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ABSTRACT This paper considers the change point detection problem under dependent samples. In particular, 

we provide performance guarantees for the MMD-CUSUM test under exponentially α, β, and fast ϕ-mixing 

processes, which significantly expands its utility beyond the i.i.d. and Markovian cases used in previous 

studies. We obtain lower bounds for average-run-length (ARL) and upper bounds for average-detection-

delay (ADD) in terms of the threshold parameter. We show that the MMD-CUSUM test enjoys the same 

level of performance as the i.i.d. case under fast ϕ-mixing processes. The MMD-CUSUM test also achieves 

strong performance under exponentially α/β-mixing processes, which are significantly more relaxed than 

existing results. The MMD-CUSUM test statistic adapts to different settings without modifications, 

rendering it a completely data-driven, dependence-agnostic change point detection scheme. Numerical 

simulations are provided at the end to evaluate our findings. 

INDEX TERMS Change point detection, kernel method, mixing processes 

 
I. INTRODUCTION 

Change point detection studies the problem of monitoring for 

abrupt changes in the statistical properties of an observation 

sequence, which has been widely considered in the literature 

[1, 2, 3, 4]. Change point detection has a diverse application 

that spans many areas, including cybersecurity, network 

intrusion detection, automated fault monitoring, factory 

quality control, etc. In many of these application scenarios, 

one may face various challenges, such as complex unknown 

dynamics, noisy non-i.i.d observations, and unknown preand 

post-change distributions. Ideally, a completely datadriven 

method with very few distributional assumptions 

(independence, density functions, etc.) would be preferred. 

The goal of this paper is to study the change point detection 

problem under a completely data-driven setting. To tackle 

this problem, we employ the MMD-CUSUM statistic 

proposed in [5] and analyze its performance under three 

common mixing conditions, namely α, β, and ϕ-mixing. 

The MMD-CUSUM statistic is an extension of the 

wellknown CUSUM statistic [6] with the maximum mean 

discrepancy (MMD). MMD has wide adoption in statistical 

twosample tests [7] and the training of generative adversarial 

networks [8]. As a probability distance, MMD can be easily 

estimated from samples on general domains (continuous or 

discrete) without the need for a density function. Thus, it is 

well suited for change point detection under the completely 

data-driven setting where pre- and post-change distributions 

can be unknown. Additionally, kernel methods have wide 

compatibility [9, 10] due to the diversity of kernel functions 

with different data structures, such as discrete data, 

continuous data, graphical data, etc. Thus, the kernel base 

method has vast application potential in designing 

completely datadriven change point detection schemes. In 

particular, the sequential testing procedures using the 

maximum mean discrepancy (MMD) have sparked some 

research interests lately [11, 12, 13, 14, 5]. Most of the 

existing studies focus on studying the properties of the MMD-

based procedures under the i.i.d. case. For continuous state 

space Markov chains, the MMD-CUSUM test is proposed in 
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[5] for uniformly ergodic Markov chains, which is known to be 

hard to satisfy in practice. 

Thus, more relaxed assumptions need to be considered to 

meet the demands of the completely data-driven setting. The 

main challenge in generalizing the performance analysis of 

MMD-CUSUM lies in the dependence of samples. Our 

proposal assumes the mixing property of the stochastic 

processes generated by the dynamic system. Mixing 

measures the dependence in the process by its definition 

[15], and it is widely considered in extending various results 

in probability theory to dependent time series [16, 17, 18]. 

Thus, establishing the performance bounds under various 

mixing conditions is a natural choice. Furthermore, the 

mixing conditions we assume highlight the fundamental limit 

for MMD-CUSUM to achieve a good performance; that is, the 

speed and strength of the mixing condition the processes 

satisfy. 

In the current paper, we analyze the performance of MMD-

CUSUM under three common mixing conditions, namely α, β, 

and ϕ-mixing. We provide bounds on the average-run-length 

(ARL) and average-detection-delay (ADD) which are the 

common performance metrics [19]. ARL characterizes how 

frequently the false alarm occurs and ADD characterizes the 

quickness of the reaction. As outlined in [20], the 

information-theoretic lower bounds are O(exp(b)) for ARL 

and O(b) for ADD for large b > 0, where b is the threshold 

parameter. We show that under the fast ϕmixing condition, 

the MMD-CUSUM achieves these lower bounds and thus is 

order optimal. Under the exponential α/β-mixing, ADD is 

bounded by O(b) where ARL is bounded by O(expbγ/(γ+1)), 

where γ > 0 controls the mixing speed (more details in IV). 

The rest of the paper is organized as follows. Section II 

introduces the necessary background about reproducing 

kernel Hilbert space and mixing processes. Section III states 

the problem setting for online change point detection and 

introduces the MMD-CUSUM test statistic. Section IV 

establishes the main results of this paper. Section V presents 

the experiments of the MMD-CUSUM test on synthetic 

datasets. We conclude the paper with discussions of the 

limitations and future work in Section VI and VII. 

A. Related works 

Continuous efforts have been made to adapt the kernel two-

sample test to a sequential setting, i.e., change point 

detection. Early work has been focused on detection change 

in a stream of i.i.d. samples [11, 12, 13, 14]. In [11, 12], the 

authors developed a Shewhart chart-type [21] procedure 

that maintains a running estimate of the MMD between a set 

of curated reference data and incoming samples within a 

fixed sliding window. Analysis shows strong performance 

guarantees with an O(exp(b2)) average-run-length (ARL) and 

an O(b) average detection delay (ADD), where b is the 

threshold. However, testing schemes with sliding windows 

suffer from loss of information as older samples are 

discarded. To maintain history information, kernel-based 

CUSUM-type statistics were proposed in [14] with an 

O(exp(b)) averagerun-length (ARL) and an O(b) average 

detection delay (ADD). In [13], the authors devised a neural 

network-based kernel selection strategy that finds a kernel 

whose MMD can best separate the nominal distribution from 

an adversarial one. The testing scheme is to estimate the 

MMD with the selected kernel on two adjacent sliding 

windows. Empirical studying shows promising performance, 

albeit without theoretical guarantees. 

The analysis of the above methods is based heavily on the 

i.i.d. assumption. Their technique and results do not carry 

over naturally to the non-i.i.d. case. Due to the ubiquity of 

time series data in machine learning, signal processing, 

economics, and dynamic systems, the i.i.d. assumption limits 

the application of these methods. More recently, researchers 

have been adapting the kernel-based change point detection 

to dependent data. In [5], the MMD-CUSUM test is proposed 

and analyzed under the setting of uniformly ergodic Markov 

chains on general state space. Recently, [22] extended the 

analysis of MMD-CUSUM to noisy observations of uniformly 

ergodic Markov chains, i.e., hidden Markov models (HMM). 

Both cases are special cases of ϕ-mixing processes [15]. In 

fact, we show that the same performance can be obtained 

even when the Markovian and HMM structures are ignored. 

In other words, the Markov chain and HMM assumptions are 

not necessary for the performance of the MMD-CUSUM test. 

Our work even extends to the α/βmixing processes, which 

have never been considered for the MMD-CUSUM test 

previously. 

More broadly, our study falls under the umbrella of the 

quickest change detection (QCD) theory [23]. Studies on the 

QCD problem can be split into two categories: the Bayesian 

and minimax formulation, depending on the assumption of 

the change point. The Bayesian formulation, pioneered by 

[24, 25], places a prior on the distribution of the change point 

(usually a geometric distribution). Whereas the minimax 

formulation, first considered by [26], assumes the change 

point is unknown and deterministic. Under both 

formulations, the different notions of detection delay are 

minimized while constrained on the probability of false alarm 

or the false alarm rate (1/ARL). A well-known Bayesian QCD 

formulation is Shiryaev’s problem [24], which seeks the 

stopping rule that minimizes the average detection delay 

(under the change point prior) while constrained on the 

probability of false alarm. The minimax formulations include 

Lorden’s problem [26] and Pollak’s problem [27], where the 

former minimizes the worst-case average delay and the latter 
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minimizes the conditional average delay while both 

contained on the false alarm rate. 

Although the CUSUM statistic was first proposed as a 

heuristic for the minimax formulation under i.i.d. setting by 

[6], strong optimality properties have been shown for CUSUM 

statistic under various settings. Under the i.i.d. setting, exact 

optimality was shown by [28, 29] for Lorden’s problem. For 

general non-i.i.d. settings, [20] has shown that an extension 

of the CUSUM statistic achieves the information-theoretic 

lower bound on the conditional average delay (as well as the 

worst case delay) asymptotically as the false alarm rate goes 

to 0. 

However, the optimality result mentioned previously 
requires specific knowledge of the pre-and post-change 
distributions. Furthermore, the QCD problems are 
intractable for general stochastic processes due to the lack 
of problem structure [20]. Thus, the numerous studies on 
QCD for noni.i.d settings [1, 20, 30, 31, 2, 19, 3, 32, 33, 34, 
35, 36] cannot be easily converted to the completely data-
driven setting. 

