the presence of any host plants for each lepidopteran species as a
294 function of fragment area, deer activity and their interactions with caterpillar diet breadth. Zero-
295 hurdle models estimate the probability of zeros in the response (i.e., absences of hosts) using a
296 log-odds scale, so we multiplied the parameters by -1 to convert them to the probability of
297 presences and give the presence/absence and conditional abundance parameters the same

298 direction. If vegetation composition varied with fragment area so that dietary-specialist, but not
299 dietary-generalist, caterpillars had more host plants in larger fragments (prediction 4), the
300 parameters for the interaction between fragment area and diet would be positive.

301 Data were analysed in R (v4.2.2, R Core Team, 2022), using the `tidyverse` packages
302 for data preparation (Wickham et al., 2019). Models were fitted using the `glmmTMB` package
303 (Brooks et al., 2017) and ordinations performed with the `vegan` package (Oksanen et al.,
304 2022). We used the `ape` (Paradis & Schliep, 2019), and `phytools` (Lüdecke, 2022) packages
305 to calculate mean phylogenetic distance. Data and R code are available from online repositories
306 (see Data Availability). All samples were collected under permits from the Connecticut
307 Department Energy and Environmental Protection (1516006 and 1719006) and under exemption
308 E16-008 from the University of Connecticut Institutional Animal Care and Use Committee.

309 **Results**

310 We sampled 9,616 branches from 53 plant species across the three years of sampling and
311 collected 11,165 caterpillars representing 176 species, including 10,140 dietary generalists (97
312 species) and 810 specialists (57 species). An additional 315 caterpillars could not be reliably
313 assigned a diet breadth because they were unidentified, their host plants were unknown, or they
314 were from species collected only once or twice. The invasive *Lymantria dispar* (Erebidae) was
315 the most abundant lepidopteran species by far, accounting for 7,880 individuals, the vast
316 majority (82%) of which were sampled during a regional population outbreak in 2017
317 (Pasquarella et al., 2018). Model diagnostics improved when records for *L. dispar* from 2017 and
318 species with < 3 records were removed. Excluding these records resulted in a dataset with 4,406
319 caterpillars including 3,634 dietary generalists (63 species) and 772 dietary specialists (27

320 species). We report on analyses of these data here, although patterns in the entire data set were
321 similar.

322 *Interactive effects of fragment area and caterpillar diet (prediction 1)*

323 Concordant with prediction 1a, the overall abundance of dietary-specialist caterpillars
324 increased with increasing fragment area ($\beta = 0.34 \pm 0.142$ SE, $P = 0.016$), with a significantly
325 weaker relationship for dietary generalists (area \times diet interaction: $\beta = -0.28 \pm 0.115$ SE, $P =$
326 0.016; Figure 3). Although there was substantial temporal variation in caterpillar abundance
327 (annual variation: $\chi^2_2 = 98.60$, $P < 0.001$) and the relative abundances of specialist and generalist
328 caterpillars among years (year \times diet interaction: $\chi^2_2 = 25.46$, $P < 0.001$), the relationship
329 between fragment area and caterpillar diet was consistent across years (year \times diet \times area
330 interaction: $\chi^2_2 = 0.78$, $P = 0.675$).

331 Counter to prediction 1b the species richness of dietary-specialist caterpillars was
332 unaffected by fragment area ($\beta = 0.18 \pm 0.117$, $P = 0.123$) with a nearly identical relationship for
333 dietary generalists (area \times diet interaction: $\beta = -0.06 \pm 0.110$, $P = 0.616$). The inverse Simpson's
334 index, which more heavily weights the evenness of species abundances than other common
335 diversity indices, was also unrelated to fragment area (area effect for dietary specialists: $\beta = -$
336 0.08 ± 0.112 , $P = 0.454$; area \times diet interaction: $\beta = -0.005 \pm 0.077$, $P = 0.952$; the results for the
337 Shannon-Weiner index were similar).

338 *Variation among caterpillar species*

339 There was considerable variation among species in the responses of caterpillar abundance
340 to fragment area (variance of the random slope of fragment area among species = 0.361;
341 likelihood ratio test: $\chi^2_2 = 34.38$, $P < 0.001$; Figure 4). Adding a random slope for the fragment-
342 area term for each caterpillar species in the model removed the observed relationship between

343 fragment area and the abundances of both dietary specialists and dietary generalists (specialists:
344 $\beta = 0.16 \pm 0.204, P = 0.44$; fragment area \times diet interaction: $\beta = -0.16 \pm 0.198, P = 0.42$). This
345 difference between the random intercept and random slope models indicates that while dietary-
346 specialist caterpillars were, on average, more sensitive to fragment area than dietary generalists,
347 this pattern was not universally true across all taxa.

348 *Interactive effects of deer activity and caterpillar diet (prediction 3)*

349 Caterpillar densities, both generalists and specialists, were unrelated to the average of the
350 three measures of deer activity (specialists: $\beta = 0.04 \pm 0.151, P = 0.784$; deer activity \times diet
351 interaction: $\beta = 0.03 \pm 0.116, P = 0.766$; Figure 3B). In general, this result held when the
352 individual measures of deer activity were used in the models instead of the average measure of
353 deer activity (Figure S3). The correlations between fragment area and our three measures of deer
354 activity were weak (Figure S2).

355 *Effects of fragment area on woody plant composition (prediction 2)*

356 Woody plant community composition varied predictably with fragment area ([Figure 5](#)).
357 The three NMDS axes were related to fragment area ($R^2 = 0.15, P < 0.001$) and, to a lesser
358 extent, deer activity ($R^2 = 0.05, P = 0.031$). Plant species typical of smaller fragments included
359 several exotic species (e.g., *Berberis thunbergii* and *Rosa multiflora*), and early colonising (e.g.,
360 *Acer saccharum*) and deer-resistant (e.g., *Lindera benzoin*) native species. *Hamamelis virginiana*
361 and *Quercus* species (e.g., *Q. rubra*) had higher densities in larger fragments. Although some of
362 the plant species with the highest proportion of dietary-specialist caterpillars were concentrated
363 in large fragments (e.g., *H. virginiana*, *Kalmia latifolia* and *Clethra alnifolia*), other specialist-
364 rich plant species were more common in small fragments (e.g., *L. benzoin*).

365 *Effects of fragment area on host availability (prediction 4)*

366 Models of summed host plant basal area indicated that the probability that at least one
367 host plant occurred in a fragment increased with fragment area ([Figure 6A and B](#); negative zero-
368 hurdle model parameters for host plants of specialists: $\beta = 0.26 \pm 0.104, P = 0.013$). Counter to
369 prediction 4, however, the relationship between fragment area and host plant basal area was not
370 significantly weaker for dietary generalists (area \times diet interaction: $\beta = -0.12 \pm 0.131, P = 0.360$).
371 The presence of host plants of dietary-specialist caterpillars decreased with deer activity ($\beta = -$
372 $0.33 \pm 0.093, P < 0.001$; Figure 6C), and this pattern was slightly weaker for dietary generalists
373 (deer activity \times diet interaction: $\beta = 0.22 \pm 0.114, P = 0.058$). Neither fragment area nor deer
374 activity affected the total basal area of host plants for dietary-specialist or dietary-generalist
375 Lepidoptera once the presence of at least one host plant was accounted for (conditional density
376 model, [Figure 6C and D](#)).

377 **Discussion**

378 In this large-scale analysis of the relative effects of fragment area on forest caterpillars
379 with contrasting diets, we found robust evidence that abundances of dietary-specialist caterpillars
380 decreased more steeply than that of dietary generalists as forest fragment area declined
381 (prediction 1), but not from the hypothesised mechanisms (predictions 3-4). This finding offers
382 landscape-level support that reduced fragment area is more disadvantageous to dietary-specialist
383 than dietary-generalist species (Bagchi et al., 2018; Henle et al., 2004; Martinson & Fagan, 2014;
384 Öckinger et al., 2010), but leaves the mechanisms unresolved. Although we found evidence of
385 shifts in plant community composition associated with fragment area (prediction 2), these
386 changes affected dietary-specialist and dietary-generalist caterpillars similarly, counter to
387 prediction 4, and thus provide little support for our hypothesis that declines of dietary specialists
388 in small fragments could be explained by a corresponding decline in their food plants.

