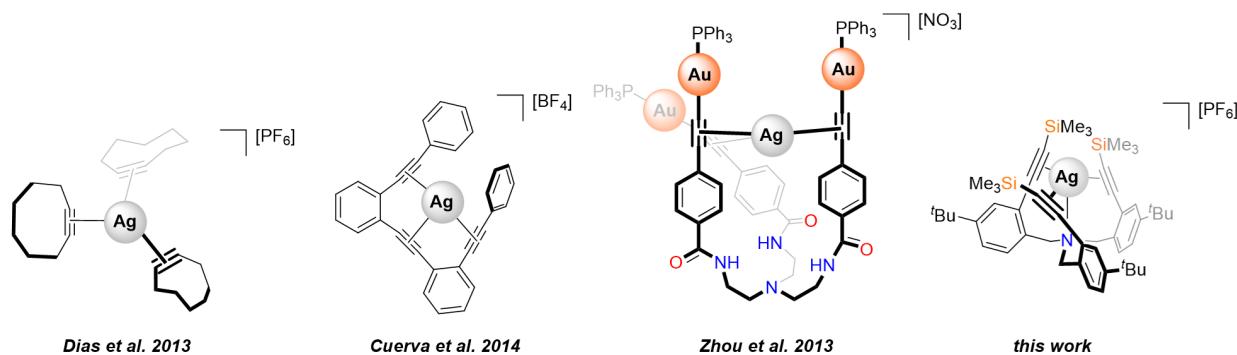


# Synthesis and Luminescence Studies of a Tethered, Trigonal, Silver(I) *Tris*-Alkyne Complex

Maxwell H. Furigay,<sup>1</sup> Brett D. Vincenzini,<sup>1</sup> Jun Gu,<sup>1</sup> Michael R. Gau,<sup>1</sup> Eric J. Schelter<sup>1,\*</sup>

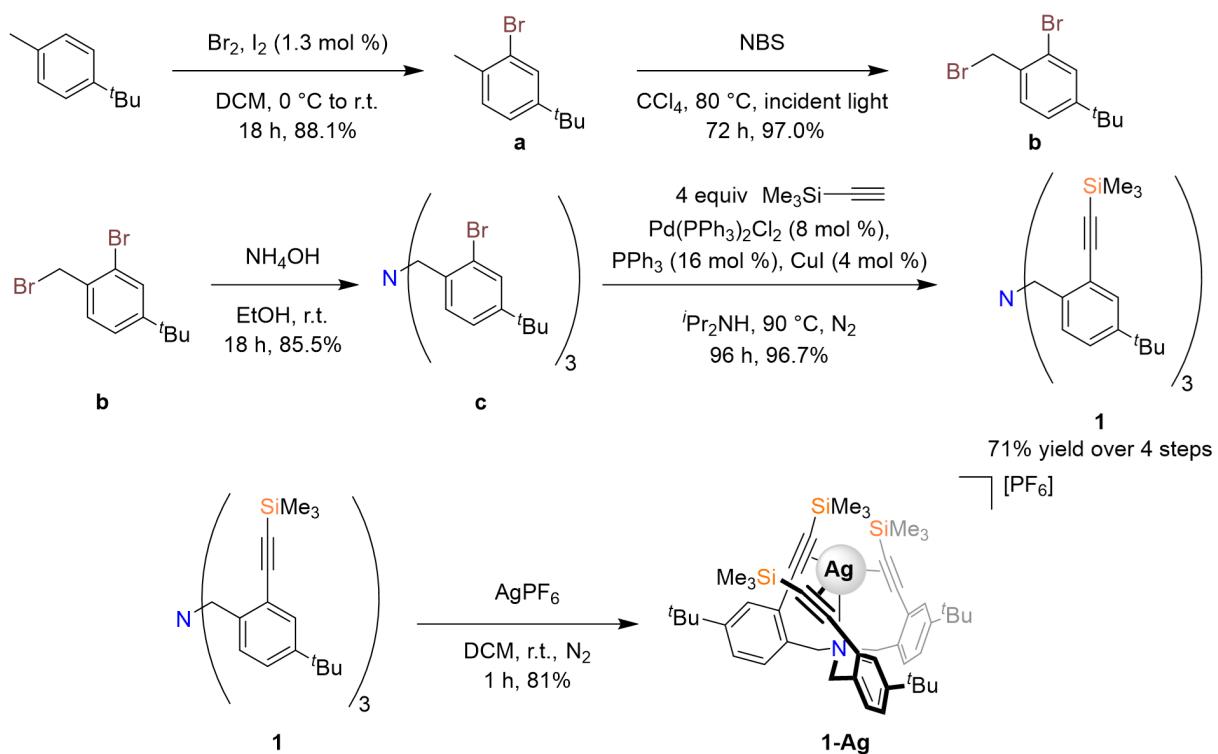
<sup>1</sup> P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34<sup>th</sup> Street, Philadelphia, Pennsylvania 19104, United States