B. Contributions 

As a non-parametric model-free change point detection 

procedure, the MMD-CUSUM test exhibits great potential in 

completely data-driven applications where distributional 

assumptions may be difficult to verify. Our performance 

guarantees under general mixing conditions establish its 

robustness under dependent samples and further strengthen 

its capability as a model-free testing scheme. The mixing 

conditions considered in this paper not only subsume the 

i.i.d., Markov chain, and HMM settings but also greatly 

expand beyond those appearing in previous studies on the 

performance of the MMD-CUSUM test. Our results indicate 

that the Markovian or HMM structures are not necessary for 

the strong performance of the MMD-CUSUM test. 

Additionally, we provide the first performance guarantee for 

the MMD-CUSUM test under exponentially α/β and fast ϕ-

mixing processes. Note that stationary exponentially βmixing 

processes include the geometrically ergodic Markov chains as 

a special case, which violates Doeblin’s condition [37, page 

402]. In stark contrast, Doeblin’s condition is the core 

assumption for the performance analysis of the MMDCUSUM 

test in [5] and [22]. 

II. BACKGROUND 

In this section, we introduce the necessary background for 

our discussion. Section A collects the usual facts about 

reproducing kernel Hilbert space (RKHS) and maximum mean 

discrepancy (MMD). Section B presents the two notions of 

mixing used to obtain the main results. Our standard 

reference is [38] for RKHS and [15] for mixing processes. 

A. RKHS and MMD 

Let (X,X,P) be a measure space with Borel σ-algebra X and σ-

finite measure P. Let P(X) denote the set of probability 

measures over the σ-algebra X. The supremum norm of f is 

written as ∥f∥∞ := supx∈X |f(x)| and its span is written as 

span(f) := supx,x′∈X |f(x) − f(x′)|. 

A reproducing kernel Hilbert space (RKHS) H(X) on X with 

kernel k : X×X → R is a Hilbert space of real-valued functions 

on X equipped with inner product ⟨·,·⟩H(X). The corresponding 

Hilbert space norm ∥f∥2H(X) = ∥∥ The kernel function k satisfies 

the reproducing property: 

k(x,·) ∈ H(X) and ⟨f(·),k(x,·)⟩H(X) = f(x), for x ∈ X. 

The current paper relies on a particular application of RKHS 

— Hilbert space embeddings of probability measure. The 

Hilbert space embedding of µ under k is written as 

Z U(µ)(·) :=

 k(x,·)dµ, 
X 

where U(µ) is also called the kernel mean embedding of µ. 

Suppose ν ∈ P(X) is another probability measure. One can 

define a distance function between µ and ν using the Hilbert 

space metric between U(µ) and U(ν) 

MMDk(µ,ν) = ∥U(µ) − U(ν)∥H(X), which is known 

as the maximum mean discrepancy (MMD) [7]. The kernel k 

such that MMDk(µ,ν) = 0 ⇔ µ = ν for all µ,ν ∈ P(X) is call a 

characteristic kernel [39]. MMDk with a characteristic kernel 

k is a metric on P(X). 

MMD enjoys a computational advantage, compared with 

other probability distance functions, such as KL divergence 

[40] and total variation metric (Definition 7), that allows it to 

be easily estimated empirically for distributions on general 

domains [9, 10]. 

Let Xi ∼ µ and Xj′ ∼ ν for i = 1,··· ,m and j = 1,··· ,n. Define 

their empirical measures as µˆm,νˆn, respectively. The 

consistent estimation of the squared MMD is 

MMD  

, 

This was first used by [7] to propose the kernel two-sample 

test, and it is the core component of the MMD-CUSUM test 

studied in the current paper. 

Throughout the paper, we assume the kernel k is real-

valued, measurable, characteristic, and bounded, i.e., supx∈X 

k(x,x) = k <¯ ∞. The boundedness ensures MMDk is well-

defined. 
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B. Mixing processes 

The definitions of the mixing process require the following 

necessary notations. Consider the space of X-valued doubly 

infinite stochastic processes as (X∞,X∞,P˜) where the indices 

of a process X = {Xi}i∈Z ∈ X∞ are allowed to be −∞ and ∞. For 

each index t ∈ Z, let Xt∞ denote the σ-algebra generated by 

  and X−i ∞ is the σalgebra generated by  . 

We use   to denote the σ-algebra generated by 

. The marginal probability measure 

on  is written as P˜∞t and the joint probability measure 

on . 

With these notations, we have the definitions of α, β, and ϕ-

mixing coefficients following [41, 15]. 

Definition 1 (α-mixing coefficient). The α-mixing coefficient 

[42] of a stationary process X is defined as α(n) = sup sup 

|P˜(A ∩ B) − P˜(A) · P˜(B)|. 

 t A∈X−t ∞,B∈Xt∞+n 

X is called α-mixing if α(n) → 0 as n → ∞. 

The following β-mixing coefficient provides a stronger 

notion of decaying dependence. It can be shown that 2α(n) 

≤ β(n) [41]. 

Definition 2 (β-mixing coefficient). The β-mixing coefficient 

[16] of a stochastic process X is defined as β(n) = sup 

sup |P˜(C) − P˜t−∞ ⊗ P˜∞t+1(C)|. 

 t C∈X¯tt+1+n−1 

X is called β-mixing if β(n) → 0 as n → ∞. The β-mixing 

coefficient can be equivalently written as 

. 

Comparing the second definition of β-mixing with the 

following definition of ϕ-mixing, we can see that β(n) ≤ ϕ(n). 

Definition 3 (ϕ-mixing coefficient). The ϕ-mixing coefficient 

[18] of a stochastic process X is defined as 

. 

X is called ϕ-mixing if ϕ(n) → 0 as n → ∞. 

We say X is stationary with respect to µ ∈ P(X) if the one-

dimensional marginal probability of Xi equals µ for ∀i ∈ Z. For 

stationary processes, the supremum over t in the above 

definitions can be ignored, and one can set t = 0 without loss 

of generality. To maintain the simplicity of the presentation, 

we focus on stationary stochastic processes with α, β, and ϕ-

mixing properties in the sequel. However, the results put 

forward in the current paper can be extended to 

asymptotically stationary processes, which is discussed in 

Section VI. 

The decay rates of the mixing coefficients play an 

important role in our discussion. The following definitions 

introduce the exponential α/β-mixing condition and fast 

ϕmixing, which are used throughout the paper. 

Definition 4 (exponential α/β-mixing). X is said to be 

exponential α or β-mixing, if the α or β-mixing coefficient 

satisfies 

α(n) ≤ α¯ exp(−cnγ), n ≥ 1, 

 or β(n) ≤ β¯exp(−cnγ), 

for α,¯ β,γ,c >¯ 0. 

n ≥ 1, 

Definition 5. [fast ϕ-mixing] X is said to be fast ϕ-mixing, if 

the ϕ-mixing coefficient satisfies 

. 

An exponentially decaying ϕ-mixing coefficient is certainly 

summable and thus is covered under the above definition. 

Definition 4 and 5 form the basic assumption on the mixing 

processes studied in the current paper. 

To bridge the notions of mixing with RKHS, it is convenient 

to consider the following kernel mixing coefficient introduced 

in [43]. 

Definition 6 (kernel mixing coefficient). Let X be a stationary 

process with distribution µ. For n ∈ N, define the kernel 

mixing coefficient as 

 

We denote the cumulative sum of the kernel mixing 

coefficient as . 

If we treat {k(Xi,·)}i∈Z as a sequence of Hilbert space valued 

stochastic process, then as shown by [44, Lemma 2.2] ρk(n) 

can bounded by a constant multiple of the α-mixing 

coefficient, i.e., ρk(n) ≤ 10α(n)k¯2. Thus, we get Σµ < ∞ under 

the assumptions of exponential α-mixing, exponential β-

mixing, and fast ϕ-mixing. 

C. Examples of mixing processes 

One notable example of ϕ-mixing processes is the uniformly 

ergodic Markov chain. A Markov chain is said to be uniformly 

ergodic if it is aperiodic and satisfies Doeblin’s condition [37]. 

Thus, it is also called the Doeblin chain. A q-th order 

autoregressive (AR) process is ϕ-mixing if the Markov chain 

generated by stacking q consecutive states is a Doeblin chain. 