389 Although the densities of specialists increased with fragment area, we did not observe a
390 corresponding increase in species richness or evenness of either dietary specialists or generalists.
391 Given the large number of studies that suggest a positive relationship between fragment area and
392 species richness (Aizen & Feinsinger, 1994b; Benedick et al., 2006; Matthews et al., 2014;
393 Chase et al., 2020), this result may seem surprising. One possible reason is that we measured
394 caterpillar density within equally sized plots at all fragments, so any differences in species
395 richness would have indicated change in the number of species per unit sampling effort, i.e.,
396 ecosystem decay not passive sampling (*sensu* Chase et al., 2020). The landscape of eastern
397 Connecticut surrounding our fragments is comparatively benign, consisting of mostly forests
398 interspersed by low-intensity agriculture, occasional residential buildings, powerline cuts, and
399 roads. Nearly all the fragments in our study are near other forested tracts, which might have
400 dampened differences relative to a landscape where fragments are separated by a more
401 inhospitable matrix. The extensive forest cover around the fragments may have overwhelmed
402 any local effects of fragment area, as might be predicted under the habitat-amount hypothesis
403 (Fahrig, 2017; Watling et al., 2020). Furthermore, all our samples were taken within closed-
404 canopy forests that were >100 m from edges. Consequently, many of the possible mechanisms
405 for ecosystem decay, like edge effects (Chase et al., 2020; Ries et al., 2004) and large shifts in
406 abiotic conditions (Ewers & Banks-Leite, 2013; Laurance et al., 2017), were probably muted at
407 the locations we sampled. Additionally, most of the fragments were relatively old, with historical
408 aerial photographs (https://magic.lib.uconn.edu/connecticut_data.html) indicating that about 78%
409 of the fragments included in our study were forested in 1930. There is some evidence that the
410 effect of forest fragment area attenuates with time (Chase et al., 2020), so the age of the

411 fragments that we sampled may have contributed to the lack of a statistically significant
412 relationship between species richness and fragment area.

413 The large variation in fragment-area dependence among dietary specialists runs counter
414 to the expectations of neutral filtering of dietary specialists in small fragments, which should
415 affect all specialists similarly (i.e., variation in the effects of fragment area among species should
416 be consistent with a χ^2 distribution). Instead, the densities of a few dietary-specialist species
417 (e.g., *Epimecis hortaria*) increased considerably in small fragments, along with their host plants
418 (e.g., *L. benzoin*), even as others (e.g., *M. evicta*) favoured larger fragments. Some of the
419 variation among species could be attributed to the host plants on which individual species
420 specialised. However, we also observed situations where specialists sharing a common host had
421 disparate relationships with fragment area. For example, the three most abundant specialists on
422 *H. virginiana* (*Nola triquetra*, *Pseudexentera costomaculata*, and *Pyrefera hesperidago*) had
423 contrasting relationships with fragment area (strongly positive, weakly positive and weakly
424 negative, respectively; Figure 4), suggesting that area relationships are heterogeneous, and that
425 other mechanisms are undoubtedly in play. Abundances of vertebrate and invertebrate natural
426 enemies might vary with fragment area, which could drive differential responses across their
427 prey taxa. Life history traits such as size, flying ability and fecundity have been associated with
428 the effects of land use change and habitat loss on lepidopteran species (Öckinger et al., 2010;
429 Riva et al., 2023) and it might be fruitful to collect data on these traits to examine their
430 contribution to the variation in responses observed here.

431 Although we found evidence that underrepresentation of dietary specialists in small
432 fragments was not due to purely neutral mechanisms, support for the deterministic mechanisms
433 we proposed (host plant availability, deer activity) was equivocal. Decreasing fragment area was

434 clearly associated with shifts in plant community composition (prediction 2) and reduced the
435 probability of caterpillars finding suitable host plants in smaller fragments, but the interaction
436 between diet and fragment area was not statistically significant (prediction 4). While this pattern
437 has implications for insect conservation (larger forest patches may support higher insect
438 densities), it leaves our motivating question of why reductions in forest fragment area
439 disproportionately reduces dietary-specialist caterpillar populations unresolved. However,
440 interpreting interactions in binomial models (as used in the zero-hurdle component of the models
441 here) is scale dependent because the log-odds link function often used in these models is
442 sigmoidal (Spake et al., 2023). Specifically, because, on average, suitable hosts for generalist
443 caterpillars occurred in most small fragments (*c.* 85%) while hosts of specialists occurred in only
444 about half of them (Figure 6A), increasing fragment area increased the probability of specialists
445 finding suitable hosts more than generalists. The negative diet by fragment area interaction, even
446 if not statistically significant, reinforced this pattern so that in the largest fragments the
447 probabilities of suitable host plants occurring for dietary-specialist and dietary-generalist
448 caterpillars were roughly similar.

449 The other potential deterministic driver of change in lepidopteran assemblages we
450 considered was deer density (Côté et al., 2004). Forest fragmentation often contributes to
451 elevated deer densities at a landscape scale (Alverson et al., 1988; Côté et al., 2004), but we did
452 not observe strong correlations between fragment area and deer activity (Figure S2). Deer
453 activity was correlated with greater reductions in host-plant availability for specialist than
454 generalist caterpillars (prediction 4*b*), but had no corresponding effect on the densities of
455 caterpillars in the two dietary groups (prediction 1*a*). Overall, elevated deer densities could not

456 explain the disproportionate declines of dietary-specialist caterpillars we observed in small forest
457 fragments.

458 This study strengthens the evidence that dietary-specialist insects are disproportionately
459 affected by the area of forest fragments (Martinson & Fagan, 2014; Rossetti et al., 2017;
460 Tscharntke et al., 2002). By comparing caterpillar assemblages from equal-sized plots across a
461 large number of fragments arranged in a blocked design over a wide geographic area, our study
462 addresses many criticisms of previous work that confounded fragment area with sample size and
463 environmental heterogeneity. Such declines in ecological specialists are a key element of the
464 biotic homogenization of human-dominated landscapes (Clavel et al., 2011; McKinney &
465 Lockwood, 1999). However, the mechanisms driving this pattern remain elusive. It is likely that
466 decreases in fragment area impact caterpillar assemblages through multiple pathways,
467 complicating attempts to identify individual component processes. Our analyses suggested that
468 shifts in the plant community, towards fewer of the most caterpillar-rich species, did reduce
469 caterpillar abundances; however, these impacts were not substantially related to dietary
470 specialisation. Increased deer activity was also associated with changes in the plant community,
471 but these changes did not appear to affect caterpillar assemblages consistently. Alternative
472 explanations for the declines of specialists in small forest fragments might include altered
473 predation and parasitism (Anderson et al., 2019; Bagchi et al., 2018; Fenoglio et al., 2012; Frost
474 et al., 2015; Siegel et al., 2024) and dispersal patterns (Ries & Debinski, 2001; Schtickzelle &
475 Baguette, 2003) in fragmented landscapes. Regardless of the mechanisms, however, reduced
476 dietary specialisation of caterpillar assemblages in small habitat patches represents an important
477 dimension of anthropogenic biodiversity change.

478 **Acknowledgments**

479 This research was funded by the US National Science Foundation (Grant Number DEB-
480 1557086). We thank Samuel Jaffe and Jason Dombroskie for advice on caterpillar diet
481 categorisation, Chris Simon, Eric Gordon, Christina Baer, Dyanna Louyakis, and Elizabeth
482 Jockusch for their help with DNA barcoding and Kurt Schwenk and Sara Horwitz for assistance
483 with mammal identification. This work would not have been possible without the field and
484 laboratory assistance of our large team of undergraduate research assistants and volunteers (see
485 Table S4).

486 **Author Contributions**

487 Bagchi, Singer, Wagner and Elphick conceived the study and obtained funding; Mickley, Singer,
488 Wagner, Anderson, Bagchi, Brown, Pirtel, Musavi, Connors and Marren conducted fieldwork;
489 Wagner, Singer, Mickley, Connors and Anderson identified caterpillars in the field and
490 laboratory; Kilpatrick, Davis, Weeks, Pirtel, Musavi, Brown, Mickley and Bagchi designed and
491 conducted deer surveys; Mickley, Singer and Bagchi drafted the paper; Mickley, LaScaleia and
492 Bagchi analysed the data. All authors contributed to revising the manuscript and approved the
493 submission.

494 **Data Availability**

495 Data available from the Dryad Digital Repository
496 <https://datadryad.org/stash/dataset/doi:10.5061/dryad.k3j9kd5k8> (Mickley et al., 2025). Code for
497 the analyses available from https://github.com/BagchiLab-UConn/FEN_specialization.git
498 (Mickley & Bagchi, 2025).

