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ABSTRACT This paper considers the change point detection problem under dependent samples. In particular,
we provide performance guarantees for the MMD-CUSUM test under exponentially a, §, and fast ¢-mixing
processes, which significantly expands its utility beyond the i.i.d. and Markovian cases used in previous
studies. We obtain lower bounds for average-run-length (ARL) and upper bounds for average-detection-
delay (ADD) in terms of the threshold parameter. We show that the MMD-CUSUM test enjoys the same
level of performance as the i.i.d. case under fast ¢-mixing processes. The MMD-CUSUM test also achieves
strong performance under exponentially a/B-mixing processes, which are significantly more relaxed than
existing results. The MMD-CUSUM test statistic adapts to different settings without modifications,
rendering it a completely data-driven, dependence-agnostic change point detection scheme. Numerical
simulations are provided at the end to evaluate our findings.

INDEX TERMS Change point detection, kernel method, mixing processes

. INTRODUCTION
Change point detection studies the problem of monitoring for
abrupt changes in the statistical properties of an observation
sequence, which has been widely considered in the literature
[1, 2, 3, 4]. Change point detection has a diverse application
that spans many areas, including cybersecurity, network
intrusion detection, automated fault monitoring, factory
quality control, etc. In many of these application scenarios,
one may face various challenges, such as complex unknown
dynamics, noisy non-i.i.d observations, and unknown preand
post-change distributions. Ideally, a completely datadriven
method with very few distributional assumptions
(independence, density functions, etc.) would be preferred.
The goal of this paper is to study the change point detection
problem under a completely data-driven setting. To tackle
this problem, we employ the MMD-CUSUM statistic
proposed in [5] and analyze its performance under three
common mixing conditions, namely «, 8, and ¢-mixing.

The MMD-CUSUM statistic is an extension of the
wellknown CUSUM statistic [6] with the maximum mean

discrepancy (MMD). MMD has wide adoption in statistical
twosample tests [7] and the training of generative adversarial
networks [8]. As a probability distance, MMD can be easily
estimated from samples on general domains (continuous or
discrete) without the need for a density function. Thus, it is
well suited for change point detection under the completely
data-driven setting where pre- and post-change distributions
can be unknown. Additionally, kernel methods have wide
compatibility [9, 10] due to the diversity of kernel functions
with different data structures, such as discrete data,
continuous data, graphical data, etc. Thus, the kernel base
method has vast application potential in designing
completely datadriven change point detection schemes. In
particular, the sequential testing procedures using the
maximum mean discrepancy (MMD) have sparked some
research interests lately [11, 12, 13, 14, 5]. Most of the
existing studies focus on studying the properties of the MMD-
based procedures under the i.i.d. case. For continuous state
space Markov chains, the MMD-CUSUM test is proposed in
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[5] for uniformly ergodic Markov chains, which is known to be
hard to satisfy in practice.

Thus, more relaxed assumptions need to be considered to
meet the demands of the completely data-driven setting. The
main challenge in generalizing the performance analysis of
MMD-CUSUM lies in the dependence of samples. Our
proposal assumes the mixing property of the stochastic
processes generated by the dynamic system. Mixing

threshold. However, testing schemes with sliding windows
suffer from loss of information as older samples are
discarded. To maintain history information, kernel-based
CUSUM-type statistics were proposed in [14] with an
O(exp(b)) averagerun-length (ARL) and an O(b) average
detection delay (ADD). In [13], the authors devised a neural
network-based kernel selection strategy that finds a kernel
whose MMD can best separate the nominal distribution from
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measures the dependence in the process by its definition
[15], and it is widely considered in extending various results
in probability theory to dependent time series [16, 17, 18].
Thus, establishing the performance bounds under various
mixing conditions is a natural choice. Furthermore, the
mixing conditions we assume highlight the fundamental limit
for MMD-CUSUM to achieve a good performance; that is, the
speed and strength of the mixing condition the processes
satisfy.

In the current paper, we analyze the performance of MMD-
CUSUM under three common mixing conditions, namely a, 3,
and ¢-mixing. We provide bounds on the average-run-length
(ARL) and average-detection-delay (ADD) which are the
common performance metrics [19]. ARL characterizes how
frequently the false alarm occurs and ADD characterizes the
quickness of the reaction. As outlined in [20], the
information-theoretic lower bounds are O(exp(b)) for ARL
and O(b) for ADD for large b > 0, where b is the threshold
parameter. We show that under the fast ¢mixing condition,
the MMD-CUSUM achieves these lower bounds and thus is
order optimal. Under the exponential a/f-mixing, ADD is
bounded by O(b) where ARL is bounded by O(expb?/(r+1)),
where y > 0 controls the mixing speed (more details in 1V).

The rest of the paper is organized as follows. Section II
introduces the necessary background about reproducing
kernel Hilbert space and mixing processes. Section Il states
the problem setting for online change point detection and
introduces the MMD-CUSUM test statistic. Section IV
establishes the main results of this paper. Section V presents
the experiments of the MMD-CUSUM test on synthetic
datasets. We conclude the paper with discussions of the
limitations and future work in Section VI and VII.

A. Related works

Continuous efforts have been made to adapt the kernel two-
sample test to a sequential setting, i.e., change point
detection. Early work has been focused on detection change
in a stream of i.i.d. samples [11, 12, 13, 14]. In [11, 12], the
authors developed a Shewhart chart-type [21] procedure
that maintains a running estimate of the MMD between a set
of curated reference data and incoming samples within a
fixed sliding window. Analysis shows strong performance
guarantees with an O(exp(b?)) average-run-length (ARL) and
an O(b) average detection delay (ADD), where b is the

1
an adversarial one. The testing scheme is to estimate the
MMD with the selected kernel on two adjacent sliding
windows. Empirical studying shows promising performance,
albeit without theoretical guarantees.

The analysis of the above methods is based heavily on the
i.i.d. assumption. Their technique and results do not carry
over naturally to the non-i.i.d. case. Due to the ubiquity of
time series data in machine learning, signal processing,
economics, and dynamic systems, the i.i.d. assumption limits
the application of these methods. More recently, researchers
have been adapting the kernel-based change point detection
to dependent data. In [5], the MMD-CUSUM test is proposed
and analyzed under the setting of uniformly ergodic Markov
chains on general state space. Recently, [22] extended the
analysis of MMD-CUSUM to noisy observations of uniformly
ergodic Markov chains, i.e., hidden Markov models (HMM).
Both cases are special cases of ¢-mixing processes [15]. In
fact, we show that the same performance can be obtained
even when the Markovian and HMM structures are ignored.
In other words, the Markov chain and HMM assumptions are
not necessary for the performance of the MMD-CUSUM test.
Our work even extends to the a/fmixing processes, which
have never been considered for the MMD-CUSUM test
previously.

More broadly, our study falls under the umbrella of the
quickest change detection (QCD) theory [23]. Studies on the
QCD problem can be split into two categories: the Bayesian
and minimax formulation, depending on the assumption of
the change point. The Bayesian formulation, pioneered by
[24, 25], places a prior on the distribution of the change point
(usually a geometric distribution). Whereas the minimax
formulation, first considered by [26], assumes the change
point is unknown and deterministic. Under both
formulations, the different notions of detection delay are
minimized while constrained on the probability of false alarm
or the false alarm rate (1/ARL). A well-known Bayesian QCD
formulation is Shiryaev’s problem [24], which seeks the
stopping rule that minimizes the average detection delay
(under the change point prior) while constrained on the
probability of false alarm. The minimax formulations include
Lorden’s problem [26] and Pollak’s problem [27], where the
former minimizes the worst-case average delay and the latter
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minimizes the conditional average delay while both
contained on the false alarm rate.

Although the CUSUM statistic was first proposed as a
heuristic for the minimax formulation under i.i.d. setting by
[6], strong optimality properties have been shown for CUSUM
statistic under various settings. Under the i.i.d. setting, exact
optimality was shown by [28, 29] for Lorden’s problem. For
general non-i.i.d. settings, [20] has shown that an extension
of the CUSUM statistic achieves the information-theoretic
lower bound on the conditional average delay (as well as the
worst case delay) asymptotically as the false alarm rate goes
to 0.

However, the optimality result mentioned previously
requires specific knowledge of the pre-and post-change
distributions. Furthermore, the QCD problems are
intractable for general stochastic processes due to the lack
of problem structure [20]. Thus, the numerous studies on
QCD for noni.i.d settings [1, 20, 30, 31, 2, 19, 3, 32, 33, 34,
35, 36] cannot be easily converted to the completely data-
driven setting.

B. Contributions

As a non-parametric model-free change point detection
procedure, the MMD-CUSUM test exhibits great potential in
completely data-driven applications where distributional
assumptions may be difficult to verify. Our performance
guarantees under general mixing conditions establish its
robustness under dependent samples and further strengthen
its capability as a model-free testing scheme. The mixing
conditions considered in this paper not only subsume the
i.i.d.,, Markov chain, and HMM settings but also greatly
expand beyond those appearing in previous studies on the
performance of the MMD-CUSUM test. Our results indicate
that the Markovian or HMM structures are not necessary for
the strong performance of the MMD-CUSUM test.
Additionally, we provide the first performance guarantee for
the MMD-CUSUM test under exponentially a/f and fast ¢-
mixing processes. Note that stationary exponentially fmixing
processes include the geometrically ergodic Markov chains as
a special case, which violates Doeblin’s condition [37, page
402]. In stark contrast, Doeblin’s condition is the core
assumption for the performance analysis of the MMDCUSUM
test in [5] and [22].

