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The food and agriculture industries are critical to the U.S. economy, ensuring the daily
food supply while facing significant challenges. These issues include ethical concerns related to labor
exploitation and the need to improve resilience against disruptions. Addressing these issues offers an
opportunity to create supply chains that are both more ethical and more resilient. This dissertation
focuses on two interconnected aspects of agricultural supply chains. The first examines strategies for
disrupting exploitative labor practices and ensuring better protection for farm workers. The second
explores methods to enhance the resilience of ethical supply chains against various disruptions,
including natural disasters and labor shortages. Together, these aspects aim to contribute to the
development of agricultural supply chains that are both ethically sound and resilient to disruptions.

Although farm workers play an essential role in the success of these industries, they are
vulnerable to labor exploitation and trafficking. Labor violations affecting these workers often go
undetected due to limited government resources for inspection. Furthermore, many farm workers
face barriers to disclosing their poor working conditions due to their immigration status and mistrust
of law enforcement, making them even more susceptible to exploitation. To address this issue, we
conducted research to provide strategies for government agencies involved in the H-2A visa program
and the screening of H-2A employers to prioritize workplaces for inspection.



In the first study, we employed multilevel zero-inflated negative binomial regression
analysis to extract patterns and identify factors correlated with detecting H-2A labor violations.
We provide suggestions for improving inspection strategies based on our research results. This
involved identifying high-risk locations and labor-intensive worksites with a greater likelihood of
labor violations and emphasizing the importance of allocating sufficient task force funding and
resources to prioritize inspections in these areas.

Labor trafficking networks in U.S. agricultural supply chains exploit vulnerable workers,
including migrants and unauthorized laborers, while evading detection through complex structures,
making them difficult to disrupt. In the second study, we developed a comprehensive labor trafficking
network model that maps the intricate connections and operations of these networks. Using a bi-level
integer programming approach, we optimized intervention strategies to disrupt trafficking operations,
balancing resource constraints with the need for maximum impact. By employing K-means clustering,
we classified interventions based on their effectiveness, providing clear, data-driven guidance for
anti-trafficking agencies to prioritize efforts and allocate resources efficiently. This approach offers
a powerful tool for enhancing detection and improving the overall effectiveness of anti-trafficking
initiatives in limited resource environments.

The importance of food and agricultural supply chains in our daily lives cannot be em-
phasized enough. While the prior two studies sought to disrupt exploitative work conditions in
agricultural supply chains, this dissertation also seeks to help supply chains that are operating ethi-
cally do so in an effective manner. Any disruption in these chains can lead to severe consequences,
from food shortages to economic instability. Therefore, it is critical to develop effective strategies
to mitigate the impact of disruptions in these non-exploitative supply chains. In the third study,
we developed a scenario-based two-stage stochastic model to mitigate the impact of multiple dis-
ruptions in agricultural supply chains. This approach enables a detailed evaluation of strategies
such as multi-sourcing and the use of backup facilities to reduce disruption impacts. The model
incorporates flexibility to handle both partial and full facility disruptions, while accounting for
disruptions affecting both primary and backup facilities to provide a comprehensive analysis of
supply chain vulnerability and recovery. By employing a multi-period time horizon, the model
evaluates supply chain performance over time, considering random disruption start times and the
possibility of simultaneous disruptions across multiple echelons with varying severity. The analysis
highlights the challenges posed by multiple sources of uncertainty in supply chain decision-making
and emphasizes the need for further research to develop actionable strategies for improving resilience
in agricultural supply chains.
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Chapter 1

Introduction

The U.S. agricultural sector is a critical component of the nation’s economy, contributing
significantly to economic growth and food security. Agriculture and related industries contribute
approximately $1.53 trillion to the U.S. Gross Domestic Product (GDP), accounting for 5.6% of the
total economy [1]. Given this substantial economic contribution, it is crucial to build resilience in
agricultural supply chains. However, these supply chains often encounter disruptions, such as supply
shortages, fluctuations in demand, and logistical challenges. These disruptions can significantly affect
their performance and productivity, leading to delays and inefficiencies [2]. Equally important is the
ethical treatment of laborers, who are essential to the functioning of these supply chains. Beyond
protecting human rights, ensuring fair wages, safe working conditions, and respect for workers’
rights also prevents labor shortages and operational disruptions, eventually leading to more resilient
and efficient supply chains [3]. Both operational disruptions and labor exploitation are closely linked:
ethical treatment of labor supports a sustainable workforce, while operational efficiency ensures
efficient supply chain function. Together, they form the foundation for sustainable agricultural supply
chains [4]. However, the application of Operations Research (OR) and Management Science (MS)
in agricultural supply chains still needs to be explored, especially in managing disruptions and
incorporating social and ethical considerations [5]. Bridging this gap can enhance both the operational
efficiency and ethical integrity of agricultural supply chains, creating more resilient and sustainable
systems [5]. In response to these challenges, this dissertation aims to address the following key

research questions:

1. How can I develop ethical frameworks and intervention strategies in agricultural supply chains

that effectively disrupt labor trafficking operations, using OR methods to optimize intervention
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outcomes?

2. How can I develop effective mitigation strategies to manage multiple disruptions in agricultural

supply chains, using optimization models that account for the uncertainty of their impact?

This dissertation addresses these two critical areas. First, I examine the exploitation of
vulnerable labor, particularly unethical practices such as labor trafficking and violations of workers’
rights, which weaken the integrity and effectiveness of agricultural supply chains. Second, I focus
on supply chain disruptions, whether they arise from supply-side shortages or transportation delays,
that reduce the resilience and efficiency of food production and distribution [6]. By addressing these
interconnected challenges, this research aims to reduce exploitative labor practices and manage risks
that threaten the strength of agricultural supply chains, ultimately building systems that are both
operationally robust and ethically sound.

To address the first research question, it is essential to understand the vulnerability of
laborers, particularly migrant workers, within the agricultural sector. Migrant farm workers play
a crucial role in the U.S. agricultural supply chain, contributing a significant portion of the labor
force [7]. However, when these workers are excluded from labor rights protections and benefits
programs, employers may benefit from reduced labor costs, but at the expense of the workers’
well-being [7]. This exclusion leaves migrant workers vulnerable to exploitation, including poor
living conditions, wage theft, unsafe work conditions, and excessive working hours, which raise
serious ethical concerns and threaten the long-term stability of the agricultural workforce.

In this research, I conducted two studies aimed at addressing labor exploitation within
agricultural supply chains. The first study identifies factors correlated with detecting labor violations,
offering valuable insights that inform intervention strategies to help government agencies prioritize
inspections and investigations. The second study introduces a novel labor trafficking network
model within agricultural supply chains, mapping the complex interactions between traffickers and
interdictors (anti-trafficking stakeholders). This framework highlights how traffickers attempt to
evade detection while interdictors strategically intervene to enhance the effectiveness of their efforts,
ultimately increasing the detection rate of trafficking operations. By examining the uncertainties in the
effectiveness of various intervention strategies, whether implemented by an individual interdictor or
through collaborations among multiple stakeholders, this study provides anti-trafficking stakeholders
with critical insights to make informed decisions about detecting and disrupting trafficking operations.
Together, these studies contribute to a deeper understanding of labor exploitation and offer practical

solutions to improve worker protection and reinforce the ethical standards of the agricultural industry.
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The second part of this dissertation shifts focus to addressing the challenges outlined in
the second research question. Agricultural supply chains are exposed to a range of disruption risks,
including supply or demand disruptions and transportation challenges, all of which threaten their
resilience and require structured strategies for enhancing adaptability and mitigate these risks [2, 6].
Examples of these disruptions include labor shortages [8], climate change [9], natural disasters such
as floods and earthquakes [10], fluctuating market demand [11], trade restrictions, and logistical
bottlenecks such as road closures or border crossing delays [12]. In the third study of this dissertation,
I developed a two-stage stochastic model focused on mitigating the impact of disruptions in the
wheat supply chain, a multi-echelon system crucial to agricultural production. The model developed
evaluates facility selection, determining whether facilities should serve as primary or backup options,
and optimizes resource allocation strategies over a multi-period horizon. To mitigate uncertainties,
the model incorporates various disruption types, including differing durations, capacity reductions,
and unpredictable start times, reducing their overall impact. Through this approach, the study aims to
enhance the resilience and sustainability of the agricultural supply chain by addressing the uncertainty
surrounding the effects of disruptions.

This dissertation offers a multifaceted approach to improving the resilience of the agri-
cultural supply chain by addressing the need to mitigate the impact of disruptions and the critical
importance of combating labor exploitation. The integration of strategies that address operational
risks while promoting ethical labor standards highlights the broader goal of creating supply chains
that are both resilient and socially responsible. In addition to the exploitative work that some employ-
ers employ on a day-to-day basis, operational disruptions may further contribute to circumstances
that increase the risk of labor exploitation. During events like the COVID-19 pandemic, disruptions
in the agricultural supply chain significantly impacted working conditions, including lack of social
distancing, reduced access to healthcare, and diminished worker safety [13, 14]. Additionally, such
disruptions can affect workers’ wages and working hours, as employers facing economic pressures
may attempt to minimize costs, which can lead to adverse impacts on labor conditions. These
interconnections suggest that operational stability and ethical labor practices create a resilient supply
chain [15].

The well-being of laborers is crucial for the sustainability of agricultural supply chains [3,
16]. Production or activities within the supply chain can only occur with a reliable and healthy
workforce. When workers, especially migrant laborers, have access to essential rights such as
healthcare, fair wages, and safe working conditions, it not only improves their productivity but also

strengthens the supply chain by reducing disruptions caused by labor shortages or poor working
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conditions [3]. This is particularly true during operational disruption, such as the COVID-19
pandemic, when the resilience of the labor force plays a pivotal role in maintaining consistent
operations [3].

This research makes several significant contributions to addressing ethical and operational
challenges in agricultural supply chains, both from a contextual insight perspective and from an OR
methods perspective.

The first contextual insights come from a multilevel zero-inflated model was used to
identify critical factors correlated with detecting labor violations across U.S. states, providing
valuable insights into the factors that have correlations with the prevalence of labor violations among
farm workers. This enables stakeholders to target enforcement efforts more effectively. Second, a
comprehensive labor trafficking network structure was developed and modified explicitly to fit the
agricultural sector’s unique dynamics. The model explores recruitment methods, worker profiles,
entry points, and exploitation tactics within agricultural labor trafficking networks within the United
States.

From an OR methodology perspective, this dissertation introduces a new bi-level integer
programming model that evaluates individual and collaborative interventions to detect labor traffick-
ing while accounting for the uncertainty of intervention impacts. Additionally, a two-stage stochastic
multi-echelon supply chain model was developed to mitigate disruptions at various echelons of
the agricultural supply chain. The model incorporates a broad range of potential supply chain
interruptions by generating random scenarios with variations in the start time of disruptions, facility
capacities post-disruption, and disruption durations across three impact categories (low, medium, and
high). This detailed approach enables the evaluation of mitigation strategies under diverse conditions,
providing a comprehensive framework for decision-makers to enhance the resilience and adaptability
of agricultural supply chains in the face of unpredictable disruptions. Together, these contextual and
methodological contributions offer practical strategies to enhance the sector’s ethical standards and
operational resilience.

The following chapters are structured to present the key findings of this research. Chapter 2
begins by addressing the vulnerabilities of farm workers to labor violations through a comprehensive
literature review of factors that may be related to the count of labor violations detected across the
U.S. It then presents significant insights by applying a multilevel zero-inflated model to identify
critical factors correlated with detecting labor violations, highlighting states and industries with a
higher risk of such violations. This analysis offers insights that can help anti-trafficking stakeholders

increase their detection and intervention efforts, enabling them to allocate their limited budget and

4
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resources more effectively to areas where labor violations are more likely to be detected.

Chapter 3 explores the challenges of mapping the complex structure of labor trafficking
networks in agricultural supply chains, based on real labor trafficking cases. Using a bi-level network
interdiction model, this chapter examines the strategic interaction between traffickers, who aim
to avoid detection, and anti-trafficking stakeholders, who work to enhance detection efforts. The
analysis provides key insights into intervention strategies to combat trafficking within the agricultural
sector.

Chapter 4 introduces a two-stage stochastic model for a multi-echelon wheat supply chain
operating under multiple disruptions with multiple sources of uncertainty, including the impact of
disruptions,start times, and affected facilities. The model, solved using Benders decomposition,
provides long-term mitigation strategies aimed at reducing the impact of these disruptions on the
agricultural supply chain, including primary and backup facilities and multiple sourcing.

Finally, Chapter 5 concludes the dissertation by summarizing the findings on enhancing
the resilience of agricultural supply chains. This chapter discusses the implications of studying labor
trafficking networks and intervention strategies to improve workers’ conditions, as well as addressing
multiple sources of disruptions in ethical supply chains. It also offers recommendations for future

research directions.



Chapter 2

Enhancing Detection of Labor Violations
in the Agricultural Sector: A

Comprehensive Analysis

2.1 Introduction

The U.S. agricultural industry is crucial for ensuring food security and contributing to
the national economy. This industry comprises various sectors, such as crop production, livestock
farming, and food processing. However, it faces numerous challenges such as labor shortages [17],
climate change [18], and a growing demand for sustainable practices [19]. As a result, there is an
increasing need for migrant farm workers.

Migrant farm workers are essential for fulfilling the labor demands in the U.S. agricultural
sector, particularly in seasonal and labor-intensive areas. International migrants occupy a significant
portion of entry-level jobs in agriculture [7]. Employers often cite the lack of qualified local workers,
the superior work ethic of migrants, and, occasionally, the lower labor costs associated with migrant
workers as reasons for their preference. This is especially true when migrants are excluded from
pension and other benefit programs, which can add 20 to 30 percent to labor costs [7]. However,
migrant workers are susceptible to exploitation, as they face job-related risks, such as exposure to
farm chemicals, substandard living conditions, and violations of work hours and wages.

To address labor shortages in the agriculture industry, the U.S. has implemented the H-2

(and, since 1986, the H-2A) visa programs since 1952. These programs enable farmers to fill seasonal
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farm jobs with guest workers from other countries when they anticipate a shortage of domestic
workers, including U.S. citizens, other legally authorized workers, and undocumented workers.
Employers seeking to recruit and hire H-2A workers must first obtain certification from the Office of
Foreign Labor Certification (OFLC) of the U.S. Department of Labor (DOL) [17]. It is important to
note that the H-2 programs are not new phenomena but rather part of a long history of the United
States relying on low-paid workers to support the agriculture industry, beginning with slavery and
progressing through sharecropping and the Bracero program, which brought workers from Mexico
to fill the labor needs in agriculture.[20, 21]. It should be noted that not all H-2A workers face
exploitation, yet the history of labor exploitation impacts the H-2A program, necessitating ongoing
efforts to enhance labor protections.

Farm workers on H-2A visas are an essential component of the agricultural industry, as
indicated by the rapid increase in H-2A workers employed in the U.S. agricultural industry over
the past decade [22, 23]. Most agricultural industries have experienced significant growth in H-2A
employment, particularly in industries with high labor requirements and seasonal employment [22].
From fiscal year 2010 to 2020, the number of jobs certified for H-2A worker employment increased
from approximately 75,000 to 275,000. Six states comprised 55 percent of these H-2A certified jobs:
Florida with 14 percent, Georgia and Washington each with 10 percent, California at 9 percent, North
Carolina at 8 percent, and Louisiana at 4 percent [24]. Around 80 percent of job certifications in
fiscal year 2020 lead to the issuance of visas for H-2A workers. However, not all employers complete
the hiring process for H-2A workers, and certain workers may occupy more than one certified role.

While H-2A policies state that H-2A workers must receive certain benefits not consistently
afforded to non-H-2A agricultural workers, such as required workers’ compensation coverage [25],
these benefits don’t always come to fruition. Additionally, H-2A workers are limited to working for
the employer who applied for their services through the DOL. However, during the COVID-19 pan-
demic, temporary changes were made to the Department of Homeland Security (DHS) requirements
for H-2A change of employer requests and H-2A maximum period of stay exceptions [26]. This
restriction, coupled with language barriers, lack of knowledge about their rights, and limited access
to legal assistance, leaves workers with few options if they encounter abusive work conditions or
wage theft. In situations of abusive labor experiences, their only option is to return to their home
countries, which they may be reluctant to choose due to losing their job, fear of blacklisting, financial
limitations, and other uncertainties. As a result, some workers may feel compelled to continue
working under exploitative conditions, leading to workplace abuse [27].

Farm workers who rely on their employment to support themselves and their families
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often face economic vulnerability and hesitate to speak up for themselves, even in situations that
may put their lives at risk [28]. Additionally, their limited financial resources make it difficult for
them to access the legal services necessary to assert their rights fully [29]. One of the significant
obstacles facing farm workers is their access to health services, as they are exposed to a range of
occupational and environmental health risks, which result in high levels of physical injury and illness.
The challenges to farm workers’ use of health services include inadequate English proficiency, limited
education, low income, and a lack of health insurance [30].

Several studies discuss strategies to improve and target efforts to protect farm workers [31,
32, 33]. Farm workers in the United States earn some of the lowest incomes in the labor market
and experience a high rate of injuries [31, 34]. The U.S. DOL reveals that the federal and state
governments lack the resources for even a one-time inspection of all labor camps in a state [35].
Costa et al. also [31] reported that there is a low probability (1.1%) that each farm employer will
be investigated by Wage and Hour Division (WHD) per year. They recommended strategies to
target violators, including increasing wage and hour staffing and enforcement funds, targeting the
farm labor contractors who are the biggest violators, and ensuring sufficient penalties to stop future
violations. Critical to these efforts is understanding factors that increase the risk of H-2A violations.

In this study, we used WHD data that recorded the number of H-2A violations detected
by DOL between 2010 and 2020. To examine the factors correlated with the number of H-2A
violations, we assembled a dataset containing various factors from multiple sources. This allowed us
to pinpoint the factors significantly associated with H-2A violations, thereby offering insights for
optimizing resource allocation, such as budget, time, and personnel. Furthermore, the study aimed to
prioritize worksites based on the likelihood of labor violations, thereby improving the effectiveness
of strategies to address such violations. We employed a multilevel zero-inflated negative binomial
model to identify the correlation between factors and the count outcome. Our findings provide
valuable insights that can be used by inspection agencies to optimize their investigative strategies,
resulting in more efficient and effective enforcement of labor regulations.

Our study makes several contributions to the literature on H-2A violations in the agricultural
industry. Firstly, we conducted a literature review to identify the key factors that may be correlated
with the detection of H-2A violations. Secondly, while previous studies have used quantitative
analyses on certain factors, our study is unique in its application of a multilevel zero-inflated negative
binomial model to the best of our knowledge. This approach allows for exploring correlations
between significant factors and H-2A violations at both state and industry levels, providing a better

understanding of the issue. Thirdly, based on the suggested model, we found that the average size of
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farms and number of small/medium establishments are correlated with the mean of H-2A violations.
Additionally, labor intensity, number of task forces, duration of alleged violations, fatal injury rate,
and minimum standard wage are associated with the likelihood of zero H-2A violation counts at
both state and industry levels. The poverty rate is associated with both mean of H-2A violations and
the likelihood of zero H-2A violation counts. By pinpointing the significant factors associated with
H-2A violations, our study offers valuable insights that can guide policy decisions in the realm of
labor regulation and enforcement.

The rest of this study is structured as follows: The next Section provides a literature
review on factors that may be related to H-2A violations and discusses relevant multilevel and
zero-inflated models employed in previous studies. The Data Section details the factors considered
for our regression analysis and outlines the data sources used to obtain these variables. In the
Method Section, we describe the regression models and multilevel generalized linear models applied
to identify correlations between factors and H-2A violation counts. The Result Section presents
and interprets our analysis results, emphasizing key factors that significantly correlate with H-
2A violations in the agricultural industry. Lastly, in the Discussion and Conclusion Sections, we
summarize our findings, discuss the practical implications of our study, and suggest strategies to
improve the effectiveness of investigations. Overall, our research provides valuable insights that can
inform policy decisions and support the development of more effective approaches for detecting

labor violations in this industry.

2.2 Literature Review

This section aims to briefly review relevant studies focused on factors correlated with
the risk of labor violations, as well as regression models employed in the analysis of similar data

structures.

2.2.1 Factors associated with labor violations among agricultural workers

Many scholars have studied the factors that increase the vulnerability of farm workers to
exploitation. Agricultural work environments are notorious for increased risk of occupational injuries
due to environmental heat stress, pesticide exposure, heavy workloads, and other workplace safety
concerns [36, 37, 38, 39, 30, 40, 41], including fatal injuries [42, 43, 44, 45]. Social distancing
was particularly challenging in agricultural workplaces during the COVID-19 pandemic [46]. Prior
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studies also document the impacts such work environments and stressors have on farm workers’
mental health [47, 48, 49, 50]. Additionally, wage violations [51, 52, 53] and violence [54] are widely
documented in the agricultural industry. Prior research has explored how these issues are impacted
by the contract type and recruitment strategy [55, 31, 22, 56], farm size [57, 58, 59], demographic
characteristics of workers [60, 61, 62], migrant workers [35, 22] and labor inspections [63, 64]. We
sought to explore the relationship of these factors to the number of H-2A violations detected by
the DOL. However, due to the lack of available data on each of these factors during a common
time period, our analysis focuses on the subset of factors for which data is available (as described
further in the Data Section). Below, we summarize the literature on the aforementioned factors for
which data is available and are included in our study. Specifically, we focus on farm size (according
to multiple metrics: acreage, number of employees), labor intensity, average net income per farm,
poverty rate, and fatal injury rate. We also explore the relationship between the presence of human
trafficking taskforces and the state minimum standard wage on detected H-2A violations.

Farm size: Several studies have focused on farm size in relation to labor exploitation. Some
have found that labor regulations are less strict for smaller firms (number of employees) [57, 58]. An
article examining the impacts of firms’ size on the risk of labor violations found a high probability of
labor violation among employees in small (less than ten employees) and medium-sized firms (10 to
19 employees) rather than larger enterprises [57].

The literature highlights the importance of considering the correlation between the land size
of farms (measured in acres) and labor violations, in addition to the impacts of labor laws on farms
with fewer employees. Harrison and Getz [59] found that although larger acreage farms generally
offer better job quality than smaller ones, these advantages are disproportionately available to white,
U.S.-born workers. Migrant workers face challenges such as job insecurity, limited professional
growth, and fear of losing their jobs due to their legal status. The study highlights the need to
examine the relationship between farm size and labor violations, considering the varying job quality
and opportunities for different worker groups. Larger acreage farms may not always be more prone
to labor violations, but specific subgroups like migrant workers could be more vulnerable due to the
mentioned factors.

Labor intensity: The main characteristic of high-intensive jobs is the low use of machinery
and intensive use of manual labor [65]. These increase workers’ exposure to nature and its adversities.
Articles have also documented that high-intensive work is highly dependent on temporary migrant
workers [22, 66]. One such group of migrant workers that is particularly relevant to this research is

workers on H-2A (agricultural) visas. Castillo et al. [22] described the trends in the H-2A program
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in the agriculture sector, finding H-2A employment growth in vegetables and melons, fruits, and
tree nuts that reflect sectors with higher labor intensity. Since migrant workers are susceptible to
labor exploitation because of their apprehension about job loss, heightened exposure to hazardous
work environments, and extended working hours [67], it is crucial to investigate H-2A violations in
labor-intensive workplaces.

Income: The literature highlights the need to examine the correlation between farm income
and labor exploitation in the agricultural sector. We could not find articles that specifically identify
a relationship between farm income and labor violations in the agricultural industry. However,
the literature discussed that businesses maximize labor efficiency to earn profits. This pressure to
extract maximum profit from the work process often results in various labor standard issues, such as
excessive working hours, low wages, and an over-reliance on contingent migrant workers [68].

Task forces: Barrick et al. [63] studied law enforcement’s ability to identify, investigate
and prosecute labor trafficking among farm workers. The study revealed a discrepancy between
the perceptions of law enforcement, including task forces, regarding labor trafficking operations
and the actual reports of labor trafficking by agricultural workers in parts of North Carolina. They
recommended that law enforcement agencies in agricultural areas extend their missions to include
the protection of laborers, farms, and farm camps in their routine investigations. Farrell et al. [64]
explored strategies law enforcement, including multi-agency task forces, can use to improve detection,
developing non-traditional partnerships with labor inspections and local regulatory agencies.

Poverty rate: Schwarz et al. [53] presented major clusters of trafficking risk factors,
including economic insecurity, house insecurity, education gaps, and migration. They expressed
that the relationship between poverty and labor trafficking is strong since poverty restricts people’s
options and makes them vulnerable to labor exploitation. Also, several studies discussed that the
poverty rate influences the chance of children becoming child laborers [69]. Marinescu et al. [51]
identified the negative correlation between wages and violations enforced by Occupational Safety
and Health Administration (OSHA) and WHD. Nagurney [52] employed a network equilibrium
model to demonstrate that wages play a crucial role in decisions to hire migrant workers. The study
also revealed that engaging in illicit practices, such as misleading potential workers about their
compensation, can financially benefit farmers, thereby emphasizing the need for stricter oversight
and control.