499 **Conflicts of Interest**

500 The authors declare no conflicts of interest.

- 501
- 502 **Literature Cited**
- 503 Aizen, M. A., & Feinsinger, P. (1994a). Forest fragmentation, pollination, and plant reproduction
504 in a chaco dry forest, Argentina. *Ecology*, 75(2), 330–351.
505 <https://doi.org/10.2307/1939538>
- 506 Aizen, M. A., & Feinsinger, P. (1994b). Habitat fragmentation, native insect pollinators, and
507 feral honey bees in Argentine “chaco serrano.” *Ecological Applications*, 4(2), 378–392.
508 <https://doi.org/10.2307/1941941>
- 509 Allen, J. M., Leininger, T. J., Hurd, J. D., Civco, D. L., Gelfand, A. E., & Silander, J. A. (2013).
510 Socioeconomics drive woody invasive plant richness in New England, USA through
511 forest fragmentation. *Landscape Ecology*, 28(9), 1671–1686.
512 <https://doi.org/10.1007/s10980-013-9916-7>
- 513 Alverson, W. S., Waller, D. M., & Solheim, S. L. (1988). Forests too deer: Edge effects in
514 northern Wisconsin. *Conservation Biology*, 2(4), 348–358.
515 <http://www.jstor.org/stable/2386294>
- 516 Anderson, R. M., Dallar, N. M., Pirtel, N. L., Connors, C. J., Mickley, J., Bagchi, R., & Singer,
517 M. S. (2019). Bottom-up and top-down effects of forest fragmentation differ between
518 dietary generalist and specialist caterpillars. *Frontiers in Ecology and Evolution*, 7, 452.
519 <https://doi.org/10.3389/fevo.2019.00452>
- 520 Arnold, C., Wilson, E., Hurd, J., & Civco, D. (2020). 30 years of land cover change in
521 Connecticut, usa: A case study of long-term research, dissemination of results, and their
522 use in land use planning and natural resource conservation. *Land*, 9(8), 255.
523 <https://doi.org/10.3390/land9080255>

- 524 Bagchi, R., Brown, L. M., Elphick, C. S., Wagner, D. L., & Singer, M. S. (2018). Anthropogenic
525 fragmentation of landscapes: Mechanisms for eroding the specificity of plant–herbivore
526 interactions. *Oecologia*, 187(2), 521–533. <https://doi.org/10.1007/s00442-018-4115-5>
- 527 Benedick, S., Hill, J. K., Mustaffa, N., Chey, V. K., Maryati, M., Searle, J. B., Schilthuizen, M.,
528 & Hamer, K. C. (2006). Impacts of rain forest fragmentation on butterflies in northern
529 Borneo: Species richness, turnover and the value of small fragments. *Journal of Applied
530 Ecology*, 43(5), 967–977. <https://doi.org/10.1111/j.1365-2664.2006.01209.x>
- 531 Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A.,
532 Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and
533 flexibility among packages for zero-inflated generalized linear mixed modeling. *The R
534 Journal*, 9(2), 378–400. <https://doi.org/10.32614/RJ-2017-066>
- 535 Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K., & May, F. (2020). Ecosystem decay
536 exacerbates biodiversity loss with habitat loss. *Nature*, 584(7820), 238–243.
537 <https://doi.org/10.1038/s41586-020-2531-2>
- 538 Cirtwill, A. R., & Stouffer, D. B. (2016). Knowledge of predator–prey interactions improves
539 predictions of immigration and extinction in island biogeography. *Global Ecology and
540 Biogeography*, 25, 900–911. <https://doi.org/10.1111/geb.12332>
- 541 Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: Toward a
542 global functional homogenization? *Frontiers in Ecology and the Environment*, 9(4), 222–
543 228. <https://doi.org/10.1890/080216>
- 544 Cordeiro, N. J., & Howe, H. F. (2003). Forest fragmentation severs mutualism between seed
545 dispersers and an endemic African tree. *Proceedings of the National Academy of
546 Sciences*, 100(24), 14052–14056. <https://doi.org/10.1073/pnas.2331023100>

- 547 Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C., & Waller, D. M. (2004). Ecological
548 impacts of deer overabundance. *Annual Review of Ecology, Evolution, and Systematics*,
549 3, 113–147. <http://www.jstor.org/stable/30034112>
- 550 Damschen, E. I., Brudvig, L. A., Haddad, N. M., Levey, D. J., Orrock, J. L., & Tewksbury, J. J.
551 (2008). The movement ecology and dynamics of plant communities in fragmented
552 landscapes. *Proceedings of the National Academy of Sciences*, 105(49), 19078–19083.
553 <https://doi.org/10.1073/pnas.0802037105>
- 554 Didham, R. K., Kapos, V., & Ewers, R. M. (2012). Rethinking the conceptual foundations of
555 habitat fragmentation research. *Oikos*, 121(2), 161–170. <https://doi.org/10.1111/j.1600-0706.2011.20273.x>
- 557 Ewers, R. M., & Banks-Leite, C. (2013). Fragmentation impairs the microclimate buffering
558 effect of tropical forests. *PLOS ONE*, 8(3), e58093.
559 <https://doi.org/10.1371/journal.pone.0058093>
- 560 Fahrig, L. (2017). Ecological responses to habitat fragmentation *per se*. *Annual Review of
561 Ecology, Evolution, and Systematics*, 48(1), 1–23. <https://doi.org/10.1146/annurev-ecolsys-110316-022612>
- 563 Feeley, K. J., & Terborgh, J. W. (2008). Trophic drivers of species loss from fragments. *Animal
564 Conservation*, 11(5), 366–368. <https://doi.org/10.1111/j.1469-1795.2008.00207.x>
- 565 Fenoglio, M. S., Srivastava, D., Valladares, G., Cagnolo, L., & Salvo, A. (2012). Forest
566 fragmentation reduces parasitism via species loss at multiple trophic levels. *Ecology*,
567 93(11), 2407–2420. <https://doi.org/10.1890/11-2043.1>

- 568 Fischer, J., & Lindenmayer, D. B. (2006). Beyond fragmentation: The continuum model for
569 fauna research and conservation in human-modified landscapes. *Oikos*, 112(2), 473–480.
570 <https://doi.org/10.1111/j.0030-1299.2006.14148.x>
- 571 Fox, L. R., & Morrow, P. A. (1981). Specialization: Species property or local phenomenon?
572 *Science*, 211(4485), 887–893. <https://doi.org/10.1126/science.211.4485.887>
- 573 Frost, C. M., Didham, R. K., Rand, T. A., Peralta, G., & Tylianakis, J. M. (2015). Community-
574 level net spillover of natural enemies from managed to natural forest. *Ecology*, 96(1),
575 193–202. <https://doi.org/10.1890/14-0696.1>
- 576 Gorchov, D. L., Blossey, B., Averill, K. M., Dávalos, A., Heberling, J. M., Jenkins, M. A.,
577 Kalisz, S., McShea, W. J., Morrison, J. A., Nuzzo, V., Webster, C. R., & Waller, D. M.
578 (2021). Differential and interacting impacts of invasive plants and white-tailed deer in
579 eastern U.S. forests. *Biological Invasions*, 23(9), 2711–2727.
580 <https://doi.org/10.1007/s10530-021-02551-2>
- 581 Gravel, D., Massol, F., Canard, E., Mouillot, D., & Mouquet, N. (2011). Trophic theory of island
582 biogeography. *Ecology Letters*, 14(10), 1010–1016.
- 583 Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T.
584 E., Sexton, J. O., Austin, M. P., & Collins, C. D. (2015). Habitat fragmentation and its
585 lasting impact on Earth's ecosystems. *Science Advances*, 1(2), e1500052.
586 <https://doi.org/10.1126/sciadv.1500052>
- 587 Haddad, N. M., Gonzalez, A., Brudvig, L. A., Burt, M. A., Levey, D. J., & Damschen, E. I.
588 (2017). Experimental evidence does not support the Habitat Amount Hypothesis.
589 *Ecography*, 40(1), 48–55. <https://doi.org/10.1111/ecog.02535>

- 590 Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications
591 through DNA barcodes. *Proceedings of the Royal Society of London. Series B: Biological
592 Sciences*, 270(1512), 313–321. <https://doi.org/10.1098/rspb.2002.2218>
- 593 Henle, K., Davies, K. F., Kleyer, M., Margules, C., & Settele, J. (2004). Predictors of species
594 sensitivity to fragmentation. *Biodiversity and Conservation*, 13(1), 207–251.
595 <https://doi.org/10.1023/B:BIOC.0000004319.91643.9e>
- 596 Holt, R. D. (1996). Food webs in space: An island biogeographic perspective. In G. A. Polis &
597 K. O. Winemiller (Eds.), *Food Webs, Integration of Patterns and Dynamics*. (pp. 313–
598 323). Chapman & Hall.
- 599 Holt, R. D. (2010). Toward a trophic island biogeography. In J. B. Losos & Robert E. Ricklefs
600 (Eds.), *The Theory of Island Biogeography Revisited* (pp. 143–185). Princeton University
601 Press.
- 602 Ivanova, N. V., Dewaard, J. R., & Hebert, P. D. N. (2006). An inexpensive, automation-friendly
603 protocol for recovering high-quality DNA. *Molecular Ecology Notes*, 6(4), 998–1002.
604 <https://doi.org/10.1111/j.1471-8286.2006.01428.x>
- 605 Laurance, W. F. (2008). Theory meets reality: How habitat fragmentation research has
606 transcended island biogeographic theory. *Biological Conservation*, 141(7), 1731–1744.
607 <https://doi.org/10.1016/j.biocon.2008.05.011>
- 608 Laurance, W. F., Camargo, J. L. C., Fearnside, P. M., Lovejoy, T. E., Williamson, G. B.,
609 Mesquita, R. C. G., Meyer, C. F. J., Bobrowiec, P. E. D., & Laurance, S. G. W. (2017).
610 An Amazonian rainforest and its fragments as a laboratory of global change. *Biological
611 Reviews of the Cambridge Philosophical Society*. <https://doi.org/10.1111/brv.12343>