1I. BACKGROUND

In this section, we introduce the necessary background for
our discussion. Section A collects the usual facts about
reproducing kernel Hilbert space (RKHS) and maximum mean
discrepancy (MMD). Section B presents the two notions of
mixing used to obtain the main results. Our standard
reference is [38] for RKHS and [15] for mixing processes.
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A. RKHS and MMD

Let (X,X,P) be a measure space with Borel g-algebra X and o-
finite measure P. Let P(X) denote the set of probability
measures over the o-algebra X. The supremum norm of fis
written as [Ifllo := supxex |[f{x)| and its span is written as
span(f) := supxrex [f(x) - fAX)].

A reproducing kernel Hilbert space (RKHS) H(X) on X with
kernel k : XxX — R is a Hilbert space of real-valued functions
on X equipped with inner product {-,*)ux. The corresponding
Hilbert space norm ||fll2apx) = Illl The kernel function k satisfies
the reproducing property:

k(x,+) € H(X) and (f(),k(x,*))u = f(x),

The current paper relies on a particular application of RKHS
— Hilbert space embeddings of probability measure. The
Hilbert space embedding of it under k is written as

ZU)() =
k(x,-)du,

X

forx e X

where U(u) is also called the kernel mean embedding of .
Suppose v € P(X) is another probability measure. One can
define a distance function between p and v using the Hilbert
space metric between U(u) and U(v)

MMDx(w,v) = IIU() = U(v)lluy, which is known
as the maximum mean discrepancy (MMD) [7]. The kernel k
such that MMDk(u,v) =0 © u =vforall v € P(X) is call a
characteristic kernel [39]. MMDy with a characteristic kernel
kis a metric on P(X).

MMD enjoys a computational advantage, compared with
other probability distance functions, such as KL divergence
[40] and total variation metric (Definition 7), that allows it to
be easily estimated empirically for distributions on general
domains [9, 10].

Let Xi~ pand Xj ~vfori=1,--,mandj = 1,---,n. Define
their empirical measures as u'm V', respectively. The
consistent estimation of the squared MMD is

24 D)= - (X X
MMDJ\:(ﬂ'm'VW.) - ‘T]12 Z DIL(X_..XJ)
1<i,j<N
1 2
tog Y kXX - - TR, X))
L 1<i <M Ty )

This was first used by [7] to propose the kernel two-sample
test, and it is the core component of the MMD-CUSUM test
studied in the current paper.

Throughout the paper, we assume the kernel k is real-
valued, measurable, characteristic, and bounded, i.e., supxex

k(xx) = k < . The boundedness ensures MMDx is well-
defined.
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B. Mixing processes
The definitions of the mixing process require the following
necessary notations. Consider the space of X-valued doubly

infinite stochastic processes as (X°°,X°°,P~) where the indices
of a process X = {Xi}iez € X are allowed to be —o0 and 0. For
each index t € Z, let Xz°° denote the o-algebra generated by
{ X}, and X o is the oalgebra generated by {Xt}'!i:foo.
We use 2:’ to denote the o-algebra generated by
(X oo VX2 i1 The marginal probability measure
ontXi}P2/ is written as P~°°zand the joint probability measure
on{Xitio_o as P!—oo.

With these notations, we have the definitions of a, 8, and ¢-
mixing coefficients following [41, 15].

Definition 1 (a-mixing coefficient). The a-mixing coefficient
[42] of a stationary process X is defined as a(n) = sup sup
[P"(A n B) - P7(4) - P°(B)|-

t A€EX-t o, BEXtoo+n

Xis called a-mixing if a(n) = 0 as n — co.

The following S-mixing coefficient provides a stronger
notion of decaying dependence. It can be shown that 2a(n)

< B(n) [41].

Definition 2 (8-mixing coefficient). The S-mixing coefficient

[16] of a stochastic process X is defined as B(n) = sup
sup |P7(€) = Pt-0 @ P wot+1(C)].

t  CeXu+1+n-1
X is called B-mixing if f(n) = 0 as n — oco. The B-mixing
coefficient can be equivalently written as

B(n) = sup Eg [ sup \I?Pfj’_”(c Xt
t — | cex

/ t+n

o)~ B ?)l]_

Comparing the second definition of S-mixing with the
following definition of ¢-mixing, we can see that 5(n) < ¢(n).

Definition 3 (¢p-mixing coefficient). The ¢-mixing coefficient
[18] of a stochastic process X is defined as

¢(n) =sup sup [ sup |Pfi,”((7|B)IpfiH(C)]
Cexp

t BEXLOG E‘Yr.\n
Xis called ¢-mixing if ¢p(n) = 0 as n = oo.

We say X is stationary with respect to u € P(X) if the one-
dimensional marginal probability of Xiequals u for Vi € Z. For
stationary processes, the supremum over t in the above
definitions can be ignored, and one can set t = 0 without loss
of generality. To maintain the simplicity of the presentation,
we focus on stationary stochastic processes with «, 5, and ¢-
mixing properties in the sequel. However, the results put
forward in the current paper can be extended to

asymptotically stationary processes, which is discussed in
Section VI.

The decay rates of the mixing coefficients play an
important role in our discussion. The following definitions
introduce the exponential a/f-mixing condition and fast
@mixing, which are used throughout the paper.

Definition 4 (exponential a/f-mixing). X is said to be
exponential a or B-mixing, if the a or -mixing coefficient
satisfies
nz1,

=1,

a(n) < a” exp(—cn),
or f(n)< ,B-exp(—cnl’),

fora,” By,c > 0.
Definition 5. [fast ¢-mixing] X is said to be fast ¢-mixing, if

the ¢-mixing coefficient satisfies
o0

o= Zcﬁ(n) < oo
n=0 .

An exponentially decaying ¢-mixing coefficient is certainly
summable and thus is covered under the above definition.
Definition 4 and 5 form the basic assumption on the mixing
processes studied in the current paper.

To bridge the notions of mixing with RKHS, it is convenient
to consider the following kernel mixing coefficient introduced
in [43].

Definition 6 (kernel mixing coefficient). Let X be a stationary
process with distribution u. For n € N, define the kernel
mixing coefficient as

pr(n)

E(k(Xy,-) — Buk(X, ), k(Xo, ) — Buk(X, Nl (1)

We denote the cumulative sum of the kernel mixing
- ¥, =3 op(n)
coefficient as 2u = 2_n—o Pr(1),

If we treat {k(X)}iczas a sequence of Hilbert space valued
stochastic process, then as shown by [44, Lemma 2.2] pk(n)
can bounded by a constant multiple of the a-mixing

coefficient, i.e., pr(n) < 10a(n)k_2. Thus, we get £, < o under
the assumptions of exponential a-mixing, exponential f-
mixing, and fast ¢-mixing.

C. Examples of mixing processes

One notable example of ¢p-mixing processes is the uniformly
ergodic Markov chain. A Markov chain is said to be uniformly
ergodicif it is aperiodic and satisfies Doeblin’s condition [37].
Thus, it is also called the Doeblin chain. A g-th order
autoregressive (AR) process is ¢-mixing if the Markov chain
generated by stacking q consecutive states is a Doeblin chain.
The ¢-mixing coefficient decays exponentially for uniformly
ergodic Markov chains, therefore satisfying the fast ¢-mixing
condition in Definition 5.

VOLUME 00 2024
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Examples of exponential S-mixing processes include V
geometrically ergodic Markov chains. The Markov transition
kernel P: X x X — [0,1] with stationary distribution 7 is said
to be V-geometrically ergodic if it satisfies

TV(P(x,+),m) < V (x)pl/m), for all n, (2) where V: X =
[1,00) is a measurable function, m is an constant integer, and
p € [0,1). When Vis bounded on X, it becomes the uniform
ergodicity condition. From a dynamic system perspective, I/ -
geometrically ergodic Markov chains subsume stable
nonlinear systems with finite variance additive noise [see 45,
Section 3.5]. The aforementioned examples all work as
examples of exponential a-mixing processes. Additionally,
measurable functionals of a, 8, and ¢-mixing processes are
also a, 5, and ¢-mixing processes. The mixing coefficients are
bounded by those of the original processes [45, Lemma 3.6].

11l. PROBLEM FORMULATION

In this section, we first introduce the online change point
detection problem and the commonly used performance
metrics [see 19, 4]. Later, we discuss the proposed
MMDCUSUM test and its properties.

In the sequel, we make the following assumption and
restrict our attention to stochastic processes satisfying the
exponential a/B-mixing and fast ¢-mixing conditions in
Definition 4, 5.

Assumption 1. The stochastic processes considered in what
follows satisfy one of the three mixing conditions in
Definition 4 and 5.

A. Online change point detection

The online change point detection problem is often
formulated as a sequential two-sample test which has been
widely considered in the past [6, 26, 21, 24]. Given a
sequence of samples {Xi} from a stationary mixing process X
with distribution u, at each time step, the following null and
alternative hypotheses are proposed

Ho: pu remains the same, Hi: u has changed.

Test statistics are calculated using the samples collected up to
the current time step. To detect the change quickly and
accurately, one attempts to reject the null hypothesis Ho via
a threshold rule at every time step.