Fatal injury rate: Some articles suggest that agriculture is one of the most dangerous
occupational sectors regarding fatal injuries [42, 43, 44]. Rivara [45] studied fatal and nonfatal

injuries among agricultural workers in the US and found that farm machinery, such as tractors, is the

11



CHAPTER 2. ENHANCING DETECTION OF LABOR VIOLATIONS IN AGRICULTURAL SECTOR

most common reason for fatal and nonfatal injuries.

State minimum standard wages: Fair Labor Standards Act (FLSA) establishes the federal
minimum wage and directly elicits the minimum wage provisions for employers to compensate all
employees legally. Additionally, the Adverse Effect Wage Rate (AEWR) is a critical component of
the H-2A visa program, designed to protect both U.S. and foreign farm workers from adverse impacts
on wages due to the employment of H-2A visa holders. Set by the Department of Labor, the AEWR
is the minimum wage that employers must pay to H-2A workers and any domestic workers in similar
employment to prevent the undercutting of local wage standards [70]. The literature suggests that
when the minimum wage increases beyond what a firm can or is willing to pay, maintaining a job
match may necessitate paying subminimum wages to some workers [71]. As a result, workers might
stop seeking enforcement of the minimum wage, for instance, by choosing not to report violations
of minimum wage regulations when they feared their job is in danger [72, 71]. It is important to
consider the role of minimum wage standards in labor violations, particularly within the agricultural

sector.

2.2.2 Multilevel and zero-inflated models

Multilevel modeling is a robust statistical technique for analyzing data with group structures.
This method has been employed across various disciplines to tackle diverse research questions,
effectively demonstrating its worth in discerning both within-group and between-group effects
and interactions [73]. Multilevel modeling enables researchers to accommodate intricate data
structures and has found applications in various social science domains, such as education [74, 75],
health [76, 77], environmental studies [78, 79], and violence-related research [80, 81].

Some articles have depicted the linear association between predictors and continuous
outcomes by constructing multilevel linear models for detecting significant factors [82, 83]. On the
other hand, the generalized linear multilevel models typically utilized for analyzing count, binary, or
categorical data differ from the former. Leclerc et al. [84] employed a mixed-effect logistic regression
analysis to study the effects of potential guardianship on the severity of child sexual abuse for nested
data. Martinez-Schuldt et al. [85] studied the willingness of immigrant community members to notify
law enforcement after being victimized. They used multilevel logistic regression analysis for a binary
dependent variable.

Several studies particularly focused on count data when the data are clustered or

grouped [86, 87, 88, 89, 90, 91, 92], using Poisson distribution [87, 88] or negative binomial
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distribution [89]. Count data often exhibit excess zeros, meaning there are more zeros in the data
than expected from a Poisson or negative binomial distribution. In such cases, two commonly
used models are the Zero-inflated Poisson (ZIP) regression model and the Zero-inflated Negative
Binomial (ZINB) regression model [90, 91, 92, 93, 94, 95]. Seabright et al. [92] fitted zero-inflated
generalized linear multilevel models to investigate the potential impacts of post-marital residence
patterns on the size of women’s social groups, as well as their access to alloparental childcare among
Tsimane fora-ger—farmers in lowland Bolivia. An article presented a ZINB mixed effect model to
identify predictors’ effects on adolescent victimization [93]. Niedhammer et al. [94] examined the
association between psychosocial work factors and sickness absence in 31 Europe countries. They
used the multilevel negative binomial hurdle model to study the count of sickness absence with
three hierarchical levels and excessive zeros. Using the zero-inflated negative binomial model with
random effects, Forst et al. [95] modeled the association between factors, including the occupational
category and demographic characteristics, and work-related injury counts for repeated measures
within zip codes. This study provided evidence to support the potential benefits of community-based
approaches for reducing the burden of workplace injuries and promoting occupational health and
safety.

Our study employs multilevel and zero-inflated models as valuable tools for understanding
the factors associated with H-2A labor violations. Leveraging a unique dataset, our analysis con-
tributes to the existing literature on the factors that are correlated with H-2A labor violations. In
addition, multilevel modeling is particularly advantageous for our research, as it accounts for varying
predictor effects across categories, such as state or industry. This observed variation in our data
allows for a more accurate assessment of the relationship between these factors and H-2A violation
counts compared to previous methods. Furthermore, we incorporate a zero-inflated model in our
study to address the presence of structural zeros in the data. This is essential for our analysis, as
there are likely two distinct mechanisms generating detected H-2A violations, one of which does not
produce detected violations greater than zero count. The zero-inflated model accurately accounts for
these structural zeros, offering a more comprehensive understanding of the factors that are correlated

with H-2A labor violations.

2.3 Data

The data used in this analysis comes from multiple sources, which are described in detail

in this section. We also discuss the data cleaning process and feature selection to identify the most
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important factors used in the regression analysis.

2.3.1 Data collection

This research utilizes data from multiple sources to examine the correlation between
various factors and H-2A visa program violations, which could help inform policymakers and
inspection agencies in detecting violations in the agricultural industry. To analyze labor violations
in the agricultural sector, we used data from the WHD of the U.S. DOL covering the period from
2010 to 2020 [96]. Specifically, cases with a “findings start date” and “findings end date” between
2010 and 2020 were included. The dataset includes information on multiple types of violations, such
as H-2A, H-1A, H-1B, Occupational Safety and Health Administration, and Fair Labor Standards
Act violations, per case, investigated by DOL. Investigations are initiated in multiple ways. In
addition to proactively targeting industries known for high violations or where vulnerable workers
and low-wage challenges are prevalent, the WHD receives confidential complaints that initiate
investigations [97]. Given this context, this study aims to explore the correlation between various
factors and the H-2A violation count to provide insights that could enhance the precision of these
investigations. The dataset includes 175,126 cases investigated by DOL in a wide range of industries.
Given our research’s focus on labor violations in the agricultural sector, we relied on a specific subset
of data related to the count of H-2A violations per case. Specifically, the data was filtered to include
only those cases with North American Industry Classification System (NAICS) codes that began with
11, corresponding to agriculture, forestry, fishing, and hunting industries. This filtering ensured that
the analysis focused specifically on labor violations in the agricultural sector where H-2A violations
may occur and resulted in 12,041 remaining cases. We next excluded H-2A violation counts for
Puerto Rico and the District of Columbia from our analysis as our study focused on the 50 U.S.
states. Additionally, finding data on relevant factors for these regions was challenging. This further
reduced the number of cases from 12,041 to 11,976. Of the 11,976 cases within the 50 U.S. states
with NAICS code starting with “117, 2,523 were found to have greater than zero H-2A violations
reported. However, it is important to note that for the cases with zero H-2A violations reported, it
is unclear whether the DOL investigated for H-2A violations and found no violation occurred or
whether DOL focused on investigating other types of labor violations and therefore was not looking
for H-2A violations. This presented a challenge for the analyses, and we explained in detail how
we addressed it in the methodology section. Additionally, some cases were found to have multiple

H-2A violations. Thus, the 2,523 cases with non-zero H-2A violations had a total of 73,781 H-2A
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violations.

H-2A violations were found in all 50 states and 17 of the 19 agricultural industries over
the 10 year period analyzed (see Figs 3.1 and 3.3, respectively). Florida, California, and Nevada
clearly show more H-2A violations than other states. However, it is worth noting that factors such as
the number of H-2A workers employed, number of farms, climate, and population of these states
may contribute to the higher number of violations and that Fig 3.1 provides the count of H-2A
violations identified without normalizing for these factors. Indeed, when accounting for the number
of H-2A workers certified in each state (see Fig 3.4), Nevada continues to display more violations
than other states, while Florida and California have a more moderate number of violations per H-2A
worker certified. New Mexico, Kansas, and Alaska also have a substantially higher number of
normalized H-2A violations than most states (Fig 3.4, although they have a low H-2A Violation
Count (Fig 3.1)). Note that the dataset for the number of H-2A workers certified in each state does not
reliably report the sector of the business seeking certification, so Fig 3.4 focuses on H-2A violations
and certifications for all industries. Since the H-2A visa is an agricultural visa, a vast majority of
the identified H-2A violations are within the agricultural sector (i.e., NAICS code beginning with
‘117). Therefore, it is not surprising that the distribution of H-2A violations identified within the
agricultural sector (Fig 3.1) closely resembles the distribution of H-2A violations identified in all
sectors (see Appendix A).

The bar chart reveals that substantially more H-2A violations have been identified in the
Support Activities for Crop Production (19,950), Vegetable and Melon Farming (18,727), and Fruit
and Tree Nut Farming (17,073) industries than in other agricultural industries; some industries have
had very few H-2A violations identified, such as Poultry and Egg Production (96), Forest Nurseries
and Gathering of Forest Products (52), Logging (14), and Hunting and Trapping (2). No H-2A
Violations were identified in the Fishing and Timer Tract Operations industries during the 10 year
period. This is not particularly surprising, as the notable disparity in the incidence of H-2A violations
among distinct agricultural sectors can be attributed, to some extent, to the level of H-2A employment
within each industry. The combined analysis highlights geographical and industry-specific H-2A
violation trends.

We combined WHD data with external data from multiple sources to form our consolidated
dataset. The external data consists of various factors that we categorized into three groups: agriculture
land, inspection, and population, see Table 3.1. Several studies in the Literature Review Section that
discussed the potential factors related to the vulnerability of farm workers motivated us to study their

impacts on the number of H-2A violations. In the following paragraphs, we describe the factors
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Figure 2.1: Geographical distribution of H-2A violations. The heatmap illustrates the total number of identified
H-2A violations within the agricultural sectors per state from 2010 - 2020.
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Figure 2.2: H-2A violations by industry. The bar plot demonstrates the distribution of H-2A violation counts

across agricultural industries, highlighting the industries with the most violations from 2010 - 2020.

considered in the analysis.

Average size of farms (acres) — Each state’s average acreage size of farms was collected
from the United States Department of Agriculture (USDA) database from the National Agricultural
Statistics Service (NASS) [98] using the Average farm size (acres) field. The data rep-
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Figure 2.3: H-2A violations per H-2A worker certified. The heatmap illustrates the total number of identified
H-2A violations (across all industries) divided by the number of H-2A workers certified in each state from

2010 —2020.

Table 2.1: Data frame

Category Factor

Average Size of Farms (acres)
Number of Farms

Agriculture Land Number of Small/Medium Establishments
Labor Intensity

Average Net Income per Farm

Number of Task Forces

Inspection o
Length of Alleged Violations
Poverty Rate

Population Fatal Injury Rate

Minimum Standard Wages

resent the size of any place from which a thousand dollars or more of agricultural products were
produced, sold, or normally would have been sold during the fiscal year. We collected data from

2010 to 2020. This dataset contained information for the number of farms, land in farms (acres), and
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average farm size per state annually. The average farm size ranged from 55 (Rhode Island) to 2745
acres (Wyoming).

Number of farms — The number of farms in each state from 2010 to 2020 was obtained
from the NASS USDA database field Number of farms field [98]. The number of farms per
state ranged from 680 farms (Alaska, 2010-2012) to 248,500 farms (Texas, 2013 & 2017), with an
average number of 41,653 farms per state.

Number of small/medium establishments (by number of employees) — The number of
small/medium establishments was collected from the Quarterly Census of Employment and Wages
(QCEW) database from the U.S. Bureau of Labor Statistics (BLS) [99]. The data represents the
employment data from companies in the U.S. by type of industry (NAICS code) and state. It
represents the number of establishments recorded quarterly in each year. The data available is
only for the number of farms counted in the first quarter of each year. It might exclude H-2A
workers depending on the state labor regulation, which is a limitation. Although this data is expected
to exclude around 20 % of the agricultural workers, it is considered a representative dataset for
operation in the agricultural sector from 2010 to 2020 used in USDA reports [22]. We define
small/medium farms as those with less than 20 employees. The justification for this threshold is
based on regulations on labor rights. For example, under California law, organizations with less than
26 employers abide by less strict labor regulations, being allowed to pay lower minimum wage [100].
The U.S. Federal legislation exempts the minimum wage for certain organizations. Specifically,
organizations with an annual gross volume of sales or business done of at least $500,000 and specific
organizations with fewer than nine employees are exempt from this requirement [101]. Additionally,
employees who work for companies with fewer than ten employees do not have the right to receive
unemployment insurance [102]. The dataset includes different categories for firm sizes, such as less
than 5 employees, 5 to 9 employees, 10 to 19 employees, 20 to 49 employees, and other categories.
The dataset comprises various categories for firm sizes, including less than 5 employees, 5 to 9
employees, 10 to 19 employees, 20 to 49 employees, and other categories. As a result, we combined
the groups with fewer than 20 employees to represent the small/medium establishment variable, as
small/medium-sized firms with less than 20 employees have been defined in a previous study [57].

Labor intensity — To study the effects of labor intensity on labor violation counts, we
classified each type of crop in the NAICS code as either high-intensity (1) or low-intensity manual
labor (0). A labor-intensive crop is a relative measure of the number of hours of human labor required
to produce the same yield in dollars in comparison to other crops [22]. It was difficult to establish

a definitive threshold to determine which crops require high-intensity labor due to factors such as
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technological advancements and changes in farming practices over time [103]. Therefore, we used
the same classification as Castillo et al. [22] used in a 2021 USDA report. According to their findings,
high-intensive crops usually employ more H-2A workers than non-high-intensive ones [22]. To
help improve the classification, we also used other papers to corroborate the classification of which
NAICS code is associated with high-intensity labor [31, 103].

Average net income — Net farm income was extracted from the USDA, Economic Research
Service, Farm Income and Wealth Statistics [104]. This dataset includes the net farm income
per state by year for the range of 2010 - 2020. To find the average net income per farm, the net farm
income is divided by the number of farms per state by the year. The number of farms is gathered
by USDA'’s reports of farms and land in farms [98]. The average yearly net income varied between
-$21,369.12 to $263,372.17 across states.

Number of task forces — Due to the variety of human trafficking task forces throughout
the U.S. and a lack of data related to how many task forces exist in each state, we focused on
the number of enhanced collaborative model task forces funded through the Office of Justice Pro-
grams (OJP), Office for Victims of Crime (OVC) that aim to combat human trafficking [105]. These
task forces include victims, law enforcement, social service providers, and other governmental and
non-governmental partners to help trafficking victims and provide them with appropriate services.
Enhanced Collaborative Model (ECM) task forces have specific provisions focused on labor traffick-
ing, which may provide the best indicator of law enforcement awareness and readiness to identify
labor trafficking and associated exploitation. This data consists of information about the funded task
forces, award amount, award status (e.g., open, closed, etc.), etc. To transform the data for regression
analysis, we counted the unique number of active OVC task forces per by year. The number of OVC
funded task forces ranged from 0 to 15 (California, 2019), with an average of 1.002 task forces in a
state each year.

Length of alleged violations — We calculated the length of the alleged violations data per
case investigated in the WHD dataset by taking the difference of the findings_end_date and the
findings_start_date of the alleged violations [96]. This time period indicates the estimated
duration of violations that occurred per case. Only cases related to agricultural businesses (filtered by
NAICS codes that begin with 11) during 2010 - 2020 were included in our analysis. To determine
the state associated with the business in each case, we used the st_cd field in the WHD dataset.

Poverty rate — We obtained poverty statistics by state from The U.S. Census Bureau
historical poverty tables [106]. Specifically, we used data from the Percent in Poverty field
in Table 19. The number of Poor and Poverty Rate by State: 1980 to 2021 for the years 2010 to

19



CHAPTER 2. ENHANCING DETECTION OF LABOR VIOLATIONS IN AGRICULTURAL SECTOR

2020. Although we study labor violations in agriculture, due to the lack of available data related to
poverty rates specifically for people employed in the agricultural sector, the poverty rate data we
used includes households working in agricultural and non-agricultural jobs. The data ranges from a
minimum poverty rate of 0.9% (New Hampshire, 2009-2010) to 25.8% (North Dakota, 2012).

Fatal injury rate — As the lack of tracking systems makes detecting and understanding
trafficked workers’ health and risk patterns difficult, we extract data from the U.S. Bureau of Labor
Statistics, Injuries, Illness, and Fatalities (BLSIIF) [34]. According to the data’s resources, it can be
used to compare risk among worker groups with varying employment levels. Due to incomplete data
on nonfatal injuries during our specified timeframe, we relied on the fatal injury rate for our analysis.
The data consists of fatal rates across states from 2007 to 2021. However, we used data ranging from
2010 to 2020, which is within the scope of our analysis. The data ranges from a minimum fatal injury
rate of 0.9% (New Hampshire, 2009-2010) to 17.7% (North Dakota, 2012).

Minimum standard wages — We used the DOL wage data for changes in basic minimum
wages under state law from 2010 to 2020 obtained by the U.S. DOL Division of Fair Labor Standards
Act and Child Labor Wage and Hour Division [107]. DOL wage data has some exceptions related to
minimum wage values for specific states. To maintain consistency and uniformity in data analysis,
we addressed issues by taking the following steps; First, data includes minimum wage values for
some states that are lower than the federal minimum wage due to some exceptions, such as a low
number of employees. We decided to use the federal minimum wage for states rather than the lowest
wage a state can legally pay if all exceptions are met. Second, five states do not have a state minimum
wage, which leaves them subject to federal law. We used the federal minimum wage of $7.25 for
these states for our analysis [108]. Third, some states have a range of numbers for the minimum
wage, indicating that the pay could be anywhere between two numbers. In these cases, we decided to
conservatively use the higher value since, in some states, this may indicate the state’s initiative to

increase wages within their legal framework.

2.3.2 Data pre-processing and feature selection

In this section, we first applied feature scaling to standardize all regressors, as they were
initially on different scales. This process ensured that no particular predictor would dominate the
analysis due to its scale. To explore the dataset further and identify correlations between regressors
or factors, we utilized a correlation matrix, which provided valuable insights into the relationships

among the variables.
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Table 2.2: Description of factors

Factor Source Type State/Industry
Average Size of Farms USDA integer state

Number of Farms USDA integer state

Number of Small/Med Establishments QCEW integer state

Labor Intensity USDA, [22] binary industry
Average Net Income per Farm USDA continuous  state

Number of Task Forces oJp integer state

Length of Alleged Violations WHD integer state and industry
Poverty Rate USCB continuous  state

Fatal Injury Rate BLSIIF continuous  state

Minimum Standard Wages DOL continuous ~ state

To check for multicollinearity, we employed the Variance Inflation Factor (VIF) to assess
the degree of independence among the factors. We discovered that some factors, such as the number
of farms, number of small/medium establishments, and average net income per farm, exhibited
high VIF values. To select the most relevant features, we employed Pearson correlation analysis
and found that the number of small/medium establishments had the strongest correlation with the
target variable, outperforming the other two factors. Additionally, we leveraged Feature Importance
from the random forest regression model and used recursive feature elimination with k-fold cross-
validation to determine the most influential factors for our model. These methods, including the
correlation matrix and random forest feature importance, indicated that the number of small/medium
establishments should be considered as a factor in our model.

Lastly, we had to select between the number of farms and the average net income per farm
based on the VIF results. Since the average net income per farm was derived from the number of
farms, we decided to retain the average net income variable, as it implicitly represents the number of
farms. This choice allowed us to avoid potential multicollinearity issues while still incorporating
valuable information in our analysis.

While no single solution perfectly addresses collinearity, the model selection procedures
we used aimed to alleviate the effects of collinearity. This approach focuses on including only
variables that have the strongest association with the response variable, selected from a group of

correlated predictors. All data cleaning and pre-processing tasks were performed using Python
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3.7, ensuring a consistent and robust approach to preparing the data for subsequent analysis. This
streamlined process allowed us to efficiently identify and incorporate the most relevant factors into

our model, ultimately yielding more accurate and meaningful results.

2.4 Method

In this section, we will explain the modeling approach used to establish a relationship
between the predictors and the H-2A violation count, which is the target variable. We begin by
exploring various regression models suitable for count data, where many observations have zero
counts. Subsequently, we will implement a multilevel model for the grouped data with two levels,

state and industry.

2.4.1 Regression models for count data

The dependent variable is the number of H-2A violations detected by DOL for each
distinct WHD investigation, which we refer to as a “case”. This count denotes the number of workers
identified within a single investigation who faced violations. It can only take non-negative integer
values and experiences excess zeros. These types of count data are modeled with General Linear
Models (GLMs) and General Linear Mixed Models (GLMMs) using either Negative Binomial (NB)
or Poisson distributions [109, 110].

We first investigated whether the Poisson distribution would be an appropriate fit for
our data by conducting a dispersion test. Upon examining the results, we found that the p-value
was statistically significant, indicating the presence of overdispersion in the count data. This
overdispersion suggests that the variance is greater than the mean of the outcome variable, which is
not ideal for a Poisson distribution. We decided to consider the NB regression model since this model
is more adept at handling overdispersed count data, making it a more suitable choice compared to the
Poisson regression model. It is common to use a zero-inflated model when there are more zeros in
count data than a simple model predicts. To check whether such zero-inflated models are needed, we
conduct a model comparison between the simple models and zero-inflated models. Zero-inflated
general linear models are a mixture of distributions, one that has degenerate zero counts (logit)—a
zero-inflated model—and another that has degenerate integer counts following Poisson and NB
distributions—a conditional model [111]. We compared ZINB, and NB models fitted to the dataset

using the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and likelihood
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ratio test. AIC and BIC serve as measures for assessing the goodness of fit of statistical models while
considering their complexity. Both criteria aim to find the optimal balance between fitting the data
well and avoiding overfitting due to unnecessary complexity. Lower values of AIC and BIC signify
a better fit of the model to the data, as they indicate a more favorable balance between data fit and
model complexity. The formula used to compute AIC is AIC' = —2log(L) + k, where L is the
maximum value of the likelihood function for the model and k is the number of estimated parameters
in the model [112]. The BIC penalizes the model complexity more strongly than the AIC, and
both are useful for model selection, depending on the trade-off between goodness of fit and model
complexity. As shown in Table 2.3, the ZINB model has a lower AIC and BIC value compared to the
NB model, indicating the zero-inflated component of the model effectively captures the remaining
overdispersion that the NB model does not entirely explain. In addition to AIC and BIC, we used the
likelihood ratio test to compare the two models. A likelihood ratio test is a validation approach that
compares a simple model, such as the NB model, with a special case of that model that includes the
zero-inflated part, such as the ZINB model. According to the test, additional parameters in the ZINB
model improve the model’s fit significantly compared to the NB model, confirming the conclusion
of the AIC and BIC comparison. Therefore, we used ZINB regression for the number of H-2A

violations that exhibit overdispersion and excess zeros.

Table 2.3: Performance Comparison: NB vs ZINB Model

Model AIC BIC
NB Model 30184.2 30265.5
ZINB Model 28509.4 28664.6

The fitted ZINB model reflects two possible outcomes for H-2A violations reported in
this dataset: zero H-2A violations or a positive number of H-2A violations. Some cases reporting
zero H-2A violations reflect structural zeros, while others reflect non-structural (random) zeros.
Structural zeros encompass cases in which a zero is reported in the dataset because either (a) DOL
investigated other (non-H-2A) types of violations; since they were not looking for H-2A violations,
no violations were found or reported, or (b) the organization’s structure is such that H-2A violations
are not possible, such as the organization does not hire H-2A workers. In investigation cases where
DOL is inspecting for H-2A violations and the organization’s structure is such that a H-2A violation
could potentially occur, the reported number of H-2A violations can be zero or greater than zero and

are generated using the NB distribution portion of the model. Zero counts in these cases are non-
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structural (random) zeros and refer to situations in which the organization could potentially have had
violations, but no violation was found because even though DOL investigated for H-2A violations,
(a) the organization did not have a violation during the period in which they were investigated or
(i.e., true negative) (b) DOL could not detect the H-2A violations that were occurring during the
inspection (low detectability) (i.e., false negative).

We assumed that structural zeros occur with probability ®. Therefore, the Probability Mass

Function (PMF) for a ZINB can be formulated as follows [113]:

d+(1—d)g(Y =0), ify=0
Pr(Y = y) — + ( )g( ), ify o

where the random variable Y € N is the count data, y is the realization of Y, and ¢(Y) is the pmf
of the negative binomial distribution. The distribution is formulated in terms of the mean () and
dispersion parameter (o = %), where r is the predefined number of successes that occur according to
the definition of the NB distribution.

)= _ Tl +y) LY ap
oY =) = Profie) = o e D () () e2)

The negative binomial components are used to estimate the intercept and coefficients of the regression
model fitted to the dataset, thereby allowing us to accurately capture the relationships between the

variables and make meaningful inferences based on the fitted model.