The ϕ-mixing coefficient decays exponentially for uniformly 

ergodic Markov chains, therefore satisfying the fast ϕ-mixing 

condition in Definition 5. 
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Examples of exponential β-mixing processes include V 

geometrically ergodic Markov chains. The Markov transition 

kernel P : X × X → [0,1] with stationary distribution π is said 

to be V -geometrically ergodic if it satisfies 

TV(Pn(x,·),π) ≤ V (x)ρ⌊n/m⌋, for all n, (2) where V : X → 

[1,∞) is a measurable function, m is an constant integer, and 

ρ ∈ [0,1). When V is bounded on X, it becomes the uniform 

ergodicity condition. From a dynamic system perspective, V -

geometrically ergodic Markov chains subsume stable 

nonlinear systems with finite variance additive noise [see 45, 

Section 3.5]. The aforementioned examples all work as 

examples of exponential α-mixing processes. Additionally, 

measurable functionals of α, β, and ϕ-mixing processes are 

also α, β, and ϕ-mixing processes. The mixing coefficients are 

bounded by those of the original processes [45, Lemma 3.6]. 

III. PROBLEM FORMULATION 

In this section, we first introduce the online change point 

detection problem and the commonly used performance 

metrics [see 19, 4]. Later, we discuss the proposed 

MMDCUSUM test and its properties. 

In the sequel, we make the following assumption and 

restrict our attention to stochastic processes satisfying the 

exponential α/β-mixing and fast ϕ-mixing conditions in 

Definition 4, 5. 

Assumption 1. The stochastic processes considered in what 

follows satisfy one of the three mixing conditions in 

Definition 4 and 5. 

A. Online change point detection 

The online change point detection problem is often 

formulated as a sequential two-sample test which has been 

widely considered in the past [6, 26, 21, 24]. Given a 

sequence of samples {Xi} from a stationary mixing process X 

with distribution µ, at each time step, the following null and 

alternative hypotheses are proposed 

 H0 : µ remains the same, H1 : µ has changed. 

Test statistics are calculated using the samples collected up to 

the current time step. To detect the change quickly and 

accurately, one attempts to reject the null hypothesis H0 via 

a threshold rule at every time step. 

More formally, consider a stationary stochastic process X = 

{Xi}i∈Z ∈ X∞ adapted to its natural filtration with unknown 

distribution µ. At some unknown but deterministic time index 

τ ∈ Z, we have Xi ∼ µ for 0 ≤ i ≤ τ and Xi ∼ ν for i ≥ τ + 1, where 

µ,ν ∈ P(X) and µ ̸= ν. 

This can be conceptually thought of as having a separate and 

independent stochastic process X′ ∈ X∞ following unknown 

distribution ν running alongside X. From the outside, one can 

only observe X up to time τ, and at time τ, the observation is 

immediately switched to X′. 

Suppose the null hypothesis is rejected at time T(b), which 

is a stopping time adapted to the filtration {X−i ∞}i∈Z and a 

function of the threshold b. If we use E∞ and E0 to denote the 

expectation under H0 and H1 respectively, then the average-

run-length ARL and the average-detection-delay ADD can be 

written in terms of the stopping time T as follows 

 ARL = E∞[T(b)] and ADD = E0[T(b)]. 

Unlike the Bayesian formulation, we assume the change point 

τ is unknown and deterministic, and thus we set τ = 0 without 

loss of generality. ARL measures the robustness of the test 

against false alarms. Whereas ADD measures the quickness 

of the test in response to an abrupt change. The overall goal 

of online change point detection is to have a ARL that grows 

with b as fast as possible and a ADD that grows with b as 

slowly as possible. 

B. MMD-CUSUM test 

The MMD-CUSUM test is a sequential adaptation of the 

kernel two-sample test. Consider a bounded, measurable, 

characteristic, reproducing kernel k : X × X → R. Denote the 

reference dataset as  of size h. The detection 

algorithm processes the incoming data in blocks of size r, 

which is denoted as  for an integer t ≥ 

1. Let νˆh and µˆr denote the empirical measure constructed 

using the dataset Dh and Br(t). Define the MMD between 

these two empirical measures as 

MMD[µˆr,νˆh] 

  (3) 

At time step i = t·r, the algorithm computes the following test 

statistic; otherwise, it collects the new observations and 

remains idle. Let integer M ≥ r be the minimum number of 

samples required to perform the test. We write the test 

statistics at time step i as 

 sˆ⌊i/r⌋ = max sn:⌊i/r⌋, (4) 
1≤n≤t 

MMD , 

where ∆ > 0 is a tunable parameter that keeps the summand 

slightly blew 0 under the null hypothesis. The corresponding 

stopping rule with threshold b and M minimum samples is 

written as 

 . (5) 
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We make the following remarks regarding the above 

MMD-CUSUM statistics. 

a: Convergence of Empirical MMD 

To correctly configure the offset parameter ∆, we need to 

determine the envelope of the deviation of the empirical 

MMD from the true one. The result collected in the following 

lemma shows that the estimation error is bounded by a term 

diminishing in the sample size plus a small margin, almost 

surely for all three mixing conditions. Note that the empirical 

MMD can be equivalently written as the MMD between 

empirical measures. For probability measures µ and ν, we 

write MMDd(µ,ν) as MMD(µˆr,νˆh) where µˆr,νˆh are empirical 

measures of µ and ν with r and h samples, respectively. 

Lemma 1. Let X and 
X′ be two independent processes with 

stationary distribution µ and ν satisfying the mixing 

conditions introduced before. Given δ > 0, there exist constant 

C(r,h) such that the following holds almost surely for 

sufficiently large h, 

[MMD(µˆr,νˆh)|Dh] − MMD  

where  and E[·|Dh] denotes 

the expectation taken over the randomness in µˆr conditioned 

on the reference dataset Dh. 

Proof: 

Applying triangle inequality, we get the following two 

expressions: 

MMD(µˆr,νˆh) − MMD(µ,ν) ≤ MMD(µˆr,µ) + MMD(ν,νˆh), 

MMD(µ,ν) − MMD(µˆr,νˆh) ≥ −MMD(µˆr,µ) − MMD(ν,νˆh). 

Let us consider the first inequality above, and the other one 

follows similarly. Suppose we take expectation over the 

randomness of µˆr, and due to independence we have, 

E[MMD(µˆr,νˆh)|Dh] − MMD(µ,ν) 

≤ E[MMD(µˆr,µ)] + MMD(ν,νˆh). 

On the right hand side, the term EX[MMD(µˆr,µ)] ≤  

by Lemma 7.1 of [43] for all r > 0 and X which satisfies Σµ < 

∞. It remains to bound MMD(ν,νˆh) for a 

particular νˆh. Observe that 

MMD , 

 
1 Linear or sublinear dependency of sample size means a tail bound of 

O(exp(−g(n)ϵ2)) where g(n) grows linearly or sublinearly. By writing it 

where {Hi = k(Xi,·) − Eνk} is a Hilbert space valued stochastic 

process and {Hi} enjoys the same mixing property as 
X′ since 

Hi is a measurable function of Xi′. Thus, we can apply the law 

of iterated logarithm for Hilbert space valued α-mixing 

processes [44, Theorem 6] or [46, Theorem 2] to conclude 

there exists constant c0 > 0 such that almost surely 

 

Note that the hypothesis of [44, Theorem 6] holds in our case 

under the assumption of bounded kernel k and exponential 

α/β-mixing and fast ϕ−mixing. Thus, there exists a constant 

 such that 

MMD(µˆr,νˆh) − MMD(µ,ν) ≤ C(r,h) + δ for sufficiently large h. 

Similar, MMD(µ,ν)−MMD(µˆr,νˆh) can bounded from below 

with −C(r,h) − δ, and the proof is complete.  

Lemma 1 indicates that under the null hypothesis (no 

change), the bias of empirical MMD is bounded by a positive 

quantity decaying at rate o(r−1/2 + h−1/2 loglogh) plus a small 

margin for sufficiently large reference data. To maintain a low 

value of the MMD-CUSUM statistics under the null 

hypothesis, it is necessary to apply a certain negative offset 

to the empirical MMD so that the cumulative sum in (4) does 

not blow up when change is absent which leads to the second 

remark regarding the parameter ∆. 

b: Offset parameter ∆ 

We shall determine the appropriate range for the offset 

parameter ∆ in (4) using Lemma 1. Note that ∆ needs to be 

sufficiently large under the null hypothesis such that the 

MMD-CUSUM statistic does not blow up due to the 

estimation error of the empirical MMD. As suggested by 

Lemma 1, if ∆ is strictly larger than C(r,h), i.e., ∆ ≥ C(r,h) + δ 

for some margin δ > 0, then the empirical MMD is bounded 

by ∆ almost surely for sufficiently large sample size. On the 

other hand, the upper bound for ∆ appears under the 

alternative hypothesis (with post-change distribution ν). As 

we shall see in Theorem 3, ∆ should be strictly less than 

MMDk(µ,ν) − C(r,h) − δ otherwise the ADD can be 

unbounded. To tune ∆ in practice, one can simulate the pre-

change scenario with different values of ∆ ≥ C(r,h) + δ using 

the reference dataset. For each value of ∆, the ARL can be 

estimated with multiple runs of the experiment. Then, 

choose the smallest ∆ that yields the acceptable ARL 

performance. Keeping the ∆ small allows the MMD-CUSUM 

to achieve better ADD. 