- 612 Lüdecke, D. (2022). *sjPlot: Data visualization for statistics in social science* [Manual].
- 613 <https://CRAN.R-project.org/package=sjPlot>
- 614 MacArthur, R. H., & Wilson, E. O. (1967). *The Theory of Island Biogeography*. Princeton
- 615 University Press.
- 616 Magrach, A., Laurance, W. F., Larrinaga, A. R., & Santamaria, L. (2014). Meta-analysis of the
- 617 effects of forest fragmentation on interspecific interactions: Forest fragmentation and
- 618 interspecific interactions. *Conservation Biology*, 28(5), 1342–1348.
- 619 <https://doi.org/10.1111/cobi.12304>
- 620 Martinson, H. M., & Fagan, W. F. (2014). Trophic disruption: A meta-analysis of how habitat
- 621 fragmentation affects resource consumption in terrestrial arthropod systems. *Ecology*
- 622 *Letters*, 17(9), 1178–1189. <https://doi.org/10.1111/ele.12305>
- 623 Matthews, T. J., Cottee-Jones, H. E., & Whittaker, R. J. (2014). Habitat fragmentation and the
- 624 species-area relationship: A focus on total species richness obscures the impact of habitat
- 625 loss on habitat specialists. *Diversity and Distributions*, 20(10), 1136–1146.
- 626 <https://doi.org/10.1111/ddi.12227>
- 627 McKinney, M. L., & Lockwood, J. L. (1999). Biotic homogenization: A few winners replacing
- 628 many losers in the next mass extinction. *Trends in Ecology & Evolution*, 14(11), 450–
- 629 453. [https://doi.org/10.1016/S0169-5347\(99\)01679-1](https://doi.org/10.1016/S0169-5347(99)01679-1)
- 630 Mickley, J. G., Anderson, R. M., Wagner, D. L., Brown, L. M., Connors, C. J., Davis, M. L.,
- 631 Elphick, C. S., LaScaleia, M. C., Marren, C., Musavi, H., Pirtel, N. L., Weeks, K., Singer,
- 632 M. S., & Bagchi, R. (2025). *Underrepresentation of dietary specialist larval Lepidoptera*
- 633 *in small forest fragments: Testing alternative mechanisms*. (Version 1.0) [Dataset].
- 634 Dryad. <https://doi.org/10.5061/dryad.k3j9kd5k8>

- 635 Mickley, J. G., & Bagchi, R. (2025). *BagchiLab-Uconn/FEN_specialization: Mickley et al. 2025*.
636 *Journal of Animal Ecology* (Version v1.0.0) [Computer software]. Zenodo.
637 <https://doi.org/10.5281/ZENODO.14847791>
- 638 Mortensen, B., Danielson, B., Harpole, W. S., Alberti, J., Arnillas, C. A., Biederman, L., Borer,
639 E. T., Cadotte, M. W., Dwyer, J. M., Hagenah, N., Hautier, Y., Peri, P. L., & Seabloom,
640 E. W. (2018). Herbivores safeguard plant diversity by reducing variability in dominance.
641 *Journal of Ecology*, 106(1), 101–112. <https://doi.org/10.1111/1365-2745.12821>
- 642 Öckinger, E., Schweiger, O., Crist, T. O., Debinski, D. M., Krauss, J., Kuussaari, M., Petersen, J.
643 D., Pöyry, J., Settele, J., & Summerville, K. S. (2010). Life-history traits predict species
644 responses to habitat area and isolation: A cross-continental synthesis. *Ecology Letters*,
645 13(8), 969–979. <https://doi.org/10.1111/j.1461-0248.2010.01487.x>
- 646 Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R.
647 B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M.,
648 Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., ...
649 Weedon, J. (2022). *vegan: Community ecology package* [Manual]. <https://CRAN.R-project.org/package=vegan>
- 650
651 Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and
652 evolutionary analyses in R. *Bioinformatics (Oxford, England)*, 35, 526–528.
653 <https://doi.org/10.1093/bioinformatics/bty633>
- 654 Pasquarella, V. J., Elkinton, J. S., & Bradley, B. A. (2018). Extensive gypsy moth defoliation in
655 southern New England characterized using Landsat satellite observations. *Biological
656 Invasions*, 20(11), 3047–3053. <https://doi.org/10.1007/s10530-018-1778-0>

- 657 Preston, F. W. (1962). The canonical distribution of commonness and rarity: Part II. *Ecology*,
658 43(3), 410–432. <https://doi.org/10.2307/1933371>
- 659 R Core Team. (2022). *R: A language and environment for statistical computing* [Manual]. R
660 Foundation for Statistical Computing. <https://www.R-project.org/>
- 661 Rasband, W. S. (1997). *ImageJ* [Computer software]. U. S. National Institutes of Health,
662 Bethesda, Maryland, USA. <https://imagej.nih.gov/ij/>
- 663 Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD: the barcode of life data system. *Molecular
664 Ecology Notes*, 7(3), 355–364. <https://doi.org/10.1111/j.1471-8286.2007.01678.x>
- 665 Ries, L., & Debinski, D. M. (2001). Butterfly responses to habitat edges in the highly fragmented
666 prairies of Central Iowa. *Journal of Animal Ecology*, 70(5), 840–852.
667 <https://doi.org/10.1046/j.0021-8790.2001.00546.x>
- 668 Ries, L., Fletcher, R. J., Battin, J., & Sisk, T. D. (2004). Ecological responses to habitat edges:
669 Mechanisms, models, and variability explained. *Annual Review of Ecology, Evolution,
670 and Systematics*, 35(1), 491–522.
671 <https://doi.org/10.1146/annurev.ecolsys.35.112202.130148>
- 672 Riva, F., Barbero, F., Balletto, E., & Bonelli, S. (2023). Combining environmental niche models,
673 multi-grain analyses, and species traits identifies pervasive effects of land use on
674 butterfly biodiversity across Italy. *Global Change Biology*, 29(7), 1715–1728.
675 <https://doi.org/10.1111/gcb.16615>
- 676 Riva, F., Koper, N., & Fahrig, L. (2024). Overcoming confusion and stigma in habitat
677 fragmentation research. *Biological Reviews of the Cambridge Philosophical Society*,
678 99(4), 1411–1424. <https://doi.org/10.1111/brv.13073>

- 679 Rooney, T. P., & Waller, D. M. (2003). Direct and indirect effects of white-tailed deer in forest
680 ecosystems. *Forest Ecology and Management*, 181(1–2), 165–176.
681 [https://doi.org/10.1016/S0378-1127\(03\)00130-0](https://doi.org/10.1016/S0378-1127(03)00130-0)
- 682 Rossetti, M. R., Tscharntke, T., Aguilar, R., & Batáry, P. (2017). Responses of insect herbivores
683 and herbivory to habitat fragmentation: A hierarchical meta-analysis. *Ecology Letters*,
684 20(2), 264–272.
- 685 Schtickzelle, N., & Baguette, M. (2003). Behavioural responses to habitat patch boundaries
686 restrict dispersal and generate emigration–patch area relationships in fragmented
687 landscapes. *Journal of Animal Ecology*, 72(4), 533–545. <https://doi.org/10.1046/j.1365-2656.2003.00723.x>
- 688 Siegel, T., Magrach, A., Laurance, W. F., & Luther, D. (2024). A global meta-analysis of the
689 impacts of forest fragmentation on biotic mutualisms and antagonisms. *Conservation
690 Biology*, 38(3), e14206. <https://doi.org/10.1111/cobi.14206>
- 691 Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny.
692 *American Journal of Botany*, 105(3), 302–314. <https://doi.org/10.1002/ajb2.1019>
- 693 Spake, R., Bowler, D. E., Callaghan, C. T., Blowes, S. A., Doncaster, C. P., Antão, L. H.,
694 Nakagawa, S., McElreath, R., & Chase, J. M. (2023). Understanding ‘it depends’ in
695 ecology: A guide to hypothesising, visualising and interpreting statistical interactions.
696 *Biological Reviews*, brv.12939. <https://doi.org/10.1111/brv.12939>
- 697 Terborgh, J., Lopez, L., Nunez, P., Rao, M., Shahabuddin, G., Orihuela, G., Riveros, M.,
698 Ascanio, R., Adler, G. H., Lambert, T. D., & Balbas, L. (2001). Ecological meltdown in
699 predator-free forest fragments. *Science*, 294(5548), 1923–1926.
- 700