2.4.2 Multilevel generalized linear models

We explored using ZINB linear models to analyze H-2A violation counts to study the effects
of different factors. These factors were explained in detail in Data section. Our data exploration
revealed the presence of multiple groups in the dataset, including state and industry. However, we also
found that these groups are not hierarchically nested within each other, but instead, they cross [114].
This can be presented schematically for different cases contained within the cross-classification of 50
states by 19 industries, as in Fig 3.5. Cases are at the individual level (level 1), and two higher levels
are industry and state (level 2).

Based on the structure of our data, we employed a Multilevel Zero-inflated Negative
Binomial Linear Model (MZINBLM) with two crossed random effects — state and industry in

both the conditional and ZI parts of the model. We compared the performance of this model with
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Figure 2.4: Cross-classified data. The multilevel diagram for the cross-classification of two levels of study.

Industry 11 119

State S1 S50

other alternatives, such as the Zero-inflated Negative Binomial Linear Model (ZINBLM) without
accounting for state effect or industry effect, MZINBLM with only one level (accounting for either
state effect or industry effect but not both), and MZINBLM with two levels (accounting both state
and industry) in the conditional model. We evaluated the models by comparing AIC, BIC, and
likelihood ratio tests. The findings reveal that the MZINBLM with two crossed random effects in
both parts of the model (e.g., conditional and ZI) provided a superior fit to the data as compared to
the other models considered, see Table 2.4.

Let Y;(;1) represent the count outcome for the i-th case, belonging to the j-th industry
group and k-th state group, fi;(;x) be the conditional mean of Y; 1), and X1, ..., X;, be the p
predictor variables at the case level. The MZINBLM formulation is as follows [115]:

Level One:
i
log [1453&)} = a;(jky T a1 Xa + -+ apXip (2.3)
log (1)) = Bigk) + B1Xin + -+ + BpXip + & (2.4)
i~ N(0,02) @3
Level Two:
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aigry = ao +w') +wl? for i=1,2,..,11976 (2.6)
Bigwy = Bo+ul) +ul?) for i=1,2,...,11976 2.7)
ult ~ N(0,0%) 2.8)
ul?) ~ N(0,02) (2.9)
1
wi ~ N(0,02 ) (2.10)
w? ~ N(0,02 ) @.11)
Table 2.4: Model selection
Random Effects Random Effects
Model (Cond Model) (Z1 Model) AIC BIC logLik
NB - - 30543.4 30624.7 -15260.7
ZINB - - 28804.4 28959.6 -14381.2
MZINB1 state - 28545.2 28707.8 -14250.6
MZINB2 state & industry - 28423.6 28593.6 -14188.8
MZINB3 state & industry  state 28031.6 28209 -13991.8
MZINB4 state & industry  state & industry ~ 27812.5 27997.3 -13881.3
Where ag, ..., ap, and fy, ..., 3, are the corresponding regression coefficients for the

51), ugl) and w,?), u,(f) are the random effects of

intercept for state and industry respectively, and ¢; is the residual error. The variance of the random

logit model and conditional model, respectively; w

effects are denoted by 03(1), 03(2), ‘7120(1)’ and 012“(2).
The results of this study were obtained using R 4.2.2 with glmmTMB package for multilevel
zero-inflated generalized linear models. It includes the conditional model, which is the negative

binomial distribution, and the zero-inflated model [116].

2.5 Results

As per the methodology, several models were fit, and their performance was evaluated
based on AIC, BIC, and likelihood tests. The best model was selected by comparing the models using
these criteria, considering the balance between the goodness of fit and model complexity. We used

a multilevel zero-inflated generalized linear model to analyze the count of H-2A violations, taking
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into account fixed effects such as the average size of farms, number of small/medium establishments,
labor intensity, average net income per farm, number of task forces, length of alleged violations,
poverty rate, fatal injury rate, and minimum standard wages, as well as crossed random effects from
state and industry.

The selected model identified the significant factors associated with the count outcome. Ta-
ble 2.5 presents the results of the selected MZINBLM, where the first part pertains to the conditional
model. This part describes the correlation between the independent variables and the logarithm of the
count data, which can be interpreted as the change in the expected H-2A violation counts associated
with a unit increase in the corresponding variable while holding all other variables constant. The
second part follows that corresponds to the zero-inflation model. This includes log odds of count
outcome (estimate) for predicting excess zeros and their corresponding p-values.

The results indicate that the intercept, average size of farms, the number of small/medium
establishments, and the poverty rate have a significant correlation with the mean H-2A violation
counts in the conditional model. Additionally, the zero-inflated model suggests several factors are
significantly associated with the outcome, including labor intensity, number of task forces, length of
alleged violations, poverty rate, fatal injury rate, and minimum standard wages. Notably, the average
net income per farm is not a significant factor, indicating no significant relationship between this
variable and the count outcome.

Upon analyzing the regression results, we noted a positive correlation between the sig-
nificant factors and the target variable in the conditional model. However, it is essential to note
that correlation does not necessarily indicate causation. This relationship may not imply causality
due to potential confounding factors, reverse causality, or random variation in the data. Therefore,
interpreting these results requires caution, and further research with rigorous study designs and
control for confounding factors is needed to establish a causal relationship between these variables.

0122 — 1 13 increase in the

Specifically, a one-unit increase in average farm size correlates with e
mean H-2A violation counts. Furthermore, the positive coefficient for the number of small/medium
establishments suggests that DOL identified more H-2A violations in states or industries with higher
numbers of small/medium establishments (less than 20 employees). The poverty rate is significant
in conditional and ZI models. It illustrates that states with higher poverty rates have higher mean
H-2A violation counts. According to the ZI model, an increase in the poverty rate is associated with
a higher likelihood of structural zero, where no violations are discovered in organizations that are not

at risk of H-2A violations. Therefore, it is more likely that zero counts for states with high poverty

rates happen due to one of two reasons. First, DOL investigated other violations (not H-2A). Second,
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Table 2.5: The multilevel zero-inflated negative binomial linear model

Factor Estimate Pr(> |z|)
Conditional Model

Intercept 2.407 < 2e-16%**
Average size of farms 0.122 0.006**
Number of small/med establishments 1.369 0.0007%**
Labor intensity -0.030  0.921
Average net income per farm -0.129  0.185
Number of task forces -0.017  0.559
Length of alleged violations 0.123 0.307
Poverty rate 0.253 0.008**
Fatal injury rate -0.109  0.169
Minimum standard wages -0.082  0.159
Zero-inflated Model

Intercept 2.829 0.000%**
Average size of farms -0.125  0.247
Number of small/med establishments ~ -0.215  0.821
Labor intensity -2.386  0.039*
Average net income per farm 0.025 0.838
Number of task forces -0.066  0.026*
Length of alleged violations -1.585 < 2e-16%**
Poverty rate 1.065 < 2e-16%**
Fatal injury rate -0.725  2.74e-07%**
Minimum standard wages -0.441 1.43e-09%**

Significance levels: 0 ***,0.001 **, 0.01 *

the organization’s structure does not require hiring H-2A workers, making it impossible for such
organizations to have H-2A violations.

The ZI model also highlights other significant factors such as labor intensity, the number of
task forces, the length of alleged violations, the fatal injury rate, and minimum standard wages. The

Z1 model presents a negative correlation between these predictors and the log of odds (log(%)),
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indicating that increasing one of these predictors is associated with less likelihood of excessive zero
(structural zero). The states with higher labor intensity, task forces, length of alleged violations, fatal
injury rates, and minimum standard wages are more likely to have nonstructural zeros. Zero H-2A
violation counts in these states could happen for two reasons. Although they are at risk of violations,
DOL could not detect them. The following reason is that no H-2A violations occurred during the
investigation period. Therefore, enhancing inspection methods in these states could lead to more
effective detection of labor trafficking.

Our analysis reveals that while specific predictors are consistently correlated with H-2A
violations across all areas, the actual levels of these violations vary significantly from one state
or industry to another. Each state and industry starts from a different baseline regarding violation
frequency. The differing intercepts are significant: they indicate that factors unique to each state
and industry also play a crucial role in H-2A violations beyond the predictors we have analyzed.
Understanding these unique baselines is essential for enhancing our understanding of the issue. It is
important for inspectors to consider these findings within a broader context, combining them with
other relevant data to ensure equitable and well-rounded decision-making processes in resource

allocation and inspection strategies.

2.6 Discussion

This study presented a multilevel zero-inflated negative binomial regression model to
handle cross-classified data with excessive zeros, particularly regarding labor violations in agriculture.
We employed a multilevel regression model to investigate the association between different factors
and the frequency of H-2A labor violations. The study emphasizes the need for a flexible labor
inspection strategy that considers the location and type of agricultural industry.

The ZI model revealed several essential factors correlating with the probability of excessive
zeros. Our analysis of DOL’s investigations showed that the reasons for zero H-2A violation counts
vary depending on the location and the type of agricultural industry. The ZI model’s insights suggest
that zero counts in industries with higher labor intensity are more likely to occur either because
the DOL could not detect the violations or no violation occurred during the investigation. Similar
relationships can be observed for other factors, such as the number of task forces, length of alleged
violations, fatal injury rate, and minimum standard wages. This study offers valuable insights
for labor inspectors and agencies involved in H-2A labor inspections. These findings can guide

them in making better-informed decisions regarding resource allocation, encompassing aspects
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such as budget, the number of inspectors, and inspection time. By doing so, they can enhance the
effectiveness and efficiency of resource distribution, particularly in areas with a higher risk of H-2A
violations.

This study has several limitations that should be considered. While the regression analysis
identified correlations between certain factors and H-2A violation counts, it did not establish causal
relationships. Even though establishing causative relationships would be more valuable from a
policy perspective, this study is intended as a foundation for such future research. Therefore, future
studies should focus on investigating these causal effects, drawing from the insights of this study.
Additionally, the absence of comprehensive data related to farm workers, including health issues,
access to healthcare, income, housing conditions, and demographic information, limited our dataset
construction. As a result, we relied on available data sources. This constraint suggests that our
findings should be interpreted carefully, and additional, more extensive research is necessary to gain
a deeper understanding of H-2A violations in the agricultural sector.

It is also important to acknowledge that while the DOL plays a role in identifying violations,
there is still room for improvement in effectively uncovering abuses. There are numerous reasons
why H-2A workers might not report abuses or concerns, and previous research has consistently
highlighted the need for more proactive efforts to uncover such abuses. Furthermore, the WHD data
we obtained did not clarify whether the DOL conducted H-2A violation inspections in cases with
zero counts. This leaves the possibility of undetected or unreported cases, which may have led to an
underestimation of H-2A violations in specific states and industries. We attempted to address this
issue by using a zero-inflated model to account for excessive zeros. It is also important to note that
there are multiple types of rules and regulations H-2A employers are expected to adhere to (including
rules related to housing standards, work hours, wage rates, etc.) [117]. However, it is not clear whether
non-adherence to all of these rules and regulations results in the type of H-2A violations documented
in the WHD dataset. Furthermore, the dataset lacks detailed categorization that would distinguish
between the severity of violations, ranging from minor to severe violations. This limitation highlights
the need for more detailed data to inform future research and the development of more effective
investigation strategies by identifying areas where compliance efforts could be most impactful.

Furthermore, the role of labor contractors is significant within the H-2A program and
warrants further exploration. Our current analysis could not delve into this aspect due to the limited
detail in the WHD’s violation data. This limitation highlights an important avenue for future research,
dependent on the availability of more detailed and specific data. However, this highlights the need

for improved data collection strategies to better track labor inspections and accurately assess the
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prevalence of H-2A labor violations.

In addition to the insights that can be gained in this study, the use of H-2A violation
data may also provide critical insights into labor trafficking, which is significantly under identified.
Though the data is not perfect, it shows the potential for administrative data related to workplace
safety and to help inform our understanding of places and situations where workers may be vulnerable

to abuses and are in need of protection.

2.7 Conclusion

In conclusion, our study provides essential insights for labor enforcement agencies in shap-
ing specific H-2A violation inspection strategies for each state and agricultural sector. By employing
a zero-inflated negative binomial model, this study offers unique insights into the distribution of
detected H-2A violations across different states and agricultural sectors. This approach allows us
to identify not only states and sectors with high numbers of reported violations but also those with
unexpectedly low or zero counts. It is essential to recognize that the absence of H-2A violations in
certain states or industries does not necessarily imply that no violations have occurred. For instance,
in regions or industries with specific characteristics (e.g., higher labor intensity, number of task forces,
length of alleged violations, fatal injury rate, and minimum standard wages), there is a potential
for violations to either remain undetected or not occur during official investigations. Additionally,
our results highlight the importance of considering factors such as the average size of farms, the
number of small/medium establishments, and the poverty rate in planning inspections. Based on our
research, states or industries falling within the upper range of these categories have more detected
H-2A violations. By providing insights into the state and agricultural sector features correlated to
where H-2A violations are currently being detected, our findings may inform future WHD labor

inspection strategies regarding where to allocate limited inspection resources.
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Chapter 3

Network Interdiction to Improve Labor
Trafficking Detection in the U.S.

Agricultural Sector

3.1 Introduction

U.S. agricultural supply chains have been repeatedly found to exploit workers through
labor trafficking [118]. Despite laws aimed at stopping the use of exploitative practices, trafficking
continues to grow within U.S. borders without any sign of abating [119]. To address this humanitarian
crisis, several government agencies have been tasked with curtailing labor abuse. However, labor
traffickers operate as resilient supply networks that work to evade detection or intervention. Addi-
tionally, U.S. agricultural supply chains have a more diverse workforce than most other industries,
including migrant farm workers [120], unauthorized workers [121] and U.S. citizens [122]. Due
to these complexities, conventional business and law enforcement strategies do not appear to be
working at scale to reduce trafficking in corporate supply chains. It is crucial to increase scientific
analysis on labor trafficking to prevent this problem and safeguard workers [121, 123]. In this paper,
we utilize a network interdiction model to evaluate intervention strategies within the labor trafficking
network to understand their effectiveness.

The U.S. has adopted policies to enhance protections for agricultural workers and promotes
ethical recruitment practices, particularly within the H-2A visa program [124] which is a temporary

work visa for work within the agricultural sector. Anti-trafficking strategies have been part of this
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approach. In 2010, the U.S. government formed task forces that used the ECM to combat human
trafficking [125]. These task forces highlight the ongoing need for collaboration between agencies
(local, state, and federal) as well as victim service providers. Anti-trafficking task forces also educate
government personnel and communities on how to recognize and report human trafficking [124].
These efforts are further supported by increased worker rights and improved information-sharing
across sectors like education, child protection, and occupational health and safety.

While numerous anti-trafficking actions are in place, enhancements are needed such
as improving collaborations and information sharing among agencies and increasing trust with
vulnerable communities [126]. For example, there is a need to enhance collaboration between
the DOL and the DHS to prevent, identify, and remediate labor trafficking efficiently. On a local
level, while police and prosecutors acknowledge that labor trafficking exists across various local
employment sectors, there is often confusion among both local and federal law enforcement officials
about the exact definition that classifies labor trafficking as a criminal offense [127]. To effectively
combat labor trafficking, there are calls for law enforcement agencies to enhance training programs
and expand routine operations to include focused inspections aimed at detecting labor trafficking
[127] and join ongoing collaborative efforts. The necessity for more research is clear, particularly
in improving intervention and collaborations to address labor trafficking. Therefore, we propose a
network interdiction model to evaluate strategies to detect exploitation within the labor trafficking
network to better understand their effectiveness and provide actionable detection strategies to anti-
trafficking stakeholders.

While businesses also hope to prevent these human rights violations in their supply chains,
they are up against resilient labor trafficking networks. Such illicit supply networks have an almost
limitless supply of vulnerable persons to exploit and are adept at continuing their operations while
avoiding detection or scrutiny. Though little has been known about such networks in the past, data
has recently been collected to robustly understand their operating methods [128, 129] for the purpose
of interdicting them.

Network Interdiction Models are a particularly relevant type of OR model for optimizing
decisions related to disrupting trafficking networks. Interdiction problems are categorized within a
specific subset of two-player bilevel optimization models in which one player attempts to operate as
effectively on the network as possible (e.g., maximizing flow [130, 131, 132, 133], taking the shortest
path [134, 134], maximize profit [135], evading detection [136, 137, 138, 139, 140]). In contrast, the
other player takes actions to hinder their ability to do so. In the context of human trafficking, the

interdictor represents an anti-human trafficking stakeholder (such as human trafficking taskforces,
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law enforcement, federal agencies, service providers, etc.), while the traffickers attempt to operate the
trafficking network as effectively as possible. A growing subset of the literature related to disrupting
illicit networks focuses on network interdiction models (e.g., sex trafficking: [133, 131, 130, 141],
other illicit networks: [142, 143, 132, 137, 136, 138, 139, 140]). Yet, none focus on interdiction
models for disrupting labor trafficking.

Given this context, our study develops a comprehensive model of a labor trafficking
network that covers the processes victims go through from recruitment to exploitation. Our model is
created to illustrate the complex dynamics involved in labor trafficking operations and the relevant
behaviors of traffickers within such a network. To generate our model, we analyzed twelve federally
prosecuted labor trafficking cases within the U.S. agricultural sector. This approach helped us validate
the structure of our proposed supply chain network and ensured that our insights were based on
real-world scenarios. Furthermore, these insights were enriched and verified through validation from
stakeholders and legal advocates, enhancing our findings’ practical relevance and applicability in
addressing labor trafficking effectively. We integrate knowledge from criminal justice, business,
and operations research fields to generate a generalized labor trafficking supply chain structure
represented in node-arc format with the goal of optimizing interdiction efforts to detect and disrupt
labor trafficking in the U.S. agricultural sector.

This research aims to assess the impact of coordinated network interdiction models on
network disruption. Our labor trafficking network model has similarities to traditional supply chain
models; however, the prior focus of supply chain literature has been on preventing disruptions [144,
145, 146, 147], whereas we seek to take actions to disrupt the trafficking networks.

Through a network interdiction approach, we develop a bi-level evasion model that captures
interactions between traffickers and anti-human trafficking stakeholders within a labor trafficking
network. Focusing specifically on DHS and DOL, we consider a range of interventions they could
implement, individually or collaboratively, to improve their ability to detect labor trafficking in the
U.S. agricultural sector. We then analyze the effectiveness of individual and collaborative efforts to
recommend approaches that effectively combat labor trafficking networks.

Through our analysis, we identify four distinct groups of detection outcomes, namely
interventions with minimal, low, moderate, and high impact. We find that moderate and high impact
interventions affected a greater number of arcs and extended over more than two echelons within the
network. Our analysis also reveals that the effectiveness of intervention strategies is influenced by
several factors, including the distribution of arcs, the number of echelons affected, the potential for

increased detection rates at each affected arc, and the total number of interventions employed.
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Our study makes several contributions to the literature. First, we develop a generalized
labor trafficking network structure based on federally prosecuted cases, specifically tailored to the
unique dynamics of the agricultural sector. Unlike previous studies that focused on illicit activities
within traditional supply chains [148, 149], our model offers a novel analysis of recruitment methods,
diverse worker profiles, various entry points into the U.S., and the range of housing conditions and
exploitation methods that victims may face in illicit networks. Secondly, our study introduces twelve
interventions that can be implemented by stakeholders (i.e. such as DOL and DHS) in response
to the scholarly focus on the need for collaborative actions in addressing illicit networks. This
approach includes both cooperative and individual agency actions. Thirdly, our study introduces a
bi-level integer programming model that integrates both individual and collaborative interventions.
This model incorporates the uncertain impacts of multiple interventions, enabling a comprehensive
evaluation of the overall detection rate across the labor trafficking network. The clustering analysis
of the model results allows us to categorize the interventions into four distinct clusters based on their
total detection rates. Our analysis identified unique patterns and characteristics within each cluster,
such as the number of interventions and affected arcs and echelons. Notably, the findings reveal
several interventions with detection rates closely approaching the most effective strategy, providing
agents with valuable insights to select the most suitable strategies based on their available resources.

The remainder of this study is organized as follows: the next section provides a Literature
Review on the trafficking networks and discusses models between attackers and defenders. The Labor
Trafficking Network Structure section describes the complexities of labor trafficking phases and how
we incorporate these into the networks for our model. In Method, we present our bilevel integer
programming formulation. Then, we detail the input data and the list of proposed interventions in
the Data and Interventions section. The Result Section interprets our findings, identifying the most
effective interventions and clustering strategies based on their detection rates. Lastly, the Conclusion

section summarizes our findings and explores the practical applications of our research.

3.2 Literature Review

Several recent review papers have highlighted the expanding use of OR and analytics in
addressing human trafficking, indicating an increasing awareness of the issue and a rising trend in
adopting these methodologies [150, 151, 152, 153]. However, there has been a disproportionate
focus on sex trafficking within these studies, and the need to extend analytical methods to address

labor trafficking remains evident [152]. Of the few OR studies focused on labor trafficking, the
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focus of prior studies has been understanding the behaviors associated with labor trafficking and
developing diverse strategies to combat it. This includes using supply chain network optimization
models that incorporate migrant labor from multiple countries [149]. This paper introduces a novel
optimization model to combine a supply chain network with investments to attract international
migrant labor in the agriculture sector. Their model’s flexibility helps distinguish between wages
for national/domestic and international migrant labor, including evaluating the effects of providing
accurate versus misleading wage information. Another notable effort is agent-based modeling to
reduce wage theft among day laborers with interventions at worker centers [154]. Additionally, a
study introduces a non-linear mathematical model to assess the impact of forced labor on supply
chain profitability, employing both static and dynamic games that represent the interactions among
decision-makers and integrating Corporate Social Responsibility (CSR) within coordination contracts
as a critical factor for the first time [148]. All three of these prior studies have considered how
exploitation is integrated into the broader licit supply chain, which includes non-exploited labor for a
product or service. In contrast, we concentrate specifically on the recruitment-to-exploitation network
of labor trafficking victims within the U.S. agricultural sector and contribute to efforts against labor
exploitation by offering targeted strategies for enhanced detection.

Other OR methods have been employed to evaluate the impact of interventions on labor
trafficking [155, 156]. A notable study introduces a methodology to examine effective anti-trafficking
strategies within the Overseas Filipino Workers (OFW) system, using interviews, causal loop analysis,
and scenario simulations. This approach determines the dynamics between government policies,
worker choices, and economic factors, emphasizing its practicality in real-world applications [155].
The subsequent research utilized a Multi-criteria Decision Analysis (MCDA) approach to analyze
labor exploitation risks in specific settlements of migrant workers in the strawberry production
sector. This analysis focused on systematically determining the risk levels of these settlements based
on diverse criteria [156]. There still exists a significant gap regarding the operational behaviors
of traffickers within labor trafficking networks. Our research addresses this gap by evaluating
interventions within the labor trafficking network, thus providing new insights and strategies to
enhance the effectiveness of efforts against labor exploitation.

From a methodological perspective, a growing subset of the OR literature related to
disrupting illicit networks, including human trafficking networks, focuses on network interdiction
models (e.g., human trafficking: [133, 131, 130, 141], other illicit networks: [142, 143, 132, 137,
136, 138, 139, 140]). Interdiction problems are categorized within a specific subset of two-player

bilevel optimization models in which one player attempts to operate as effectively on the network as
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possible (e.g., maximizing flow [130, 131, 132, 133], taking the shortest path [134, 134], maximize
profit [135], evading detection [136, 137, 138, 139, 140]), while the other player (the interdictor) takes
actions to hinder their ability to do so. In the context of human trafficking, the interdictor represents
an anti-human trafficking stakeholder (such as human trafficking taskforces, law enforcement, federal
agencies, service providers, etc.), while the traffickers attempt to operate the trafficking network as
effectively as possible.

In this paper, we seek to identify which set of interventions the interdictors should imple-
ment to most effectively detect and disrupt labor trafficking. Thus, network interdiction models in
which the defender seeks to evade detection and the interdictor aims to reduce their likelihood of
evading (i.e., min-max evasion network interdiction models) are most relevant to our study. Examples
of such models involve smugglers attempting to evade detection within a transportation network
and interdictors installing radiation sensors to reduce evasion chances. The stochastic network
interdiction model considers the smuggler’s route as probabilistic at the sensor installation time,
illustrating the complexities of intercepting illicit activities [137, 139]. Our model broadens the
scope of labor trafficking, featuring multiple interdictors with varied interventions and examining the
uncertainties in their effectiveness, providing insight into disrupting trafficking networks.

Another study in the literature demonstrates the use of min-max evasion models within an
illicit product distribution in a network defined by multiple commodities. It addresses a maximum
flow interdiction problem where law enforcement, constrained by a limited budget, strategically
engages with a hierarchically organized network of traffickers. The focus is on disrupting the
trafficking flow by targeting lower-level members for arrest or surveillance, aiming to minimize
traffickers’ profits over time [142]. In the study mentioned, the interdiction process involves law
enforcement observing traffickers over a specified period, leading to potential arrest. Our paper
investigates the actions of traffickers within labor trafficking networks more thoroughly. We suggest
diverse interventions, from law enforcement training to regulatory inspections, and analyze their
impact on decreasing the likelihood of evasion.