More formally, consider a stationary stochastic process X =

{Xi}iez € X adapted to its natural filtration with unknown
distribution u. At some unknown but deterministic time index
T€Z wehaveXi~uforO<i<standX;~vforizt+1, where
v € P(X) and w/=v.
This can be conceptually thought of as having a separate and
independent stochastic process X € X following unknown
distribution v running alongside X. From the outside, one can
only observe X up to time 7, and at time 1, the observation is
immediately switched to X.

VOLUME 00 2024

Suppose the null hypothesis is rejected at time T(b), which
is a stopping time adapted to the filtration {X-' «}iez and a
function of the threshold b. If we use E~ and Eoto denote the
expectation under Hoand Hirespectively, then the average-
run-length ARL and the average-detection-delay ADD can be
written in terms of the stopping time T as follows

ARL = Ew[T(b)] and ADD = Eo[T(D)].

Unlike the Bayesian formulation, we assume the change point
Tis unknown and deterministic, and thus we set 7 = 0 without
loss of generality. ARL measures the robustness of the test
against false alarms. Whereas ADD measures the quickness
of the test in response to an abrupt change. The overall goal
of online change point detection is to have a ARL that grows
with b as fast as possible and a ADD that grows with b as
slowly as possible.

B. MMD-CUSUM test

The MMD-CUSUM test is a sequential adaptation of the
kernel two-sample test. Consider a bounded, measurable,
characteristic, reproducing kernel k : X x X — R. Denote the

_ h . .
reference datasetas Pn = {X[}/_1 of size h. The detection
algorithm processes the incoming data in blocks of size r,

. tr—1
which is denoted asB"’(t) ={Xi i=(t—1)r for an integer t =

1. Let v'hand u"r denote the empirical measure constructed
using the dataset Dn and B/(t). Define the MMD between
these two empirical measures as

MMD[, V5]

1
_(r_-z Z kl(X(f,—l)f'+H,—l'-X(t—l)l‘+lll,—l)
1<n,m<r

1 v '
+ hj Z ]‘(‘Xn‘ Xm)

1<n,m<h

) 3
— E - Zk(X(?‘l)f'Jrnl'-X:n)) 3

‘131157',

1<m<h (3)
At time step i = t-r, the algorithm computes the following test
statistic; otherwise, it collects the new observations and
remains idle. Let integer M = r be the minimum number of
samples required to perform the test. We write the test
statistics at time step i as

s"li/r| = max Sn:|i/rl, (4)

1<nst
{ [[AL? IA/h] — A}
MMD 5

Li/r]
Sn:lifr] = Z
t=n
where A > 0 is a tunable parameter that keeps the summand
slightly blew 0 under the null hypothesis. The corresponding
stopping rule with threshold b and M minimum samples is
written as
T(b.M)=r-inf{t>M/r:§& >b} (5)
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We make the following remarks regarding the above
MMD-CUSUM statistics.

a: Convergence of Empirical MMD

To correctly configure the offset parameter A, we need to
determine the envelope of the deviation of the empirical
MMD from the true one. The result collected in the following
lemma shows that the estimation error is bounded by a term
diminishing in the sample size plus a small margin, almost
surely for all three mixing conditions. Note that the empirical
MMD can be equivalently written as the MMD between
empirical measures. For probability measures pu and v, we

write MMDd (g, v) as MMD(" V') where p”r v hare empirical
measures of y and v with r and h samples, respectively.

Lemma 1. Let X and X be two independent processes with

stationary distribution w and v satisfying the mixing
conditions introduced before. Given § > 0, there exist constant
C(r,h) such that the following holds almost surely for
sufficiently large h,

E

[MMD (1,4 |Da] = MMD(H V)| < C(r,h) +9,

|
. — 1 log log h
Wherec(?"h) a O(\/'_'+ V.oooh ) and E[-|Dx] denotes

the expectation taken over the randomness in |"r conditioned
on the reference dataset Dn.

Proof:
Applying triangle inequality, we get the following two
expressions:
MMD(u",V"h) = MMD(u,v) < MMD (") + MMD(V,v"s),
MMD(u,v) = MMD((",v'h) 2 ~-MMD(U"r,1) = MMD(V,V'h).
Let us consider the first inequality above, and the other one

follows similarly. Suppose we take expectation over the
randomness of u"r, and due to independence we have,

E[MMD(u"Vv"1)|Dn] — MMD(u,v)

< E[MMD(u"ru)] + MMD(v,v'h).

\/m
On the right hand side, the term EXMMD(u",u)] < r
by Lemma 7.1 of [43] for all r > 0 and X which satisfies X, <
o, It remains to bound MMD(v,vs) for a

particular v's. Observe that

(v, 0p) = B!

MMD

>
i

H,

1 Linear or sublinear dependency of sample size means a tail bound of
O(exp(-g(n)e?)) where g(n) grows linearly or sublinearly. By writing it

where {Hi= k(X;-) - Evk} is a Hilbert space valued stochastic

process and {H;} enjoys the same mixing property as X since
H;is a measurable function of Xi. Thus, we can apply the law
of iterated logarithm for Hilbert space valued a-mixing
processes [44, Theorem 6] or [46, Theorem 2] to conclude
there exists constant co> 0 such that almost surely

Z Hi|l| < egv/hloglogh.

i=1 Hi

lim sup
r—00

Note that the hypothesis of [44, Theorem 6] holds in our case
under the assumption of bounded kernel k and exponential
a/B-mixing and fast ¢—mixing. Thus, there exists a constant

C(r,h) = ()(\/; + \/W) such that

MMD(i",V"n) = MMD(,v) < C(r;h) + 6 for sufficiently large h.
Similar, MMD(,v)-MMD(u",v"n) can bounded from below
with —C(r,h) - 6, and the proof is complete. B

Lemma 1 indicates that under the null hypothesis (no
change), the bias of empirical MMD is bounded by a positive
quantity decaying at rate o(r-/2+ h-1/2]loglogh) plus a small
margin for sufficiently large reference data. To maintain a low
value of the MMD-CUSUM statistics under the null
hypothesis, it is necessary to apply a certain negative offset
to the empirical MMD so that the cumulative sum in (4) does
not blow up when change is absent which leads to the second
remark regarding the parameter A.

b: Offset parameter A

We shall determine the appropriate range for the offset
parameter A in (4) using Lemma 1. Note that A needs to be
sufficiently large under the null hypothesis such that the
MMD-CUSUM statistic does not blow up due to the
estimation error of the empirical MMD. As suggested by
Lemma 1, if A is strictly larger than C(r,h), i.e., A =2 C(rh) + 6
for some margin § > 0, then the empirical MMD is bounded
by A almost surely for sufficiently large sample size. On the
other hand, the upper bound for A appears under the
alternative hypothesis (with post-change distribution v). As
we shall see in Theorem 3, A should be strictly less than
MMDk(u,v) - C(rh) - 6 otherwise the ADD can be
unbounded. To tune A in practice, one can simulate the pre-
change scenario with different values of A = C(r,h) + 6 using
the reference dataset. For each value of A, the ARL can be
estimated with multiple runs of the experiment. Then,
choose the smallest A that yields the acceptable ARL
performance. Keeping the A small allows the MMD-CUSUM
to achieve better ADD.

IV. MAIN RESULTS
In this section, we establish the detection performance of the
MMD-CUSUM test using the metrics introduced in the

this way, we assume the tail probability measures the event

™
{327 Xn —nex =ne} where the deviation scales with sample size n.
VOLUME 00 2024
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previous section. The average-run-length ARL characterizes
the average interval between false alarms, which is
lowerbounded in Theorem 2. The average detection delay
measures the quickness of the detection, and an upper
bound is given in Theorem 3. The proofs are omitted due to
the page limit, and they can be found in the Supplementary
Material’s Appendix.

Before we state the results, let us briefly summarize the

technique we employed. Recall Ex denotes the expectation
under Ho. We can expand the Ew[T(b,M)] as follows

ZIP’ (b, M) > 1]
N i (1_11»90{ U {T(b.M)_f}}>
[y i—JH—l

Eoo[T(b, M)

oo t—M
>M + Z (1— { U U{L"“>b}})
I=M+1 t=M+1 k=1
oo t—M
=M+ Y (1 Z Z]Pm{qmwa),
I=M+1 t=M+1 k=1

where union bound is applied to the last inequality. At this
point, it suffices to obtain an upper bound on the tail
probability Peo{sk: = b} using Proposition 4, 5. The tail
probability bounds in Proposition 4, 5 offers simple explicit
subGaussian decay rates with linear or sublinear
dependency?! on the sample size n inside the exponential.
This kind of decay rate is necessary for our analysis as it
dictates the scaling of ARL in threshold b. As we shall see in
the theorem below, the slower decay rate of Proposition 5
causes the difference in ARL between exponential a/fmixing
and fast ¢-mixing processes.

We note that the existing concentration inequalities
obtained for generic purposes are not well-suited for the task
at hand. For example, the classic concentration inequalities
for a-mixing, such as [45, Theorem 3.5], have tail bound with
an additive term in addition to the common exponential term
seen in the usual Hoeffding’s inequality. When combined
with our technique, it leads to a prohibitively cumbersome
derivation of the ARL. The a-mixing concentration inequality
in [47, Theorem 2] gives the tail bound on the relative
deviation (scaled by variance) instead of the absolute
deviation. The [-mixing results in [48] and the a-mixing
results in [49] provide a subexponential bound of O(exp(-€))
which is a weaker dependency on € than we desired. The
detailed discussion of the concentration inequalities we
derived is postponed until the main results are introduced.