- 701 Trepel, J., le Roux, E., Abraham, A. J., Buitenwerf, R., Kamp, J., Kristensen, J. A., Tietje, M.,
702 Lundgren, E. J., & Svenning, J.-C. (2024). Meta-analysis shows that wild large
703 herbivores shape ecosystem properties and promote spatial heterogeneity. *Nature
704 Ecology & Evolution*, 8(4), 705–716. <https://doi.org/10.1038/s41559-024-02327-6>
- 705 Tscharntke, T., Steffan-Dewenter, I., Kruess, A., & Thies, C. (2002). Characteristics of insect
706 populations on habitat fragments: A mini review: Insect populations and habitat
707 fragments. *Ecological Research*, 17(2), 229–239. [https://doi.org/10.1046/j.1440-1703.2002.00482.x](https://doi.org/10.1046/j.1440-
708 1703.2002.00482.x)
- 709 Wagner, D. L. (2005). *Caterpillars of Eastern North America*. Princeton University Press.
710 [https://press.princeton.edu/books/paperback/9780691121444/caterpillars-of-eastern-
north-america](https://press.princeton.edu/books/paperback/9780691121444/caterpillars-of-eastern-
711 north-america)
- 712 Watling, J. I., Arroyo-Rodríguez, V., Pfeifer, M., Baeten, L., Banks-Leite, C., Cisneros, L. M.,
713 Fang, R., Hamel-Leigue, A. C., Lachat, T., Leal, I. R., Lens, L., Possingham, H. P.,
714 Raheem, D. C., Ribeiro, D. B., Slade, E. M., Urbina-Cardona, J. N., Wood, E. M., &
715 Fahrig, L. (2020). Support for the habitat amount hypothesis from a global synthesis of
716 species density studies. *Ecology Letters*, 23(4), 674–681.
717 <https://doi.org/10.1111/ele.13471>
- 718 Wheatall, L., Nuttle, T., & Yerger, E. (2013). Indirect effects of pandemic deer overabundance
719 inferred from caterpillar-host relations: Deer effects on caterpillars. *Conservation
720 Biology*, 27(5), 1107–1116. <https://doi.org/10.1111/cobi.12077>
- 721 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund,
722 G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M.,
723 Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ... Yutani, H. (2019).

724 Welcome to the tidyverse. *Journal of Open Source Software*, 4(43), 1686.

725 <https://doi.org/10.21105/joss.01686>

726

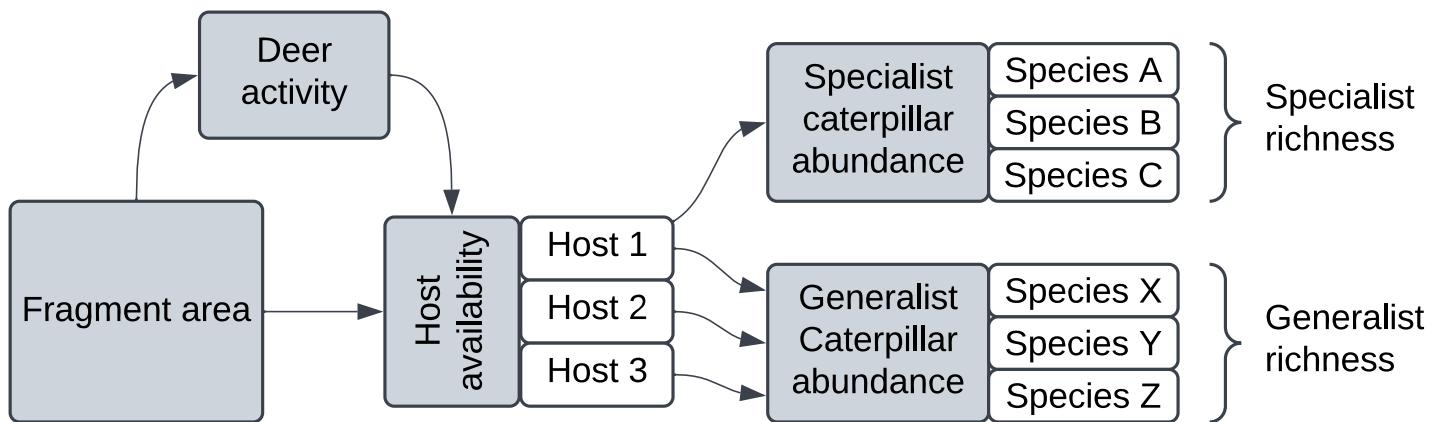
727

728 **Figures legends**

729
730 **Figure 1:** Conceptual diagram of the hypothesised relationships between fragment area and the
731 abundances of dietary-specialist and dietary-generalist caterpillars. Prediction 1(a) expects the
732 overall relationship between fragment area and the abundance of caterpillars to be stronger for
733 dietary-specialist species (A, B, C) than dietary-generalist species (X, Y, Z). Species richness
734 results from the aggregated responses across species, leading to the prediction 1(b) that fragment
735 area will affect species richness of dietary-specialist caterpillar species more than that of dietary
736 generalists. Predictions 2 – 4 arise from the proposed mechanisms behind prediction 1.
737 Prediction 2 depends on fragment area and deer activity influencing the species composition of
738 host-plant assemblages. Prediction 3 suggests that deer activity influences caterpillar abundance
739 and species richness. Prediction 4 is that fragment area and deer activity will affect the
740 cumulative abundance of plants across a caterpillar’s host species more for dietary-specialist
741 caterpillars than dietary-generalist caterpillars.

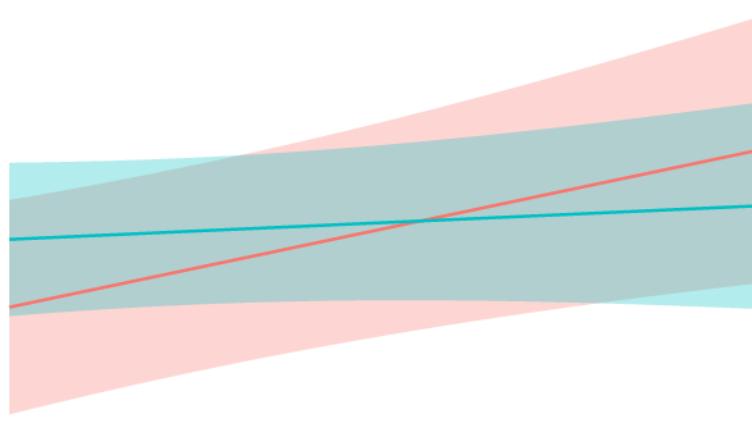
742 **Figure 2:** (A) Location of included fragments within Connecticut, USA (modified from
743 Anderson et al. 2019, with additional fragments). Forested areas are shaded green while white
744 indicates all other landcover types. Core fragment area class (small: < 100 ha, medium: 100-200
745 ha; large: > 200 ha) is indicated by shapes and fragments in the same block are marked with the
746 same colour. (B) Sampling design, consisting of twelve 5 × 5 m caterpillar sampling plots (blue
747 squares) within each fragment, surrounding three 10 × 10 m vegetation plots (green squares)
748 arranged on a 25-m sided equilateral triangle.

749 **Figure 3:** Effects of fragment area and deer activity on densities of caterpillars with contrasting
750 diet breadths. (A) The density (on a log scale) of dietary-specialist, but not dietary-generalist
751 (Diet[G]), caterpillars increased significantly with fragment area, but deer activity did not

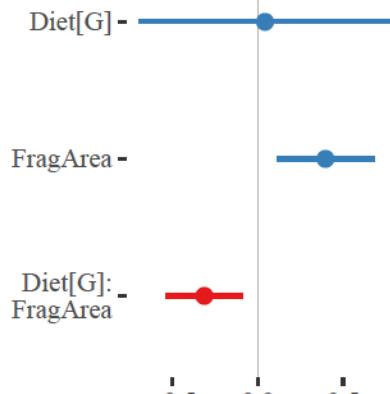

752 significantly affect caterpillar densities within either diet group. (B) Parameter estimates from a
753 negative-binomial generalised linear mixed model fitted to the data. Parameters refer to dietary
754 specialists unless they include an interaction with Diet[G], which represent differences between
755 specialists and generalists.

756 **Figure 4:** Predicted effects of fragment area on densities of each dietary-specialist and dietary-
757 generalist lepidopteran species included in the models. Points represent the Best Linear Unbiased
758 Predictor for the species added to the population estimate for the effect of fragment size on the
759 corresponding dietary category of caterpillar, with standard errors indicated by error bars.