However, rather than simply applying traditional network interdiction models to the
human trafficking context, the literature indicates a need to adapt traditional methods to better
align with the complexities of the human trafficking context [151, 150, 153, 157]. For example, a
comprehensive network that accurately captures the behavior of trafficking operations is crucial
for understanding how traffickers manipulate victims, covering their recruitment and exploitation
methods. This includes the strategies that traffickers use to bring victims to their destinations, the

various types of exploitation at worksites, and illustrating why victims might find it difficult to leave.
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The model must also reflect traffickers’ preferences in selecting victims, the transportation process,
and managing living conditions. Moreover, it should enable the implementation and evaluation of
practical interventions within the network to increase the detection of trafficking actions, including
ways to measure the success and impact of these interventions. By integrating these aspects, models
can more effectively mirror the complex interactions between traffickers and victims, improving the
development of anti-trafficking strategies.

The collaborative efforts of multiple stakeholders, including law enforcement agencies
and Non-governmental Organizations (NGOs), play a crucial role in combating human trafficking
networks [154, 158]. Such partnerships facilitate the sharing of resources and strategies, enhancing
the effectiveness of interventions [154]. Thus, network interdiction models that account for multiple
interdictors are increasingly important as they enable a more strategic and coordinated approach to
disrupt these complex networks [159, 160, 161, 131]. The paper by [131] advances the interdiction
of domestic sex trafficking networks by initially modeling a single interdictor and later incorporating
a second interdictor focused solely on victim protection and prevention, which prevents the addition
of new victims to the network and protects existing ones from being replaced. Our model extends
this concept by addressing the dynamics of labor trafficking, analyzing interventions across different
phases of the trafficking process, including recruitment, visa processing, border crossing, housing,
and worksites. Our approach uses single and multiple interdictors to target different network
segments, exploring the effectiveness of various interventions and identifying the most successful
strategies to disrupt trafficking operations. Another study explores the effect of cooperation among
agencies on disrupting illicit trafficking networks by assigning specific interdiction responsibilities
to various law enforcement agencies based on their operational tier within an overarching network
model [160]. It evaluates six levels of coordination separately, from agencies working independently
to cooperation among multiple interdictors. While this analysis aligns with our investigation into
disrupting trafficking operations, our research goes further by examining diverse interventions
implemented by both single and multiple interdictors to improve the detection of labor trafficking
activities throughout the labor trafficking network.

The literature review revealed a significant gap in studies explicitly focusing on the
collaborative dynamics among stakeholders in labor trafficking networks. To address this, our study
explores the complexity of the labor trafficking networks, from the recruitment phase to exploitation.
We have developed a list of interventions based on insights drawn from real labor trafficking cases
and related reports, modifying our strategies to the unique challenges of this field. Our research

contributes a new min-max evasion model that captures the interaction between interdictors and
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traffickers, evaluating the impact of these interventions on detection rates. This model is innovative
in its ability to examine both single and multiple interdictor actions simultaneously, providing an
insightful understanding of the effectiveness of various anti-trafficking strategies within the labor

trafficking context.

3.3 Labor Trafficking Network Structure

Exploiting workers in the U.S. agricultural sector through labor trafficking is a multi-step
process that involves multiple decisions from the trafficker. Motivated by insights from academic and
practitioner reports [162, 163, 129], and informed both by a detailed review of federally prosecuted
agricultural labor trafficking cases and expert knowledge from anti-trafficking stakeholders, we
developed a multi-echelon node-arc representation of the supply chain network traffickers use to
recruit labor trafficking victims and exploit them at U.S. worksites.

Specifically, we analyzed 12 labor trafficking cases that were federally prosecuted between
2000 and 2021 and involved labor exploitation that took place in the U.S. agricultural sector. These
cases were chosen for their various recruitment tactics, size of the agricultural organization, and
information about victims’ legal status, offering a diverse picture of labor tracking cases in this
sector. Further details on this process and the 12 cases are available in [164] and [165]. We recorded
detailed data on recruitment methods, worker characteristics, border crossings and other geographical
movements, living conditions, and exploitation at farms, among other details. These data were
also supplemented by conversations with anti-trafficking experts, including victim-rights attorneys,
prosecutors, government agencies, and labor trafficking victims, to improve and verify the network
structure and assumptions.

The resulting multi-echelon supply network is shown in Figure 3.1. Nodes in the top
echelon illustrate the various tactics traffickers use to recruit workers into exploitative situations.
These include the use of force, fraud, coercion, and/or unlawful fees [127]. This echelon contains
15 nodes, as a trafficker may use a single recruitment tactic or any combination of multiple tactics
(e.g., Fo/Fr/Co/Fees). Force refers to using physical harm or threats to compel work. Fraud involves
deceptive practices, such as misrepresenting wages or conditions and false jobs. Coercion includes
psychological or emotional manipulation, utilizing tactics such as debt bondage, isolation, and
control over necessities to exploit workers. Fees cover scenarios where workers are charged excessive
recruitment fees, leading to debt bondage as they feel compelled to work off the debts incurred, often

under exploitative conditions.
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Figure 3.1: This diagram shows the labor trafficking supply network, detailing five echelons from recruitment

to exploitation.

Three worker legal statuses found in labor trafficking cases are included: in-status, no
U.S. status, and U.S. citizens [127]. Migrant farm workers often fall into the first two categories.
Non-citizens who currently have legal authorization to be in the U.S. are regarded as In-status.
However, non-citizens who do not currently have legal authorization to be in the U.S., who may have
either never have had status (e.g., unauthorized workers who crossed the border into the U.S. without
a visa) or they might have had legal status at one time but no longer have status (e.g., “overstaying” a
visa), fall into the No U.S. Status category. U.S. citizens are also included in this network as they can
also be in similar exploitative circumstances.

The “Movements” echelon classifies the types of border crossings involved: official border
crossings by land, air, and sea; no border crossing needed; and unofficial border crossings [120]. We
took care to account for nuances regarding the relationship between a victim’s legal status and border
crossing as our network is designed to reflect how a victim gets recruited into the job in which they
are trafficked, the movement echelon represents the border crossings (or lack thereof) that occur after
being recruited into the exploitative job. For example, victims categorized as “In-status” must have
crossed into the U.S. through an official boarder via land, air, or sea at some point. However, not
all “In-status” labor trafficking victims were recruited into their exploitative work situation prior to
entering the U.S. Thus, “In-status” victims who were already in the U.S. on valid visas at the time

they were recruited for the agricultural position in which they were trafficked would pass through
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the “No Border Crossing” node, while those that were recruited while outside the U.S. would pass
through the official boarder crossing nodes. As another example, we consider that a person with
“No U.S. Status” could have entered the U.S. through an unofficial border crossing with no legal
authorization while another victim may have been recruited into the exploitative job after overstaying
their visa. In the latter case, the victim with “No U.S. Status” would not need to cross the U.S. border
because they were recruited while already in the U.S.

Agricultural workers are housed in a variety of ways, which can significantly affect their
living conditions and susceptibility to exploitation [166]. Trafficker-owned housing is directly
provided by the trafficker, such as on-site farm housing or a company-owned house. Trafficker-
facilitated housing involves arrangements made by the trafficker on behalf of the workers, which
could include bookings at hotels. Third-party housing includes housing that is independently owned
or rented by the workers themselves.

The last echelon in our model, “Exploitation”, capture the four main categories of exploita-
tion observed in labor trafficking: excessive work hours, wage theft, psychological or mental abuse,
and physical abuse or poor physical working conditions [120]. Victims often endure long working
hours without adequate breaks and may be forced to work overtime without compensation. Many
labor trafficking cases also reveal that workers face poor physical conditions and psychological abuse.
The physical conditions often involve unsafe environments, such as exposure to toxic chemicals
without protective supplies, extreme temperatures without appropriate safeguards, which may lead to
health issues such as hearing loss, and respiratory problems. Psychological or mental abuse worsens
these hardships, manifesting as verbal abuse, threats of physical harm or deportation and isolation.
Financial exploitation is also common, with practices including failing to pay or underpaying wages,
delaying payments, and falsifying work hours to reduce wages, and often denying payment for over-
time work. The 15 nodes in this echelon reflect that victims may experience one or a combination of
these types of exploitation.

This resulting network illustrates key steps in the process of recruitment to exploitation. We
next describe how this network can be used to determine a set of interventions resource-constrained
anti-trafficking stakeholders can take to maximize their chances of detecting trafficking within the

network.

41



CHAPTER 3. NETWORK INTERDICTION TO IMPROVE LABOR TRAFFICKING DETECTION

3.4 Method

3.4.1 Problem description

Network interdiction models offer a way to analyze the complex dynamics between
traffickers and anti-trafficking stakeholders (i.e., interdictors) by capturing how an interdictor’s
actions impact the traffickers’ ability to operate, allowing us to explore strategic interdictions that
maximize detection. In this study, we assume traffickers aim to maximize the probability of operating
the network undetected, while interdictor(s) seek to minimize the likelihood that trafficking operations
remain undetected by implementing interventions throughout the network. As such, we present a
bi-level network interdiction model that merges the min-max evasion and min-max flow network
interdiction models [137, 150].

As is common in network interdiction models, we assume that the anti-trafficking interdic-
tors know how the traffickers react to the interventions and take this knowledge into account when
deciding which interventions to implement. Additionally, traffickers are aware of the interventions
that have been implemented and use this information to strategically determine how much they want
to use each arc in the network to continue their trafficking operations while minimizing their chance
of detection.

Let G’ = (N', A’) represent the network on which this occurs, where N’ represents the
set of nodes and A’ represents the set of arcs. In addition to the nodes of the labor trafficking
supply network illustrated in Figure 3.1, N’ also includes a source node s and sink node ¢ such that
trafficking operations flow from s to ¢ along the arcs. The structure of, and flow through, the network
illustrates the ways trafficking operations in the U.S. agricultural industry recruit the workers they
exploit.

In this strategic game, the interdictors initiate action by selecting interventions from a set
D to improve detection within the network. The formulation we use can account for interventions
that occur at nodes (e.g., improved housing inspections) or along arcs (e.g,. improving detection of
illegal fees imposed upon migrant workers on a work visa) within the network. Operationally, we
allow this by using a node-expansion technique that splits each node i € N’ \ {s, ¢} into two and
creates an arc between them to adapt the original network (i.e., G') in which interdictions occur on
both nodes and arcs to a solely arc-based interdiction network, denoted G = (N, A). [167] proves
the equivalency.

The presence of multiple interdictors operating in the same area of a network can lead
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to challenges both in reality and in the mathematical modeling. For example, when multiple anti-
trafficking stakeholders intervene in the same area of the network, the impact of their efforts may
be enhanced or reduced by the presence of the other and depends on the level of coordination and
collaboration (if any) between the stakeholders. As a result, the vast majority of network interdiction
models only consider a single interdictor. To circumvent the modeling challenges that come with
incorporating the decisions of multiple interdictors, we include “collaborative” interventions within
the set D. For example, if interdictor A and interdictor B can use a particular detection tactic to
intervene on arc (i, j) independently or collaboratively, we add three interventions to the set D:
one for interdictor A using the detection tactic to intervene on (7, j), one for interdictor B using
the detection tactic to intervene on (i, j), and one for interdictor A and B collaborating to use the
detection tactic to intervene on (7, j). This necessitates adding the assumption that at most one
intervention from D is chosen to be implemented on each arc.

Within the current baseline environment in which no new interventions are implemented,
traffickers already have some risk of being detected. We denote p;; as the liklihood that traffickers
currently pass undetected through arc (i, j) € A if no new interdiction happens on that arc. However,
each intervention the interdictors decide to implement will affect the traffickers’ chance of evading
detection.

Denote the decision of whether or not to implement intervention d € D by the binary
variable X ¢ that takes the value of 1 if intervention d is implemented and 0 if it is not. Because an
intervention can affect multiple arcs, we use the binary parameter vglj to indicate whether intervention
d affects arc (i, j) € A if it is implemented. Then, we can also introduce two auxiliary variables: let
X Zdj be a binary variable that takes the value of 1 if intervention d € D is implemented and affects
arc (i, 7), and let X be the vector containing the X Zdj decision variables V(i,j) € A,d € D.

The effectiveness of each intervention implemented is uncertain. We capture this by
incorporating stochasticity into the model and taking a scenario-based approach. That is, once the
interdictors decide the subset of interventions to implement, the impact of those interventions on
the traffickers’ ability to evade detection is realized. While, in reality, the impact of each individual
intervention comes from a continuous distribution, for tractability, we consider discrete levels of
intervention impact, denoted by the set F'. In our case study, we assume two levels of intervention
effectiveness for each intervention: low and high impact. We let quf , Where qg < pij, represent
the probability of traffickers evading detection along arc (¢, j) € A if the realized impact of taking
intervention d € D is f € F'. The corresponding probability that impact f occurs is denoted 0?{. We

assume that if an intervention affects multiple arcs, the realized level of impact of the intervention is
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the same for all arcs (e.g., if a disruption affects two arcs, then they will both either realize a low or
both realize a high impact from that disruption; one will not be low and the other high). Relaxing
this assumption is left for future work.

The collective information regarding the realized impact of all interventions taken is
defined as a scenario w and the set of all scenarios is £2(X). For example, if the interdictors
decide to implement two interventions on different arcs, then 2(X') would contain four elements,
representing the situation in which both realized low impact, one realized low impact and the other
high impact, vice versa, and both realized high impact. More generally, because the impacts are
categorized as either high or low, the total number of possible scenarios is 9% 4ep X°, Thus, Q(X), is
decision-dependent because which interdictions determine the size and elements of (X'). Assuming
independence between interventions in different parts of the network, we can then calculate the
probability, ¢ € Q(X), that scenario w occurs. A detailed description of how we do this is available
in Appendix B.

After the interdictors decide on their intervention strategy, the traffickers observe the
intervention and the the impact of the intervention, and then proceed to operate on the network to
maximize their chances of evading detection. Two decision variables represent the flow traffickers
place on arcs in scenario w € Q(X): Y} corresponds to flow on an arc (i,7) € A that hasn’t been
intervened upon and Z%” corresponds to flow in the case where intervention d has been implemented
on arc (7, j). This allows the model to use the associated baseline or updated evasion probability
correctly. Hence, we add constraints to ensure Y7 and Z%‘" are not simultaneously positive.

Different from a traditional min-max evasion model, we also restrict the flow by arc
capacities u;; to ensure that the flow through the network occurs along multiple paths (similar to a
max flow model) rather than a single path (as is typical in evasion models). This is necessary because
traffickers do not just choose a single recruitment, movement, exploitation, etc. tactic and apply it
to all of their victims. Instead, traffickers employ a variety of approaches, even within the same

trafficking operation.

3.4.2 Model formulation

Here we summarize the notation for our bi-level min-max evasion network interdiction

model, followed by the model formulation.
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Sets and indices

N
A
D
F

Set of nodes, where s € N is the source node and ¢ € NN is the sink node
Set of arcs
Set of interventions

Set of interventions’ impact (e.g., low and high)

Q(X) Set of all possible scenarios resulting from interdiction decision X

Input parameters

d
'U,l]

Dij
df
4;;

dw
4ij

QSOJ

Takes value 1 if intervention d € D affects arc (7, j) € A; 0 otherwise
Probability trafficking occurs undetected along arc (4, j) € A if no intervention is taken
Probability trafficking occurs undetected along arc (4, j) € A if intervention d € D
is implemented and realizes an impact of f € F
€ {qg |f € F'}Realization of the probability that trafficking occurs undetected along
arc (i,7) € Ain scenario w € Q(X) if intervention d € D is implemented and realizes
an impact of f € F
Capacity of arc (i,7) € A
Total intervention implementation budget

Cost to implement intervention d € D

Probability that intervention d € D on arc (i,j) € A has impact f € F

Probability scenario w € £(X) occurs

Iterdictors’ decision variables

d
xd

X

Binary variable that takes value 1 if intervention d € D is taken on arc (i, j) € A, 0 otherwise
Binary variable that takes value 1 if intervention d € D is taken anywhere
in the network, O otherwise

Vector containing the binary variables Xidj V(i,j) € A,de D
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Trafficker decision variables

Y;s  Positive if no intervention was taken on arc (i, j) € A and traffickers decide to continue
operations on arc (i, j) in scenario w € Q(X)

Z%" Positive if traffickers decide to continue operations on arc (4, j) in scenario w € Q(X)
after intervention d € D was implemented on arc (7, j)

Z*  Vector containing the variables ZZ“’V(Z’, j)eA deD

R“  Auxiliary variable representing the flow that reaches the sink node ¢ € N in scenario w € Q(X)

Using this notation, the interdictors’ problem becomes:

Interdictor’s Problem:

Miny Y ¢“R*(X) (3.1)
weN

S.t.: > fxd < (3.2)
deD
x4>x¢ V(i,j) € A,d € D (3.3)
X& <ol V(i,j) € A,d € D (3.4
d X< Y(i,j) € A (3.5)
deD

d d ..

X5, X4 €{0,1} Y(i,j) € A,d e D (3.6)

The interdictors’ primary goal to minimize the expected maximum probability that traf-
ficking operations will evade detection is reflected in objective function (3.1). They must make
these decisions considering that each intervention d has a cost ¢? and that they must ensure the total
cost of their interventions does not exceed their available budget, b. (i.e., constraint 3.2). Together
constraints (3.3) and (3.4) ensure that an intervention only affects arc (4, j) if the intervention is
taken and is relevant to that arc. Constraints (3.5) ensure at most one intervention occurs on each arc.
Constraints (3.6) impose binary restrictions on the interdiction decision variables.

This bi-level formulation assumes that the decisions taken (i.e., the interventions im-
plemented) by the interdictors are known to the traffickers. Hence, given a set of interdictions
implemented, we can determine the traffickers’ response for each possible realization of the effec-

tiveness of the interventions (i.e., each w € (X)) through the following:
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Trafficker’s Problem
R¥(X) = Mazye go po RY (3.7)
S.t.: dooovE+)) zd = (3.8)
(s,j)EFS(s) deD
> gy )=
(4,)€FS(3) deD
ST aYE+ gz Vie N\{s,t} (3.9)
(4,1)€ERS(3) deD
RY = Y (ppYji+ > 4z (3.10)
(4,t)eRS(t) deD
Y < (1—2)(%)*@61‘]' V(i,j) € A (3.11)
deD
78 < X wouy; Y(i,j) € A,d € D (3.12)
YE >0 V(i,j) € A (3.13)
Zk >0 V(i,j) € A,d € D (3.14)
R* >0 (3.15)

>

In the trafficker’s model, the objective function (3.7) captures the trafficking operations
aim to maximize their probability of evading detection. Constraint (3.8) ensures 100% of the
trafficking flow begins at the start node s, allowing traffickers to navigate the network from this point
strategically. Constraint (3.9) is the flow balance constraint, which states that the flow into the node
must equal the flow out of the node, adjusted by the probability of detection. That is, because the
flow in this model represents the traffickers’ cumulative probability of evading detection, as the flow
moves through the echelon there are more opportunities for detection. The flow through the network
captures this cumulative evasion probability. R* in constraint (3.10) defines the flow that reaches
the sink node ¢t € N in scenario w, thus representing the overall probability of evading detection.
If an intervention is implemented on an arc (7, j) € A, the trafficker loses access to the original,
un-intervened version of this arc (3.11). Furthermore, constraints (3.12) state that the trafficker can
only use the arc (i,j) € A associated with intervention d € D if intervention d € D has been

implemented. The remaining constraints are non-negativity constraints on the flow.
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3.5 Data and Interventions

Data related to human trafficking operations and interventions is notoriously difficult to
obtain due to the illegal and illicit nature of trafficking, conflation with other types of labor exploita-
tion and unethical behaviors, the lack of transparency within supply chains, and limited intervention
evaluation studies [168, 152]. As such, in this section, we explain how we decided upon the input
data used to run the model and generate high-level insights from the bilevel network interdiction
model. To address the lack of comprehensive data, we triangulated data from multiple sources,
including expert knowledge (such as that from trafficking survivors, legal advocates, labor rights
organizations, law enforcement, prosecutors, government officials, and academics), extant literature
(including peer-reviewed journals, government reports, and media), and federally prosecuted human
trafficking agricultural labor trafficking cases within the U.S. (see our work in [164, 128] to read
more about these cases and the data collected). We also perform sensitivity analysis on these data to

help address the uncertainty in precision. All of the input data is provided in the Appendix B.

Evasion Probability Pre-Interdiction: Our model is designed to provide insights into
the impact of implementing additional interventions to improve labor trafficking detection while
simultaneously acknowledging current ongoing efforts. That is, our model assumes that even if no
new interventions are implemented, some trafficking will still be detected from ongoing efforts. This
is reflected in the model by the p;; parameters.

After a thorough search of the literature, evaluation study reports, and related datasets, we
concluded that this type of data does not currently exist. We, therefore, implemented an expert opinion
elicitation method—a common approach used in situations where data is insufficient [169, 170, 171]—
and then used the elicited opinions to estimate the p;; probabilities.

Specifically, we asked human trafficking scholars from a variety of disciplines to provide
their thoughts on the lower limit, upper limit, best estimate, and their levels of certainty regarding the
likelihood of trafficking activities currently going undetected at each point in the labor trafficking
network. We then encoded this elicited data in a Beta distribution to model the uncertainty and
variability of evasion using the bet aExpert function within the R prevalence package [172, 173].
The Beta distribution, which is the conjugate distribution for Bernoulli sampling, typically describes
the distribution of a proportion or a probability. In our model, this distribution is employed to
model the evasion probabilities or detection rates, effectively capturing expert opinions on these

probabilities [174]. Additionally, the Beta distribution’s flexibility is evident as it can adapt to various
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shapes depending on its parameters, alpha («) and beta (3). This adaptability is valuable where the
elicited data may be skewed, allowing for more accurate modeling under such conditions [175, 171].
The betaExpert output provides the o and § parameters of beta distributions, and we selected
the median of the resulting beta distributions to represent the estimated evasion probabilities for each
arc within the network.

Capacities: The arc capacities within the network function to ensure that, in the absence
of any interventions, the flow through the network aligns with the current fraction of trafficking
operations that use each part of the trafficking network. However, although there have been studies
that explore human trafficking within the U.S. agricultural sector (e.g., [120, 176]), much of the
information about the percentage of trafficking operations that use each of the recruitment methods,
legal status, movement options, housing options, and exploitation schemes we consider is still an
open question. We, therefore, used logic rules and built assumptions based on the extant literature.

Potential Interventions: Based on the multiple aforementioned sources of information,
we developed a list of potential interventions to consider within the network interdiction model. We
intentionally chose interventions that affected different echelons and arcs within the network and
interventions that could be enacted by different stakeholders to include a sense of diversity within
the interventions considered. We specifically focused on interventions within the prevue of the U.S.
DOL and/or the U.S. DHS. Ultimately, we chose 12 interventions to consider, as shown in Table
3.1, motivated by the current challenges in detecting labor trafficking. These include insufficient
inspection routines that could identify violations more effectively [127, 177], the critical need to
improve information sharing among agencies [178, 179], the need to strengthen relationships between
workers and government actors—particularly non-citizens—who often do not report labor abuses due
to fear of deportation and distrust of authorities [180], improving access to multilingual resources
and training for workers to understand their rights and job details [181, 182], and a lack of training
for law enforcement personnel [183, 184, 185], among others. Note that some interventions focus
specifically on certain populations (e.g., H-2A workers or non-citizens) whereas others are broader
in scope.

Nine of the interventions can be implemented by a single agency, and three focus on
interventions that require collaboration between DOL and DHS. We stress that there are certainly
more stakeholders that can (and should) intervene to address labor trafficking within the U.S.
agricultural sector and many more ways that current efforts to address trafficking can be improved.
We do not claim to consider all possible interventions or actors, as it is not practical. Instead, we aim

to show a proof-of-concept of the insights that could be obtained from a min-max evasion network
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interdiction model that considers a range of interventions and interdicting agents.

Each of the proposed interventions affects one or two echelons, and some interventions
may not affect all arcs within an echelon (Figure 3.2). For example, intervention d2 focuses on
improving detection of unlawful recruitment fee practices, and thus only affects the arcs within the
recruitment echelon that involve exploitative fees. As shown in the heatmap, d2 impacts 8 of the 15
arcs within the recruitment echelon.Interventions d4, d5, and d8 within the housing echelon, and
d7 and d9 in the movement echelon also impact less than 100% of the arcs in the echelon. Three
interventions affect two echelons: d4, d8 and d12. All other interventions affect only one echelon.
Intervention d12 also stands out as an intervention that has particularly large coverage within the
network; not only does it impact both the housing and exploitation echelons, it also affects all arcs
within both of these echelons and is the intervention that affects the largest number of arcs (i.e., 18
arcs). On the other hand, d5 and d9 stand out as interventions that only affect one arc within the
network. Additionally, Figure 3.2 reveals that the housing and exploitation echelons are extensively
covered by the interventions considered, with four interventions impacting the housing echelon and
six targeting the exploitation echelon. While no interventions are considered that affect the status
echelon, some of the interventions do focus specifically on certain populations (e.g., H-2A workers
or non-citizens) whereas others are broader in scope (Table 3.1). We describe more about how we

incorporated this below.