We now state the main result on the upper bound of ARL
under the mixing condition described in Definition 4.

Theorem 2. The average-run-length for test statistics (4) and
stopping rule (5) under the null hypothesis has the following
lower bounds.
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1) Suppose X is a/B-mixing satisfying Definition 4, then
ARL[T(b,M)]
> M —1+exp (bﬂrlldﬂf)(lJro(l)). (6)

2) Suppose X is ¢p-mixing satisfying Definition 5, then
ARL[T(bM)] 2 M - 1 + exp(b6)(1 + o(1)), (7) where
y is defined in Definition 4, and & > 0 is defined in Lemma 1
and depends on A, h.

Proof:
Appendix D [ |

Theorem 2 establishes the first ARL bound for the
MMDCUSUM test under a/fB/¢-mixing processes. The
performance of the MMD-CUSUM test under a/B-mixing
case has not been considered in the literature before, and
Equation 6 provides the first exponential lower bound on the
ARL. In previous studies, ¢-mixing processes are considered
in certain specific cases, such as the uniformly ergodic
Markov chains [5] and hidden Markov models (HMM) [22].
Equation 7 generalizes the ARL bound therein to the broader
¢-mixing processes without loss of performance. It also
indicates that Markovian or HMM structures are not
necessary for the exponential lower bond of the ARL.

The ARL bound in Equation 6 has a dependency on y, which
controls the mixing speed (Definition 4). This dependency on
y also is the result of applying the concentration bound in
Proposition 5. Suppose the a or S-mixing coefficient has a
decay rate of O(exp(-n)), i.e., y =1, the ARL then achieves a
Q(exp(b¥/263/2)) lower bound which is slighted degraded in
terms of the threshold b compared to Equation 7.

Surprisingly, the ARL under the fast ¢-mixing condition
(Equation 7) achieves the Q(exp(b)) lower bound (same as
Markovian samples) while only requiring a summable
¢mixing coefficient. In comparison, the ARL lower bounds in
[5] and [22] are obtained under the Doeblin’s condition [37,
page 402], which corresponds to exponential ¢-mixing
conditions.

To measure the quickness of the MMD-CUSUM test, we
estimate the expected value of the stopping time T(b,M)
under the alternative (Ho). Recall that Eo denotes the
expectation under H1. We can write the Eo[T(b,M)] as follows

(o] oo

Eo[T(b,M)] = XPo[st < b] < XPo[s1.:< b]

t=1 t=1t ©

= Xpo[s1.c< b] + X Po[sie< b],
t=1 t=to+1 Where the first inequality is
due to s1::< 5™t Splitting the summation at to and trivially
bound the first term with to. With a certain choice of to, the
second term can be shown to be ultimately negligible or

7
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0(1) compared to to using the concentration inequality in
Proposition 4 and 5.

Theorem 3. Suppose X is a mixing process satisfies Definition
4 or 5 and pre and post change stationary distribution u and
v satisfy MMD«k(u,v) > C(r,h) + A + & for some § > 0. The
average-detection-delay for test statistics (4) and stopping
rule (5) under the alternative hypothesis has the following
upper bounds.

ADD[T(b,M)]

b
< ma M, ———
<max<{ M D) —A —(5}(1 +o(1))’ @)
where D(u,v) = MMDk(u,v) — C(r,h), and C(r;h) is defined in

Lemma 1.

Proof:
Appendix E |

Theorem 3 gives the first O(b) upper bound on ADD under
all three types of mixing conditions. Similar to the ARL lower
bound, it was previously considered only under uniformly
ergodic Markov chains and HMM. Our result shows that the
Markovian or HMM structure is also not necessary for O(b)
upper bound on ADD.

Intuitively, the realization of the MMD-CUSUM statistics
should track its mean, which is just nMMD(y,v) for time n.
Therefore, the threshold b should affect the average
detection delay in a linear fashion. We note that the sufficient
separation between u and v is required due to the estimation
error of the empirical MMD as indicated by Lemma 1. This
can be satisfied by choosing rh sufficiently large and &
sufficiently small to ensure MMDx(u,v)-2C(r,h)-26 > 0.

We now establish the concentration inequalities for the
sum of bounded functions under mixing conditions.
Proposition 4 is a Hoeffding-type inequality for ¢-mixing
processes with summable mixing coefficients. We provide a
proof based on the martingale decomposition. Concentration
inequality for exponential ¢-mixing processes is obtained in
[50] using an information inequality-based argument. The
martingale-based method was used in [51] to study the
concentration inequality of dependent random variables on
countable spaces. Proposition 5 compliments the results
therein by considering stationary ¢-mixing processes on
completely separable metric spaces. The sum of bounded
functions of ¢-mixing processes has a tight concentration
bound that resembles that of i.i.d. random variables, which
can be recovered by setting ® = 0.

2 A subGaussian bound on € refers to a tail bound that looks like
O(exp(-€?)). A subGaussian bound on € refers to a tail bound that looks
like O(exp(-€)).

Proposition 4. Let X be a stationary ¢-mixing process with
coefficient satisfying Definition 5. Assume that f: X = R has
bounded span and letSn = Z§=D J(X3), Then forez=
0, it holds
n—1
IF’[S” - Z E[f(X;)] = nf]

=0

< ex _ 2ne?
= OXp (2® + 1)?span(f)?

s

where @ is defined in Definition 5.

Proof:
Appendix B [ |
Compared to the O(exp(-ne?)) tail bound in Proposition 4,
the following concentration inequality for f-mixing processes
has an O(exp(-ne” %)) tail bound where n” grows sublinearly
with the sample size n. The proof follows [47, Theorem 2]
with the modification of replacing Bernstein’s inequality with
Hoeffding’s Lemma (Lemma 10) to yield the desired result for
our purpose.

Proposition 5. Let X be a stationary -mixing sequence with
the coefficient satisfying Definition 4. Assume that f:
Y — R has bounded span, i.e., span(f) < oo, and let

n—I1
Sn =20 F(Xi) Then for all € € (0,span(f)), it holds
n—1
IP[S,, — Y E[f(X;)] > mf]
i=0
2ne> }
span(f)? |-

s

< (1+B/e )exp { B

where n" = |n[(10n/c)Y0+V]-1] and cy are defined in
Definition 4.

Proof:

Appendix C [ |

To our knowledge, the tail bound in the above form has not
been considered previously. As opposed to the classic two-
term version in [45, Theorem 3.5] and the relative error
version in [47, Theorem 2], which can be difficult to be
applied in our analysis, Proposition 5 streamlines the
calculation of ARL and ADD in Theorem 2 and 3.

Compared to regular Hoeffding’s inequality for bounded
i.i.d. random variables [52], the exponent of the tail bound
has a sublinear dependence on sample size due to the
presence of n". n"is close to n when Y is large corresponding
to a faster decaying S-mixing coefficient (Definition 4). This
sublinear relation with respect to n is also reported by [49]
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and [48] as well under exponential @ and S-mixing conditions
with y = 1. They provided an O(exp(-ne/(lognloglogn))) tail
bound, which is a faster rate in n compared to Proposition 5
with y = 1. It is tempting to think that this tail could improve
the lower bound of ARL in Theorem 2. However, the
subexponential, instead of subGaussian?, dependency on €
makes it not applicable to our proof. A similar concentration
type inequality for amixing processes is obtained in
Proposition 14 following an analogous proof.

V. NUMERICAL SIMULATIONS

In this section, we apply the MMD-CUSUM test to a simulated
stochastic process and verify the theoretical results. The
stochastic process is generated by simulating a stable linear
system A € R***with an observations matrix C € R2x4,

Let Z = {Zi}iendenote the state process and Y = {Yi}ien denote
the observation process. The system update equations can
written as follows

Ziv1=AZi+ Wi
Yis1=CZi+1+ Vi,

where A =[[0.96, 0.99, -0.88, 0.56],[0, 0.98, 0.75, -0.65],[0, O,
0.97,0.95], [0, 0, 0,0.94]] and C =[[1, 0,0, 0,], [0, O, O, O], [O,
0, 1, 0], [0, O, O, 0]]. Randomness is introduced into the
system through the actuation noise W;and observation noise
Vi where Wi iid~ N1 and V; iid~ Nz for all i. In our
experiments, N1 and Nz are two multivariate normal
distributions. This is an example of a hidden Markov model
(HMM). The state observation joint process (ZY ) and the
state process Z along are Markov chains; however, the
observation process Y in general is not. The observation
process of this system is exponential S-mixing. This can be
deduced from the fact that the matrix A is stable and the
noise has bounded variance [45, Section 3.5, page 100]. To
obtain an exponential ¢-mixing process from the
observations, one can simulate the above system with
truncated versions of N1 and

Na.

The kernel chosen for the MMD-CUSUM test is the rational
quadratic kernel ks(xy) = (1+(20)tlx-yll%)-2 for ¢ > 0
instead the popular Gaussian RBF kernel ko(xy) =
exp(-llx-yll2/(202)) for o > 0. As demonstrated by [53], the
rational quadratic kernel is favored over the Gaussian RBF
kernel in GAN applications, which indicates its superior
performance in separating probability distribution. We fix the
parameter a = 1 for all experiments. The reference dataset is
obtained by recording Y for 104 steps under the pre-change
configurations with an appropriate burn-in period applied to
the samples to maintain stationarity. We estimate the ARL
and ADD by taking the average of 50 independent
experiments for each threshold. The experiments are

VOLUME 00 2024

performed under 3 different offsets to demonstrate the
sensitivity of this parameter.