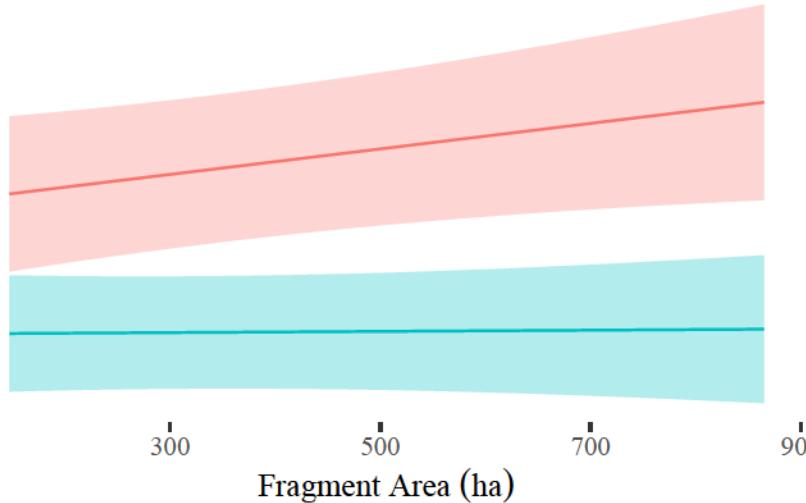
760 Numbers in square brackets are the number of samples of each lepidopteran species and colours
761 represent the plant species on which it was most frequently observed in this study, with plant
762 species ordered by decreasing number of specialist caterpillars sampled from them (*Hamamelis*
763 *virginiana* had the most).


764 **Figure 5:** Variation in host plant community composition with fragment area. Plant species (see
765 [Table S3](#) for species codes) are plotted on the first two axes of a three-dimensional non-metric
766 multidimensional scaling ordination of the three vegetation plots in each of the 32 fragments.
767 Text size of the labels is proportional to the total number of caterpillars collected from the plant
768 species (log scale) and the colour indicates the proportion of those caterpillars that were dietary
769 specialists (square root scale; grey text indicates plant species from which no caterpillars were
770 collected). The isolines indicate the fragment area associated with plant species composition.
771 Species in the lower-left corner of the figure are typical of smaller forest areas (e.g., *Berberis*
772 *thunbergii*, BERTH) while species in the top-right are more abundant in larger forest areas (e.g.,
773 *Hamamelis virginiana*, HAMVI).

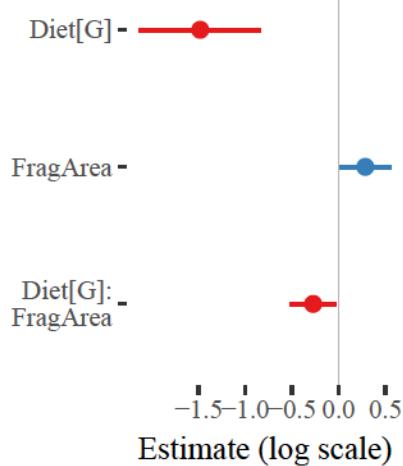
774 **Figure 6:** The effect of dietary specialisation and deer activity on the relationship between
775 fragment area and availability of suitable host plant species within a fragment. (A) On average,
776 the presence of caterpillar host plants was more likely in larger fragments and when deer activity
777 was low, a pattern that was more noticeable for dietary specialists. (B) The estimates of the effect
778 of fragment area and deer activity on the probability of at least one suitable host plant occurring
779 in our plots. This probability increased with fragment area and decreased with deer activity for
780 dietary specialists. The differences were smaller for dietary generalists, but not significantly so.
781 (C) Once present, the abundance of host plants for each caterpillar species was unaffected by
782 fragment area and deer activity with the exception that deer activity marginally reduced the
783 abundance of host plants for generalists. (D) Parameter estimates for the effects of diet, fragment
784 area, deer pressure and their two-way interactions on the summed basal area of host plants within
785 a fragment, conditional on at least one host plant occurring within that fragment.



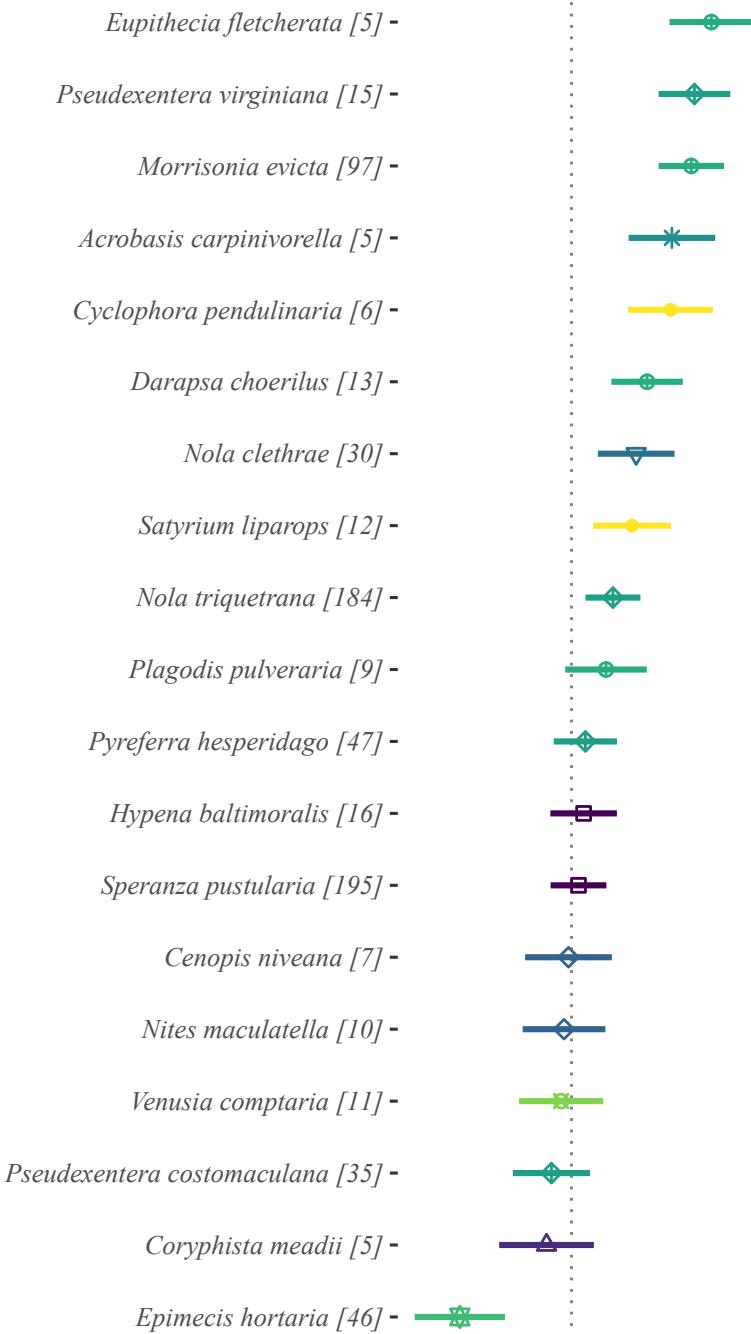
A


Diet

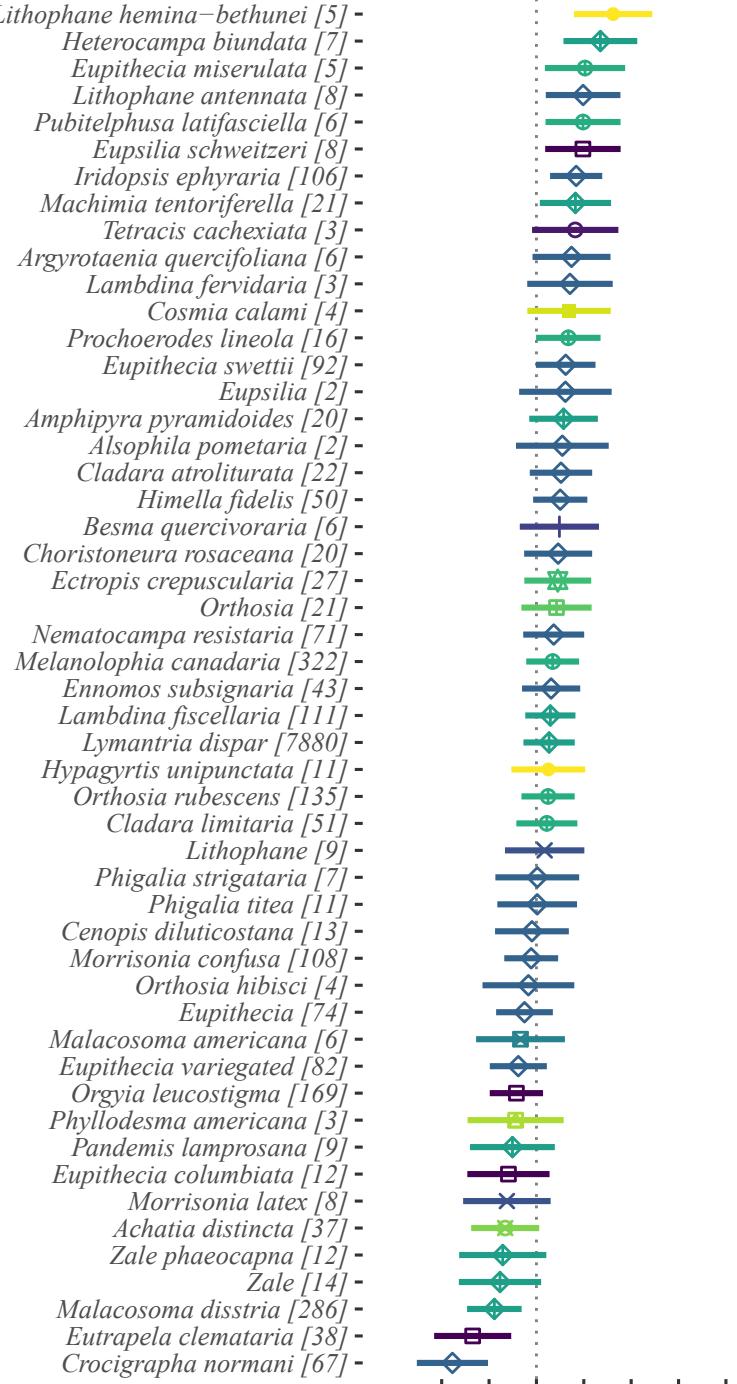
Caterpillar Density (m^{-2} total leaf area)