\* To whom correspondence should be addressed

## Abstract

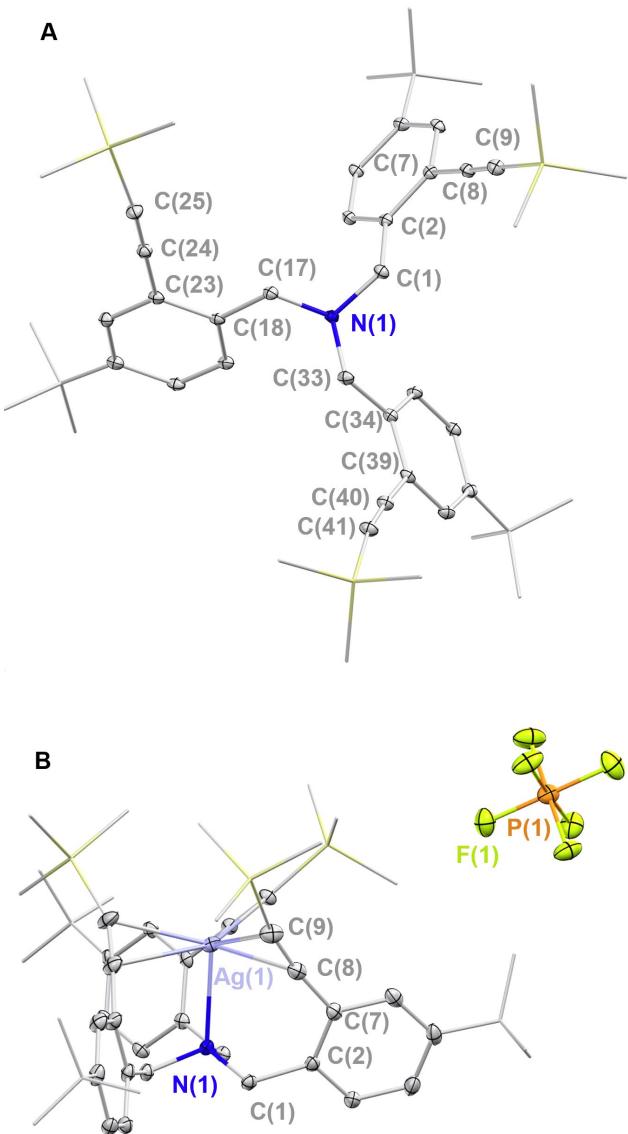
The synthesis and characterization of a *tris*-alkyne ligand *tris*-(2-(trimethylsilyl)ethynyl-4-*tert*-butyl-benzyl)amine (**1**), and its silver(I) hexafluorophosphate complex, **1-Ag**, are reported. The solid-state structure and luminescence properties of **1-Ag** indicate relatively strong silver(I)-alkyne interactions between the metal cation and **1**. No significant changes in bond angles or lengths were observed upon metalation of **1** with Ag<sup>+</sup>, indicating a relatively unstrained ligand-metal motif. The luminescence properties of **1** and **1-Ag** are also disclosed, showing attenuation in luminescence intensity upon Ag<sup>+</sup> metalation, with Stokes shifts of ~3,700 and ~3,200 cm<sup>-1</sup>, for **1** and **1-Ag**, respectively. The lifetimes of **1-Ag**,  $\tau_1 = 8.383 \pm 0.053$  ns and  $\tau_2 = 4.665 \pm 0.061$  ns, were longer than those of **1** ( $\tau_1 = 6.708 \pm 0.085$  ns and  $\tau_2 = 3.689 \pm 0.025$  ns), possibly indicating multiple conformers of **1-Ag** in solution. This new Ag-alkyne platform has potential applications in studies of catalysis, luminescent compounds, and sensing.