H. CHEN ETAL.: Model-Free Change Point Detection for Mixing Processes

10

We apply abrupt changes to the noise distribution N1 of the

Log10 ARL
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(c) ADD under mean shift.
state process. The MMD-CUSUM test is applied to the
observation process Y only. The noise observation poses an
additional layer of challenge for the detector. To simulate an
a/B-mixing process, it suffices to use the regular Gaussian
noise. To simulate a ¢-mixing, we sample from the same
Gaussian distribution and reject the samples falling outside a
[-1,1]*box. The random seeds are kept the same across the
regular and the truncated cases to ensure comparability. The
log(ARL) under both cases are shown in Figure Figure 1a and
Figure 1b. To our surprise, the ARL under the regular Gaussian
case maintains an exponential relationship with the
threshold, which suggests the ARL bound for a/B-mixing
process can be improved. We discuss the difficulty associated
with this improvement in Section VI.
The ADD are estimated under regular Gaussian noise.

We present the ADD under two cases: (i) mean shift

N1(0,0.17) — N{(0.011,0.17) (Figure Figure 1c) and
(2) variance change N1(0,0.17) — Nf(0=0-51)(Figure
Figure 1d). The ADD scales linearly with the threshold b,
which corroborates our findings.

VI. DISCUSSION

Log10 ARL under Truncated Normal
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(d) ADD under variance change.
A. Unbiased MMD estimator
The following unbiased estimator of the squared MMD,
introduced in [7], can also be used to replace Equation 3. We
write the unbiased estimator of the squared MMD between
w,v using m samples from y and n samples from v as

— MMD

2, . 1

\MmsVn ) = —F/—————~ k X.E-X‘

k(nu ¥ ) 'TH('NI* 1) Z ( ’ J)

1<ij<N
1 2

_ k(X! X)) — — k(X;. X!

n(n—1) Z (X5, X3) nm Z (X, X5)
1<ij<M 1,7 )

where Xi~ p and X/ ~vfori= 1, ,nandj= 1, ,m We
abuse the notation here and write the empirical square MMD
as the square MMD between empirical measures, although
they are not equivalent to the unbiased estimator. Due to the
unbiasedness, it is not always non-negative and thus should

be directly plugged
—

into the partial sum with the square root. To adapt MMDxkto
the current framework, it suffices to obtain a consistency
result such as Lemma 1, and the rest should follow. Consider
two independent stochastic processes X = {Xi} and X = {Xi}
with stationary distributions p,v and summable kernel mixing
coefficients as in Definition 6. Suppose we use m consecutive
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samples from X and n consecutive samples from Y. Then, we
can bound the estimation bias caused by the dependency
between samples as follows,

EMMD; (m, )] = MMD (v )
< E[MMD: (itm, ¥n)] - E[MMDE (1, ¥n)]
+ E[MMD (1 ¥m)] - MMD} (v )

where ,

the second inequality comes from [43, Lemma
7.1], X, Zv are defined in Definition 6, and the expectations
are taken with respect to the randomness in the

Ial _ X, X
samples. After Cpplm,n) = J + ¢
replacing Cyv(m,n)
with Cyv(m,n) throughout the paper, the same set of results

also holds for the CUSUM statistics defined with the
—

unbiased estimator MMDk.

m m

denoting and

B. Computation complexity

The time complexity at each time step is O(rh) where ris the
block size on the incoming data, and h is the size of the
reference dataset. Compared to the overlapping block design
in [5] with time complexity O(r2h), the non-overlapping block
design here increases the speed at the expense of incurring a
constant detection delay. The memory usage here is constant
since only the current block and the reference data need to
be stored. We present the implementation of the detection
procedure in Algorithm 1.

C. Connection to HMM

Hidden Markov models (HMM) cover a wide array of real-
world scenarios where the MMD-CUSUM test can be applied.
For a comprehensive review of HMM, please refer to [54] and
the references therein. Change point detection for HMM
arises from the monitoring complex dynamic systems [55],
such as communication networks [56], power plants [57],
healthcare monitoring [58], manufacture process monitoring
[59], distributed machine learning systems, etc.

For change detection, HMM can be treated as a mixing
process. Consider a Markov chain X := {Xi} € X and its
observation process Y := {Yi} € Y, where Y is a complete
separable metric space with Borel o-algebra Y. Define the
observation kernel Qi: X x Y — [0,1] and Qi(X,A4) =

P(Y: € A{Y HZL o AX i H-— ). Then, Yis a/B/¢-mixing
as soon as X is a/B/¢-mixing [45, Theorem 3.12].

D. Asymptotic stationary processesln practice, many
mixing processes may not be strictly stationary but
convergent towards a stationary distribution at a certain
speed. For example, a Doeblin chain starts from an initial
distribution that is different from its stationary distribution.
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Weak asymptotic stationarity was introduced in [60] to study
the generalization bound of online algorithms. It combines
the convergence to a stationary distribution and S-mixing
into a single condition, which we choose not to include for
the sake of simplicity. Instead, we provide a discussion on
how to adapt Proposition 4 to asymptotic stationary
processes in the supplementary materials. The adaption of
Proposition 5 follows a similar argument. The intuition is that
as long as the process converges sufficiently fast, the
concentration of the partial sum will still hold. Thus, the
same results on ARLand ADD can be extended to asymptotic
stationary processes at no cost.

E. Obtain Q(exp(b)) bound on ARL under a/f-mixing As
shown in Figure 1a and 1b, the difference in ARL between
a/B-mixing and ¢-mixing is minimal which might indicate a
tighter O(exp(b)) bound on ARL under a/B-mixing. This
would be an improvement over the Q(exp(b?/?)) in Theorem
2 where y controls the mixing speed. However, the difficulties
lie in the unavailability (to the best of our knowledge) of a
subGaussian tail bound with linear dependency on the
sample size n for stationary a/f-mixing processes. This
bottleneck is also reported by a recent study [61] on the
concentration of kernel density estimator with dependent
data. Their findings are limited to ¢-mixing processes due to
the same issue. Circumventing this bottleneck might require
significantly new techniques, which are left as future work.

VIl. CONCLUSION

In this paper, we derive the ARL and ADD for the
MMDCUSUM test under three stationary mixing conditions.
Under the ¢-mixing condition, the performance of the
MMDCUSUM test is shown to match the i.i.d. case and the
Markov chain case with uniform ergodicity. As a byproduct,
we provide concentration inequalities of the partial sum of
bounded functionals under a, 8, and ¢-mixing processes. To
our knowledge, the concentration inequality in Proposition 5
and the proof of Proposition 4 are novel.

We note the limitations of this study and future directions
as follows. MMD is known to have a poor separation between
probability measures, with differences only in the high-
frequency region [39]. The MMD-CUSUM test may
experience performance degradation in such scenarios. A
recent study [62] tackles this problem in the kernel
twosample test setting via kernel spectral regularization. The
spectral regularized kernel achieves the optimal minimax
separation boundary, which results in an improved sample
efficiency compared to the usual kernel two-sample test.
Additionally, there have been several other exciting
developments on kernel two-sample test [63, 64, 65]. It
would be an interesting future direction to adapt those
methods to the sequential test setting and analyze their
performance.
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Another limitation is that our technique does not exploit
the finer structures produced by the max operator over the
partial sum. The theory of extremes of random fields [66]
provides handy tools to estimate the probability of events
such as {supeeo So > €}, where Spis the sum of n random
variables in the random field and © is an index set, such as
integers or real numbers. [12] has demonstrated the utility of
this technique in the i.i.d. case and shown a sharp ARL bound
of O(exp(b?)). However, the extension of this technique has
yet to be explored in the non-i.i.d. cases. Additionally,
leveraging the martingale property of the MMD-CUSUM
statistics with an unbiased estimator and the non-asymptotic
version of the law of logarithm for martingales [67] yields
another possible route to establish the performance bounds.
We plan to investigate these directions in the future.

APPENDIX
A. Auxiliary Facts

Definition 7 (Total variation metric). Let B := {f: |fllo< 1,f: X
— R,fis X-measurable}, the total variation metric between

probability measures u,v € P(X) is written as

f fdp — f fdv

= L,up \,u —v(A4)].

() = = qup

v

Lemma 6 (Corollary D.2.5 in [68]). Let f: X = R be an
essentially bounded measurable function. For v € P(X), we
have

L) - vl < TV(wv)span(f), (9)
where u(f), v(f) denotes the expectation of funder u, v

Lemma 7. Suppose {Xi} is a stationary ¢-mixing process. Let g

-

DX R be an essentially bounded function and is

measurable with respect to the o-algebra ngfn. Then

Elg(X2En)lrl o] — Elg(X2En)lyloo] | < 20(n)

span(g),

where xt-«Y_t « are two realizations of the trajectory up to

time t, and span(g) < ligll= when g is non-negative.