IV. MAIN RESULTS 

In this section, we establish the detection performance of the 

MMD-CUSUM test using the metrics introduced in the 

this way, we assume the tail probability measures the event 

nEX ≥nϵ} where the deviation scales with sample size n. 
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previous section. The average-run-length ARL characterizes 

the average interval between false alarms, which is 

lowerbounded in Theorem 2. The average detection delay 

measures the quickness of the detection, and an upper 

bound is given in Theorem 3. The proofs are omitted due to 

the page limit, and they can be found in the Supplementary 

Material’s Appendix. 

Before we state the results, let us briefly summarize the 

technique we employed. Recall E∞ denotes the expectation 

under H0. We can expand the E∞[T(b,M)] as follows 

 

where union bound is applied to the last inequality. At this 

point, it suffices to obtain an upper bound on the tail 

probability P∞{sk:t ≥ b} using Proposition 4, 5. The tail 

probability bounds in Proposition 4, 5 offers simple explicit 

subGaussian decay rates with linear or sublinear 

dependency1 on the sample size n inside the exponential. 

This kind of decay rate is necessary for our analysis as it 

dictates the scaling of ARL in threshold b. As we shall see in 

the theorem below, the slower decay rate of Proposition 5 

causes the difference in ARL between exponential α/βmixing 

and fast ϕ-mixing processes. 

We note that the existing concentration inequalities 

obtained for generic purposes are not well-suited for the task 

at hand. For example, the classic concentration inequalities 

for α-mixing, such as [45, Theorem 3.5], have tail bound with 

an additive term in addition to the common exponential term 

seen in the usual Hoeffding’s inequality. When combined 

with our technique, it leads to a prohibitively cumbersome 

derivation of the ARL. The α-mixing concentration inequality 

in [47, Theorem 2] gives the tail bound on the relative 

deviation (scaled by variance) instead of the absolute 

deviation. The β-mixing results in [48] and the α-mixing 

results in [49] provide a subexponential bound of O(exp(−ϵ)) 

which is a weaker dependency on ϵ than we desired. The 

detailed discussion of the concentration inequalities we 

derived is postponed until the main results are introduced. 

We now state the main result on the upper bound of ARL 

under the mixing condition described in Definition 4. 

Theorem 2. The average-run-length for test statistics (4) and 

stopping rule (5) under the null hypothesis has the following 

lower bounds. 

1) Suppose X is α/β-mixing satisfying Definition 4, then 

ARL[T(b,M)] 

 

2) Suppose X is ϕ-mixing satisfying Definition 5, then 

ARL[T(b,M)] ≥ M − 1 + exp(bδ)(1 + o(1)), (7) where 

γ is defined in Definition 4, and δ > 0 is defined in Lemma 1 

and depends on ∆, h. 

Proof: 

Appendix D  

Theorem 2 establishes the first ARL bound for the 

MMDCUSUM test under α/β/ϕ-mixing processes. The 

performance of the MMD-CUSUM test under α/β-mixing 

case has not been considered in the literature before, and 

Equation 6 provides the first exponential lower bound on the 

ARL. In previous studies, ϕ-mixing processes are considered 

in certain specific cases, such as the uniformly ergodic 

Markov chains [5] and hidden Markov models (HMM) [22]. 

Equation 7 generalizes the ARL bound therein to the broader 

ϕ-mixing processes without loss of performance. It also 

indicates that Markovian or HMM structures are not 

necessary for the exponential lower bond of the ARL. 

The ARL bound in Equation 6 has a dependency on γ, which 

controls the mixing speed (Definition 4). This dependency on 

γ also is the result of applying the concentration bound in 

Proposition 5. Suppose the α or β-mixing coefficient has a 

decay rate of O(exp(−n)), i.e., γ = 1, the ARL then achieves a 

Ω(exp(b1/2δ3/2)) lower bound which is slighted degraded in 

terms of the threshold b compared to Equation 7. 

Surprisingly, the ARL under the fast ϕ-mixing condition 

(Equation 7) achieves the Ω(exp(b)) lower bound (same as 

Markovian samples) while only requiring a summable 

ϕmixing coefficient. In comparison, the ARL lower bounds in 

[5] and [22] are obtained under the Doeblin’s condition [37, 

page 402], which corresponds to exponential ϕ-mixing 

conditions. 

To measure the quickness of the MMD-CUSUM test, we 

estimate the expected value of the stopping time T(b,M) 

under the alternative (H0). Recall that E0 denotes the 

expectation under H1. We can write the E0[T(b,M)] as follows 
 ∞ ∞ 

E0[T(b,M)] = XP0[sˆt ≤ b] ≤ XP0[s1:t ≤ b] 
t=1 t=1 t0 ∞ 

= XP0[s1:t ≤ b] + X P0[s1:t ≤ b], 

t=1 t=t0+1 where the first inequality is 
due to s1:t ≤ sˆt. Splitting the summation at t0 and trivially 
bound the first term with t0. With a certain choice of t0, the 
second term can be shown to be ultimately negligible or 
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o(1) compared to t0 using the concentration inequality in 
Proposition 4 and 5. 

Theorem 3. Suppose X is a mixing process satisfies Definition 

4 or 5 and pre and post change stationary distribution µ and 

ν satisfy MMDk(µ,ν) > C(r,h) + ∆ + δ for some δ > 0. The 

average-detection-delay for test statistics (4) and stopping 

rule (5) under the alternative hypothesis has the following 

upper bounds. 

ADD[T(b,M)] 

 , (8) 

where D(µ,ν) = MMDk(µ,ν) − C(r,h), and C(r,h) is defined in 

Lemma 1. 

Proof: 

Appendix E  

Theorem 3 gives the first O(b) upper bound on ADD under 

all three types of mixing conditions. Similar to the ARL lower 

bound, it was previously considered only under uniformly 

ergodic Markov chains and HMM. Our result shows that the 

Markovian or HMM structure is also not necessary for O(b) 

upper bound on ADD. 

Intuitively, the realization of the MMD-CUSUM statistics 

should track its mean, which is just nMMD(µ,ν) for time n. 

Therefore, the threshold b should affect the average 

detection delay in a linear fashion. We note that the sufficient 

separation between µ and ν is required due to the estimation 

error of the empirical MMD as indicated by Lemma 1. This 

can be satisfied by choosing r,h sufficiently large and δ 

sufficiently small to ensure MMDk(µ,ν)−2C(r,h)−2δ > 0. 

We now establish the concentration inequalities for the 

sum of bounded functions under mixing conditions. 

Proposition 4 is a Hoeffding-type inequality for ϕ-mixing 

processes with summable mixing coefficients. We provide a 

proof based on the martingale decomposition. Concentration 

inequality for exponential ϕ-mixing processes is obtained in 

[50] using an information inequality-based argument. The 

martingale-based method was used in [51] to study the 

concentration inequality of dependent random variables on 

countable spaces. Proposition 5 compliments the results 

therein by considering stationary ϕ-mixing processes on 

completely separable metric spaces. The sum of bounded 

functions of ϕ-mixing processes has a tight concentration 

bound that resembles that of i.i.d. random variables, which 

can be recovered by setting Φ = 0. 

 
2 A subGaussian bound on ϵ refers to a tail bound that looks like 

O(exp(−ϵ2)). A subGaussian bound on ϵ refers to a tail bound that looks 

like O(exp(−ϵ)). 

Proposition 4. Let X be a stationary ϕ-mixing process with 

coefficient satisfying Definition 5. Assume that f : X → R has 

bounded span and let . Then for ϵ ≥ 

0, it holds 

 

 
 , 

where Φ is defined in Definition 5. 

Proof: 

Appendix B  

Compared to the O(exp(−nϵ2)) tail bound in Proposition 4, 

the following concentration inequality for β-mixing processes 

has an O(exp(−nϵˆ 2)) tail bound where nˆ grows sublinearly 

with the sample size n. The proof follows [47, Theorem 2] 

with the modification of replacing Bernstein’s inequality with 

Hoeffding’s Lemma (Lemma 10) to yield the desired result for 

our purpose. 

Proposition 5. Let X be a stationary β-mixing sequence with 

the coefficient satisfying Definition 4. Assume that f : 

Y → R has bounded span, i.e., span(f) < ∞, and let 

. Then for all ϵ ∈ (0,span(f)), it holds 

 

 ¯2

  , 

where nˆ = ⌊n⌈(10n/c)1/(γ+1)⌉−1⌋ and c,γ are defined in 

Definition 4. 

Proof: 

Appendix C  

To our knowledge, the tail bound in the above form has not 

been considered previously. As opposed to the classic two-

term version in [45, Theorem 3.5] and the relative error 

version in [47, Theorem 2], which can be difficult to be 

applied in our analysis, Proposition 5 streamlines the 

calculation of ARL and ADD in Theorem 2 and 3. 