B

C

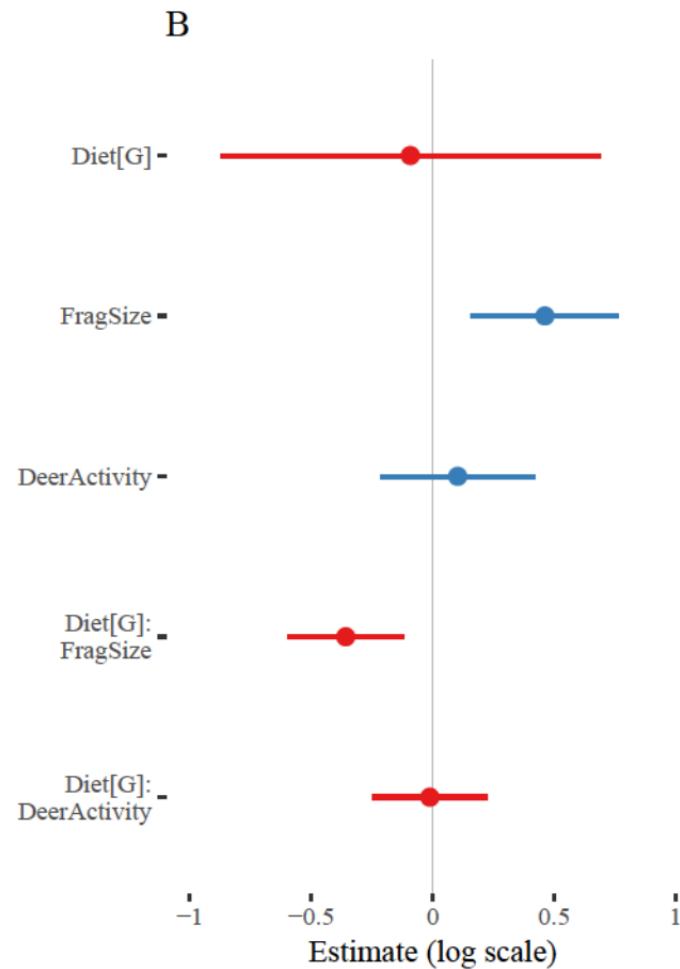
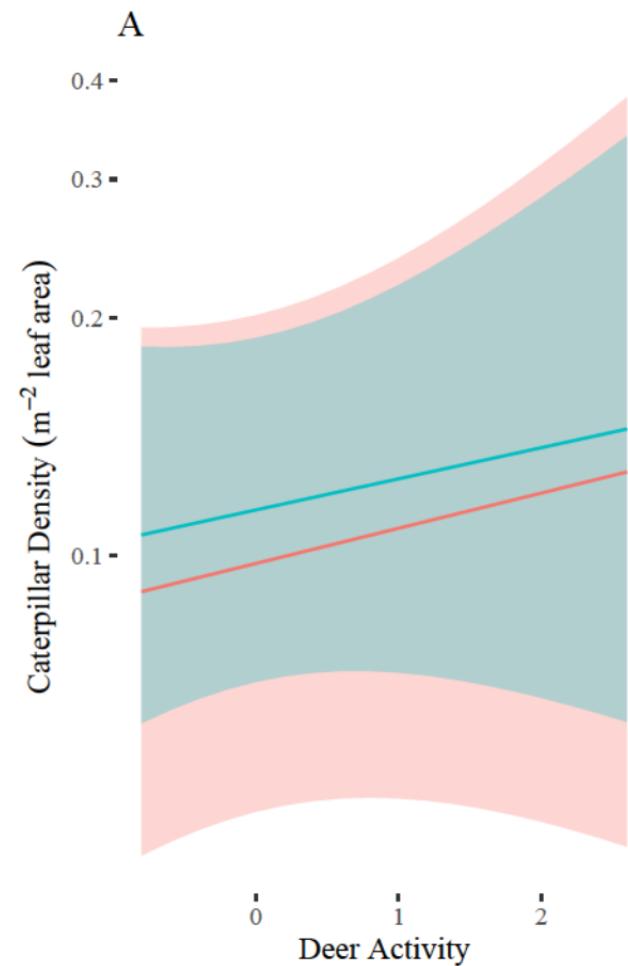

Caterpillar Density (m^{-2} host leaf area)