Proof:

Elg(X2%,)lat ] — Elg (X?ir,)lu’m]’

< E[ (Xlﬁ-?—n)l/ —oo] o E[G(X!:fﬂ)]‘

+ E[ (Xtoin) _E[ (X?J?n Utco]‘

<2¢(n)span(g), where the first inequality is due to
triangular inequality and the second is due to the Definition
3 of ¢-mixing and Lemma

6. |

Lemma 8 (Corollary 2.2 in [45]). Suppose {Xi} is a stationary
a-mixing process. Suppose go,..,gi are essentially bounded

functions, where gidepends only on Xik. Then
i

E{Hq] - ﬁﬁ(;ﬁ)] <dla(k) []
i=1

i=1 i=1span(gi),
where span(gi) < llgill« when giis non-negative.

Lemma 9 (Theorem 2.1 in [45]). Suppose {Xi} is a stationary
B-mixing process. Suppose go,..,gi are essentially bounded
functions, where gidepends only on Xir. Then
1 1 i
| TTa] - TTet| <15 [T
i=1 i=1 i=1span(gi),

where span(g;i) < llgill« when giis non-negative.

Lemma 10 (Lemma 8.1 in [69]). Let X be a random variable
such that a < X < b almost surely. Then, forr >0,
E[exp(r(X - EX))] < exp[r3(b - a)?/8].
B. Proof of Proposition 4
We show a generalized version of Proposition 4 with
timedependent functions in Proposition 11, that is, the
Cr n—1
partial sum S, of interest is replaced bybn =2 ico fi(X5)
where fi are potentially different. The key technique
employed here is the martingale decomposition of the partial
sum process generated by any stochastic process. In Lemma
12, we demonstrate the martingale decomposition. In
Lemma 13, we establish that the martingale difference is
bounded under the ¢-mixing condition in Definition 5.

Finally, we give the proof of Proposition 11 using the two
supporting lemmas.

Proposition 11. Let X be a stationary ¢-mixing process with
coefficient satisfying Definition 5. Assume that fi: X =
R has bounded span fori=0,---,n—1and let S =

n—1
>i—o fi(Xi) Then fore=0, it holds
R nf 2n2e2
[P)|:Su - E[f!(Xf}] > T?fj| < exp ( - T) ’
i=0 25:71 Aiz
(10)

where @ is defined in Definition 5 and {Ao,**
in Equation 13.

,An-1} is defined

First, we give the martingale decomposition of the partial
sum process generated by any stochastic process.

Lemma 12. Let X = {Xi} be a stationary stochastic process on
the probability space (X=,X*, P~) Forie

{0,-+-,n =1} and n € Z+, let fi: X - R be a essentially

bounded function. Let bn = Zﬁ 1l filX i) be the partial

sum. Let{X I 1::0 be the filtration generated by X, i.e., X
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ffff’r .

o= 0(Xoo,*++ ,Xo,°++ ,Xi). Then, there exists a martingale

-1 ; —1
difference sequences{Di Ho adapted tol X e o such
that

n-1
S - XE[f(XD)]
i=0
n-1 n-1 n-1
= X Di + XE[fi(Xi)|X--1 ] = XE[fi(X)], (11)
i=0 i=0 i=0

where the expectations are taken w.r.t. the stationary
distribution.

Proof:

We employ the martingale decomposition technique
introduced in Chapter 23 of [68]. For the following
development, we use these short notations for tuples:
Xy =

(Xm,*++ ,Xn) and Ty = (Tmye e T ), forO<m<n.

Without loss of generality, we assume E[fi(X;)] = 0 fori =0,
,n — 1 to simplify the notation. For i € {-1,0,--- ,n - 1}, we
define

i n-1

gi(x-) := Xfi(x) + X ELfi(X) x'-o], (12)
=0 I=i+1
n— n—1 p —
where 9n—1 (T—!ool) = Y=o filwm) and 971(5‘?—;) =
1 -1
11:0 E[fl(XiNW—oo]. With this definition, we observe that

n—1

gn1(20) =" [Qf(ﬂfim) — gi-1(z5) | + go(z0)

i=1 ’

and for i € {0,---,n - 1} and®" o € Xioo,
gia (@ k) = / gs(a' = 2) By ([ )
xé .

Recall that Xioo = 0(Xooo, 5 Xoy oo =Xi), the above

equation shows that SIFI(X:};) = ]E[g’i(chxJ)‘Xi_oclz] P
; n—1 ~

a.s.fori=0. Thus, 19:(XT o) Hoo isa P -martingale adapted

n—1

to filtration 14 actic—1 . It follows the martingale

n—1
decomposition of SNn centered at Zz:o E[fa(Xﬁ)},

n-1 n-1
Sn = XE[fi(Xi)] = gn-1(X-n-»1) = XE[fi(Xi)]
i=0 i=0 n-1 n-1

=X Di+ g-1(X--=1) = XE[fi(X1)],
i=0 i=0
where {D'ﬁ.}?:fol = {g:(XL,) - .(}ifl(X:é)};le isa
martingale difference sequence. We arrive at the Equation
11. |
Next, we show D;

is bounded by showingx 7-
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gi(x'-~»!,x) has bounded span for any x--w! € X-wland i =
0,---,n—1.

Lemma 13. Suppose X is a stationary ¢-mixing process. For
eachi€{-1,---,n - 1}, if we define
Ai:=2®max{span(f]) : i+ 1 <1< n-1} + span(fi),

(13)
where A-1:= 2dmax{span(f]) : 0 <1< n - 1}. Then it holds
that for Xi-w € Xi-wand i=-1,---,n -1

inf ¢;(z' "L, ) < g;(2* < inf g;(z Y A;, (14
inf gi(27,2) < gi(2100) < Inf iz, 7) + Ai (14)

Proof:

It suffices to show Equation 14 holds. The first inequality is
obvious. To show the second inequality, we pick arbitrary x*
€ X and we have

i n-1

gi(xi-») = Xfi(x1) + X E[fi(X1)|xi-o0]

1=0 I=i+1i-1 n-1

< Xfi(xi) + fi(x+) + X E[fi(X0)|xi-]
=0 I=i+1

n-1 n-1

- X E[fi(X1) | xi--c01,%x+] + X E[fi(X1) | Xi——o01 ,X]
[=i+1

+ span(fi).

I=i+1

Due to Lemma 6 (first inequality) and triangular inequality
(second inequality), we can see that

n-1 n-1
XE[f(X)|xi ]-XE[fi(X])|Xi-—co1,x<]1 1
I=i+1  I=i+1n-1
<X span(ff)TV(]lai(‘Lrim)- (|2 L, 7))
I=i+1
n-1 - ~ .
() [TV (Bl o), 1) + TV(B (2= 2"), )
<X span
I=i+1

< 20max{span(fi):i+1<l<n-1}

where the last inequality follows from Lemma 7 and

Definition 5. Thus, we have
i-1 n-1

gi(xio) < Xfi(x1) + fi(x+) + X E[fi(X1) | X-i-01,%+]
1=0 l=i+1

+2®max{span(f):i+1<l<n-1} + span(f)
<gi(zg ', @) + 2@ MaXfspan(f):i+1<l<sn-1}

13
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+span(f)

—fh(ﬁB lf*r*) + A

Since x* is arbitrary, we obtain Qi(-’*’?f‘)) <
il'lf'.r:*EX!ii(fffolsif»'*) + A'i, which completes the proof

of Equation 14. [ |

Finally, we estimate the tail bound using the classic
Chernoff’s bounding method [70]. In Remark 1, we note that
a similar tail bound can be obtained for asymptotically
stationary processes with a certain convergence (to
stationary distribution) rate.

Proof:
(Proposition 11) By Lemma 12, we have the martingale
decomposition of X as in Equation 11,

n-1

Sn— XE[fi(Xi)]
i=0
n-1 n-1 n-1

= X Di + XE[fi(Xi) | X--»1] = XE[fi(X])],

i=0 i=0 i=0

where we abuse the notation and denote D-: =
-1 - -1

Yt Elf(X)|X o] — Y5, Elfi(X0)]

on the desired quantity. Taking the moment generating

function on both sides of Equation 11 and applying the chain

rule for conditional expectation recursively yield for 6 = 0

k[ (05, - gmﬁ-(m—ﬂ))]
o)

=K [(zxp (9 Z
n—1

i=—1
HIEe‘cp (6D;)|Fi—1]

=0

=Elexp(#D_,
(15)
From lemma 13, we know that D; lies in an interval of
length Aifor all i € {-1,---,n — 1}. By Hoeffding’s Lemma [68,
Lemma 23.1.4] for bounded martingale difference
sequences, we have for 6 =0,
E[exp(6D-1)] < exp(6242-1/8)
E[exp(ODi)|Fi-1] < exp(6242%/8), and

plugging above into Equation 15 yields

E[exp (9 (b - EE[L—(X,-)}))] < exp (

Applying Markov’s inequality to the left-hand side, we have

2 n—1
> )

i=—1

gl ,)| > ne

1

< exp(an)IE[exp (6)(5’,, -

62 n—1
2
Sexp(—nef)—}—g Z A;:)-

i=—1

1
Picking ! = Ane/ 37I2 "1 A7 minimizes the right-hand side
and yields

n—1 9 «

9 ‘2_.2
( E E[f )>HE:| S(!xp(—ﬂﬂ—lfz>
i1 A7/,

The tail probablllty of the other side can be bounded
analogously. Therefore, we have

n—1
I@[ ]|>TI6] <20‘cp(

- D> _Elfi(x
This completes the proof after noticing that X is stationary

- ;E[fi(X.,-)]) > ne]

> Elsxa)) )|

i=—1

P

In‘e )
S
(16)

i=0

. One can use
Chernoff’s bounding method to obtain an exponential bound

and hence E[fi(Xi)] = u(f)) fori=0,~-,n-1.1

Remark 1. For asymptotically stationary processes, the

marginal distribution of Xi differs from the stationary

distribution u but converges to u as i — oo. To consider the tail
n—1

probability of S, centered around 2—i—o M fi ), we apply

triangular inequality to (a) and Equation 16 to (b) and obtain

S, — ZE +)

=0
' n—1
i=0 i=0span
(b)
< 2exp| —

QP{ (MHWMM>W]

u)]Q)

>polyrl ~ o
fort = i=0span(f)2TV(P ;). Thus a similar tail bound
can be obtained after assuming there exists a constant
n—1 ~
upperboundforzl:o span(f)2TV(P ,u) for all n.
C. Proof of Proposition 5

2[ne — 2”70 span(f;)2TV(P

—1
Yico A

s

We modify the proof of [47, Theorem 2] by replacing
Bernstein’s inequality with Hoeffding’s Lemma (Lemma 10) in
bounding the &1 term to yield the desired result for our
purpose.