Compared to regular Hoeffding’s inequality for bounded 

i.i.d. random variables [52], the exponent of the tail bound 

has a sublinear dependence on sample size due to the 

presence of nˆ. nˆ is close to n when γ is large corresponding 

to a faster decaying β-mixing coefficient (Definition 4). This 

sublinear relation with respect to n is also reported by [49] 



 

VOLUME 00 2024 9 

and [48] as well under exponential α and β-mixing conditions 

with γ = 1. They provided an O(exp(−nϵ/(lognloglogn))) tail 

bound, which is a faster rate in n compared to Proposition 5 

with γ = 1. It is tempting to think that this tail could improve 

the lower bound of ARL in Theorem 2. However, the 

subexponential, instead of subGaussian2, dependency on ϵ 

makes it not applicable to our proof. A similar concentration 

type inequality for αmixing processes is obtained in 

Proposition 14 following an analogous proof. 

V. NUMERICAL SIMULATIONS 

In this section, we apply the MMD-CUSUM test to a simulated 

stochastic process and verify the theoretical results. The 

stochastic process is generated by simulating a stable linear 

system A ∈ R4×4 with an observations matrix C ∈ R2×4. 

Let Z = {Zi}i∈N denote the state process and Y = {Yi}i∈N denote 

the observation process. The system update equations can 

written as follows 

Zi+1 = AZi + Wi 

Yi+1 = CZi+1 + Vi, 

where A =[[0.96, 0.99, -0.88, 0.56],[0, 0.98, 0.75, -0.65],[0, 0, 

0.97, 0.95], [0, 0, 0, 0.94]] and C =[[1, 0, 0, 0,], [0, 0, 0, 0], [0, 

0, 1, 0], [0, 0, 0, 0]]. Randomness is introduced into the 

system through the actuation noise Wi and observation noise 

Vi where Wi i.i.d.∼ N1 and Vi i.i.d.∼ N2 for all i. In our 

experiments, N1 and N2 are two multivariate normal 

distributions. This is an example of a hidden Markov model 

(HMM). The state observation joint process (Z,Y ) and the 

state process Z along are Markov chains; however, the 

observation process Y in general is not. The observation 

process of this system is exponential β-mixing. This can be 

deduced from the fact that the matrix A is stable and the 

noise has bounded variance [45, Section 3.5, page 100]. To 

obtain an exponential ϕ-mixing process from the 

observations, one can simulate the above system with 

truncated versions of N1 and 

N2. 

The kernel chosen for the MMD-CUSUM test is the rational 

quadratic kernel kσrq(x,y) = (1+(2σ)−1∥x−y∥2)−σ for σ > 0 

instead the popular Gaussian RBF kernel kσrbf(x,y) = 

exp(−∥x−y∥2/(2σ2)) for σ > 0. As demonstrated by [53], the 

rational quadratic kernel is favored over the Gaussian RBF 

kernel in GAN applications, which indicates its superior 

performance in separating probability distribution. We fix the 

parameter α = 1 for all experiments. The reference dataset is 

obtained by recording Y for 104 steps under the pre-change 

configurations with an appropriate burn-in period applied to 

the samples to maintain stationarity. We estimate the ARL 

and ADD by taking the average of 50 independent 

experiments for each threshold. The experiments are 

performed under 3 different offsets to demonstrate the 

sensitivity of this parameter. 
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We apply abrupt changes to the noise distribution N1 of the 

state process. The MMD-CUSUM test is applied to the 

observation process Y only. The noise observation poses an 

additional layer of challenge for the detector. To simulate an 

α/β-mixing process, it suffices to use the regular Gaussian 

noise. To simulate a ϕ-mixing, we sample from the same 

Gaussian distribution and reject the samples falling outside a 

[−1,1]4 box. The random seeds are kept the same across the 

regular and the truncated cases to ensure comparability. The 

log(ARL) under both cases are shown in Figure Figure 1a and 

Figure 1b. To our surprise, the ARL under the regular Gaussian 

case maintains an exponential relationship with the 

threshold, which suggests the ARL bound for α/β-mixing 

process can be improved. We discuss the difficulty associated 

with this improvement in Section VI. 

The ADD are estimated under regular Gaussian noise. 

We present the ADD under two cases: (i) mean shift 

 Figure 1c) and 

(2) variance change  (Figure 

Figure 1d). The ADD scales linearly with the threshold b, 

which corroborates our findings. 

VI. DISCUSSION 

A. Unbiased MMD estimator 

The following unbiased estimator of the squared MMD, 

introduced in [7], can also be used to replace Equation 3. We 

write the unbiased estimator of the squared MMD between 

µ,ν using m samples from µ and n samples from ν as 

MMD

 

, 

where Xi ∼ µ and Xj′ ∼ ν for i = 1,··· ,n and j = 1,··· ,m. We 

abuse the notation here and write the empirical square MMD 

as the square MMD between empirical measures, although 

they are not equivalent to the unbiased estimator. Due to the 

unbiasedness, it is not always non-negative and thus should 

be directly plugged 
2 

into the partial sum with the square root. To adapt MMDk to 

the current framework, it suffices to obtain a consistency 

result such as Lemma 1, and the rest should follow. Consider 

two independent stochastic processes X = {Xi} and X′ = {Xi′} 

with stationary distributions µ,ν and summable kernel mixing 

coefficients as in Definition 6. Suppose we use m consecutive 

 

 (a) log10(ARL) with Gaussian noise. (b) log10(ARL) with truncated Gaussian noise. 

 

 (c) ADD under mean shift. (d) ADD under variance change. 
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samples from X and n consecutive samples from Y . Then, we 

can bound the estimation bias caused by the dependency 

between samples as follows, 

  

where 

the second inequality comes from [43, Lemma 

7.1], Σµ,Σν are defined in Definition 6, and the expectations 

are taken with respect to the randomness in the 

samples. After denoting   and 

replacing Cµ,ν(m,n) 

with Cµ,ν(m,n) throughout the paper, the same set of results 

also holds for the CUSUM statistics defined with the 
2 

unbiased estimator MMDk. 

B. Computation complexity 

The time complexity at each time step is O(rh) where r is the 

block size on the incoming data, and h is the size of the 

reference dataset. Compared to the overlapping block design 

in [5] with time complexity O(r2h), the non-overlapping block 

design here increases the speed at the expense of incurring a 

constant detection delay. The memory usage here is constant 

since only the current block and the reference data need to 

be stored. We present the implementation of the detection 

procedure in Algorithm 1. 

C. Connection to HMM 

Hidden Markov models (HMM) cover a wide array of real-

world scenarios where the MMD-CUSUM test can be applied. 

For a comprehensive review of HMM, please refer to [54] and 

the references therein. Change point detection for HMM 

arises from the monitoring complex dynamic systems [55], 

such as communication networks [56], power plants [57], 

healthcare monitoring [58], manufacture process monitoring 

[59], distributed machine learning systems, etc. 

For change detection, HMM can be treated as a mixing 

process. Consider a Markov chain X := {Xi} ⊂ X and its 

observation process Y := {Yi} ⊂ Y, where Y is a complete 

separable metric space with Borel σ-algebra Y. Define the 

observation kernel Qi : X × Y → [0,1] and Qi(Xi,A) = 

. Then, Y is α/β/ϕ-mixing 

as soon as X is α/β/ϕ-mixing [45, Theorem 3.12]. 

D. Asymptotic stationary processesIn practice, many 

mixing processes may not be strictly stationary but 

convergent towards a stationary distribution at a certain 

speed. For example, a Doeblin chain starts from an initial 

distribution that is different from its stationary distribution. 

Weak asymptotic stationarity was introduced in [60] to study 

the generalization bound of online algorithms. It combines 

the convergence to a stationary distribution and β-mixing 

into a single condition, which we choose not to include for 

the sake of simplicity. Instead, we provide a discussion on 

how to adapt Proposition 4 to asymptotic stationary 

processes in the supplementary materials. The adaption of 

Proposition 5 follows a similar argument. The intuition is that 

as long as the process converges sufficiently fast, the 

concentration of the partial sum will still hold. Thus, the 

same results on ARL and ADD can be extended to asymptotic 

stationary processes at no cost. 

E. Obtain Ω(exp(b)) bound on ARL under α/β-mixing As 

shown in Figure 1a and 1b, the difference in ARL between 

α/β-mixing and ϕ-mixing is minimal which might indicate a 

tighter O(exp(b)) bound on ARL under α/β-mixing. This 

would be an improvement over the Ω(exp(b1/γ)) in Theorem 

2 where γ controls the mixing speed. However, the difficulties 

lie in the unavailability (to the best of our knowledge) of a 

subGaussian tail bound with linear dependency on the 

sample size n for stationary α/β-mixing processes. This 

bottleneck is also reported by a recent study [61] on the 

concentration of kernel density estimator with dependent 

data. Their findings are limited to ϕ-mixing processes due to 

the same issue. Circumventing this bottleneck might require 

significantly new techniques, which are left as future work. 