Studies of the interactions of  $\text{Ag}^+$  cations with alkynes are of interest in the contexts of catalysis, environmental chemistry, and luminescence. In catalysis,  $\text{Ag}^+$  is considered one of the most efficient activators of the carbon-carbon triple bond,<sup>1-3</sup> allowing for a variety of alkyne-derived transformations, including cycloadditions,<sup>4,5</sup> (sp)C-H activation,<sup>6,7</sup> alkyne hydrogenation,<sup>8,9</sup> and others.<sup>10-12</sup> A key intermediate formed in these transformations are alkyne  $\pi$ -complexes of the  $\text{Ag}^+$  cation.<sup>13,14</sup> In the context of environmental chemistry, the sensing and sequestering of  $\text{Ag}^+$  ions in solution is of interest. Silver nanoparticles are used to prevent bacterial growth in textiles,<sup>15</sup> but as clothing is laundered, toxic  $\text{Ag}^+$  can be released into wastewater streams or the body.<sup>16,17</sup> Considerable work has been done sensing of  $\text{Ag}^+$  cations in solution, which could be achieved by fluorescence quenching.<sup>18,19</sup> Finally, in the context of luminescence, Ag-alkyne complexes have applications in sensing and medical labeling.<sup>20,21</sup> Two multi-metallic examples containing chelating moieties include a *tris*-Ag tweezer complex reported by Custer and coworkers in 2005,<sup>22</sup> and a *tris*-Au-(Ag)-acetylide complex reported by Zhou and coworkers in 2013,<sup>23</sup> the latter of which is shown in **Figure 1**.


Based on such applications, there is interest in the characterization of isolable silver(I)-alkyne organometallic complexes to gain insight into the bonding and electronic structure between  $\pi$ -donating alkyne moieties and  $\pi$ -accepting  $\text{Ag}^+$  cations. Examples of recent related Ag-alkyne complexes reported in this context include an  $[\text{Ag}-\text{tris}(\text{cyclooctyne})][\text{PF}_6]$  complex reported by Dias and coworkers,<sup>13</sup> a *tris*-alkyne *ortho*-oligophenylene ethynylene (**Figure 1**),<sup>24</sup> and a 1,3-diketimine derivative-supported Ag complex  $[\text{N}\{(\text{C}_3\text{F}_7)\text{C}(\text{Dipp})\text{N}\}_2]\text{Ag}(\text{EtC}\equiv\text{CEt})$  (Dipp = 2,6-diisopropylphenyl) reported by Kroll and coworkers.<sup>25</sup>



**Figure 1.** Selected previous silver(I) *tris*-alkyne complexes and structure described in the present work, **1-Ag**.


For the current work, we expected that tethering coordinating *tris*-alkyne moieties to a tripodal moiety would constrain the geometry and flexibility of the heptadentate silver(I)-alkyne complex compared to  $\text{Ag}^+$  complexes with multiple bidentate ligands, without forcing an overall planar geometry comprising multiple alkyne moieties (see the *tris*-alkyne *ortho*-oligophenylene ethynylene reported by Cuerva and co-workers, **Figure 1**). This novel structural motif allows for the investigation of the metal-ligand bonding characteristics and electronic properties associated with tethered alkynes and for comparison with flexible, untethered alkynes. Herein, we describe the synthesis and characterization of a novel *tris*-alkyne ligand **1** within a tripodal ligand framework (**Figure 1**). And we report the synthesis of the tethered *tris*-alkyne silver complex **1-Ag** and the electronic, solid-state, and emissive properties of the complex. The synthesis and characterization of **1-Ag** allows for studies of the resulting properties, which indicated relatively strong silver(I)-alkyne interactions.