Proof:

VOLUME 00 2024



IEEE
CSS

ffff’r .

Given integer n, choose any integer k < n and define I = |n/k]|.
Let p = n - kl and define the index sets [ifor i = 1 2,...,k as

{i,i+k,...,i+ 1k} 1<i<p
{ii+ k. i+ -1k} p+1<i<k.
follows
=
Note that Uili={1,..,n} and within each set Iithe elements are

pairwise separated by at least k. Let Gi= f{X)

T E[fTX1)], T()

= PJEIIGJ, and pi= |li|/n then

Z(*
S =

=1

~ES, = >N T()

i—lje[-

Z|I|—1

=1
Now, we write the moment generating function of

n
i1 Gi/ngorrs 0, which can be bounded as follows
using the convexity of the exponential function,

fon ()] < Spal ()] o

i=1

We now bound the right-hand side in the following fashion.
For i =1, 2..,k , we have
I1il

T (i ’ Gj
E exp UU exp ro -
I1:] - I7:]
j=
17il G
<V E exp e
je1 |7
| Jos !
il G I7i G
+ EVY oexp rit -V E exp rit (18)
je1 |7 je1 |7
! [ !

For convenience, we denote the first term on the right-hand

side of the above as ®1and the second term as ®2. We bound

them separately. ®1 can be estimated with Hoeffding’s

Lemma (Lemma 10) for bounded random variables. For r >
|1

Or
Gi\]| @ G, I2:]
Oy =||Elexp|r J)] = {IE[OX (rj)]}
=11 [ I(|L| P\
(b) r?span(f)?
< exp
- \I[ 8|4 , (19)

where (a) is due to stationarity and (b) comes from Lemma
10. Note that |Ii| 2 I for i = 1,2,..., k, thus we have

[7‘25pan(f)2
P1<exp 8l .

VOLUME 00 2024

@2 can be bounded by the B-mixing inequality in Lemma 9

and the exponential B-mixing condition (Definition 4).
113 1]

= [E{ Lo ()|~ IT e[ (171

1 rG;
il

IT]e

j=1

(L = 1)

< BRY (14 -

(b v
< e|l|-2f(k)e-ck erspan(f)

1)€rspan(f)

B
< = exp{|L;| +r

span(f) - ck}, (20)

where (a) is due to Lemma 9 and (b) is due to Definition 4
and the fact Il - 1 < exp(|1i] - 2).
Now, we plug Equation (19) and (20) into Equation (18),

elew (77|

r?span(f)?
= exp [ 8l
rspan(f) - ckr}.
Since |Ii| and k are free variables, we add some structure to
simplify the right-hand side of the above. First, we require
4|Ii] = rspan(f) which leads to exp{|li| + rspan(f) - ck'} <
exp{5|Li| - ck}. Next, we require exp{5|li| - ck} < 1, which
holds if 5|Ii| < ckr. Since |li| < (n/k+1) and n + k < 2n, it
suffices to let k = [(10n/c)¥/(r+1)].
Then, we have

3
] + e

T(i) r’span(f)® B
E exp r < exp —Pan + ‘%,
[1:] 8l e
. 41 411
which holds for 0 < r < soan(f) = span(f) fori=1,.k .

Plugging the above back to Equation 17 and using the fact

2 2
that exp == 8l = 5 1, we have

P" G _ 2 (DZ
E exp r—=—" < (1+ B/e)exp r spagln .

Applying Markov’s inequality, we have for € > 0
P [S,, —ES, > n(i| =P [exp E(S,,, —ES,) > e”}
T

_ Efexp £(5, — ES,)

81‘(

2 2
< (1+ B/ exp [ ey 17span(f) ]—
¥ . (21)

The right-hand side achieves minima w.r.t. r when
4el

r= ;span(fj2which clearly

satisfieswhen € < span(f).
Plugging the minimizer ||’fto-Equaam.m (21) yields

15
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=, 2 2 e?
P|S, —ES, > nel <(1+ 3/e*)exp |—

span(f)?
Replacing [ by n* = [n/k| = [n[(10n/c)¥/0+1]-1] gives the
2he?

P Sn-ESy=ne < (1+ Ble’)exp - span(f)?

||
desired result

for 0 < € < span(f).

A similar proof gives an analogous Hoeffding-type
inequality for exponential a-mixing processes which is of
independent interest. We document it here for
completeness.

Proposition 14. Let X be a stationary a-mixing sequence with
the coefficient satisfying Definition 4. Assume that f:
Y — R has bounded span, i.e., span(f) < co. Let Sp=

j1) - ]E ‘rr 2 1 4 > ‘
{61 So2n <O tacten ]~ o )
n
>imo J(X), Then, for all € € (0,span(f)), it holds
2ne"?
P R —————
(22)

where n" = |n[(10n/c)V/0+V]1| and cy are defined in
Definition 4.

Proof:

The proof is the same as that of Proposition 5 except for the

part where @z is estimated. In the a-mixing case, @2 can be
bounded by Lemma 8 and exponential a-mixing condition
|7:]

(Definition 4).
|
A G;
[0 (r77) - Lo (1)
<4a(k)(|Ii] -

al
|15
sl
®)

(a)
< do(k) (|| — H
< €|‘ri|724d(k) —ek? span(/)

|1
b, =

i=

=1

1)€rspan(f)

< 4e2a” exp{|li| + rspan(f) - ck'}, (23) where (a) is
due to Lemma 8 and (b) is due to Definition 4 and the fact
Il = 1 < exp(|Ii| = 2). The rest of the proof follows that of
Proposition 5.1

D. Proof of Theorem 2
1) Case 1: f-mixing

When X is exponential S-mixing satisfying Definition 4, we
show the lower bound of ARL as follows. For exponential a-
mixing processes satisfying Definition 4, the proof follows the
same procedure after replacing Proposition 5 with
Proposition 14.

Proof:

To determine the upper bound for ARL, we condition on the
fact that the change point T is c0. We use Ex and P~ to denote
the expectation and the probability under T = oo. For
threshold b > 0, minimum burn-in period M, and stopping
rule T(b,M) in Equation (5), the ARL reads

[oe]

Eeo[T(b,M)] = XPeo[ T(B,M) = £]
t=1

oo

=M+ Xpa[T(b,M) = t]

t=M+1
o (I )'
=M+X1-pPal{T(BM) =1}
=M+1 t=M+1
oo (1 )!

(@)

2M+X1'Poo[{s“t>b}

I=M+1 t=M+1
L (1 =M )!
2M+X1-Pow][{skte=b}
I=M+1 t=M+1 k=1
L I t-M !

(b

>M+X1-XXpef.> by
=M+1 t=M+1 k=1
L-M1 t !

=M+X1- XXPOO{Sk:t+MZ b} (24) =1 t=1k=1

where (a) is due to the majorization of the event {T(b,M) =
t} to {s"t> b}, (b) is due to the application of the union bound,
and M < L < oo is an integer constant.