100%
Recruitment-15 - l l

80%

Status-3 -

Movement-5 - l

60%

l l N
l l l l N
do d7 d8 d9  d10  d11 di12

Intervention ID

Echelon (Number of arcs)

Housing-3 -

The percent of affected arcs per echelon

0%

Exploitation-15 - l l
d2 d3 d4 ds

dl

Figure 3.2: The percentage of arcs within an echelon impacted by each intervention differs.
Post-Intervention Evasion Probability: After an intervention occurs at a specific arc, the
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evasion probability decreases to the post-intervention evasion probability qld;" with probability 0%9’.
In our case study we consider two potential levels of realized impact for each arc and intervention
combination: low impact or high impact. Due to the lack of precise data for either of these parameters,
we implemented an approach that translates expert opinions into quantifiable probabilities [186]
and co-creates logic assumptions with human trafficking domain experts. The outcome of this
process resulted in assuming that the maximum reduction in evasion probability, as compared to the
pre-intervention evasion probability is 10% for low impact and 20% for high impact realizations, and
the minimum reduction rate in evasion probability is 1% and 10% for low and high impact scenarios,
respectively. These rates are adjustable and can be adapted in future analyses to reflect the specifics
of different interventions and their contexts. The post-intervention evasion probabilities qldjw were
then derived by applying the formula

qgl]‘-“ = (1 — reduction rate) x p;; for each arc and intervention. Although the reduction
rate was assumed to be consistent across all arcs for a given intervention, it varied depending on the
nature of the intervention itself. Additionally, because interventions d5, d6, d8, and d10 relate to
specific specific populations (meaning only a portion of the flow along these arcs is impacted by
the interventions, see Table 3.1), we adjusted the values of qu“’ based on the proportion of workers
or farms these interventions cover, ensuring that our model accurately reflects the focused impact
of these strategies. This methodological approach ensures a systematic estimation of intervention
impacts across the network. The resulting post-interdiction evasion probabilities are available in the
Online Supplement.

Probability of Low or High Impact Realization: The expert opinion elicitation approach
mentioned above was also used to identify the 9%“’ values. Specifically, we asked the experts to
state whether an intervention was “highly unlikely”, “unlikely”, “about even (50-50)”, "likely”,
or “highly likely” to result in the high-impact realization. We converted these qualitative assess-
ments into numerical probabilities using the mode of the distributions from [187] which mapped
how people commonly interpret subjective probabilities. Specifically we assumed the qualitative
responses indicated a 10%, 30%, 50%, 70%, and 90%, chance of the high impact scenario occurring,
respectively. After estimating these parameter values for all interventions and their corresponding
arcs, we separately calculated the average 9%9” for all impacted arcs per intervention for low and high

impact scenarios.
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3.6 Result

Our primary aim is to explore how interventions affect the likelihood of detecting trafficking
operations. Herein, we provide insights related to how the percentage of arcs and echelons affected
by interventions and changes to the number of simultaneously implemented interventions affect the
optimal intervention strategy and corresponding impact on the cumulative evasion probability.

The model was coded in Python 3.8.5 and solved using Gurobi 9.1.2 [188, 189]. Due to the
decision-dependent scenario probabilities, traditional methods of solving bilevel network interdiction
problems, such as Benders Decomposition [190], are not suitable for the model. Other researchers
have addressed the challenge of decision-dependent uncertainty by implementing Genetic Algorithms
(GA) [133]. However, GA does not guarantee optimality. In our case, the number of potential
interventions and resulting scenarios enables us to perform an exhaustive search in a manageable
amount of time. This approach directly evaluates every feasible combination of interventions,
eliminating the need for iterative sampling typically required in traditional GA applications. An
added benefit to an exhaustive search is that it enables us to explore how any decision that the
anti-trafficking interdictors may make will perform. This is especially insightful because it facilitates
discussion among anti-trafficking decision makers regarding why sub-optimal intervention strategies
(according to the model) may be preferred in practice (e.g., externalities that the model doesn’t
consider). However, the model could also be solved using a GA if a larger number of interventions
or scenarios were to be considered.

Because of the uncertainty caused by the data limitations, we present a robust sensitivity
analysis and focus on the general insights that can be obtained through our min-max evasion network
interdiction model. We note that given an objective function value for a solution to the trafficker’s
maximizing evasion problem, we can easily calculate the solution’s corresponding probability of
being detected (i.e., Probability of Detection = 1 — probability of evasion). Throughout this section,
we present results about the relative increase in detection from implementing interventions from
set D as compared to the baseline situation in which no new interventions are implemented. This
allows us to compare how implementing interventions from D improves the the overall detection
rate compared to the current ability to detect trafficking.

The results indicate that in the absence of a budget constraint (i.e., constraints (3.2) are
removed), simultaneously implementing four interventions, spanning the recruitment, movement,
housing, and exploitation echelons, provides the greatest impact on increasing the trafficking detection

rate throughout the network (a 72% increase compared to the baseline by implementing interventions

53



CHAPTER 3. NETWORK INTERDICTION TO IMPROVE LABOR TRAFFICKING DETECTION

dl, d7, d9, and d12). However, there are often reasons why implementing multiple interventions
simultaneously is not practical in reality. Therefore, we also explored the optimal solutions to the
problem when a limit to the number of simultaneous interventions is present (i.e., constraints (3.2)
are present). Table 3.2 shows that if at most one intervention can be implemented, d12 provides the
greatest impact on detecting trafficking operations. In fact, intervention d12 appears in the optimal
solution regardless of whether a maximum of 1, 2, 3, or 4 interventions is allowed. We note that
although feasible solutions do exist in which 5 simultaneous interventions occur, they all perform
worse than the case of even just implementing one intervention; the best-performing solution with
5 simultaneous interventions results in a 54% increase in detection compared to baseline, whereas
simply implementing d12 results in a 61% increase in detection compared to baseline). Intervention
d12 is not included in the optimal set for scenarios with five simultaneous interventions because, due
to our model’s constraint that only one intervention can happen at each arc, there are no feasible
combinations of five simultaneous interventions that include d12. Moreover, no feasible solutions
exist that include six simultaneously implemented interventions. Overall, there are 207 feasible

solutions to the problem when the budget constraint is not considered.

Table 3.2: The optimal solutions when implementing a different number of interventions

simultaneously differs.

i K Increase in
Number of Optimal solution detection
interventions interventions rate Echelons affected

1 di2 61% Housing, Exploitation

2 dl, d12 67% Recruitment, Housing, Exploitation

3 dl, d9, d12 1% Recruitment, Movement, Housing, Exploitation
4 dl, d7, d9, d12 72% Recruitment, Movement, Housing, Exploitation
5 dl, d4, ds, d7, d9 54% Recruitment, Movement, Housing, Exploitation

The notable presence of d12 in these optimal solutions prompts us to investigate whether
d12 is present in all near-optimal solutions and whether any other sets of interventions perform
similarly well. To do this, we explored how each of the 207 feasible solutions perform as compared
to the baseline case by classifying the solutions using K-means clustering (see Figure 3.3), which
is suitable for clustering numeric data like detection rates [191]. We determined the number of
clusters using the elbow and silhouette methods [192, 193]. This grouped the solutions into four
distinct clusters (minimal, low, moderate, and high impact) based on the increase in overall detection
likeliness they provide. Figure 3.3 illustrates the distribution of the feasible interdiction decisions

according to the number of interventions implemented and the corresponding increase in the overall
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detection likelihood. Of the 207 feasible solutions, 28.5% are classified as minimal impact, 47.34%
are classified as low impact, 16.43% are classified as moderate impact, and 7.73% are classified as
high impact. Notably, the interventions that include d12 are marked by “X” symbol, highlighting its
recurring presence in all of the high impact solutions. This is unsurprising based on d12’s favorable
disruption impact parameters (i.e., qgjf and 9?{) compared to other interventions and given that affects

many arcs within two echelons such as housing and exploitation.

70
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Figure 3.3: A k-means clustering approach classified the overall detection likelihood of the 207 feasible

solutions into four distinct clusters: minimal, low, moderate, and high impact.

An important insight from Figure 3.3 is that multiple solutions are nearly as effective
as the optimal solution (i.e., d1, d7, d9, and d12 implemented simultaneously). For instance, two
solutions ({d2, d7, d9, d12} and {d1, d9, d12}) fall within one percentage point of the optimal
overall detection likelihood. Although all three of these solutions involve sets of interventions that
effectively increase the overall detection rate across similar echelons, the optimal solution impacts a

greater number of arcs throughout the network. Other observations include that intervention d4 is
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particularly prevalent within the moderate impact group, appearing in almost 94% of the moderate
impact solutions. Additionally, five feasible solutions provide a 2% or less improvement to the
baseline detection likelihood.

To explore how the number of arcs and echelons affected by a set of interventions impacts
the overall disruption likelihood, we plot each solution against the number of arcs and echelons
impacted for each of the four clusters (see Figure 3.4). The solutions within the minimal impact
cluster affect anywhere between one arc in one echelon to 37 arcs across four echelons. For instance,
the solution {d5, d6, d7, d8 and d9} in this cluster impacted fifteen arcs in recruitment, four arcs in
movement, three arcs in housing, and fifteen arcs in exploitation.

A distinction between the minimal solution cluster and the other clusters is that all the
non-minimal solutions affect at least fifteen arcs in the network, with the low, moderate, and high
impact groups influencing at least 15, 17, and 18 arcs, respectively. Additionally, all solutions
classified into moderate and high-impact clusters affect at least two echelons in the network. For
example, solution {d7 and d12} in the high-impact cluster impacted three echelons and 21 arcs,
including three arcs in movement, three arcs in housing, and fifteen arcs in exploitation.

These observations suggest that solutions with broader coverage do not necessarily result
in a higher detection rate of labor trafficking, even though they enhance detection across more arcs
within an echelon and impact multiple echelons. This emphasizes that other factors, such as the
amount by which an intervention improves detection (i.e., reduces evasion) along individual arcs,

also influence the effect of intervention strategies.

3.6.1 Sensitivity analysis

As previously mentioned, the impact an intervention (or set of interventions) has on
improving the overall likelihood of detecting human trafficking throughout the network is influenced
by multiple factors, including the network structure, the number of arcs and echelons the interventions
affect, and the intervention’s local effect of increasing detection on the arcs it directly affects. We
present two sensitivity analyses to explore how these factors influence the solution’s performance.

First, we explore the impact of the number of echelons and the percentage of arcs within
an echelon affected by an intervention. We do this with the twelve aforementioned interventions but
change their input data such that the only way in which they differ is in which parts of the network
they impact (i.e., we set the resulting evasion probability quf and probability of achieving an impact

level of f € F post-implementation 0?; to the same value V(i, j) € A,d € D). As a result, some of
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Figure 3.4: The 207 feasible solutions are categorized by the number of echelons and arcs affected, grouped

by the clustered impact each solution has on the overall likelihood of detecting trafficking.

the interventions perform identically in the model because they affect the exact same arcs (e.g., d1
and d6; d4 and d8; d3, d10, and d11). Thus, while there are still technically 207 feasible solutions,
there are at most 71 feasible solutions that perform differently within the model for this analysis.

The results indicate that the spread of detection rates has narrowed, leading our clustering
approach to categorize the outcomes into two distinct groups: low and high. The low impact cluster
contains 40% of the 207 feasible solutions whereas the high impact cluster contains 60% of the
feasible solutions (see Figure 3.5). High impact intervention strategies affect at least three echelons
and eighteen arcs within the network. Notably, 39.5% of these sets include collaborative interventions,
such as d10, d11, and d12. In contrast, the maximum number of arcs influenced by the low impact
groups is thirty.

Despite having the same input parameter values as the other interventions, d12 still stands
out as an impactful intervention; 94% of the interventions that include d12 fall into the high impact
category. This may be because it is the only intervention that affects all of the arcs in two echelons;
the two other interventions that affect multiple echelons affect all of the arcs in one echelon but only
some of the arcs in the second echelon (i.e., d4 and d8 both affect 100% of the exploitation arcs but
only 66.7% of the housing arcs, see Figure 3.2).

In this consistent input data analysis, the results indicate that the two most effective

combinations of interventions to implement are {d1, d7, d9, d12} and {d6, d7, d9, d12}. Interventions
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d1 and d6 affect the same arcs, which is why these multiple optimal solutions occur. These two
solutions have interventions that affect four of the echelons and 37 arcs within the network (of
41 arcs) that can be impacted by the set of 12 interventions considered. It should be noted that
numerous sets within the high impact group do not include d12, indicating a wider variety of effective
interventions in the consistent input data analysis. For example, the next set of effective solutions are

{ds, d6, d7, 8, d9}, {d1, d5, d7, d8, d9}, {d1, d4, d5, d7, d9} and {d4, d5, d6, d7, d9}.

Low impact High impact

o

Number of Echelons

SZrNouawL -2

30 35 0 5 10 15 20 25 30 35
Number of Ares

Figure 3.5: The 207 feasible solutions are categorized by the number of echelons and arcs affected, grouped
by the clustered impact each solution has on the overall likelihood of detecting trafficking when all of the
interventions have the same input data parameters. The only way in which these interventions differ in this

analysis is in which arcs and echelons they affect.

Our second sensitivity analysis focuses on understanding how changes in the intervention
effectiveness influence the overall detection rate. Specifically, due to its overwhelming presence in
the high-impact solution cluster, we explore how changes to the probability that trafficking operations
pass through an arc undetected after intervention d12 occurs (qgjm’f ) affects its performance. In
the original case study, we assumed that if d12 was implemented and realized a high-impact on
the affected arcs it would reduce the evasion probability by 20% as compared to the likelihood of
traffickers evading detection when no intervention is implemented (i.e. qgjm’high = (1 - .2)pij).
Similarly, a low-impact realization would result in a 10% reduction. For this sensitivity analysis, we
varied the post-intervention probabilities qum’f for d12 by considering a range of reductions to the
baseline evasion probability p;; for each associated arc. Specifically, the reduction rates for both
low-impact and high-impact realizations were varied simultaneously. For example, if the high-impact
reduction rate was initially 20% and the low-impact reduction rate was 10%, they were adjusted to
15% and 5%, respectively.

Figure 3.6 shows how reductions to the baseline evasion probability after the implemen-
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tation of d12 affects whether d12 is classified in the high-impact cluster. It should be noted that in
all cases where the baseline evasion probability was reduced, the analysis resulted in three distinct
clusters. (Note that the terms "high-(low-)impact realization” and "high-(low-)impact solution/clus-
ter” refer to different things. The former refers to the amount of reduction in evasion probability
that arcs directly affected by the intervention realize in a scenario, because of the uncertainty in
implementation impact. The latter refers to how much a solution, which may include multiple
interventions, reduces the overall likelihood of evading detection throughout the whole network
and is determined through the k-means clustering). The results show that when the high-impact
realization results in at least a 15% reduction in evasion along the impacted arcs as compared to the
baseline case (i.e., as long as qum’hig h <(1- .15)p;;), all of the feasible solutions that contain d12
are classified as high-impact solutions in the k-means clustering. We also observed that no solutions
that contain d12 are present in the high-impact cluster when the reduction rate is set to 1% for low

impact and 10% for high impact.

100% 1

90% 1

80% A

70%

60% 1

50%

40%

Percentage of interventions that include d12
in the high impact cluster
Original value of d12

30% 1

20%

12% 14% 16% 18% 20%

Reduction rate in the evasion probability
Figure 3.6: Of the solutions that contain d12, the percentage of them that are classified into the high-impact
cluster varies as the post-intervention evasion probability for d12 varies. This graph displays the amount by

which an intervention would reduce traffickers evasion probability as compared to the non-interdicted upon

probability of evasion.
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3.7 Conclusion

This paper provides novel insights into the structure of labor trafficking recruitment to
exploitation supply chain networks within the U.S. agricultural sector and produces a novel bi-level
network interdiction model to enhance the effectiveness of disrupting such networks. This work was
undertaken by an interdisciplinary team with expertise in optimization, supply chains, criminology,
and human trafficking, and was informed by a detailed analysis of twelve federally prosecuted cases
and discussions with multiple stakeholders.

In an illustrative case study, we consider twelve potential anti-trafficking interventions and
assess their ability to reduce the likelihood that traffickers will be able to operate throughout the
entire network without detection. The scope of the model and network enabled us to evaluate all
feasible solutions to this problem using a k-means approach to categorize the feasible solutions into
four clusters based on their impact of improving detection. We found that solutions in the cluster that
enhances the detection likelihood the most typically included interventions that collectively affected
at least two echelons and eighteen arcs. However, our findings indicate that simply affecting more
arcs and echelons does not guarantee an effective intervention strategy. The efficacy of interventions
also depends critically on how they influence the network structure and their specific disruption
impact parameters. These insights allow anti-trafficking stakeholders to make informed decisions,
balancing available resources against the potential impact of intervention decisions on enhancing
detection rates.

This work is not without its limitations. A key challenge is the lack of detailed data on labor
trafficking and interventions. To overcome these data limitations, we synthesized information from
the literature and used expert opinion elicitation to convert qualitative assessments into quantitative
data, thereby increasing the reliability of our model. Additionally, incorporating the effect of multiple
interdictors collaborating and the effect of multiple interventions on the same part of the network
poses challenges both in terms of modeling complexity and data to inform these features. We
therefore assume that at most one intervention can be implemented per arc, which is in line with
assumptions in the extant literature. However, we have plans to relax this assumption in future
research. In light of these limitations, our intent is to show a proof of concept for the value of these

types of models in anti-human trafficking decision making.
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Chapter 4

Mitigating Disruptions in Multi-Echelon
Agricultural Supply Chains with
Multiple Disruption Sources and

Intensities

4.1 Introduction

Effective risk assessment and disruption mitigation are essential for maintaining resilient
supply chains, which are critical to global trade, economic stability, and the continuous flow of
goods and services [6, 194]. Supply chains are vulnerable to disruptions caused by natural disasters,
unexpected regulatory issues, port problems, and strikes [195]. Once a disruption happens, recovery
can be costly and time-consuming, with severe disruptions potentially leading to a shutdown of the
entire supply chain, resulting in substantial lost sales and business interruptions. The risk facing
any industry supply chain depends on its level of exposure to various types of disruptions. In reality,
many companies are exposed to both domestic and international disruptions and as the complexity of
supply chains increases, the impact of disruptions is less predictable.

The supply chain network developed in this research is particularly suited for long-life
agricultural products, such as wheat. To demonstrate the practical application of the optimization
model, we conducted a case study focusing on wheat supply chains under disruption scenarios. This

multi-echelon supply chain includes grain elevators (as suppliers), milling facilities (as processing
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plants), and the warehouse. Wheat bushels are harvested from hundreds of farms and sent to grain
elevators, where they are collected and distributed to milling facilities for processing. The processed
products are sent to warehouses and delivered to customers. By modeling this complex network, the
case study illustrates how the optimization model can be applied to mitigate the effects of disruptions
in agricultural supply chains, improving overall resilience in the wheat supply chain.

Agricultural supply chains are vital in ensuring food security and economic stability,
including three key stages: farming and agricultural inputs, processing and storage, and transportation
and distribution. Each of these stages is vulnerable to significant disruptions that can severely impact
the overall performance and reliability of the supply chain [196]. From unpredictable weather events
and natural disasters to market uncertainty and logistical challenges, agricultural supply chains
must constantly adapt to mitigate risks. For example, risk of supplier quality issues [197], supply
shortages [198], and the underperformance of logistics providers [199] affect the supply-side
dimension, while transportation issues [200] and uncertain demand [201] are some sources of risks
of the demand-side dimension. Additionally, the seasonality of agricultural supply chains increase
their vulnerability to a variety of disruptions. Depending on the location and season, food supply
chains are often impacted by different disruptions, such as Midwestern wetness, which causes
significant planting delays through spring and summer and delayed harvest activities due to muddy
or snow-covered fields during autumn [202]. As agricultural production is significantly influenced
by the environmental conditions, post-disaster recovery—from waste removal to re-planting—can be
time consuming [203]. This long-term recovery process complicates efforts to mitigate the impacts
of disruptions in agricultural supply chains.

The USDA has reported the need for long-term strategies to enhance the resilience of
agricultural supply chains, particularly in response to risks such as aging infrastructure, climate
change, and workforce shortages [204]. Stakeholders must prioritize these risks and develop targeted
mitigation strategies. Recent research highlights the importance of improving analytical techniques,
including the use of two-stage stochastic models, to better design disruption scenarios and guide
decision-making [205, 206]. This study aims to address these challenges by leveraging OR methods
to optimize resilience, manage disruptions in agricultural supply chains.

In this study, we introduce a two-stage stochastic programming model for multi-echelon
agricultural supply chains focused on long-life products, such as wheat, under the influence of both
domestic and international disruptions. The model accounts for uncertainty in severity of disruptions,
incorporating fractional disruptions that can affect different echelons in the supply chain. In the

second stage of the optimization model, different types of disruption scenarios are generated to
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cover varying severities—categorized as low, medium, and high impact—based on three key factors:
random start time of the disruption, random duration of the disruption (recovery time), and the
reduction in the capacity of affected facilities. This comprehensive scenario generation allows the
model to capture a wide range of potential disruptions, ensuring more effective mitigation strategies
across the supply chain’s multiple echelons.

The proposed model includes different stages of wheat production, such as grain eleva-
tors, milling factories, and warehouses. Given that complex supply chains are often disrupted at
multiple echelons, the model reduces the impact of disruptions across these levels (e.g., suppliers
and factories), moving beyond the traditional approach that typically focuses on a single echelon.
This optimization model determines which suppliers and factories to use during non-disruptive
periods, while also incorporating the flexibility to contract with recovery suppliers and factories that
supplement production during disruptions.

As such, this study makes the following contributions to the agricultural supply chain
disruption mitigation literature: First, it introduces a two-stage stochastic model that generates
various disruption scenarios, including low, medium and high-impact, to support long-term decision-
making on facility selection and mitigation strategies. This scenario-based approach allows for
better evaluation of strategies like multi-sourcing and the use of backup facilities to reduce the
impact of disruptions and enhance overall resilience. Second, the model incorporates flexibility in
handling both partial and full facility disruptions, where facilities are able to continue operating at
reduced capacity during recovery. Throughout the recovery period, the capacity of disrupted facilities
gradually increases until full operational capacity is restored. The model also accounts for disruptions
affecting both primary and backup facilities, ensuring a comprehensive analysis of the supply chain’s
vulnerability and recovery process. Lastly, the model uses a multi-period time horizon, which allows
for the evaluation of supply chain performance over time, accounting for random disruption start
times and the possibility of simultaneous disruptions across multiple echelons with varying levels of
severity.

The remainder of this study is organized as follows. Section Literature Review provides
an overview of the literature on mitigation strategies for supply chains networks under uncertainty
with a particular emphasis on food supply chains. We present the two-stage multi-echelon stochastic
optimization model in Section Method. To illustrate the benefit of our model, we introduce a case
study of wheat supply chains and present the results in Section Case Study. We conclude with

insights and future work in Section Discussion and Conclusion.
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4.2 Literature Review

In this section, we position our work within the relevant literature on supply chain networks
under disruptions, focusing on models that address agricultural supply chains. We review the broader
supply chain disruption literature to identify critical studies that inform our approach. Afterward,
we explore the specific OR literature on agricultural supply chains, highlighting the particular

vulnerabilities of these networks and existing mitigation strategies.

4.2.1 Mitigation strategies for supply chain networks under uncertainties

Effective risk management has become a critical priority for researchers and industry
practitioners in response to global supply chains’ increasing challenges and vulnerabilities. The
growing complexity of modern supply chains, coupled with the rising frequency of disruptive
events—ranging from natural disasters to geopolitical instability—necessitates a combination of
proactive and reactive strategies [6, 207, 208]. While proactive measures aim to anticipate and
mitigate risks before they occur, reactive approaches remain essential for addressing unforeseen
disruptions and minimizing their impact. Since supply chains are exposed to a wide range of
disruptions, it is essential to thoroughly understand the severity and frequency of these disruptions to
better represent them in supply chain models and design more effective mitigation strategies [207,
209, 210].

OR offers significant advantages in managing supply chain disruptions by enhancing
proactive and reactive strategies [194, 211]. The mathematical models and simulations enable the
analysis of various disruption scenarios, providing organizations with valuable tools to anticipate risks,
mitigate vulnerabilities, and design effective recovery plans [212, 213, 214]. These methods equip
supply chains to respond efficiently to unexpected disruptions while building long-term resilience.