VII. CONCLUSION 

In this paper, we derive the ARL and ADD for the 

MMDCUSUM test under three stationary mixing conditions. 

Under the ϕ-mixing condition, the performance of the 

MMDCUSUM test is shown to match the i.i.d. case and the 

Markov chain case with uniform ergodicity. As a byproduct, 

we provide concentration inequalities of the partial sum of 

bounded functionals under α, β, and ϕ-mixing processes. To 

our knowledge, the concentration inequality in Proposition 5 

and the proof of Proposition 4 are novel. 

We note the limitations of this study and future directions 

as follows. MMD is known to have a poor separation between 

probability measures, with differences only in the high-

frequency region [39]. The MMD-CUSUM test may 

experience performance degradation in such scenarios. A 

recent study [62] tackles this problem in the kernel 

twosample test setting via kernel spectral regularization. The 

spectral regularized kernel achieves the optimal minimax 

separation boundary, which results in an improved sample 

efficiency compared to the usual kernel two-sample test. 

Additionally, there have been several other exciting 

developments on kernel two-sample test [63, 64, 65]. It 

would be an interesting future direction to adapt those 

methods to the sequential test setting and analyze their 

performance. 

 
 
 

 [  
2 
k ( ̂  µ m , ˆ ν n )] −  
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2 
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2 
k ( µ, ˆ ν n )] 
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Another limitation is that our technique does not exploit 

the finer structures produced by the max operator over the 

partial sum. The theory of extremes of random fields [66] 

provides handy tools to estimate the probability of events 

such as {supθ∈Θ Sθ > ϵ}, where Sθ is the sum of n random 

variables in the random field and Θ is an index set, such as 

integers or real numbers. [12] has demonstrated the utility of 

this technique in the i.i.d. case and shown a sharp ARL bound 

of O(exp(b2)). However, the extension of this technique has 

yet to be explored in the non-i.i.d. cases. Additionally, 

leveraging the martingale property of the MMD-CUSUM 

statistics with an unbiased estimator and the non-asymptotic 

version of the law of logarithm for martingales [67] yields 

another possible route to establish the performance bounds. 

We plan to investigate these directions in the future. 

APPENDIX 

A. Auxiliary Facts 

Definition 7 (Total variation metric). Let B := {f : ∥f∥∞ ≤ 1,f : X 

→ R,f is X-measurable}, the total variation metric between 

probability measures µ,ν ∈ P(X) is written as 

TV  

Lemma 6 (Corollary D.2.5 in [68]). Let f : X → R be an 
essentially bounded measurable function. For µ,ν ∈ P(X), we 
have 

 |µ(f) − ν(f)| ≤ TV(µ,ν)span(f), (9) 

where µ(f), ν(f) denotes the expectation of f under µ, ν. 

Lemma 7. Suppose {Xi} is a stationary ϕ-mixing process. Let g 

: X∞ → R be an essentially bounded function and is 

measurable with respect to the σ-algebra . Then 

span(g), 

where xt−∞
,y

−t ∞ are two realizations of the trajectory up to 

time t, and span(g) ≤ ∥g∥∞ when g is non-negative. 

Proof: 

 

≤2ϕ(n)span(g), where the first inequality is due to 

triangular inequality and the second is due to the Definition 

3 of ϕ-mixing and Lemma 

6.  

Lemma 8 (Corollary 2.2 in [45]). Suppose {Xi} is a stationary 

α-mixing process. Suppose g0,...,gl are essentially bounded 

functions, where gi depends only on Xik. Then 

span(gi), 

where span(gi) ≤ ∥gi∥∞ when gi is non-negative. 

Lemma 9 (Theorem 2.1 in [45]). Suppose {Xi} is a stationary 

β-mixing process. Suppose g0,...,gl are essentially bounded 

functions, where gi depends only on Xik. Then 

span(gi), 

where span(gi) ≤ ∥gi∥∞ when gi is non-negative. 

Lemma 10 (Lemma 8.1 in [69]). Let X be a random variable 

such that a ≤ X ≤ b almost surely. Then, for r > 0, 

E[exp(r(X − EX))] ≤ exp[r2(b − a)2/8]. 

B. Proof of Proposition 4 

We show a generalized version of Proposition 4 with 

timedependent functions in Proposition 11, that is, the 

partial sum Sn of interest is replaced by  

where fi are potentially different. The key technique 

employed here is the martingale decomposition of the partial 

sum process generated by any stochastic process. In Lemma 

12, we demonstrate the martingale decomposition. In 

Lemma 13, we establish that the martingale difference is 

bounded under the ϕ-mixing condition in Definition 5. 

Finally, we give the proof of Proposition 11 using the two 

supporting lemmas. 

Proposition 11. Let X be a stationary ϕ-mixing process with 

coefficient satisfying Definition 5. Assume that fi : X → 

R has bounded span for i = 0,··· ,n − 1 and let S˜n = 

. Then for ϵ ≥ 0, it holds 

 

where Φ is defined in Definition 5 and {A0,··· ,An−1} is defined 

in Equation 13. 

First, we give the martingale decomposition of the partial 

sum process generated by any stochastic process. 

Lemma 12. Let X = {Xi} be a stationary stochastic process on 

the probability space (X∞,X∞,P˜). For i ∈ 

{0,··· ,n − 1} and n ∈ Z+, let fi : X → R be a essentially 

bounded function. Let  be the partial 

sum. Let  be the filtration generated by X, i.e., X−i 
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∞ = σ(X∞,··· ,X0,··· ,Xi). Then, there exists a martingale 

difference sequences  adapted to  such 
that 

n−1 

S˜n − XE[fi(Xi)] 
i=0 

 n−1 n−1 n−1 

 = X Di + XE[fi(Xi)|X−−∞1 ] − XE[fi(Xi)], (11) 

 i=0 i=0 i=0 

where the expectations are taken w.r.t. the stationary 

distribution. 

Proof: 

We employ the martingale decomposition technique 

introduced in Chapter 23 of [68]. For the following 

development, we use these short notations for tuples: 

 
(Xm,··· ,Xn) and , for 0 ≤ m ≤ n. 

Without loss of generality, we assume E[fi(Xi)] = 0 for i = 0,··· 

,n − 1 to simplify the notation. For i ∈ {−1,0,··· ,n − 1}, we 

define 
 i n−1 

 gi(xi−∞) := Xfl(xl) + X E[fl(Xl)|xi−∞], (12) 
 l=0 l=i+1 

where  and  

. With this definition, we observe that 

, 

and for i ∈ {0,··· ,n − 1} and , 

. 

Recall that  , the above 

equation shows that 

a.s. for i ≥ 0. Thus,  is a P˜-martingale adapted 

to filtration  . It follows the martingale 

decomposition of S˜
n centered at , 

 n−1 n−1 

S˜n − XE[fi(Xi)] = gn−1(X−n−∞1) − XE[fi(Xi)] 

i=0 i=0 n−1 n−1 

= X Di + g−1(X−−∞1 ) − XE[fi(Xi)], 

 i=0 i=0 

where  is a 
martingale difference sequence. We arrive at the Equation 

11.  

 Next, we show Di is bounded by showing x 7→ 

gi(xi−−∞1 ,x) has bounded span for any xi−−∞1 ∈ X−i−∞1 and i = 

0,··· ,n − 1. 

Lemma 13. Suppose X is a stationary ϕ-mixing process. For 

each i ∈ {−1,··· ,n − 1}, if we define 

Ai := 2Φmax{span(fl) : i + 1 ≤ l ≤ n − 1} + span(fi), 

(13) 

where A−1 := 2Φmax{span(fl) : 0 ≤ l ≤ n − 1}. Then it holds 

that for xi−∞ ∈ Xi−∞ and i = −1,··· ,n − 1 

 

Proof: 

It suffices to show Equation 14 holds. The first inequality is 

obvious. To show the second inequality, we pick arbitrary x∗ 

∈ X and we have 
 i n−1 

gi(xi−∞) = Xfl(xl) + X E[fl(Xl)|xi−∞] 

l=0 l=i+1 i−1 n−1 

≤ Xfl(xl) + fi(x∗) + X E[fl(Xl)|xi−∞] 

 l=0 l=i+1 
 n−1 n−1 

− X E[fl(Xl)|xi−−∞1 ,x∗] + X E[fl(Xl)|xi−−∞1 ,x∗] 

 l=i+1 l=i+1 

+ span(fi). 