Synthesis of ligand **1** progressed as shown in **Scheme 1**. Iodine-catalyzed, bromine- $\text{S}_{\text{N}}\text{Ar}$  of 1-*tert*-butyl-4-methylbenzene yielded 2-bromo-4-*tert*-butyl-1-methylbenzene **a**. Radical bromination of **a** with *N*-bromosuccinimide (NBS) furnished 2-bromo-1-(bromomethyl)-4-*tert*-butylbenzene **b**. Ammonium hydroxide condensation of **b** yielded *tris*-benzyl amine product **c**, which was then subjected to Sonagashira cross-coupling conditions to furnish *tris*-alkyne **1** in 71% yield over four steps. X-ray quality crystals of **1** were obtained by cooling saturated chloroform solutions to 0 °C and letting the solutions stand for 18 h. The solid-state structure is shown in **Figure 2A**. The trimethylsilyl-deprotected product *tris*-(2-ethynyl-4-*tert*-butyl-benzyl)amine (**2**), not used further in this work due to its instability under basic conditions, was also isolated and characterized (see Supporting Information).



**Scheme 1.** Synthetic scheme for ligand **1** and complex **1-Ag**.

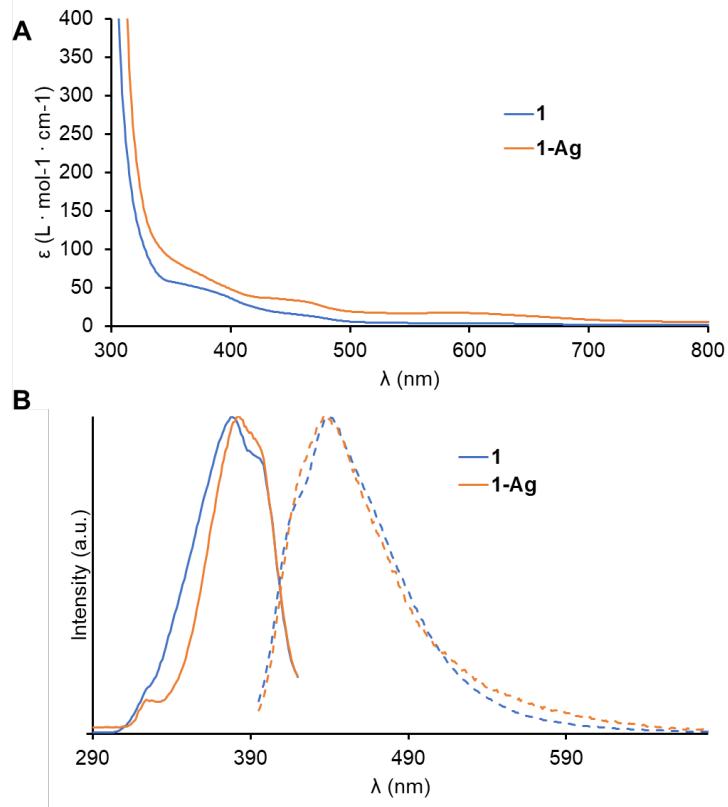
With **1** in hand, metalation reactions were investigated with the silver salt: AgPF<sub>6</sub>. Upon addition of an equimolar dichloromethane solution of AgPF<sub>6</sub> to a stirred dichloromethane solution of **1** (**Scheme 1**), a color change from colorless to green-blue was observed. After 1 h, the solvent was removed under reduced pressure and the resultant green-blue solid was washed with pentanes to yield the silver(I) hexafluorophosphate *tris*-alkyne product, **1-Ag**, in 81% yield. Green-blue X-ray quality crystals of **1-Ag** were obtained by layering pentane upon a saturated dichloromethane solution of **1-Ag** and allowing the pentane to diffuse over the course of 24 h at -20 °C, followed by another 48 h at RT. The solid-state structure of **1-Ag** is shown in **Figure 2B**.



**Figure 2.** Solid-state structures of **1** (**A**) and complex **1-Ag** (**B**). Hydrogen atoms and co-crystallized solvent molecules are omitted for clarity. Atoms are presented as thermal ellipsoids at 30% probability. *Tert*-butyl- and trimethylsilyl-groups are presented as 0.05 Å capped sticks.