Several studies have examined supply chain disruptions using various OR techniques [215,
212,213, 216, 217, 218, 219, 220]. One study employs a simulation framework for a multi-echelon
drug delivery supply chain, allowing only one disruption at a time. The researchers assess the
supply chain’s performance under different levels of disruption severity, offering insights into the
impact of these disruptions on drug availability [212]. Another study expanded the disruption profile
by considering disruptions at facilities across all supply chain stages. The researchers focused on
analyzing mitigation strategies when disruptions were examined at each stage separately. Multiple
strategies were implemented to protect customer service, providing valuable insights into how

disruptions at individual points in the network could be effectively mitigated [213, 218]. A two-stage
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stochastic programming model has been used to evaluate supply chain resilience strategies under
high-impact (low-impact) and low-frequency (high-frequency) disruptions. The study examined
the effectiveness of backup suppliers, spot purchasing, collaboration, and visibility as mitigation
strategies [216]. With the expansion to designing more realistic disruption scenarios, another study
expanded the two-stage model to handle multiple concurrent disruptions. In this case, the model
also integrated multiple sourcing and safety stocks as mitigation strategies, with a multi-period
framework where disrupted facilities were unavailable during disruption periods [217]. Although
these studies represent different disruption scenarios and mitigation strategies, our research addresses
more complex, realistic scenarios where multiple disruptions occur concurrently across multiple
echelons, including both primary and backup facilities. Additionally, we allow disrupted facilities
to be either partially operational or fully unavailable during the disruption period, offering a more
detailed analysis of recovery and operational continuity in the two-stage stochastic model.

The effectiveness of mitigation strategies in reducing the impact of supply chain disruptions
has been well-documented in numerous studies [221, 207]. Strategies such as backup suppliers,
multi-sourcing, and the combination of several mitigation approaches have consistently been shown
to enhance supply chain resilience, improving the ability to minimize disruption risks [222, 216,
223, 214, 224]. One approach explored the value of information sharing regarding the reliability
of facilities. By integrating backup production capabilities, the study demonstrated how sharing
real-time information about facility reliability helped firms coordinate responses to disruption risks
better [225]. Emergency backup and storage facilities are widely recognized as an effective strategy to
mitigate the impact of natural and anthropogenic hazards, such as floods, fires, power outages, and acts
of malice [223]. Additionally, the importance of supplier flexibility in mitigating supply disruptions
has been highlighted, as it allows firms to adapt more quickly to supply-side disruptions and respond
with alternative sourcing strategies [226]. Building on these strategies, our model introduces random
disruptions with varying levels of severity, evaluated over a multi-period time horizon. It examines
multiple sourcing and backup facilities selected using a two-stage optimization model. Each supplier
can be assigned as a primary or backup facility, optimizing disruption management across the supply
chain over time.

Multi-period models are essential in capturing the dynamic of supply chain disruption,
offering a detailed view of how mitigation strategies evolve across different phases. One study
designed a multi-period mixed-integer model to analyze supply chain disruptions. In this model,
a single disruption could occur within a defined time horizon and last for up to four periods. The

researchers evaluated the model’s response to disruption risks, providing insights into how supply
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chains can adapt and mitigate the impacts over multiple time periods [227]. Another study developed
a two-stage stochastic programming model to manage long-term disruptions by considering profits,
customer service levels, and market priorities. In this model, disruptions were allowed at multiple
echelons, and decision-makers had to choose between contracting with primary or backup facilities,
with interrupted facilities becoming unavailable during disruptions [228]. The expanded model
also evaluated the performance of multiple mitigation strategies in response to different types of
disruptions, from weak to strong, over a long time horizon, offering further insights into long-term
resilience [229]. When a reduction in the capacity of an affected facility occurred, temporary or
backup facilities were used to maintain operations. Our study differs from these by considering
long-term decisions in the presence of multiple disruptions that can occur at both primary and backup
facilities. We generate random disruptions characterized by varying lengths, random start times,
and random post-disruption capacities. To reflect practical scenarios, our model assumes disrupted
facilities enter a recovery phase where they can operate using available capacity, with a constant
marginal increase in capacity throughout the recovery period. This approach allows for a more
detailed analysis of recovery dynamics and facility management over the disruption period.

The two closest related papers to our study are that of [230] and [231] who proposed novel
two-period model and two-stage stochastic programming model for multi-echelon supply chains
under multiple disruptions, respectively. In the first paper, two planning horizons - before disruption
and after disruption - are considered and one disruption occurs by the end of the planning horizon.
The authors evaluated the financial performance of the model with recovery strategies to mitigate
supply chain risks. The second paper focuses on profit maximization and discusses managerial
implication to identify the impacts of disruptions at multiple echelons. The authors suggests recovery
suppliers and decentralized strategy to minimize the disruptive impact and also noted that there is
still a need to model risk when the severity and duration of disruption events are random parameters.

Table (4.1) summarizes the different features considered within the current supply chain
network disruption literature. This table illustrates how our model differs from prior literature.
Namely, our model considers all of the features together in one model, including allowing simultane-
ous disruptions at multiple echelons, accounting for varying levels of disruption severity, presenting
a two-stage model that considers uncertainty, and allowing multi-sourcing and backup facilities at

both the supplier and factory echelons.
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Table 4.1: Literature review of mitigation strategies for supply chain networks under disruption

Disruption
Disruption  at multiple Disruption Two-stage Backup
Multi- suppliers Recovery
Authors at multiple echelons with different ~ with uncer- . )
echelons  simultane- severity levels tainty sourene and/(.)r Time
ously factories
[208] X
[209] X X
[210] X X
[207] X X
[221] X X
[223] X
[225] X X
[232] X
[213] X X X
[218] X X X
[233] X X
[214] X
[234] X X
[235] X X
[236] X
[216] X X X X X
[212] X X
[237] X
[219] X X X X X
[222] X X X X X X
[230] X X X X X
[238] X X X
[239] X
[220] X X X X
[217] X X X X
[240] X X
[241] X X X X X
[215] X X X X
[224] X X X X
[231] X X X X
This paper X X X X X X X

4.2.2 Food supply chain networks under uncertainties

Risk management in agricultural supply chains needs particularly more attention due to

challenges associated with seasonality, supply risks, long lead times and perishability. Crop-based
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agricultural supply chains are typically classified into perishable or long life categories [199]. The
OR field has developed optimization models that consider both the particular considerations needed
to ensure freshness within perishable food supply chains [239, 241, 240] and long life product supply
chains [236, 237]. The model we present is particularly well-suited for long-life agricultural products,
yet extensions could be considered that incorporate the shelf life and special considerations for
perishable products.

OR has a significant effect on improving the decision making processes in agricultural
supply chains under uncertainty [242]. Stochastic programming with disruption uncertainties is
used to support decision making in agricultural supply chain networks [232, 233]. A study employs
a stochastic optimization model to address both supply-side and demand-side risks in a real-life
multi-product case study within the agri-food industry [233]. To build on existing research, another
study focuses on the global rice and wheat supply chains, proposing two post-disruption strategies,
including using strategic national inventories and food substitution between rice and wheat to
maintain supply stability [243]. A heuristic approach is applied to optimize these strategies, enabling
efficient decision-making under disruption scenarios. Another study on the wheat supply chain
developed a simulation model to assess the impact of transportation disruptions over a one-year
period. The model evaluated various mitigation strategies and compared their effectiveness in
terms of service level and total costs [244]. Another study provides insights into the effects of
supply and demand fluctuations on the wheat supply chain by designing a scenario-based model
that evaluates six scenarios over a one-year period [245]. To address the complexities of wheat
supply chain optimization under uncertainty, a mixed robust and stochastic model was proposed to
incorporate uncertainties in demand and supply across three scenarios, including optimistic, most
likely, and pessimistic. This approach illustrated the significant impact of uncertainties on costs,
facility locations, and network structure [246]. Additionally, responsiveness and resiliency in the
wheat supply chain have been examined by incorporating delivery time, node complexity, and service
level. The model is designed to minimize environmental and social impacts while addressing these
critical aspects [247].

Building on insights from the literature, this study focuses on evaluating mitigation strate-
gies for a three-echelon wheat supply chain facing multiple disruptions. The primary goal is to
evaluate and strengthen supply chain resilience by designing a multi-period, two-stage stochastic
model that incorporates disruptions of varying severity — categorized as low, medium, and high
impact. To ensure a comprehensive representation of real-world disruptions, we generate numerous

random scenarios, capturing a variety of disruption events across different time periods. Disruptions
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are modeled based on three key factors, including random duration, available capacity post-disruption,
and timing of disruption events. These disruptions can impact both primary and backup facilities,
with the possibility of multiple simultaneous occurrences. By integrating recovery strategies, such as
multiple sourcing and backup facilities, this study provides practical insights for decision-makers

aiming to enhance the resilience of agricultural supply chains.

4.3 Method

4.3.1 Agriculture supply chain under multiple disruptions

We propose a multi-echelon, two-stage stochastic program that accounts for the possibility
of multiple disruptions occurring across different echelons of the supply chain. In this structure,
items are sent from suppliers to factories and transported from factories to the warehouse, following a
sequential flow across each echelon, see Figure 4.1. Disruptions are assumed to occur independently
at nodes within various echelons, specifically suppliers and factories. Disrupted facilities are allowed
to be concurrently unavailable, either fully or partially. Partial unavailability refers to instances
where only a fraction of a facility’s capacity is disrupted, allowing it to continue operating at a
reduced level. Multiple mitigation strategies are incorporated to minimize disruption impacts and
reduce the total amount of lost sales. Our optimization model supports resilience-focused decisions,
evaluating whether the agribusiness should contract with backup suppliers and factories to address
disruptions effectively. We assume constant demand over time, with all unsatisfied demand treated as
lost rather than back-ordered when facilities cannot meet demand due to disruptions. Recovery costs
for disrupted facilities are included based on the time required for full or partial recovery.

In the first stage of the model, primary and backup suppliers and factories are selected
before any disruption, ensuring that the chosen primary facilities have sufficient capacity to meet
demand. In the second stage, various disruptions are introduced across multiple scenarios. Each
scenario has a specific probability and unique characteristics, such as the duration of the disruption,
capacity reduction, and timing, which represent different levels of impact. To optimize the response,
we assume that selected backup facilities are activated and allowed to produce only when at least
one of the primary facilities is disrupted. The model aims to maximize supply chain productivity
despite these disruptions. The decisions made in the second stage focuses on two key areas: (1)
determining the quantity of products to be shipped between facilities in the supply chain network

after disruption(s) and (2) calculating the amount of lost sales across primary and backup suppliers
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Factory

Warehouse

Figure 4.1: A multi-echelon agriculture supply chain network.

and factories for each scenario.

To address uncertainties, the proposed mitigation strategies include (a) using multiple
sourcing rather than relying on a single source and (b) contracting with backup suppliers and factories
to mitigate supply chain disruptions when primary facilities are affected. Additionally, a recovery
process is integrated for disrupted facilities, incorporating a gradual increase in facility capacity

during the recovery period to restore operational levels.

4.3.2 Problem Formulation

The sets, parameters, and decision variables defined for the mathematical model are as

follows:

70



CHAPTER 4. MITIGATING DISRUPTIONS IN MULTI-ECHELON AGRICULTURAL SC

Sets and indices
N set of suppliers, index by n
M set of factories, index by m
() set of disruption scenarios, indexed by w

T length of planning horizon

Input parameters (non-scenario dependent)
b5 fixed cost per unit time of selecting supplier n as a primary supplier
ff;s fixed cost per unit time of selecting supplier n as a backup supplier
ffq’lf fixed cost per unit time of selecting factory m as a primary factory
fj{ fixed cost per unit time of selecting factory m as a backup factory
pb®  cost per bushel supplied by primary supplier n
pff cost per bushel supplied by backup supplier n
pfnf cost per bushel produced in primary factory m
p% cost per bushel produced in backup factory m
cff:n cost per bushel transported from supplier n to factory m
cﬁlw cost per bushel transported from factory m to the warehouse
b cost of lost sales per bushel over the entire time horizon
vy, ~maximum capacity of supplier n over the entire time horizon
vp¢ Mmaximum capacity of supplier n at time ¢ (v, = v?n)
v, maximum capacity of factory m over the entire time horizon

. . ) v
Um¢ Mmaximum capacity of factory m at time ¢ (v,,,r = ?m)
D total demand over the entire time horizon

D
D; averaged demand per unit time (D; = ?)
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Input parameters (scenario dependent)

w

q

sw
nt

Vi

mt
sw
tn

tf

Sw

Pn

ple

Sw
Ay

probability scenario w occurs

1, if disruption occurs at supplier n at time ¢ under scenario w; otherwise, 0

1, if disruption occurs at supplier m at time ¢ under scenario w; otherwise, 0

the time that a disruption starts at supplier n under scenario w

the time that a disruption starts at factory m under scenario w

fraction of capacity available immediately at supplier n following a disruption under scenario w
fraction of capacity available immediately at factory m following a disruption under scenario w
marginal percentage increase in available capacity per unit time of disrupted supplier n

under scenario w

marginal percentage increase in available capacity per unit time of disrupted factory m

under scenario w

cost per unit time to recover supplier n under scenario w; takes O if no disruption at n occurs
cost per unit time to recover factory m under scenario w; takes 0 if no disruption at m occurs
number of time periods needed to recover supplier n under scenario w;

takes O if no disruption at n occurs

number of time periods needed to fully recover factory m under scenario w;

takes O if no disruption at m occurs

Decision variables

First-stage variables

Xps
Xps
xrf
X!

binary variable, equal to 1 if supplier n is selected as a primary supplier; O otherwise
binary variable, equal to 1 if supplier n is selected as a backup suppliers; 0 otherwise
binary variable, equal to 1 if primary factory m is selected; O otherwise

binary variable, equal to 1 if factory m is selected as a backup factory; 0 otherwise
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Scenario-based variables

o the amount of demand transported from supplier n to factory m at time period ¢
under scenario w
oy, the amount of demand transported from factory m to the warehouse at time period ¢
under scenario w
By the amount of demand that is lost sales at time period ¢ under scenario w
77 1if there is a disruption at at any of the primary suppliers; otherwise, 0

th “1if there is a disruption at any of the primary suppliers; otherwise, 0
The first stage of the formulated problem is as follows:

Stage 1: P1=Min [T|( ) (fB°XES+ fEX00)+ > (fH/XBI + £ X0))

neN meM
—l—Zq‘”* (ZTZM*X%’S*GZ“’—F Z rfn‘“*Xﬁlf*an‘“)
w neN meM
+) o Q(xP, X, XPF X W) (4.1)
w
Subject to:
> vnx X >D (4.2)
neN
> vmxXH > D (4.3)
meM
XPP X% <1 neN (4.4)
XPf 4 xt <1 meM (4.5)
XPs X% c{0,1} neN (4.6)
XPl X e {0,1} meM (4.7)

The objective function of the first stage (4.1) minimizes fixed cost plus expected recovery
costs of primary facilities and expected costs of second stage over the time horizon. It includes
an annual operating cost of selected facilities plus the expected supply chain cost after disruption.
In the second stage, a sub-problem P is solved for each disruption scenario, capturing the asso-

ciated costs and decisions. The expected cost across all scenarios in the second stage, denoted by
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Q(xEs, xbs xPI XP ), is calculated as the weighted sum >, @° X Py, where ¢* represents the
probability of each scenario.

Constraints (4.2) and (4.3) ensure that the total capacity of selected primary suppliers
and factories is sufficient to meet the demand under normal conditions over the planning horizon.
Constraint (4.2) focuses on the capacity of suppliers, while Constraint (4.3) addresses the capacity of
factories, ensuring both are adequate to fulfill the total demand. Supplier n (factory m) cannot be
both a primary and backup supplier (factory), constraints (4.4) and (4.5). The binary variables X}°,
Xbs, anf , and Xﬁ{ indicate the selection of primary and backup suppliers and factories, where a
value of 1 represents selection and O indicates otherwise. These variables model the decision-making

process for choosing suppliers and factories in the planning problem, constraints(4.6) and (4.7).
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T
Stage 2: P2 =Min Z ([ Z Z N (P XES 4 pbs xbs)

t=1 neN meM

+ > o (I XA XN 4+ [ > el A+ > o] + By

meM neN meM meM

£ 05 40
CY Sexter s’ S ool “®

t=ts¥ neN t=tlw meM

Subject to:
> XN neN,0<t<T (4.9)
7> xPF MY e M0<t<T (4.10)
U<l 0<t<T (4.11)
Y<1 0<t<T (4.12)
S A S vnex (D (XTxAE) + XE) neN0<t<T @.13)
meM n'eN
D imt S X+ X0 ko n €N, @ (152,65 +05°) (4.14)
meM
D Vit S (057 + A5 (=659 (XBS + X)%) kv m € N; 13 <t < 15 + 603
meM
(4.15)
DD Ve <Dy 0<t<T (4.16)
neN meM
0% v x (Y (XELs IS+ XBf) meMO0<t<T 4.17)
m/'eM
oot < (XPI+ X00) o moe M t ¢ (8 4+ 6]) (4.18)
Ty < (P + AR = thNXE + X)) s me M, bl <t <t + 0]
(4.19)

Y i —owi =0 meM; 0<t<T (4.20)
neN
Y owi+Bf=D 0<t<T (4.21)
meM
Yot =0 neN, meM,0<t<T (4.22)
0. >0 meMO<t<T (4.23)
BY>0 0<t<T (4.24)
oY >0 0<t<T @25
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Each disruption scenario w € €2 occurs with probability ¢. The goal is to minimize the
second-stage cost across the entire time horizon for each scenario. In the objective function, the
first two terms represent the production costs at the suppliers and factories. The third and fourth
terms correspond to the transportation costs from suppliers to factories and from factories to the
warehouse, respectively. The fifth term accounts for the cost of lost sales, while the final term
represents the recovery costs for backup facilities when they are permitted to produce during their
disruption period (4.46).

Constraints (4.9) and (4.10) are designed to identify whether any primary supplier or
factory is disrupted. Specifically, Constraint (4.9) ensures that the decision variable 77“ equals 1 if at

least one primary supplier n € N is disrupted during period ¢. This is determined by the product of

Sw

X*%?, which indicates that the primary supplier is selected, and 5%,

which indicates a disruption at
the supplier. Similarly, Constraint (4.10) applies the same logic for factories, where th “issetto 1 if
at least one primary factory m € M is disrupted. The variable 7 is helpful for determining when
the selected backup suppliers and factories are able to start production, based on the assumption
that backup facilities are utilized only when at least one primary facility is disrupted. Moreover, T
incorporates in calculating the recovery cost for backup facilities in the objective function (4.46),
where the recovery cost is incurred only when these backup facilities are allowed to produce.

Constraints (4.11) and (4.12) ensure that 77“ and th “ do not exceed 1, even if multiple
primary suppliers or factories are disrupted, and are bounded below by 0. This formulation keeps 7 as
a continuous variable, which is necessary to comply with the assumptions of Benders Decomposition,
where continuous variables are required in the second stage.

This constraints (4.13) and (4.17) ensures that backup facilities are only activated when
necessary. Specifically, if a facility is selected as a backup, represented by X?* (or X ,bnf for factories),
then the corresponding primary facility, represented by X7%° (or xzf ), must be zero, indicating that it
is not simultaneously acting as a primary facility. The summation ), (X 5}9 - AJ%,) captures the
status of all primary facilities in the system. It becomes greater than 0 when at least one primary
facility is disrupted. When this condition is met, it allows the backup facilities to start production. If
no primary facilities are disrupted (the summation equals 0), the backup facilities are not permitted
to produce, ensuring they only operate when needed for recovery.

Constraints (4.14) and (4.18) represent the maximum production capacity for the facilities.
They ensure that each facility can utilize its full capacity when no disruptions occur. These constraints

specify that the production level at each facility cannot exceed its maximum capacity under normal

operating conditions.
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The next set of constraints addresses scenarios when disruptions occur at the facilities. If
a facility is affected, it can only utilize a fraction of its capacity immediately after the disruption.
Constraints (4.15) and (4.19) represent the maximum available capacity of facilities after a disruption,
limiting their production capacity. The parameter AJ* denotes a constant marginal increase in the
capacity of a disrupted supplier n throughout the recovery period. When a disruption occurs, facilities
may have zero available capacity or a small fraction of their capacity removed.

The following constraints, referred to as (4.16), ensure that the production shipped from
suppliers to factories during each period ¢ does not exceed the demand for that period. This
effectively limits the amount of production transported, helping to align supply with demand over
time. Additionally, constraints (4.20) maintain a balance between the incoming supply to each factory
and its outgoing distribution to the warehouse, ensuring a consistent flow of goods throughout the
network. Constraint (4.21) ensures that the total demand at period ¢ is satisfied through shipments
from factories to the warehouse or through lost sales. Specifically, the sum of transported demand
> meM Tany and any unmet demand By’ equals the total demand D;. The shortfall is recorded as
lost sales if shipments do not fully meet the demand. Constraints (4.22)-(4.25) define continuous

decision variables greater than or equal to 0.

4.3.3 Assumptions

This section lists the main assumptions made in this study and explains their role in shaping
the model and analysis. This study models a single-product, multi-echelon supply chain for a long
life product under supply-side uncertainties. We assume that demand remains constant throughout
the one-year time horizon, which is divided into 52 weeks. The model considers transportation
costs, production costs, facility selection costs, lost sales and recovery costs over this time horizon to
evaluate supply chain performance under disruption scenarios.

Lost sales are included instead of back-orders to account for unmet demand. Disruptions
can occur at both suppliers and factories, affecting multiple echelons. While at most one disruption
can impact a facility over the entire time horizon, both primary and backup facilities can experience
multiple disruptions at different times. A detailed recovery plan for both types of facilities is outlined
in the Recovery Plan Section.

The model allows for multiple facilities to be unavailable at the same time, either partially
or fully. Partial unavailability refers to cases where only a fraction of a facility is disrupted, enabling

it to continue operations using its remaining capacity. This assumption reflects a more flexible
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representation of facility capacities following disruptions.

The model generates different disruptions with varying intensities, categorized as low-,
medium-, and high-impact disruptions. Random factors are used to generate disruptions, including the
length of disruptions, start time, reduction rate in capacities after disruptions occur, and the random
selection of facilities to be disrupted. For example, low-impact disruptions are characterized by
shorter durations and lower reductions in capacity compared to medium- and high-impact disruptions.
Disruptions for all categories can begin at any point within the time horizon, potentially leading to
multiple disruptions at different facilities simultaneously. Low-impact events may result in zero or at
least one disruption, whereas medium- and high-impact events always result in at least one disruption.
This assumption ensures a flexible representation of disruption scenarios across the agricultural

supply chain.

4.3.4 Recovery Plan

This section describes the recovery plan designed for facilities facing capacity disruptions,
either fully or partially, within the supply chain network. Figure (4.2) illustrates the recovery process
for supplier ”’n” when a disruption occurs at time ¢7*, leading to an initial drop in capacity. During
the recovery period, a constant marginal increase in capacity is applied to help restore operational
levels, allowing the supplier to regain full functionality by the end of the specified recovery time.
This structured recovery plan is similarly implemented across all factory nodes within the supply
chain.

This recovery framework aims to provide a practical and realistic approach to managing
disruptions, offering decision-makers insights into capacity restoration and associated costs. While
acknowledging the model’s limitations, we incorporate key characteristics to better approximate
real-world conditions, supporting enhanced resilience in supply chains across various disruption

scenarios.

4.3.5 Benders Decomposition Algorithm

The model we introduce is a complex, scenario-based mixed-integer program designed
to address the uncertainties of disruptions across a multi-echelon supply chain. Given the model’s
complexity and many scenarios, directly solving this mixed-integer problem would be computa-
tionally intensive and inefficient. To manage this complexity, we apply benders decomposition,

which is well-suited for large-scale, scenario-based models with distinct first- and second-stage
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Figure 4.2: Capacity of supplier n during the recovery time

decisions [248]. Benders decomposition separates the original problem into two interconnected
components: a master problem and subproblems. The master problem, as formulated in section 4.3.2
and denoted as P1, focuses on first-stage decisions, typically involving integer variables that represent
strategic choices made prior to disruptions. In contrast, the subproblem addresses second-stage
decisions involving continuous variables that align with specific disruption scenarios. These scenarios
represent a range of disruption severities in the wheat supply chain. For each generated scenario, the
subproblem adapts based on that disruption’s unique conditions and intensity, enabling the model to
evaluate the supply chain’s resilience across varying potential disruptions. This separation aligns
well with our model’s structure and allows us for more efficient optimization. In the iterative Benders
decomposition framework, the master problem (P1) determines the decisions on primary and backup
facilities that the decision maker can contract with to satisfy demand. These decisions are represented
by binary variables as X2°, Xt XP/ and X}/, which are then supplied to the subproblem.