To further lower-bound the right-hand side of the above,
we consider the tail probability in (24). Due to stationarity, we
can study Pwo{s1.t2 b} for some t 2 1 without loss of generality.
Suppose we pick the offset parameter A = C(r;h) + & for some
6 > 0. By Lemma 1, we known that Ew[s1:] = tEeo[s(BA(1)] €
[-tCpuu(r,h)—-t5,—t8] almost surely for sufficiently large h.
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Additionally, one can verify that {B-(t)}*=1is S-mixing with

EnolT(b. M) > M+ Y {1 ~3 Y Pafsies > b]}

coefficient ,8~(t) = B(tr). =1 =1 k1
By assumption, 3(tr) satisfies Definition 4 and ,[f(t) = LM
B(tr) < B exp(-crt), =L-DX[+1). (28)
for B,y,c > 0. Thus, we can apply Proposition 5 to obtain a tail i=1
Poy[s1: > b] probability  The right-hand side achieves maxima when L = L*, where L*
colo it bound on st s obtained as the largest solution of
=Px {Sl:t - Eoo[sl:t] >b— Eoc[31:t]}
(a) g2 . t8 oxp { 2i(b — tEoo[5(B,(1)])? } (L= M)(L*= M + 1) = 2/D.
Fort>1, e? iQSPan(m[Br(l}: Dy))? Some simple calculation shows
® €+ 3 i(b+ 15)? that L
e L*=M—3+5/1+8/D.
= - b
«© e+ ox L (e (& + V)2 (25) Returningto (28), we have
=T P 10 =k Eoo[T(b, M)]
L*—M
where in (a) we apply Proposition 5 for the conditional >L*—D Z 1241
probability undery/ event 4, in (b) we apply =1

> L* — D(L* — M)(L* — M +1)(L* — M +2)/6

1 4 9 1
> M+ a(L* - M) — 3 > M — G +E\/1+8/D
« . ) )
and in (c) t"is replace with its lower-bound, VZ-9 2
> M —+\/1/D,
{ t J =M+ ==+ 3VI/D,
(

10tr=7 /e) T + 1

span(MMDd[B:(1),Dx]) < 2k which can deduced from (3),

>

P (A J
L [(10tr— /) T |

where the second to last inequality uses the fact thaty/

> L J
L(10tr=7 /)T + tT+ —
> T , T 1 o
~Laor—/e) ™ | = (10— /)t - a+b=Pas2 +Pb/2forab = 0. Plugging the value
> [(,.1»(:/10}ﬁ _ mﬁ! (26) of D yields the lower bound in (6). [ ]

. .. 2) Case 2: ¢o-mixin
assuming cry are sufficiently large such that ) ¢ &

(r7c/10)m0r> 1 When X is ¢-mixing satisfying Definition 5, we show the lower
' bound of ARL as follows. For exponential a-mixing processes

The right-hand side of (25) achieves its maximum when £ = oa4cfving Definition 4, the proof follows the same procedure

b= ( y+2)ys b, which yields after replacing Proposition 5 with Proposition 14.
Poo[s1:-> b] < D, (27)  Proof:
Follow the same argument in Case 1 until the application of
where 0o i
Proposition 5. Note that {B.(t)}2,is ¢ -mixing with
coefficient ¢>~(t) = ¢(tr). Thus, {B:(t)}{21 satisfies Definition
5 with constant @ as soon as X does. Then, we can apply
- 4 &yer ), 2 . . .
D =(1+ pfe “)exp 3 br+t §r Proposition 4 to obtain a tail bound on s1.t. For t 2 1, Poo[S1:6>
| 57 1 2 b] =
2(b — tE o [s(B,-(1
" PR A Y S T <Cxp{ - f(2<b+(1)2 Oo([M’(ﬁB,[(B)z]l)) D ])2}
Srer )= 1- 10 =42 <41 4 span r(1), D Poo
14 14

{Sl:t— EOO[Sl:t] >b- EOO[Sl:t]}
Note that &(y,c,r) < 0 for sufficiently large ¢,1;y.

Using (27) and stationarity, each of Peo[Sk:t+m > b] in
(24) can be upper-bounded by Pw[s1.t:> b], which yields
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The right-hand side of the above achieves its maximum when
=t*:= b/6, which yields
Poo[s1:4+ > b] < exp [ M}
k | (29)
The rest of the proof follows the same procedure in Case 1.
Then, we have

V29 2 2b6
> M —exp | —
=M +3‘”‘p[k-]
We arrive at the ARL lower-bound in (7). |

E. Proof of Theorem 3

Case 1: f-mixing

When X is exponential S-mixing satisfying Definition 4, we
show the upper bound of ADD as follows. Note the offset
parameter A = Cyu(r;h) + 6 as defined in the proof of Theorem
2 in Appendix D.

Proof:

Assuming the change point T = 0, we denote the probability
and expectation under the alternative as Po and Eo,

MDd[Br(t),Dh]} = MMD«(p,v) -

C(r,h) - 6 almost surely for sufficiently large h according to
Lemma 1. Let D(u,v) := MMDk(w,v) — C(r,h). Now, we can
write the average detection delay as follows

o0

(b, M)] ZIPU 5 <b) < ZPO[Sl:t < b
to
<ZPU °’lf<b]+ Z ]P(j[‘,[f<b}

t=tp+1
b

< ms M= 81

_mlx{U, D(IM})A5}+t§1PU[QI't<M

respectively. For t > 1’ Eo{'vI

(36)

wheretn - max {PJ D{p, ”) A—d } In the rest of the proof,
we aim to show that the second term on the right-hand side
is ultimately bounded by a constant multiple of the first term,
and the desired result is reached.

To bound the second term, we apply Proposition 5 to get
the tail probability bound of s1:, similarly to the proof in
Appendix D. For t = to+ 1, we have

Po[s1:t< b] < Po{s1.t— Eo[s1:t] < b — Eo[s1:¢]}
3/e?)exp 4 — — (@)
<(L+p/e")exy { t?span Bt D 2}
2t°(Eo[s1:t] — b)2
(MMD[ (), ])

(b) B o
§(1+ﬁ3/(12)(:){p{ (D, v) f 5) r)]}

[

t...
(1, V)ﬂ-d)b]Q}

(g(l_{_ﬂ/e?)exl){—ﬂ ((’ﬁf)[ L k

1

¥

v

Dd[Br(t),Dh]) < 2k can be deduced from
Equation (3), (a) follows from Proposition 5 and t" =
[e[(10t/c)/r+1]-1], (D) uses stationarity of the post-change
process and the conditioning on 4’, and (c) follows from the

relation in Equation (26) and Y (c,y) :=

(10/e+1) L After magnifying the exponential term by
setting b to to(D(u,v)-A-6) and splitting the summation at

_ 24~
t = [17]for some? € (2(1+w)’1), the second term on the

right- hand side of Equation (30) becomes

> w

where span(MNI

1
Ty —

1+d/( fmtotl

; (D(p,v) A(S)‘J(fto)z}
< xp 2 —(e, i
_t=;rlep{ vien) T k

t—1 )
= o (D(pv) — A —6)%°
_;oxp{ (e, ) (f+t(,)f+—1,tz }

3 o b ey (Pl v) — A —6)%
+;c p{ U(e, ) ¢+ }
<(t— 1)(‘){[){.{.-‘)(( q)(D(‘”-V) - A+ __5)2}

(1+f0)|_k
exp 4 (e, ) P v) — A—é)%%
+Z I{ :Y) 1+ 0 }

where the first term is magnified by fixing t = 1 for all
summands, and the second term is magnified by majorizing
the denominator inside the exponential for each summand
via(L+to/)THk < (1485 /)T k< (1 +1t3- 1Tk

At this point, we can compare the growth rate of the two
terms above and to, which yields

. t—1 ‘ D(u,v) — A — §)2
lim ( ) exp {—'g‘)(c.qf)( (. v) S ) } =0,
1

to—o0 l(()

oo - 52 J?
lim Z(‘XP{—?@‘(G ) (D(p,v) — A 2?7 T+ }—U

to—roo (1+l¢%—1 ﬁft
(

t=t

where both equations above follow from
Thus, we have

hm — Pyls1e < bl =0

We have reached the desired result in Equation (8) after
combining Equation (30) and (31).®
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ad ox - Q(E() [S(];f] — b}z }
= L:z.zu:ﬂ ) p{ t(2® + 1)2span(MMD[B, (1), Dy])?

Case 2: ¢p-mixing

When X is ¢p-mixing satisfying Definition 5, the upper bound
of ADD is shown to follow Equation 8 using the same recipe
as in Appendix E. Using Proposition 4, the second term on the
right-hand side of Equation 30 can also be proven ultimately
negligible compared to the first term.

Proof:

We shall directly start bounding the second term on the right-
hand side of Equation 30 using Proposition 4, which is written
as

o0

Z Pﬂ[-"'l:f, < b]

t=to+1
oo

= Y Po{sie — Eo[s1] <b—Eg[si4]|A}
t=tp+1

< i oxp { [t(D(p,v) — A —§) — b)? }

tk
t=tp+1
If we magnify the exponential term by setting b to

F o 42/3
to(D(4,v)-A-6) and split the summation at £ *= [t6"" |-then

it becomes
Z {P()[Sl:t < b]}
t=to+1
> (D(1,v) = A = 8)%(t - m)?}
< exp § — -

t—1 5 -
B (D(u,v) — A — §)%t?
—;exp{— (t+to)k }

> ol (D(p,v) — A —6)?t? }
+;e p{ (t+to)k

j | (D(;L,V)*Afa)z
< (t— 1)U<P{_ (1+to)k }

> (D(p,v) — A — )t
+§exp{ (l—l—f”'—’}ﬁ. }

At this point, we can easily verify that both terms on the right-
hand side are ultimately negligible compared to to, and the

proof is complete. |

F. MMD-CUSUM Test Pseudocode
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reprints Algorithm 1: MMD-CUSUM test

Data: Data stream {Xi}, reference data D of size h;
empty buffer Br of size r; Smin Stores the min of the
partial sum; pick A during calibration; pick threshold
b>0.it<0;

570,50,Smin < 0;

Br< @;

while s+< b do Br< BrU Xj;

if (i mod r) = 0 then
St+1 ¢ S+ MMD[ V1] = A; Smin <
min{st+1,Smin};
§"t+1 < St+1 — Smin;
Bre< @; t
—t+1;end
i<i+1;end

for Government purposes, notwithstanding any copyright
notation herein.
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