$^1\text{H}$  and  $^{13}\text{C}\{^1\text{H}\}$  NMR spectroscopy of **1-Ag** showed three aromatic proton resonances and six aromatic carbon resonances, consistent with  $\text{C}_3$ -symmetry (**Figures S3** and **S4**).  $^1\text{H}$ - $^{13}\text{C}$  heteronuclear multiple bond correlation (HMBC) (**Figure S8**) allowed for unambiguous identification of three carbon doublets. The two alkyne resonances, centered at  $\delta = 92.88$  and 104.19 ppm, display Ag-C coupling constants of  $J = 10$  and 2 Hz, respectively, consistent with reported other Ag-C alkyne coupling constants, ranging from 2-19 Hz.<sup>26-28</sup> The benzylic carbon resonance was also observed to show Ag-C splitting, with a coupling constant  $J = 1$  Hz, consistent

with a two-bond interaction.<sup>26</sup> In sum, the  $^{13}\text{C}\{^1\text{H}\}$  NMR is consistent with the structure shown in **Figure 2B**, with central  $\text{Ag}^+$  cation bonding to both alkyne carbons and splitting the third benzylic carbon through the bridgehead N-atom.  $^1\text{H}$  NMR spectroscopy revealed that the benzylic peak, recorded at  $\delta = 3.84$  ppm for **1**, was split into two broad doublets at  $\delta = 3.99$  and  $3.29$  ppm for **1-Ag**, consistent with helical chirality introduced to the complex following metalation.


Although direct observation of the  $^{109}\text{Ag}$  or  $^{107}\text{Ag}$  resonances was impractical due to the long relaxation times and low gyromagnetic ratios associated with these nuclei,<sup>29</sup> a  $^{109}\text{Ag}$  chemical shift at  $\delta = 991$  ppm was observed using  $^1\text{H}$ - $^{109}\text{Ag}$  heteronuclear single quantum coherence (HSQC) NMR (**Figure S9**). The  $\text{Ag}^+$  cation interacted with only one of the two benzylic protons at  $\delta = 3.29$ . No cross-peaks were observed for the other benzylic proton at  $\delta = 3.99$ , signifying different chemical environments experienced by the two diastereotopic protons. The  $^{109}\text{Ag}$  chemical shift  $\delta = 991$  is indicative of a deshielded Ag nucleus, with  $^{109}\text{Ag}$  chemical shift values reported at  $\delta = 900$ - $1100$  for molecular (electron-withdrawing) Ag carboxylate species,<sup>29-31</sup>  $\delta = 500$ - $800$  for  $\sigma$ -donating,  $\pi$ -accepting N-heterocyclic carbene (NHC)  $\text{Ag}^+$  complexes,<sup>32,33</sup> and  $\delta = 0$ - $300$  for aqueous or DMSO-solvated  $\text{Ag}^+$  cations.<sup>29,34</sup> This deshielded  $\text{Ag}^+$  cation is characteristic of Ag-alkyne interactions due to the Ag  $d^{10}$  electron donation in  $\pi$ -accepting alkyne systems,<sup>35</sup> with representative Ag-alkyne chemical shift values including  $\delta = 988$ <sup>36</sup> and  $856$ .<sup>37</sup>

The **1-Ag** solid-state structure similarly revealed pseudo  $\text{C}_3$ -symmetry and heptadentate coordination at the  $\text{Ag}^+$  cation. The  $\text{C}\equiv\text{C}$  average bond distance did not lengthen at a statistically significant level between **1** ( $1.204(5)$  Å) and **1-Ag** ( $1.214(10)$  Å). No significant changes in either the tripodal N- $\text{CH}_2$ -C angle or the aryl-alkyne angle (such as the  $\text{C}(2)$ - $\text{C}(8)$ - $\text{C}(9)$  angle) were observed, with average N- $\text{CH}_2$ -C angles of  $113.1(4)^\circ$  and  $113.5(5)^\circ$  for **1** and **1-Ag**, respectively, and aryl-alkyne angles of  $120.7(3)^\circ$  and  $120.6(6)^\circ$  for **1** and **1-Ag**, respectively. In contrast, the average alkyne-silicon angle (such as the  $\text{C}(8)$ - $\text{C}(9)$ - $\text{Si}(1)$  angle) narrowed by an average of  $12.1$  degrees, from  $172.5(6)^\circ$  for **1** to  $160.4(8)^\circ$  for **1-Ag**, a phenomenon observed in other silver alkynes upon  $\eta^2$  coordination (**Table S1**).<sup>25</sup> The  $\text{Ag}^+$  cation was also observed to be coordinated by the bridgehead N-atom, with an  $\text{Ag}(1)$ - $\text{N}(1)$  bond length of  $2.423(3)$  Å. In sum, these data point to a conformationally unstrained, heptadentate  $\text{Ag}^+$  complex.