Due to Lemma 6 (first inequality) and triangular inequality 

(second inequality), we can see that 
 n−1 n−1 

X E[f (X )|xi ] − X E[fl(Xl)|xi−−∞1 ,x∗] l l

 −∞ 
l=i+1 l=i+1 n−1 

≤ X span  
l=i+1 

n−1 

≤ X span 
l=i+1 

≤ 2Φmax{span(fl) : i + 1 ≤ l ≤ n − 1}, 

where the last inequality follows from Lemma 7 and 

Definition 5. Thus, we have 
 i−1 n−1 

gi(xi0) ≤ Xfl(xl) + fi(x∗) + X E[fl(Xl)|x−i−∞1 ,x∗] 

 l=0 l=i+1 

+2Φmax{span(fl) : i + 1 ≤ l ≤ n − 1} + span(fi) 

{span(fl) : i + 1 ≤ l ≤ n − 1} 
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+span(fi) 

. 

Since x∗ is arbitrary, we obtain  ≤ 

, which completes the proof 

of Equation 14.  

Finally, we estimate the tail bound using the classic 

Chernoff’s bounding method [70]. In Remark 1, we note that 

a similar tail bound can be obtained for asymptotically 

stationary processes with a certain convergence (to 

stationary distribution) rate. 

Proof: 

(Proposition 11) By Lemma 12, we have the martingale 

decomposition of X as in Equation 11, 
n−1 

S˜n − XE[fi(Xi)] 

i=0 
 n−1 n−1 n−1 

= X Di + XE[fi(Xi)|X−−∞1 ] − XE[fi(Xi)], 

 i=0 i=0 i=0 

where we abuse the notation and denote D−1 = 

 
on the desired quantity. Taking the moment generating 

function on both sides of Equation 11 and applying the chain 

rule for conditional expectation recursively yield for θ ≥ 0 

 . (15) 

From lemma 13, we know that Di lies in an interval of 

length Ai for all i ∈ {−1,··· ,n − 1}. By Hoeffding’s Lemma [68, 

Lemma 23.1.4] for bounded martingale difference 

sequences, we have for θ ≥ 0, 

E[exp(θD−1)] ≤ exp(θ2A2−1/8) 

E[exp(θDi)|Fi−1] ≤ exp(θ2A2i/8), and 

plugging above into Equation 15 yields 

E

 . 

Applying Markov’s inequality to the left-hand side, we have 

 

Picking   minimizes the right-hand side 

and yields 

. 

The tail probability of the other side can be bounded 

analogously. Therefore, we have 

 

This completes the proof after noticing that X is stationary 

and hence E[fi(Xi)] = µ(fi) for i = 0,··· ,n − 1.  

Remark 1. For asymptotically stationary processes, the 

marginal distribution of Xi differs from the stationary 

distribution µ but converges to µ as i → ∞. To consider the tail 

probability of S˜
n centered around  , we apply 

triangular inequality to (a) and Equation 16 to (b) and obtain 

span  

 , 

for span(fi)2TV(P˜
i,µ). Thus a similar tail bound 

can be obtained after assuming there exists a constant 

upperbound for span(fi)2TV(P˜
i,µ) for all n. 

C. Proof of Proposition 5 

We modify the proof of [47, Theorem 2] by replacing 

Bernstein’s inequality with Hoeffding’s Lemma (Lemma 10) in 

bounding the Φ1 term to yield the desired result for our 

purpose. 

Proof: 

. One can use 

Chernoff’s bounding method to obtain an exponential bound 
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r ≤ 4 l 
 ( f ) 

Given integer n, choose any integer k ≤ n and define l = ⌊n/k⌋. 

Let p = n − kl and define the index sets Ii for i = 1 2,...,k as 

follows 

i = 

Note that ∪iIi = {1,...,n} and within each set Ii the elements are 

pairwise separated by at least k. Let Gi = f(Xi) − E[f(X1)], T(i) 

= Pj∈Ii Gj, and pi = |Ii|/n then 

. 

Now, we write the moment generating function of 

 for r ≥ 0, which can be bounded as follows 

using the convexity of the exponential function, 

 

We now bound the right-hand side in the following fashion. 

 
For convenience, we denote the first term on the right-hand 

side of the above as Φ1 and the second term as Φ2. We bound 

them separately. Φ1 can be estimated with Hoeffding’s 

Lemma (Lemma 10) for bounded random variables. For r > 

0, 

 

 , (19) 

where (a) is due to stationarity and (b) comes from Lemma 

10. Note that |Ii| ≥ l for i = 1,2,...,k, thus we have 

Φ1 ≤ exp  . 

Φ2 can be bounded by the β-mixing inequality in Lemma 9 

and the exponential β-mixing condition (Definition 4). 

 

≤ β(k)(|Ii| − 1)erspan(f) 

 (b) γ 
≤ e|Ii|−2β(k)e−ck erspan(f) 

¯ 

 span(f) − ckγ}, (20) 

where (a) is due to Lemma 9 and (b) is due to Definition 4 

and the fact ∥Ii∥ − 1 ≤ exp(|Ii| − 2). 

Now, we plug Equation (19) and (20) into Equation (18), 

 

 + 

rspan(f) − ckγ}. 

Since |Ii| and k are free variables, we add some structure to 

simplify the right-hand side of the above. First, we require 

4|Ii| ≥ rspan(f) which leads to exp{|Ii| + rspan(f) − ckγ} ≤ 

exp{5|Ii| − ckγ}. Next, we require exp{5|Ii| − ckγ} ≤ 1, which 

holds if 5|Ii| ≤ ckγ. Since |Ii| ≤ (n/k+1) and n + k ≤ 2n, it 

suffices to let k = ⌈(10n/c)1/(γ+1)⌉. 

 
Plugging the above back to Equation 17 and using the fact 

 
Applying Markov’s inequality, we have for ϵ > 0 

 

 . (21) 

The right-hand side achieves minima w.r.t. r when 

4ϵl 
r = , span(f)2 which clearly 

satisfieswhen ϵ < span(f). 

Plugging the minimizer into Equation (21) yields 

 i =1 , 2 ,...,k  

 
 

exp 
 

r 
T ( i ) 

| I i | 

 
=  

 
| I i | 
Y 

j =1 
exp 

 
r 

G j 
| I i | 

 

≤ 

| I i | 
Y 

j =1 

 
 

exp 
 

r 
G j 
| I i | 

 

| z { } Φ 1 

+ 
 
 
 
 

 
 

| I i | 
Y 

j =1 
exp 

 
r 

G j 
| I i | 

 
− 

| I i | 
Y 

j =1 

 
 

exp 
 

r 
G j 
| I i | 

  
 
 
 

| { z } Φ 2 

.  

 

 
 

exp 
 

r 
T ( i ) 

| I i | 

 
≤ exp 

 r 2 
 ( f ) 2 

8 l 

 
+ 

¯ β 

e 2 , 

 0 r < ≤ 4 l 
 ( f ) ≤ 

4 | I i | 
 ( f ) for i =1 ,...,k  

 exp 
 r 2  ( f ) 2 

8 l 
 

≥ 1  

 
 

exp 
 

r 
P n 

i =1 G i 

n 

 
≤ (1+ ¯ β/e 2 ) exp 

 r 2 
 ( f ) 2 

8 l 

 
. 
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 . 

Replacing l by nˆ = ⌊n/k⌋ = ⌊n⌈(10n/c)1/(γ+1)⌉−1⌋ gives the 

desired result 

, 

for 0 < ϵ < span(f). 

A similar proof gives an analogous Hoeffding-type 

inequality for exponential α-mixing processes which is of 

independent interest. We document it here for 

completeness. 

Proposition 14. Let X be a stationary α-mixing sequence with 

the coefficient satisfying Definition 4. Assume that f : 

Y → R has bounded span, i.e., span(f) < ∞. Let Sn = 

. Then, for all ϵ ∈ (0,span(f)), it holds 

2nϵˆ 2 

P  , 

(22) 

where nˆ = ⌊n⌈(10n/c)1/(γ+1)⌉−1⌋ and c,γ are defined in 

Definition 4. 

Proof: 

The proof is the same as that of Proposition 5 except for the 

part where Φ2 is estimated. In the α-mixing case, Φ2 can be 

bounded by Lemma 8 and exponential α-mixing condition 

(Definition 4). 

 

≤ 4α(k)(|Ii| − 1)erspan(f) 

span(f) 

≤ 4e−2α¯ exp{|Ii| + rspan(f) − ckγ}, (23) where (a) is 

due to Lemma 8 and (b) is due to Definition 4 and the fact 

∥Ii∥ − 1 ≤ exp(|Ii| − 2). The rest of the proof follows that of 

Proposition 5.  

D. Proof of Theorem 2 

1) Case 1: β-mixing 

When X is exponential β-mixing satisfying Definition 4, we 

show the lower bound of ARL as follows. For exponential α-

mixing processes satisfying Definition 4, the proof follows the 

same procedure after replacing Proposition 5 with 

Proposition 14. 