To generate cuts for the master problem (P1), a dual linear program of sub problem (P2) is
introduced. The dual variables hi;, 5%, u, 1%, 22, Y%, oF, n%., €91, 92, kv ., and u$ correspond

to constraints (4.9) through (4.21). The Benders dual subproblem (DSP) can be expressed as:
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In the Benders decomposition algorithm, the Benders cuts including Optimality cut 4.47

and Feasible cut 4.48 are generated by the Benders dual subproblem (P3) and incorporated into the

master problem. We define the continuous variable Zas corresponding to the optimality cu, then the

Benders master problem P1 are given by
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Algorithm 1 Benders Decomposition Procedure
UB < oo, LB + 0, iter < 0

while (UB — LB)/UB > e do
Solve (P1)
LB «+ E {the objective value of (P1)}
Solve (P3)
if (P3) is optimal then
Add optimal cut (4.47) to (P1)
else if (P3) is unbounded then
Add feasibility cut (4.48) to (P4)
end if

Update U B if necessary
iter < iter + 1

end while

The Benders decomposition process solves the master problem and subproblem in turn.
With each step, if the subproblem solution is feasible, an optimality cut is added to improve the
master problem. If the subproblem is unbounded, a feasibility cut is added to address infeasibility.
These cuts refine the solution with each iteration, progressively narrowing it to the best solution until
the desired accuracy is achieved. This approach ensures that the model identifies an optimal and

feasible solution across all scenarios.

4.4 Case Study

We designed a hypothetical wheat supply chain to evaluate mitigation strategies for manag-
ing disruptions in a multi-echelon network. The case study focuses on a single product, wheat, and
includes key elements such as grain elevators and milling facilities, which are often vulnerable to
disruptions. The hypothetical company aims to optimize decisions regarding supplier and factory
selection while mitigating the impact of disruptions. This simplified model captures critical compo-
nents of a real-world agricultural supply chain, allowing for a focused analysis of disruption impacts
and the effectiveness of various mitigation strategies, see Figure 4.3.

Grain elevators serve as the first echelon in the supply chain, receiving wheat bushels from

numerous farms and transporting them to milling facilities. Disruptions at this level can include
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Figure 4.3: The structure of designed supply chain for a hypothetical wheat-product company

fluctuations in grain prices, transportation costs, infrastructure issues affecting roads and rail, and
weather-related impacts on grain availability and timing [249]. Once received by milling facilities,
the wheat is processed and transported to warehouses. At this second echelon, disruptions may
result from unexpected downtime, production recalls, or shifts in demand, such as those triggered by
COVID-19-related changes in restaurant and grocery needs. Our model captures a range of potential
disruptions by categorizing them into low, medium, and high-impact events. Low-impact disruptions,
such as minor equipment malfunctions or brief shipping delays, have minimal effects on overall
supply chain performance. Medium-impact disruptions may involve labor shortages, significant
equipment failures, or partial facility outages. High-impact disruptions, including natural disasters,
pandemics, climate change effects, water shortages, pest outbreaks, farm-financial and political
instability, can limit operational capacity and disrupt product availability [196, 250, 249]. This
structured approach enables a detailed evaluation of mitigation strategies under various disruption

scenarios.

4.4.1 Data

Table 4.3 provides the data used for our analysis, covering costs associated with facility se-
lection, supply, milling production, maximum supplier and factory capacities, recovery, and lost sales.
We based certain data estimates on publicly available information from Archer Daniels Midland Com-
pany (ADM), one of the largest agricultural supply chains in the world, ADM operates approximately
330 processing facilities and 520 procurement centers [249]. This extensive infrastructure connects
raw commodities to consumer markets through complex logistics and production networks [249].
We estimated capacity values based on public ADMdata sources, given data limitations. ADM’s
facilities generally handle multiple products, so we adjusted capacities to align with a single-product

supply chain model focusing exclusively on wheat. For example, grain elevators (suppliers) were
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assigned random capacities ranging between 10,000 and 50,000 units, while milling facilities (facto-
ries) were assumed to hold approximately double this range, from 50,000 to 100,000 bushels. This
approximation aligns with publicly available capacity data [251, 252]. We also assumed that the
fixed cost, representing the expense of contracting with each facility, varies based on facility capacity.
This approach reflects the practical consideration that more extensive facilities with greater capacities
generally involve higher contracting costs due to their increased operational scope and resource
requirements.

Table 4.2 also lists the locations and number of suppliers and factories in this case study,
representing a subset of ADM’s facilities [253]. Since ADM inspires our model, we included a select
number of facilities sufficient to meet demand, balancing model needs with practical constraints in
data availability. Facilities with higher numbers have larger capacities and higher contracting costs.
For example, Suppliers 11 and 12 are larger and more expensive to contract compared to others.

There is a similar pattern for factories.

Table 4.2: Facility Locations

Suppliers Factories

Number | Location Number | Location

1 Ilinois 1 Indiana

2 Ilinois 2 Indiana

3 Indiana 3 Kansas

4 Indiana 4 Kansas

5 Indiana 5 Kansas

6 Kansas 6 Missouri

7 Kansas

8 Kansas

9 Missouri

10 Missouri

11 Missouri

12 Tennessee

Transportation costs between suppliers, factories, and the warehouse were estimated based
on facility locations and calculated by measuring the mileage between facilities and applying shipping
rates per bushel by rail [254, 255]. We assumed that milling companies encounter higher production
costs than grain elevators’ supply (holding) costs, given the additional steps required to process
raw grain into a finished product. Additionally, we estimated that larger facilities achieve lower

production costs per bushel due to economies of scale [256]. Since precise cost data was unavailable
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for our model, we defined minimum and maximum values for production costs, setting each facility’s
production cost based on its capacity within this range. Facilities with higher numbers have lower
production costs; for example, Supplier 11 and Factory 6 have the lowest production costs among
suppliers and factories, respectively. The planning horizon in our model covers one year, precisely
52 weeks, which aligns with standard timeframes in agricultural supply chain studies [244, 245]. We
use weekly units in the time component to represent short-term disruptions lasting less than a month
accurately. This approach ensures that short-term and longer disruptions are effectively incorporated
into the yearly decision-making process. Our two-stage model for the wheat supply chain under
disruptions assumes an annual wheat demand of 100,000 bushels. While data on total wheat
production is available through sources like the USDA, granular demand data specific to companies,
such as ADM, is limited [257]. Certain variables, including the start time of each disruption, recovery
duration, and post-disruption facility capacities across different scenarios, are estimated as random
variables. The constant marginal increase in capacity during recovery is calculated by dividing the
difference between maximum and post-disruption capacity by the disruption length. This calculation
provides a steady increase, allowing capacities to return to full operation gradually over the recovery

period. Each scenario in our model is assigned an equal probability.

4.4.2 Scenario Creation

We generated scenarios for each run to model varying disruption conditions in the supply
chain. For our analysis, we used 100 scenarios per run, where each scenario is categorized into one
of three impact levels such as low-impact, medium-impact, and high-impact. These categories are
determined based on several random parameters and model assumptions that influence the severity
of disruptions.

Key random parameters include the duration of disruptions and the percentage reduction
in facility capacity. While these parameters have different ranges across the three impact categories,
other factors also play a role in shaping the severity of disruptions. For example, the the random
timing of when disruptions begin and the possibility of multiple disruptions occurring simultaneously
at different facilities can increase the overall severity of disruptions in scenarios. In low-impact
scenarios, disruptions may not occur at all, while medium- and high-impact scenarios always include
at least one disruption.

For our analysis in the Results Section we considered two specific cases: the 90% low-

impact distribution and the 90% high-impact case. The 90% low-impact case includes 90 low-impact
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Table 4.3: Input data values for supply chain model analysis

Parameter Value Unit

ps U(10,50) 1000-dollor per year
fos U(10,50) 1000-dollor per year

fqu U(50,100) 1000-dollor per year

bf U(50,100) 1000-dollor per year

D 100 1000 bushels per year

b 50 1000-dollor per 1000 bushels
o 10 1000-dollor per supplier
ros 20 1000-dollor per factory
Un, U(10,50) 1000 bushels
Um, U(50,100) 1000 bushels
prs (1,4) 1000-dollor per 1000 bushels
Prs (1,4) 1000-dollor per 1000 bushels
Pﬁlf 4,8) 1000-dollor per 1000 bushels
P],;f 4,8) 1000-dollor per 1000 bushels
[25d U(1,50) week
the U(1,50) week
(g U(1,10) week (Low-impact)
05 U(15,25) week (Medium-impact)
05 U(30,40) week (High-impact)
2% U(0, 0.2) High-impact
[ U(0.4, 0.6) Medium-impact
o U(0.7, 1) Low-impact
plv U(0, 0.2) High-impact
plv U(0.4, 0.6) Medium-impact
ol U.7, 1) Low-impact

disruption scenarios, five medium-impact, and five high-impact disruption scenarios. The 90%
high-impact case consists of 90 high-impact disruption scenarios, five medium-impact, and five
low-impact disruption scenarios. This setup represents highly volatile conditions dominated by

severe disruptions, with minimal representation of less severe scenarios.

4.4.3 Case Study Results

We initially tested the model with different numbers of scenarios, including 50, 100, 300,
and 500 scenarios per run, as shown in Table 4.4. It summarizes the solution times and optimality
statuses for these runs across both the 90% low-impact and 90% high-impact cases, based on a single
run for each scenario count. We observe that the model consistently solved the problems to optimality
within 11 hours for 50, 100, and 300 scenarios across both distributions. However, for 500 scenarios,

the model was solved to optimality for the 90% high-impact case but exhibited a 71% optimality
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gap for the 90% low-impact distribution after the 11 hour time limit, highlighting the increased
computational effort required for larger scenario counts in the low-impact case. Additionally, the
model consistently solved scenarios faster for the 90% high-impact case compared to the 90%
low-impact case across all runs, regardless of the number of scenarios. Based on these observations,
we selected 100 scenarios per run for further analysis. This choice represents a practical trade-off

between computational time and the ability to capture a representative range of scenarios.

Table 4.4: Solution times (s) and status (solved or % gap) for problems within 11 hours.

Number of Scenarios 90% Low-Impact 90% High-Impact
Solution Times (s) Status Solution Times (s)  Status
50 9,513.1 solved 5,411.2 solved
100 15,110.5 solved 6,459.6 solved
300 37,230 solved 22,513 solved
500 39,600 71% (Gap) 30,084.7 solved

Note: Solution times are reported for a single run of the model.

Therefore, we proceed to analyze two cases to evaluate the impact of varying disruption
patterns on supply chain performance, including 90% low-impact and 90% high-impact cases. Each
case comprises 100 scenarios, and we conducted 10 independent runs for each. (That is, the 100
scenarios considered in run 1 are different than the 100 scenarios considered in run 2, for example).
We evaluated key performance metrics for each distribution, including the objective function costs,
the number of selected primary and backup suppliers and factories, their capacity utilization, and the
total amount of lost sales. This comprehensive analysis provides insights into how varying disruption
severity and frequency influences the effectiveness of mitigation strategies and overall supply chain

resilience.

4.44 90% Low-impact Case

In this scenario distribution, 90 of the 100 scenarios represent low-severity disruptions,
while medium- and high-severity disruptions are represented by five scenarios each. The average cost
of the model’s objective function, calculated over 10 runs, is $1,142,492.92, with a standard deviation
of $46,554.8. This standard deviation is approximately 4% of the average objective function costs,
indicating that the variation across runs is relatively low. The average computation time over these
10 runs is approximately four hours and 32 minutes.

The optimal solution to all 10 runs selects three primary suppliers, see Figure 4.4a. How-

ever, the specific suppliers chosen differ between runs. Suppliers 11 and 12 frequently appear in
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the solutions, showing that the model often prefer larger suppliers. (As a reminder from the data
section, facilities with a lower index are assumed to have lower capacities while facilities with higher
indexes are assumed to have higher capacities. Larger facilities are characterized by lower production
costs per bushel, despite having higher contract costs.) The number of primary factories selected
fluctuates between one and two across the 10 runs. When the model selects only one primary factory,
it consistently chooses the largest factory, Factory 6, which reflects its lower production costs despite
higher fixed costs. In the runs where two factories are selected, Factory 5 is consistently chosen in
combination with Factory 1, 3, or 4. This variability across runs may result from the interaction
of different random factors in generating scenario disruption profiles and the model’s optimization
process, which seeks to minimize costs under varying conditions. The mean capacity of primary
suppliers is 122,400 bushels, with a standard deviation of 13,201 bushels, while the mean capacity
of primary factories is 130,300 bushels, with a standard deviation of 32,958 bushels. The higher
mean capacity for factories reflects the input data, where factory capacities are higher than those of
suppliers.

In terms of backup facilities: Six of the 10 runs show no selection of backup suppliers,
while the others include one to three backup suppliers. The run with the highest selected backup
capacity is 82,000 bushels, accounting for 20% of the total available capacity, see Figure 4.4b. The
model did not select any backup factories in any of the 10 runs. Detailed facility selections for the
model across these runs are presented in Table 4.5. Noting that the optimal solutions to the 10 runs
exhibits variability with regard to the optimal facilities selected, we explore this variability further

later in the results section to provide additional insights into its possible causes.

Table 4.5: Facility selection across 10 runs in 90% low-impact case

Primary — Backup — Primary — Backup Mean Unsatisfied Demand
Run ID | Suppliers Suppliers Factories Factories Across 100 Scenarios (1000-bushel)
1 7,10,11 6 4,5 - 0.017
2 9,10,12 - 6 - 1.52
3 1,11,12 - 6 - 1.22
4 7,10, 11 - 6 - 1.45
5 2,6,12 4 3,5 - 0.42
6 49,12 1,2,6 6 - 0.97
7 3,11,12 - 6 - 1.51
8 4,11,12 8,9 1,5 - 0.09
9 3,10,12 - 1,5 - 0.52
10 10,11,12 - 1,5 - 0.36

We analyzed the unsatisfied demand across all 100 scenarios per run. In nine out of 10
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Figure 4.4: Facility selection and capacity analysis across 10 runs of 90% low-impact case

runs, the median unsatisfied demand is zero. This means that most scenarios in these runs do not
experience lost sales. The highest average unsatisfied demand, calculated over 100 scenarios within
a single run, is 1,526 bushels, which is about 1.5% of the total demand. These results show that the
model effectively handles disruptions in this case. To better understand how different disruption
severities affect the model’s ability to meet demand, we analyzed unsatisfied demand across low-,
medium-, and high-impact scenarios within the 90% low-impact case. The purpose of this analysis is
to determine which severity levels contribute most to unsatisfied demand.

Therefore, we examined the median fraction of unsatisfied demand by disruption severity
to uncover detailed patterns across low, medium, and high-impact scenarios, see Figure 4.5. For each
run, the median fraction of unsatisfied demand is calculated separately for each severity level. For
example, for high-impact scenarios, we compute the median fraction of unsatisfied demand over the
five high-impact scenarios within that run. Similarly, for medium-impact scenarios, the median is
calculated over the five medium-impact scenarios per run. For low-impact scenarios, which make up
90 scenarios per run, the median is derived from these 90 scenarios. The low-impact scenario shows
that nine out of 10 runs have a median unsatisfied demand of zero, calculated across the 90 low-
impact case in each run. For medium-severity scenarios, five out of 10 runs have a median unsatisfied
demand of zero, meaning that in these runs, the median fraction of unsatisfied demand across the

five medium-impact disruption scenarios is zero. In the remaining five runs, the median fraction of
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unsatisfied demand ranges from approximately 0.4% to 9%. These percentages represent a small
proportion of the total demand of 100,000 bushels. High-impact scenarios exhibit greater variability,
with the median unsatisfied demand across runs ranging from 0 to 14,850 bushels. This corresponds
to approximately 0% to 14.8% of the total demand of 100,000 bushels. These percentages represent
the median proportion of unsatisfied demand calculated over the five high-impact disruption scenarios
in each run. They do not represent the model’s overall performance for the 90% low-impact case,
as they do not account for the total lost sales across all 100 scenarios. This analysis indicates that

high-impact disruption scenarios contribute most significantly to unsatisfied demand within the case.
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Figure 4.5: Median fraction of unsatisfied demand across low, medium, and high-impact scenarios under 90%

low-impact case, showing higher variability and number of lost sales in high-impact scenarios.

4.4.5 90% High-impact Case

In this case, 90 out of the 100 scenarios are high-impact disruptions, while the remaining
10 scenarios are evenly split, with five low-impact and five medium-impact disruptions. The average
cost of the model’s objective function, calculated over ten runs, is $2,604,781, with a standard
deviation of $273,349.8. The standard deviation is approximately 10% of the average objective
function costs which is higher than that observed in the 90% low-impact case, indicating greater
variability in costs under this distribution. The average computation time over these 10 runs is
approximately one hour and 37 minutes.

Again, the optimal solution to all 10 runs selects three primary suppliers, see Figure 4.6a.

However, the specific primary suppliers selected vary between runs. The number of backup suppliers
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ranges from four to five facilities. For primary factories, the number fluctuates between one and two,
while the number of selected backup factories varies between two, three, and four.
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Figure 4.6: Facility selection and capacity analysis across ten runs of 90% high-impact distribution

The average capacity of primary suppliers selected over 10 runs is 110,800 bushels, with
a standard deviation of 10,486 bushels. The average capacity for backup suppliers is 143,400
bushels, with a standard deviation of 27,842 bushels, see Figure 4.6b. The mean capacity of primary
factories, calculated over 10 runs, is 144,400 bushels, with a standard deviation of 34,027 bushels. In
comparison, the mean total capacity of backup factories is 214,400 bushels, with a standard deviation
of 64,278 bushels. This indicates that the total capacity variability among factories is higher than that
of suppliers. In the 90% high-impact case, the total capacity allocated to backup facilities is higher
than that allocated to primary facilities. This illustrates a preference for utilizing backup facilities to
address severe disruptions.

We analyzed the unsatisfied demand across all 100 scenarios per run for the 90% high-
impact case. In all 10 runs, the median unsatisfied demand is zero, indicating that the majority of
scenarios in each run do not experience lost sales. The highest average unsatisfied demand, calculated
over 100 scenarios within a single run, is 194 bushels, which accounts for about 0.19% of the total
demand. These results demonstrate that the model effectively manages disruptions in this distribution,
with minimal lost sales even under high-impact conditions. Additionally, we explore how lost sales

vary across different severity levels of scenarios to gain further insights.
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Next, we explored the fraction of unsatisfied demand across disruption severity levels. In
the 90% low-impact case results, we presented results for the median fraction of unsatisfied demand
across the low, medium, and high-imapct scenarios. However, unlike the 90% low-impact case, the
median unsatisfied demand is zero for all severity levels in the 90% high-impact case. Therefore, we
visualize the mean fraction of unsatisfied demand across disruption severity levels. The Figure 4.7
shows that the most extreme case is one run where the maximum mean unsatisfied demand over
high-impact scenarios is 216 bushels out of 100,000 bushels of demand. This represents a very small
fraction of the total demand. Additionally for low- and medium-impact scenarios, both the total and
median unsatisfied demand are zero in every run, meaning all demand was fully satisfied for these
scenarios. For high-impact scenarios, the median unsatisfied demand is zero in each of the ten runs.
This shows that most of the 90 high-impact scenarios per run have no unsatisfied demand. However,
the total unsatisfied demand for high-impact scenarios is greater than zero, indicating that a small

number of these scenarios experience unsatisfied demand, contributing to lost sales.
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Figure 4.7: Mean of unsatisfied demand across low, medium, and high-impact scenarios under 90% high-

impact case, showing higher variability in high-impact disruption scenarios.

4.4.6 Comparison of Two Cases

To gain deeper insights into the model’s performance, we compare key characteristics
across the two cases, including 90% low-impact and 90% high-impact cases. This comparison

focuses on total objective function costs, facility costs, recovery costs and unsatisfied demand.
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The analysis reveals that the objective function consistently increases with the severity
of disruptions in the cases 4.8a. This trend is expected as higher-impact disruptions demand more
resources and mitigation strategies, resulting in higher overall costs. Figure 4.9a illustrates that
the model allocates higher overall facility costs in the 90% high-impact case compared to the 90%
low-impact case. Figure 4.9a provides a detailed breakdown of mean facility costs over 10 runs for
each scenario case. The figures reveal that in the 90% low-impact case, the model allocates a higher
proportion of facility costs to primary facilities, whereas in the 90% high-impact case, it spends a
higher percentage of facility costs on backup facilities.

In addition, an interesting pattern emerges when we analyze recovery costs, as these costs
rise from scenarios with 90% low-impact to 90% high-impact cases. This indicates that cases with a
higher percentage of low-impact scenarios experience lower recovery costs, as shown in Figure 4.8b.
When comparing the model’s behavior in the 90% low-impact and 90% high-impact cases, we notice
differences in how costs are allocated. In the 90% low-impact case, the model appears to focus on
minimizing total costs by avoiding reliance on backup facilities, which helps keep recovery costs
lower. On the other hand, in the 90% high-impact case, the model allocates more resources to
handling intense disruptions, resulting in higher recovery, facility and total costs. These patterns

suggest that the model adjusts its cost allocation strategies in response to the severity of disruptions.
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Figure 4.8: Objective function costs and recovery costs per scenario disruption.

Interestingly, we observed that the variability of the mean unsatisfied demand over 100
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Figure 4.9: Comparison of facility costs between 90% low-impact and 90% high-impact distributions.

scenarios is higher in the 90% low-impact case than the 90% high-impact case, as mentioned in the
90% low-impact and 90% high-impact cases. We build on an earlier observation that the median
unsatisfied demand over 100 scenarios is consistently zero for nine out of 10 runs in 90% low-impact
case, while in the 90% high-impact case, the median unsatisfied demand is zero for all ten runs. This
finding suggests that many scenarios per run experience no lost sales, while a few contribute to the
total unsatisfied demand. Since the mean is not an efficient measure in this case due to high variability,
we investigate the percentage of scenarios with unsatisfied demand. Figure 4.10a shows that the
maximum percentage of scenarios with unsatisfied demand is 66% of the 100 scenarios within a run
for the 90% low-impact case, compared to less than 20% in the 90% high-impact case. Figure 4.10b
further examines the mean percentage of unsatisfied demand for scenarios with positive unmet
demand, showing that, despite higher variability in the 90% low-impact distribution, unmet demand
remains relatively low at an average of 8.4%, compared to less than 2% in the 90% high-impact case.
These analyses collectively provide a clearer understanding of the model’s performance, indicating

that it effectively meets demand in most scenarios.
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Figure 4.10: Comparison of the proportion of scenarios with unsatisfied demand and the average unsatisfied

demand relative to total demand across different scenario distributions.

4.4.7 Examining the Variability in Optimal Solutions

We choose the 90% low-impact distribution for further analysis, as it is more likely to
reflect disruption patterns in wheat supply chains. Although detailed data on the frequency and
severity of disruptions in these supply chains is limited, previous studies have indicated that low-
impact disruptions tend to occur more frequently, while high-impact disruptions are less frequent
but have more severe consequences [258, 259]. Given the lack of specific data, we assumed that
low-impact disruptions, such as minor transportation delays or small-scale equipment failures, occur
most frequently. In comparison, medium-impact disruptions, including labor shortages, partial
facility outages, or serious equipment failures, and high-impact disruptions, such as droughts, floods,
water shortages, or pest outbreaks, are less frequent but have the most significant impact when they
occur.

In the 90% low-impact distribution, we observe variability in facility selection across the 10

runs, see Table 4.5. This variability poses challenges for agribusinesses in deciding which facilities,
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primary or backup, to contract with to reduce the impact of disruptions. We examine this variability
to gain meaningful insights into the model’s performance. To explore it further, we analyze how
the objective function is affected when facility selections from each run are applied to Run 1. The
purpose of this analysis is to evaluate whether the variability in facility selection leads to significant
differences in cost. If applying facility selections from other runs results in a large increase in the
objective function, it would suggest that variability poses a significant challenge. Conversely, if the
differences are small, this would indicate that the facility selections across runs are near-optimal
solutions, and the variability is less of a concern. Figure 4.11 illustrates the percentage differences in
the objective function when facility selections from other runs are applied to Run 1. The analysis
shows that when the facility selections from the other nine runs are applied to Run 1, six out of nine
comparisons result in differences of less than 2%, accounting for approximately 66% of the cases.
This suggests that in the majority of cases, the facility selections from other runs perform close to
the optimal solution for Run 1. One comparison shows a difference of approximately 6%, while the

remaining two exhibit differences between 6% and 10%.

0% 2% 4% 6% 8% 10%
Difference in Objective Function (%)

Figure 4.11: Percentage differences in the objective function when facility selections from other runs are

applied to Run 1.