Infrared (IR) spectroscopy revealed a shift of  $66$   $\text{cm}^{-1}$  of the  $\nu_{\text{C}\equiv\text{C}}$  stretch from  $2156$   $\text{cm}^{-1}$  of the free ligand **1** to  $2090$   $\text{cm}^{-1}$  of complex **1-Ag** (**Figure S16**). This shift lies between the  $34$ - $79$   $\text{cm}^{-1}$  shifts reported by Noonikara-Poyil and coworkers for  $\text{Ag}^+$  coordination to acetylene,<sup>38</sup> and larger shifts such as that described by Dias and coworkers upon diethylacetylene coordination ( $136$   $\text{cm}^{-1}$ ).<sup>25</sup> The change in  $\text{C}\equiv\text{C}$  stretching frequency is used to determine relative degree of  $\pi$ -

backbonding between electron-rich  $d^{10}$  metals and  $\pi$ -accepting alkyne moieties.<sup>25,39</sup> Increased  $\pi$ -donation into a ligand-based  $\pi^*$  antibonding orbital decreases the bond order of alkynes, increasing the bond length and decreasing the  $\nu_{C\equiv C}$  stretching frequency. The  $136\text{ cm}^{-1}$  shift discussed above or the  $162\text{ cm}^{-1}$  shift described by Lang and coworkers<sup>39</sup> are some of the largest reported shifts. The comparatively small shift in the present case, coupled with no statistically significant change in  $C\equiv C$  bond length, points to a relatively small degree of Ag  $\pi$ -backdonation to coordinating alkynes compared to other  $Ag^+$ -alkyne complexes. Compared to other Group 11 metals, Ag is known to exhibit relatively low pi-backdonation with alkynes, and in the present case, the IR shift is smaller than shifts for Au or Cu alkyne complexes, which have been reported to show IR shifts of  $175\text{--}367\text{ cm}^{-1}$ .<sup>25,40,41</sup>

With the bonding of **1-Ag** established, we next turned to **1-Ag** photoluminescence spectroscopy. UV-visible (UV-vis) spectroscopy showed absorption starting at  $650\text{ nm}$  for **1-Ag**, conferring the characteristic green-blue color, and absorption starting at  $450\text{ nm}$  for **1** (**Figure 3A**). For photoluminescence experiments, the excitation wavelength  $375\text{ nm}$  was selected due to the strong absorption of both compounds in this spectral region. Upon excitation, **1** and **1-Ag** exhibited broad emission bands with emission maxima at  $440$  and  $436\text{ nm}$  with FWHMs of  $\sim 3,800$  and  $\sim 3,600\text{ cm}^{-1}$ , respectively (**Figure 3B**).



**Figure 3.** (A) UV-Vis spectra of **1** and **1-Ag** in  $\text{CH}_2\text{Cl}_2$  (10 mM). (B) Normalized excitation (solid lines, 440 nm emission wavelength) and emission (dashed lines, 375 nm excitation wavelength) spectra of **1** and **1-Ag** in  $\text{CH}_2\text{Cl}_2$  (10 mM).

While the normalized emission profiles of **1** and **1-Ag** are similar, the emission intensity of **1-Ag** was attenuated compared to **1**, which can be ascribed to higher self-quenching due to the increased absorptivity at the fluorescence emission maximum wavelength displayed by **1-Ag** compared to **1**. Similar fluorescence quenching has been previously observed in  $\text{Ag}^+$ -alkyne complexes,<sup>24</sup> as well as other emissive compounds upon addition of  $\text{Ag}^+$ .<sup>42,43</sup> The corresponding excitation spectra of **1** and **1-Ag** displayed broad excitation bands with excitation maxima located at 378 and 383 nm, respectively. The excitation bands in both spectra contain an intense low-energy shoulder at 400 nm and a weak high energy feature at 326 nm. The Stokes shifts for **1** and **1-Ag** were determined to be  $\sim 3,700$  and  $\sim 3,200 \text{ cm}^{-1}$ , respectively. The reduced Stokes shift observed for **1-Ag** suggests that coordination of **1** to the silver ion inhibits nonradiative vibrational relaxation processes. The similarities between the excitation and emission spectra of **1** and **1-Ag** and the energies of the transitions indicate that the luminescent behavior of both species originates from intraligand  $\pi-\pi^*$  transitions, a phenomenon observed in the literature for other aryl organometallic complexes.<sup>44</sup>