Proof: 

To determine the upper bound for ARL, we condition on the 

fact that the change point τ is ∞. We use E∞ and P∞ to denote 

the expectation and the probability under τ = ∞. For 

threshold b > 0, minimum burn-in period M, and stopping 

rule T(b,M) in Equation (5), the ARL reads 
∞ 

E∞[T(b,M)] = XP∞[T(b,M) ≥ t] 
t=1 

∞ 

= M + X P∞[T(b,M) ≥ t] 
t=M+1 

 ∞  ( l )! 

= M + X 1 − P∞ 
[ {T(b,M) = t} 

 l=M+1 t=M+1 

 ∞  ( l )! 
(a) 

≥ M + X 1 − P∞ 
[ {sˆt > b} 

 l=M+1 t=M+1 

 L  ( l t−M )! 

≥ M + X 1 − P∞ [ [ {sk:t ≥ b} 

 l=M+1 t=M+1 k=1 

 L  l t−M ! 
(b) 

≥ M + X 1 − X XP∞{sk:t ≥ b} 
 l=M+1 t=M+1 k=1 

 L−M l t ! 

= M + X 1 − XXP∞{sk:t+M ≥ b} , (24) l=1 t=1 k=1 

where (a) is due to the majorization of the event {T(b,M) = 

t} to {sˆt > b}, (b) is due to the application of the union bound, 

and M < L < ∞ is an integer constant. 

To further lower-bound the right-hand side of the above, 

we consider the tail probability in (24). Due to stationarity, we 

can study P∞{s1:t ≥ b} for some t ≥ 1 without loss of generality. 

Suppose we pick the offset parameter ∆ = C(r,h) + δ for some 

δ > 0. By Lemma 1, we known that E∞[s1:t] = tE∞[s(Br(1)] ∈ 

[−tCµ,µ(r,h)−tδ,−tδ] almost surely for sufficiently large h. 

 
 

S n −  S n ≥ nϵ 
 

≤ (1+ ¯ β/e 2 ) exp 
 

− 
2 ̂  nϵ 2 

 ( f ) 2 
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Additionally, one can verify that {Br(t)}∞t=1 is β-mixing with 

coefficient β˜(t) = β(tr). 

By assumption, β(tr) satisfies Definition 4 and β˜(t) = 

β(tr) ≤ β¯exp(−crγtγ), 

for β,γ,c >¯ 0. Thus, we can apply Proposition 5 to obtain a tail 

probability 

bound on s1:t. 

For t ≥ 1, 

 

where in (a) we apply Proposition 5 for the conditional 

probability under√ event A, in (b) we apply 

span(MMDd[Br(1),Dh]) ≤ 2k¯ which can deduced from (3), 

and in (c) tˆ is replace with its lower-bound, 

(26) 

assuming c,r,γ are sufficiently large such that 

(rγc/10)1+1γ > 1. 

The right-hand side of (25) achieves its maximum when t = 

t∗ := ( γ+2)γδ b, which yields 

 P∞[s1:t∗ > b] ≤ D, (27) 

where 

 

Note that ξ(γ,c,r) < 0 for sufficiently large c,r,γ. 

Using (27) and stationarity, each of P∞[sk:t+M > b] in 

(24) can be upper-bounded by P∞[s1:t∗ > b], which yields 

 
L−M 

= L − D X l(l + 1). (28) 
l=1 

The right-hand side achieves maxima when L = L∗, where L∗ 

is obtained as the largest solution of 

(L∗ − M)(L∗ − M + 1) = 2/D. 

Some simple calculation shows 

that 

 

Returning to (28), we have 

 

where the second to last inequality uses the fact that√ 

 

 

a + b ≥ pa/2 + pb/2 for a,b ≥ 0. Plugging the value 

of D yields the lower bound in (6).  

2) Case 2: ϕ-mixing 

When X is ϕ-mixing satisfying Definition 5, we show the lower 

bound of ARL as follows. For exponential α-mixing processes 

satisfying Definition 4, the proof follows the same procedure 

after replacing Proposition 5 with Proposition 14. 

Proof: 

Follow the same argument in Case 1 until the application of 

Proposition 5. Note that  -mixing with 

coefficient ϕ˜(t) = ϕ(tr). Thus,  satisfies Definition 

5 with constant Φ as soon as X does. Then, we can apply 

Proposition 4 to obtain a tail bound on s1:t. For t ≥ 1, P∞[s1:t > 

b] = 

P∞ 

{s1:t − E∞[s1:t] > b − E∞[s1:t]} 

D : =(1+ ¯ βe 
− 2 ) exp 

 ξ ( γ,c,r ) 
¯ k 

b 
γ 

γ +1 δ 
γ +2 
γ +1  

| z { } D 1 

ξ ( γ,c,r ) : = 
" 

1 − 
 r γ c 

10 

 
1 

1+ γ #  2 

γ 
+2 

 
2 

 2 

γ 
+1 

 
− γ +2 

γ +1 
. 
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. 

The right-hand side of the above achieves its maximum when 

t = t∗ := b/δ, which yields 

 , (29) 

The rest of the proof follows the same procedure in Case 1. 

Then, we have 

. 

We arrive at the ARL lower-bound in (7).  

E. Proof of Theorem 3 

Case 1: β-mixing 

When X is exponential β-mixing satisfying Definition 4, we 

show the upper bound of ADD as follows. Note the offset 

parameter ∆ = Cµ,µ(r,h) + δ as defined in the proof of Theorem 

2 in Appendix D. 

Proof: 

Assuming the change point τ = 0, we denote the probability 

and expectation under the alternative as P0 and E0, 

respectively. For t ≥ 1
, 

E0{
MMD

d[Br(t),Dh]} ≥ MMDk(µ,ν) − 

C(r,h) − δ almost surely for sufficiently large h according to 

Lemma 1. Let D(µ,ν) := MMDk(µ,ν) − C(r,h). Now, we can 

write the average detection delay as follows 

, 

(30) 

where . In the rest of the proof, 

we aim to show that the second term on the right-hand side 

is ultimately bounded by a constant multiple of the first term, 

and the desired result is reached. 

To bound the second term, we apply Proposition 5 to get 

the tail probability bound of s1:t, similarly to the proof in 

Appendix D. For t ≥ t0 + 1, we have 

P0[s1:t ≤ b] ≤ P0 {s1:t − E0[s1:t] ≤ b − E0[s1:t]} 

(a)

 2tˆ(E0[s1:t] − b)2 

 (MMD[ r( ), h]) 

, 

√ 

where span(
MMD

d[Br(t),Dh]) ≤ 2k¯ can be deduced from 

Equation (3), (a) follows from Proposition 5 and tˆ = 

⌊t⌈(10t/c)1/(γ+1)⌉−1⌋, (b) uses stationarity of the post-change 

process and the conditioning on A′, and (c) follows from the 

relation in Equation (26) and ψ(c,γ) := 

. After magnifying the exponential term by 

setting b to t0(D(µ,ν)−∆−δ) and splitting the summation at 

 for some , the second term on the 

right-hand side of Equation (30) becomes 

 

where the first term is magnified by fixing t = 1 for all 

summands, and the second term is magnified by majorizing 

the denominator inside the exponential for each summand 

via . 

At this point, we can compare the growth rate of the two 

terms above and t0, which yields 

, 

where both equations above follow from . 

Thus, we have 

 . (31) 

We have reached the desired result in Equation (8) after 

combining Equation (30) and (31).  
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Case 2: ϕ-mixing 

When X is ϕ-mixing satisfying Definition 5, the upper bound 

of ADD is shown to follow Equation 8 using the same recipe 

as in Appendix E. Using Proposition 4, the second term on the 

right-hand side of Equation 30 can also be proven ultimately 

negligible compared to the first term. 

Proof: 

We shall directly start bounding the second term on the right-

hand side of Equation 30 using Proposition 4, which is written 

as 

 

 . 

If we magnify the exponential term by setting b to 

t0(D(µ,ν)−∆−δ) and split the summation at then 

it becomes 

 

At this point, we can easily verify that both terms on the right-

hand side are ultimately negligible compared to t0, and the 

proof is complete.  

F. MMD-CUSUM Test Pseudocode 
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Data: Data stream {Xi}, reference data Dh of size h; 

empty buffer Br of size r; smin stores the min of the 

partial sum; pick ∆ during calibration; pick threshold 

b > 0. i,t ← 0; 

sˆ0,s0,smin ← 0; 

Br ← ∅; 

while sˆt ≤ b do Br ← Br ∪ Xi; 

if (i mod r) = 0 then 

st+1 ← st + MMD[µˆr,νˆh] − ∆; smin ← 

min{st+1,smin}; 

sˆt+1 ← st+1 − smin; 

Br ← ∅; t 

← t + 1; end 

i ← i + 1; end 

 

for Government purposes, notwithstanding any copyright 

notation herein. 
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