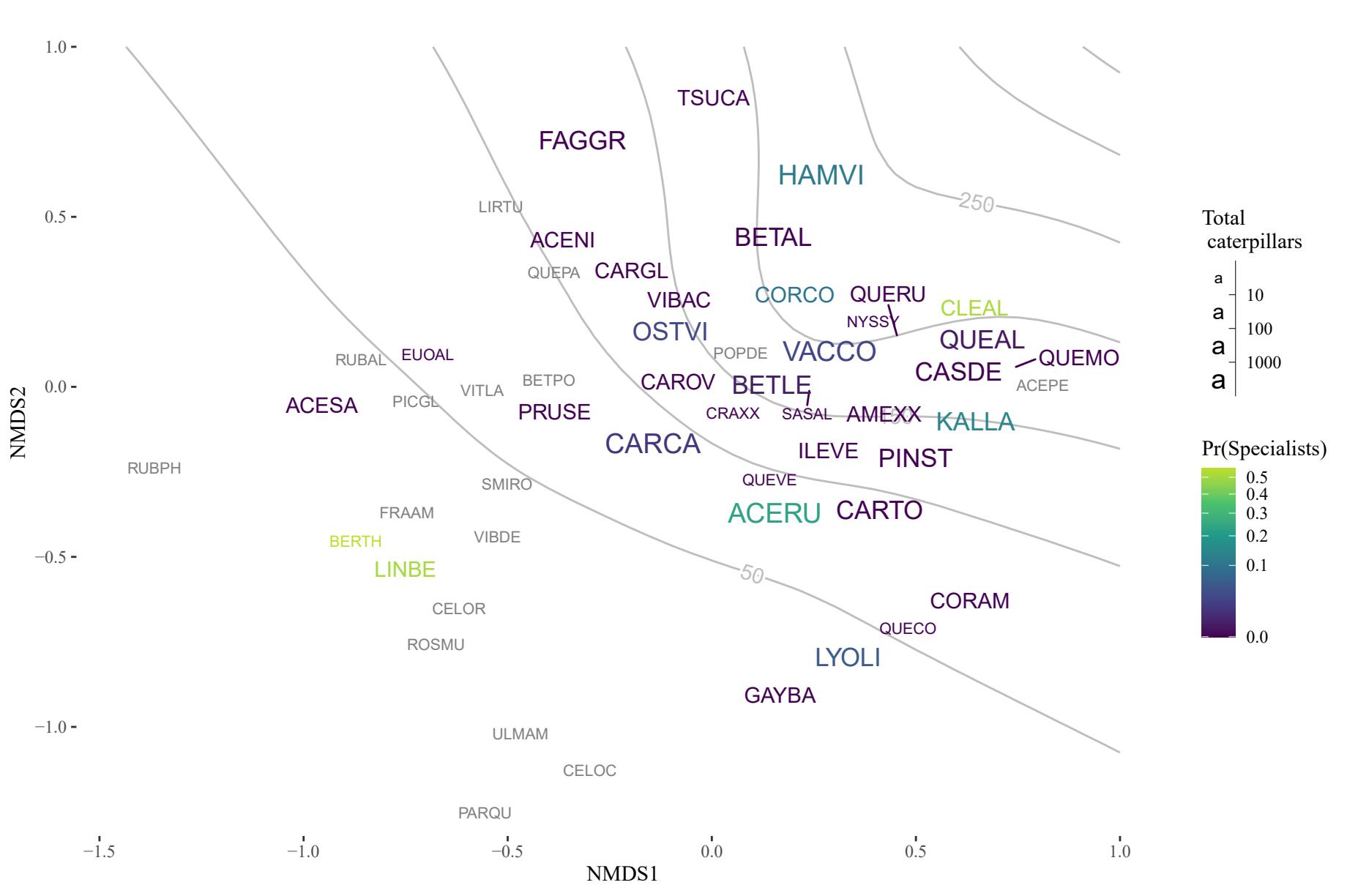
D



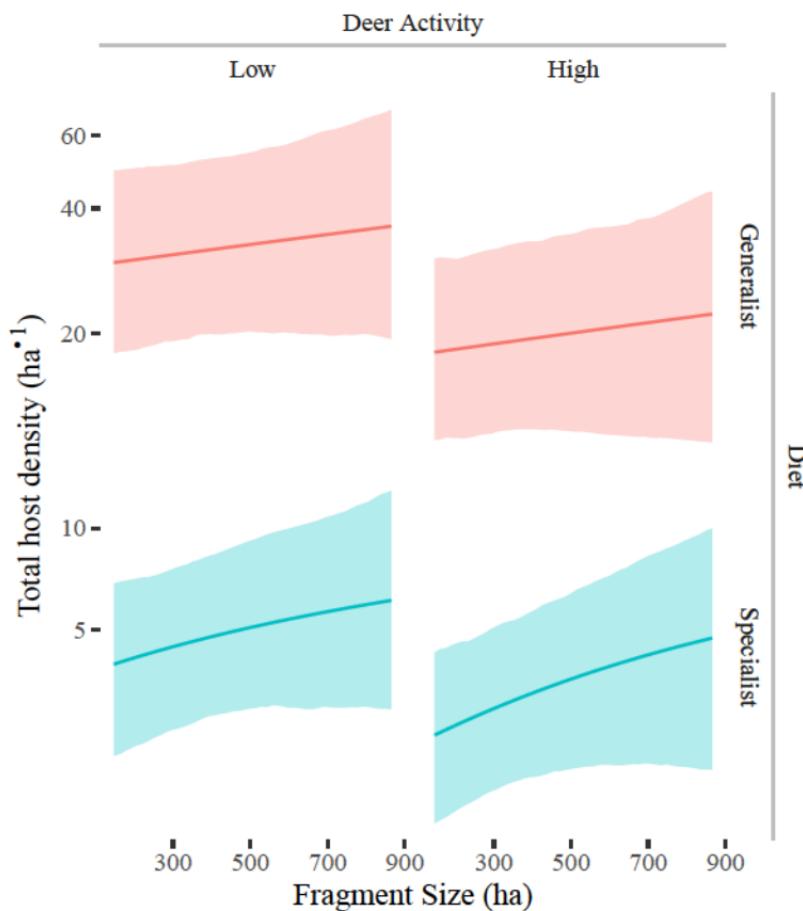
Lepidopteran species


Specialist

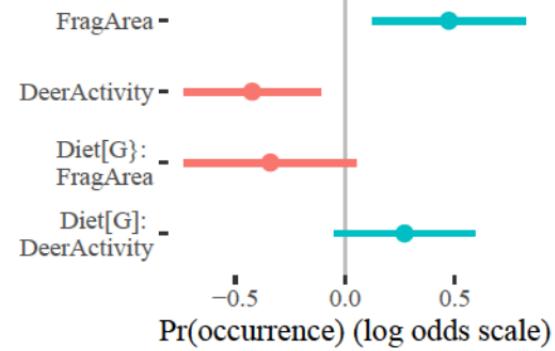


Generalist

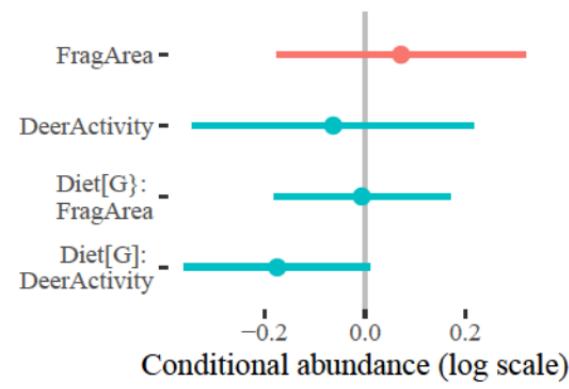


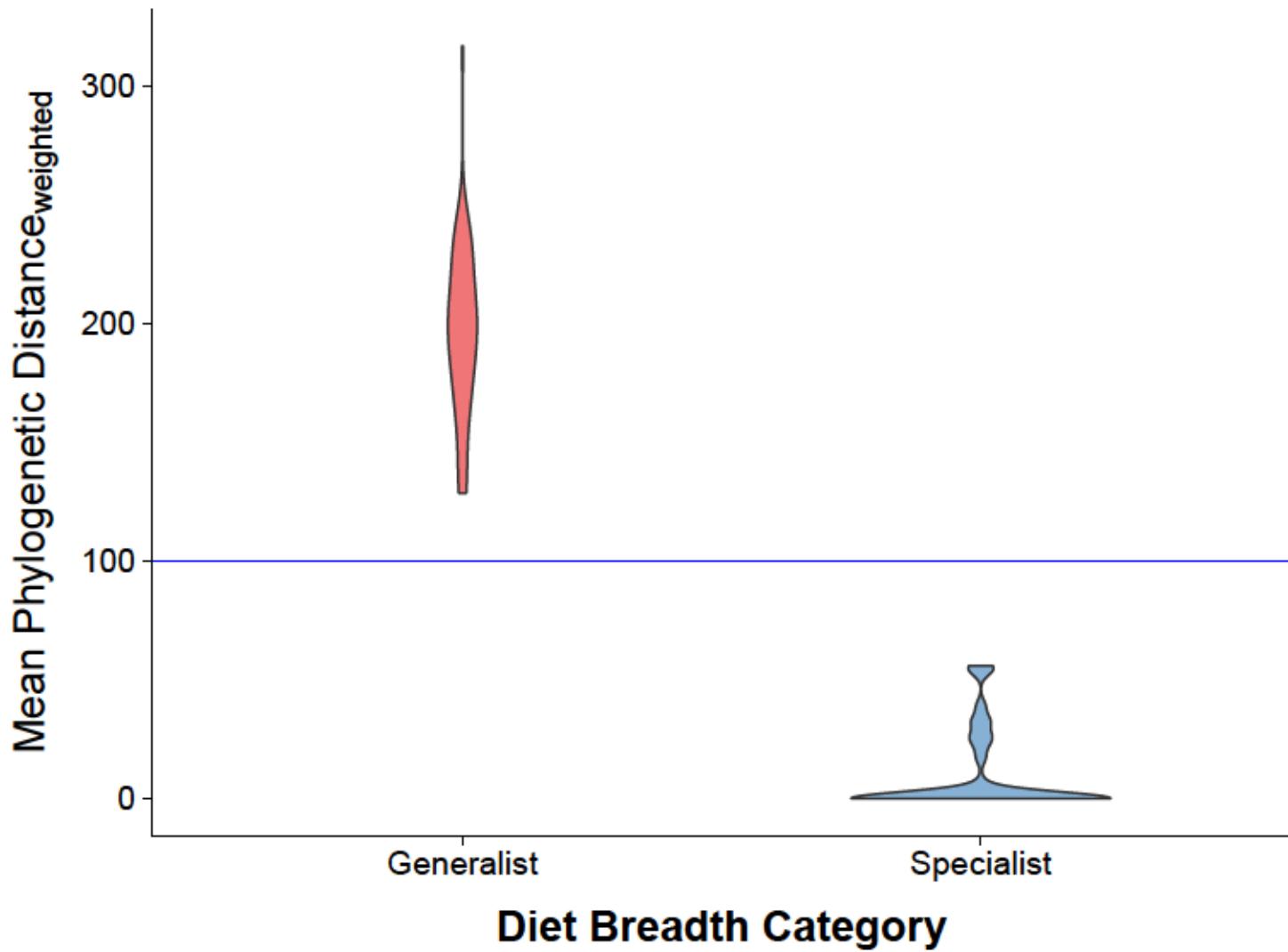
Preferred Host



Predicted Effect of Fragment Area on Species (log scale)




A



B

C