Fluorescence lifetime measurements were obtained for **1** and **1-Ag** at 360 nm excitation (**Figures S29** and **S30**). Optimized multi-exponential fits obtained for **1** and **1-Ag** yielded two decay processes for each compound. The lifetimes of **1-Ag**,  $\tau_1 = 8.383 \pm 0.053 \text{ ns}$  and  $\tau_2 = 4.665 \pm 0.061$ , were longer than those of **1**,  $\tau_1 = 6.708 \pm 0.085 \text{ ns}$  and  $\tau_2 = 3.689 \pm 0.025$ , and both fell within the range of previously reported lifetimes for arylacetylenes and structurally comparable Group 11 alkyne complexes.<sup>24,45-47</sup> Multiple fluorescence decay lifetimes have previously been observed in OPE foldamers and were attributed to the presence of multiple emissive conformers in solution.<sup>24</sup> Here, a similar mechanism may be operative, in which **1** and **1-Ag** rapidly interconvert between two emissive conformations.

We have disclosed the synthesis and characterization of a tethered, *tris*-alkyne ligand and demonstrated its ability to bind  $\text{Ag}^+$  cations. After  $\text{Ag}^+$  coordination, few significant changes in ligand bond lengths or angles were observed, speaking to the relatively unconstrained nature of the complex **1-Ag**. Photoluminescence spectroscopy indicated that the luminescent behavior of **1-Ag** likely originated from ligand  $\pi-\pi^*$  transitions, rather than transitions implicating the  $\text{Ag}^+$  metal cation. These studies also suggest that the excited state of the complex was relatively long-lived compared to the free ligand, and that multiple emissive **1-Ag** conformers may exist in **1** and

**1-Ag** solutions. These results provide insights into the nature of  $\text{Ag}^+$ /alkyne  $\pi$ -complexes, a common motif in luminescent compounds and catalysis.

## Associated Content

The Supporting Information is available free of charge on the ACS Publications website at XXX: Experimental, NMR/IR/UV-Vis spectra, crystallography, photoluminescence details (PDF).

## Accession Codes

CCDC deposition numbers 2345078-2345080 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via [www.ccdc.cam.ac.uk/data\\_request/cif](http://www.ccdc.cam.ac.uk/data_request/cif), or by emailing [data\\_request@ccdc.cam.ac.uk](mailto:data_request@ccdc.cam.ac.uk), or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

## Author Information

### *Corresponding Author*

\* E-mail: [schelter@sas.upenn.edu](mailto:schelter@sas.upenn.edu)

### *ORCID*

Maxwell H. Furigay: 0000-0001-8643-7737

Brett D. Vincenzini 0000-0003-4144-6378

Jun Gu: 0000-0003-2701-4421

Michael R. Gau 0000-0002-4790-6980

Eric J. Schelter: 0000-0002-8143-6206

## Acknowledgements

The authors thank the National Science Foundation (CHE-1955724) for financial support of this work. The authors also thank the University of Pennsylvania for support. M.H.F. thanks Cameron B. Berlin and Cassandra D. Vu (Kozlowski Group, University of Pennsylvania) for assistance and advice with organic synthesis and purification.

## References

1 Fang, G.; Bi, X. Silver-catalysed reactions of alkynes: recent advances. *Chem. Soc. Rev.* **2015**, *44*, 8124-8173.

2 Kern, N.; Blanc, A.; Miaskiewicz, S.; Robinette, M.; Weibel, J.-M.; Pale, P. Coinage Metals-Catalyzed Cascade Reactions of Aryl Alkyneaziridines: Silver(I)-Single vs Gold(I)-Double Cyclizations. *J. Org. Chem.* **2012**, *77*, 4323-4341.

3 Fürstner, A.; Davies, P. W. Catalytic Carbophilic Activation: Catalysis by Platinum and Gold  $\pi$  Acids. *Angew. Chem. Int. Ed.* **2007**, *46*, 3410-3449.