To better understand what parameters within the model may be causing this variability, we
next examine the disruption profiles across the ten runs in the 90% low-impact distribution. While
the distribution of disruption severities remains the same across runs, the scenarios are generated
with multiple randomly assigned parameters, leading to multiple sources of uncertainty within the
data. These parameters include the duration of disruptions, the timing of when disruptions begin,
the reduction in capacity after disruptions, and the facilities affected by disruptions. Each parameter
has different ranges within the uniform distributions for low-, medium-, and high-impact scenarios,

contributing to variability in scenario severity and frequency. The assumptions in our scenario
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generation process can lead to a wide range of different disruption situations. For instance, multiple
disruptions can occur simultaneously, there are no fixed limits on the number of disrupted facilities,
and facilities can be partial or fully unavailable. Although these assumptions help create scenarios
that reflect conditions closer to real-world disruptions, it also presents challenges in interpreting the

model’s behavior.
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Figure 4.12: Comparison of disruption characteristics and unsatisfied demand per scenario across ten runs in

the 90% low-impact distribution.

Therefore, we conduct an analysis to identify the characteristics of disruption scenarios
that impact the model’s ability to meet demand. We explored the relationship between unsatisfied
demand and two key factors such as total length of disruptions and the total number of disruptions
across all facilities. Figure 4.12a shows the relationship between unsatisfied demand (in bushels)
and the total disruption duration (in weeks) across all facilities. Each point in the plot represents a
single scenario from one of the ten runs, categorized by scenario type, including low-impact (green),
medium-impact (purple), and high-impact (orange). Therefore, the plots contain 1,000 data points.
Low-impact scenarios are clustered near the origin, with short disruption durations and minimal
unsatisfied demand, indicating the model’s ability to handle disruptions effectively in these cases.
Medium-impact scenarios are more dispersed, showing moderate disruption durations and higher
unsatisfied demand than low-impact scenarios. High-impact scenarios, however, show the widest
range, with disruption durations exceeding 400 weeks and unsatisfied demand reaching up to 40

bushels.
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Similarly, Figure 4.12b examines the relationship between unsatisfied demand (in bushels)
and the fotal number of disruptions across all facilities. The plot shows signs of a correlation between
the total number of disruptions and unsatisfied demand, particularly for high-impact scenarios. We
statistically analyzed the correlation between unsatisfied demand and the two key factors such as
the total number of disruptions and the total length of disruptions. The results confirm significant
correlations between both factors and unsatisfied demand, with stronger relationships observed for

high-impact scenarios, see Table 4.6.

Table 4.6: Spearman correlations between disruption characteristics and lost sales

Disruption Type Length of Disruptions # of Disruptions
Low-impact 0.1127 (P-value: 7.05 x 10~=%)  0.1250 (P-value: 1.69 x 10~%)
Medium-impact 0.3672 (P-value: 0.0087) 0.3023 (P-value: 0.0328)
High-impact 0.5403 (P-value: 5.12 x 1075)  0.5734 (P-value: 1.35 x 10?)

The following analysis explores the disrupted capacity over the time horizon for each run
to investigate further the factors contributing to variability in facility selection. By examining the
disrupted capacity across facilities over time, we aim to uncover patterns that may explain some
of the observed variability in the model’s facility selection decisions. To reduce the complexity
of presenting all 10 runs, we selected a subset of representative plots to highlight the key findings.
Specifically, Figure 4.13 visualizes the percentage of total capacity disrupted at each period for each
supplier and factory in runs 2 and 8. Each cell represents the total disrupted capacity across 100
scenarios at a given time in each run, highlighting the cumulative impact of disruptions over time.
To illustrate how the fraction of total disrupted capacity is calculated at each time period, consider
the example of Supplier 1 at time period 1. Suppose Supplier 1 experiences no disruptions in 70
scenarios, while in the remaining 30 scenarios, it operates at 50% of its capacity due to disruptions.
To calculate the fraction of disrupted capacity for this time period, we multiply the disruption level by
the number of scenarios for each case. In this example, 70 scenarios have no disruptions, contributing
zero to the disrupted capacity, while 30 scenarios with 50 percent disruption contribute to the total.
Adding these, we find that 15 percent of Supplier 1’s total capacity is disrupted at time period 1
across all 100 scenarios. The colors in the heat maps represent the percentage reduction in capacity at
each period. Darker red indicates a higher percentage of capacity reduction at a specific time, while
green shows that the facility’s capacity is fully available. Overall, comparing the Figures 4.13a and
4.13b shows that the reduction in capacity is higher at different periods in run 8 compared to run 2.

To mitigate these disruptions, the model selects backup suppliers, such as Suppliers 8 and 9, in run 8
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to ensure demand is met effectively.
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Figure 4.13: Patterns in total disrupted capacity over the time horizon for suppliers and factories across runs 2

and 8, calculated over 100 scenarios per run.

In run 2, Factory 6 shows a lower percentage of disrupted capacity, making it a good choice
for the model because it is the largest factory with lower production costs, see Figure 4.13c. In
contrast, in run 8, Factory 6 experiences significant capacity reductions over multiple time periods,
as indicated by the darker red cells, see Figure 4.13d. This may lead the model to select Factories 1
and 5 instead. The following Figure 4.14 compares the disrupted capacity distributions over time for
runs 1 and 4, highlighting key differences in how the model responds to varying disruption profiles.
Run 4 shows a more even distribution of disruptions over the time horizon, with intense capacity
reductions (darker red) spread across multiple periods. In contrast, run 1 has periods with minimal
disruptions (lighter colors) and others with concentrated reductions. Although the model selects

primary suppliers 7, 10, and 11 in both runs, it includes backup supplier 6 in run 1 but not in run 4.
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The heatmaps reveal that supplier 6 experiences a higher total duration of disruptions and greater
reductions in capacity in run 4 compared to run 1. This may explain why the model did not select
supplier 6 as a backup in run 4, as its higher levels of disruption could limit its effectiveness in
mitigating disruptions. The differences likely explains the selection of factory 6 in run 4, where

disruptions were less severe.
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Figure 4.14: Patterns in total disrupted capacity over the time horizon for suppliers and factories across runs 1

and 4, calculated over 100 scenarios per run.

4.5 Discussion and Conclusion

We developed a two-stage stochastic model to evaluate mitigation strategies for a multi-
echelon, single-product supply chain in the agricultural sector. The model incorporates various
disruption profiles designed using random factors, enabling the generation of multiple sources of

uncertainty with varying intensities.
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To assess the model’s performance, we studied its behavior under two cases: 90% low-
impact and 90% high-impact disruption scenarios. In the 90% low-impact case, the model exhibited
lower minimized objective function costs compared to the 90% high-impact case. This outcome is
attributed to reduced efforts in selecting factories and recovery costs due to the less severe nature of
disruptions. However, the 90% low-impact case also resulted in higher unsatisfied demand than the
high-impact case, as the model allocated fewer resources to mitigating disruptions.

The model’s flexibility lies in its ability to adjust to decision-makers’ preferences through
changes in the lost sales cost. Increasing the lost sales penalty encourages the model to allocate more
resources toward satisfying demand, even if this results in a higher total objective function cost. This
provides decision-makers with the ability to prioritize demand satisfaction over cost minimization
when necessary, allowing for a balanced approach to managing trade-offs in the supply chain.

In the 90% low-impact case, which we focused on as it more closely reflects disruption
patterns in the agricultural supply chain, we observed variability in facility selection across 10 runs.
Although all runs had an equal distribution of disruptions, the variability appears to be influenced by
the characteristics of the disruptions generated. This aligns with our assumption that disruptions are
defined by random factors such as length, start time, reduction rate in capacities, and the random
selection of facilities. For example, our analysis showed that the length and number of disruptions
significantly correlate with the model’s decisions on unsatisfied demand.

Additionally, the assumption that disruptions can vary in intensity—categorized as low-,
medium-, and high-impact—helps explain why the intensity of disruptions differs across the 10
runs, leading to differences in facility selection. For instance, in some runs with shorter and less
severe disruptions, the model prioritized minimizing costs by selecting fewer facilities, while in runs
with longer and more severe disruptions, the model allocated more resources to mitigate the impact,
resulting in a different set of facilities being selected.

This variability highlights the challenges that come from relying on assumptions about
random factors and disruption intensities. The differences in facility selection across the 10 runs
make it difficult for agribusinesses to identify a consistent strategy for mitigating disruptions and
satisfying demand.

The model has some limitations that should be acknowledged. Firstly, it assumes that
demand remains constant throughout the one-year time horizon. This does not account for potential
fluctuations in demand that may occur in real-world agricultural supply chains, which could influence
the results. Secondly, the model assumes that each facility can experience at most one disruption

over the entire time horizon. This assumption was made to reduce the complexity of the modeling
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and computational process. Thirdly, using numerous random factors in generating disruption profiles
introduced variability in the model’s results. While these factors allow for diverse and realistic
scenarios, they also created challenges in achieving robust and consistent results. This variability
made it more difficult to conduct a comprehensive analysis and perform sensitivity analyses to deeply
explore the model’s behavior.

Several directions for future work could enhance the current study. One avenue is to
consider both supply-side and demand-side uncertainties, which would provide a more comprehensive
understanding of disruptions and their impact on supply chain performance.

Another direction involves refining the approach to generating disruption and scenario
profiles. Since we observed that the combination of random factors (e.g., disruption length, start
time, and capacity reduction) significantly impacts the results, future work could explore the model’s
behavior by varying one factor while keeping the others constant. Repeating this process for different
factors would allow a deeper investigation into how specific characteristics influence the model’s
decisions. Additionally, future research could focus on reducing the variability in the input data for
generating disruption profiles. By narrowing the differences between disruption types, it would be
possible to better isolate the model’s behavior and achieve more consistent and robust results.

The first approach would help identify targeted mitigation strategies for specific disruption
conditions, such as long disruptions or higher reductions in capacity. This would enable agribusi-
nesses to develop strategies according to common disruption patterns in their operations. The
second approach would help reduce the variability in results, providing more reliable insights for

decision-making.
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Chapter 5

Conclusion

This dissertation applies OR methods to address critical challenges in U.S. agricultural
supply chains, with a particular focus on disrupting labor trafficking networks in unethical supply
chains and mitigating operational disruptions in ethical supply chains. The first research presented in
this dissertation highlights the need for targeted strategies to detect labor violations across different
states and industries, employing multi-level modeling that provides valuable insights to support
anti-trafficking efforts. Secondly, we explore intervention strategies within labor trafficking networks,
capturing the dynamic behaviors of trafficking activities in ways that go beyond traditional supply
chain models. We evaluate the impact of novel interventions, proposing a new approach to optimize
intervention effectiveness in detecting trafficking operations within illicit networks. Lastly, we
evaluate mitigation strategies that enhance the resilience of ethical agricultural supply chains under
diverse disruptions. Together, these contributions address operational and ethical concerns, supporting
the development of resilient and ethically responsive agricultural supply chains.

This research began with a comprehensive analysis of the current inspection strategies used
by government agencies to detect labor violations among H-2A workers across states and agricultural
sectors. In Chapter 2, we apply a zero-inflated negative binomial model, which provided valuable
insights into the distribution of detected H-2A violations. This allows us to identify the states and
sectors with frequent reports of violations, as well as areas that showed unexpectedly low or zero
counts. Notably, our analysis indicates that the absence of reported violations in certain regions does
not necessarily mean no violations have occurred. Our findings identify key characteristics related to
detected violations, which can help ensure a more targeted allocation of inspection resources. This
approach helps enhance the effectiveness of detecting and enforcing labor violations. Our findings

contribute to a more informed inspection strategy that aligns with the specific needs of agricultural
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regions and industries. They provide government agencies with a data-driven approach to allocate
resources where they are needed most, helping to better protect H-2A workers and support fair labor
practices.

Chapter 3 advances our understanding of labor trafficking networks by examining how
specific interventions can disrupt traffickers’ operations within these networks. Our research provides
novel insights into the structure and behaviors within trafficking networks, especially the interactions
between traffickers and anti-trafficking efforts. We employ a bi-level network interdiction model to
evaluate proposed interventions and identify those that are most effective in combating trafficking
operations. Our innovative model allows us to analyze twelve targeted interventions, and we utilize
k-means clustering to categorize them based on their impact on detection rates. This approach
highlights which strategies most effectively alter the network’s structure to prevent traffickers from
operating undetected. Our analysis also shows that the effectiveness of intervention strategies is
influenced by several factors, including the distribution of arcs, the number of echelons affected
and their specific disruption impact parameters. These findings provide anti-trafficking stakeholders
with a data-driven foundation for selecting and implementing interventions that effectively disrupt
trafficking activities within the agricultural sector.

In chapter 4, we develop a scenario-based, multi-period two-stage model that provides a
framework for designing supply chains under multiple disruptions, where both primary and backup
facilities can be impacted. The model allows for the evaluation of mitigation strategies, such as
backup facilities and multi-sourcing, over a defined time horizon. Two disruption distributions
were analyzed 90% low-impact and 90% high-impact distributions, representing varying levels of
disruption severity and frequency. The results demonstrate that the model employs different cost
prioritization strategies depending on the severity of disruptions. In 90% high-impact cases, the
model tends to select more backup facilities, allocate higher recovery costs, and achieve lower
unsatisfied demand compared to 90% low-impact cases. However, in both situations, the model
shows variability in facility selection across ten runs. Further analysis revealed that this variability
arises from multiple random factors in disruption scenarios, including random start times, disruption
lengths, and capacity reductions. These factors contribute to the challenge of providing consistent
facility selection decisions. This study highlights the need for a deeper understanding of how
different disruption intensities require varied mitigation strategies. High-impact disruptions, although
less frequent, can severely affect facility availability, requiring targeted strategies to address their

significant consequences.
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5.1 Future Research

Based on the findings of this dissertation, there are several promising areas for further
research. Future studies could focus on improving data collection and incorporating technical
advancements to enhance the effectiveness of models aimed at disrupting illicit supply chains and
strengthening resilience in agricultural supply chains. The following sections outline specific areas

for further research that build on these objectives.

5.1.1 Inspection Strategies to Detect Labor Violations among Farm Workers

A significant limitation in detecting labor violations among farm workers is the need for
detailed data on essential factors like healthcare access, housing quality, income, and health concerns.
While this study highlighted important factors through a comprehensive literature review, there
remains a strong need for more in-depth data to understand and fully address labor violations in
agriculture. Such data would support future research in developing more targeted inspection strategies
and effective approaches to protect farm workers. This study applied a multi level regression model
to identify correlations between certain factors and H-2A violation counts, providing a foundation
for future research. Building on this work, future studies could investigate causative relationships
between these factors and violation counts, offering insights that would be especially valuable for

shaping effective policies.

5.1.2 Intervention Strategies to Disrupt Labor Trafficking Networks

A primary constraint is the lack of detailed information on the exact number of individuals
affected through the victim’s journey from recruitment to exploitation, particularly within the
agricultural sector. Addressing this gap is essential for developing more effective and targeted anti-
trafficking strategies. To address data limitations, we aggregated information from multiple sources
and applied an expert opinion elicitation method to quantify expert assessments into numerical
data. Future research could explore the inter-dependencies in the model that were simplified due
to limited data on trafficked victims in agriculture. For instance, while we analyzed victim status
(e.g., documented, undocumented) independently of housing situations, these factors are likely
interconnected. Incorporating these relationships with improved data could enhance the model’s

accuracy and insights.
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CHAPTER 5. CONCLUSION

For simplicity, we assumed that only one intervention could occur per arc in the network.
Future research may consider relaxing this assumption to explore more realistic and complex
scenarios. In addition, quantifying how multiple interdictors divide their efforts and the impact of
their coordinated interventions is challenging, as their combined actions can either enhance or reduce
overall effectiveness depending on their level of collaboration. To address this, we simplified the
model by incorporating collaborative interventions into the detailed list, following the assumption
that only one intervention can occur per arc. Future work could refine the model by including more
detailed data on victim pathways and allowing for multiple interventions per arc. Further research on
interdictor collaboration and its impact could improve understanding of intervention effectiveness,

enhancing anti-trafficking strategies.

5.1.3 Mitigation Strategies for Enhancing the Resilience of Agricultural Supply
Chains

This study considered a constraint where multiple facilities could be disrupted simultane-
ously, but each facility could experience at most one disruption over the entire time horizon. Relaxing
this constraint to allow multiple disruptions at each facility would better reflect real-world disruption
patterns and provide deeper insights into the cumulative effects on supply chain resilience.

We also observed variability in the model’s results under different disruption sources and
intensities, particularly in facility selection and lost sales decisions. This variability arises from
the randomness in generating disruption scenarios, which closely mirrors real-world conditions but
increases the complexity of decision-making. One potential avenue for exploration is to vary one
random factor at a time while keeping others constant to analyze the model’s behavior systematically.
Another approach could involve narrowing the range of input data while keeping all factors random,

reducing variability and enabling a more focused evaluation of the model’s decisions.
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Appendix A

Total number of identified H-2A

violations per state

This heatmap shows where H-2A program violations were identified in different U.S. states
from 2010 to 2020. It includes a range of industries, highlighting where compliance issues with the
H-2A program have been found. This information helps reveal patterns in challenges across states

and industries.

H-2A Violation Count
(All Sectors)

12k

6k
4k

2k

Figure A.1: Geographical overview of H-2A violation counts in all sectors. The heatmap illustrates the total
number of identified H-2A violations per state from 2010 - 2020. Note that these violations span various

industries, not just those with NAICS codes beginning with “11”.
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Appendix B

Overview of data on labor trafficking

network

Evasion Probabilities and Capacities: Table B.1 displays the the probability of trafficking
operations evading detection prior to any additional interventions being taken (p;;) and capacity (u;;)
values used in the analysis of Section Result for each node. As mentioned in Section MIN-MAX
EVASION NETWORK INTERDICTION MODEL, we use node expansion methods to convert each
node in the original network G’ to a set of two nodes and an arc in G. This allows us to associate
interdictions and input data (including the capacities and evasion probabilities) with the new arc
added that represents each original node. Thus, for brevity, we describe the data in the table as it
pertains to each original node, with the understanding that this node is converted to an arc when
executing the model. Consequently, the capacity and evasion probability for arcs in the original
network (which do not correspond to nodes in the transformed network) are set to 1 so that they do
not have an effect on the results.

The capacities within the network function to ensure that, in the absence of any interven-
tions, the flow through the network aligns with the current fraction of trafficking operations that use
each part of the trafficking network. However, because the flow through the min-max flow network
interdiction model represents the overall likelihood of trafficking operations evading detection, the
amount of flow is reduced as it progresses through the network. This can be seen in the flow balance
constraints (e.g., (4.9) which state that the flow out of a node equals the flow into that node multiplied
by (i.e., reduced by) the probability of evading detection at that node. Hence, the outgoing flow will

be less than the incoming flow to a node if the corresponding evasion probability is less than 1. As
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such, to ensure that the flow through the network aligns with the proportion of trafficking operations
using each component of the network, we must create capacities u;; so that the resulting flow through
nodes in the absence of an intervention occurs in line with the desired proportions from the literature.
Let’s call these desired proportions ;;.

No normalization is needed for the first echelon (Recruitment) because constraint (4.46)
pushes 100% of the flow into the recruitment nodes; it has not yet been reduced by the evasion
probabilities. Thus, the capacities for the recruitment echelon are set equal to the proportions from
the literature (u;; = u;;).

All other echelons require normalizing the capacities. We explain our process using the
Status echelon as an example; the capacities for the other echelons can be calculated similarly. The
maximum amount of flow possible out of the recruitment echelon and into the status echelon equals
the sum product of the recruitment node capacities and the evasion probabilities (i.e., from Table B.1:
0.02 % 0.9 4 0.03 %« 0.96 + ... + 0.05 * 0.81 = 0.909). Thus, the total amount of flow that could go
into the Status echelon is 0.909%. We wish to normalize this flow by the proportion of trafficking
operations whose victims are in-status, have no U.S. status, and are U.S. citizens. We assumed from
the literature that 30% of agricultural labor trafficking trafficking victims are in status, 60% have no
U.S. status, and 10% are U.S. Citizens. Therefore, the resulting capacities for the Status become:

UTn—status: 0.3 ¥ 0.909 = 0.27

UNoU.S.Status: 0.6 ¥ 0.909 = 0.55

Uy SACitizen: 0.1 % 0.909 = 0.09

We estimated the input data 0%9" using the perception of probabilities, explained in Section
DATA AND INTERVENTIONS. The parameters §%/°% and §%"9" presented in Table B.2, indicate
the average values of ij‘-" for each arc under each intervention, categorized into low and high impact
scenarios.

Probability of scenarios — The scenario generation process begins once interdictors choose
an intervention strategy. This involves defining the specific interventions and the arcs they affect.
The number of potential scenarios depends on whether the interventions have low or high impacts.
To determine the probability of each scenario, we used the parameter §%¢, represented in Table B.2.
This parameter reflects the likelihood of low and high impacts on the network arcs under different
scenarios.

Imagine interdictor(s) select interventions A and B, which can affect certain arcs in the

network with varying probabilities. Each intervention has a probability of impacting an arc (4, j)
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under a specific scenario w, denoted as Hi’;?”d. Since each intervention can affect multiple arcs, we
calculate the average of 9[]-“’0{ across all arcs impacted by intervention d, separately for low and high
impacts. This results in an aggregated parameter 9({3;[ for each level of impact. The uncertainty in
the impact of interventions creates multiple possible scenarios. Each scenario represents a specific
combination of low and high impacts across all interventions, as detailed in Table B.3. Consequently,
the total number of possible scenarios is given by 92aep Xa_where each intervention d can either
have a low or high impact. For example, with two interventions, A and B, each having the potential
for either low or high impact, the total number of scenarios is 2% = 4.

To determine the probability of each scenario, we assume it can be derived as the product
of the average probabilities 9£$gd for the selected interventions. Specifically, for the second scenario
where intervention A has a low impact and intervention B has a high impact, the probability of
this scenario is calculated as 02%’2”4 X 025%”2’3, please see Table B.3. This approach allows us to
estimate the likelihood of each scenario by combining the independent probabilities of the impacts

from all selected interventions.
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Table B.1: The pre-intervention evasion probability and capacity data used as input into the network interdiction

model
Pre-Intervention

Node Evasion Probability (p;;) Capacity (u;;)
Force 0.90 0.02
Fraud 0.96 0.03
Coercion 0.96 0.03
Fees 0.95 0.02
Force/Fraud 0.87 0.07
Force/Coercion 0.89 0.07
Force/Fees 0.86 0.06
Fraud/Coercion 0.95 0.2
Fraud/Fees 0.93 0.10
Coercion/Fees 0.95 0.10
Force/Fraud/Coercion 0.86 0.05
Force/Fraud/Fees 0.83 0.04
Force/Coercion/Fees 0.85 0.04
Fraud/Coercion/Fees 0.92 0.12
F/F/C/F 0.81 0.05
In-status 0.92 0.2726
No U.S. status 0.98 0.5451
Citizen 0.94 0.0909
BC land 0.95 0.139
BC Air 0.92 0.078
BC Sea 0.95 0.026
No BC needed 0.99 0.174
Unofficial crossing 0.96 0.453
Employer-owned housing 0.95 0.376
Employer-facilitated housing 0.96 0.250
Third-Party housing 0.94 0.2090
‘Work hour 0.96 0.0159
Wage 0.94 0.0159
Mental abuse 0.96 0.0238
Physical abuse 0.87 0.0238
Work Hour/wage 0.91 0.0318
‘Work Hour/mental Abuse 0.95 0.0636
Work Hour/Physical Abuse 0.84 0.0636
Wage/mental Abuse 0.93 0.0795
Wage/physical Abuse 0.82 0.0795
Mental Abuse/Physical Abuse 0.86 0.159
Work Hour/wage/mental 0.90 0.0397
‘Work Hour/wage/physical 0.76 0.0397
‘Work Hour/mental/physical 0.80 0.0477
‘Wage/mental/physical 0.78 0.0715
WH/W/M/P 0.75 0.0397
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Table B.2: The table shows the post-intervention evasion probabilities and the likelihood that each intervention

has high impact and low impact.

Intervention )
D pdlow pd.high qgjlour q;i]?hzgh
dl 74% 26% 2% 12%
d2 50% 50% 3% 13%
d3 50% 50% 7% 17%
d4 37% 63% 6% 16%
ds 90% 10% 0.35% 3.5%
dé 50% 50% 0.35% 3.5%
d7 90% 10% 2% 12%
ds 56% 44% 1.25% 3.75%
d9 70% 30% 2% 12%
dl10 74% 26% 9% 18%
dl1 90% 10% 8% 18%
d12 38% 62% 10% 20%

Table B.3: Scenario generation and probabilities

Scenario  Intervention A Intervention B Probability

1 low low $1 = A Llow x 9B Llow

2 low high Bg = A Blow  gB.2high
3 high low b3 = 9A:3,high y pB,3,low
4 high high Ba = A1 Righ 9B 4 high
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