4 McNulty, J.; Keskar, K. Vemula, R. The First Well-Defined Silver(I)-Complex-Catalyzed Cycloaddition of Azides onto Terminal Alkynes at Room Temperature. *Chem. Eur. J.* **2011**, *17*, 14727-14730.

5 Campeau, D.; Pomainville, A.; Gorodnichy, M.; Gagosz, F. Copper and Silver Catalysis in the (3 + 2) Cycloaddition of Neutral Three-Atom Components with Terminal Alkynes. *J. Am. Chem. Soc.* **2023**, *145*, 19018-19029.

6 Sivaguru, P.; Cao, S.; Babu, K. R.; Bi, X. Silver-Catalyzed Activation of Terminal Alkynes for Synthesizing Nitrogen-Containing Molecules. *Acc. Chem. Res.* **2020**, *53*, 662-675.

7 Ning, Y.; Ji, Q.; Liao, P.; Anderson, E. A.; Bi, X. Silver-Catalyzed Stereoselective Aminosulfonylation of Alkynes. *Angew. Chem. Int. Ed.* **2017**, *129*, 13993-13996.

8 Kung, H.; Wu, S.-M.; Wu, Y.-J.; Yang, Y.-W.; Chiang, C.-M. Tracking the Chemistry of Unsaturated  $C_3H_3$  Groups Adsorbed on a Silver Surface: Propargyl–Allenyl–Acetylide Triple Bond Migration, Self-Hydrogenation, and Carbon–Carbon Bond Formation. *J. Am. Chem. Soc.* **2008**, *130*, 10263-10273.

9 Vilé, G.; Pérez-Ramírez, J. Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production. *Nanoscale* **2014**, *6*, 13476-13482.

10 Alonso, F.; Beletskaya, I. P.; Yus, M. Transition-Metal-Catalyzed Addition of Heteroatom–Hydrogen Bonds to Alkynes. *Chem. Rev.* **2004**, *104*, 3079-3160.

11 Karmakar, R.; Lee, D. Reactions of arynes promoted by silver ions. *Chem. Soc. Rev.* **2016**, *45*, 4459-4470.

12 Yang, S.; Rui, K.-H.; Tang, X.-Y.; Zu, Q.; Shi, M. Rhodium/Silver Synergistic Catalysis in Highly Enantioselective Cycloisomerization/Cross Coupling of Keto-Vinylidene cyclopropanes with Terminal Alkynes. *J. Am. Chem. Soc.* **2017**, *139*, 5957-5964.

13 Das, A.; Dash, C.; Celik, M. A.; Yousufuddin, M.; Frenking, G.; Dias, H. V. R. Tris(alkyne) and Bis(alkyne) Complexes of Coinage Metals: Synthesis and Characterization of  $(\text{cyclooctyne})_3\text{M}^+$  ( $\text{M} = \text{Cu, Ag}$ ) and  $(\text{cyclooctyne})_2\text{Au}^+$  and Coinage Metal ( $\text{M} = \text{Cu, Ag, Au}$ ) Family Group Trends. *Organometallics* **2013**, *32*, 3135-3144.

14 Olenin, A. Y. Mingalev, P. G. Similarities and differences in the mechanisms alkyne and isonitrile transformations catalyzed by silver ions and nanoparticles. *Mol. Catal.* **2023**, *200*, 111258.

15 Hedberg, J.; Skoglund, S.; Karlsson, M.; Wold, S.; Wallinder, I. O.; Hedberg, Y. Sequential Studies of Silver Released from Silver Nanoparticles in Aqueous Media Simulating Sweat, Laundry Detergent Solutions and Surface Water. *Environ. Sci. Technol.* **2014**, *48*, 7314-7322.

16 Levard, C.; Hotze, E. M.; Lowry, G. V.; Brown, G. E. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. *Environ. Sci. Technol.* **2012**, *46*, 6900-6914.

17 Boehmler, D. J.; O'Dell, Z. J.; Chung, C.; Riley, K. R. Bovine Serum Albumin Enhances Silver Nanoparticle Dissolution Kinetics in a Size- and Concentration-Dependent Manner. *Langmuir* **2020**, *36*, 1053-1061.

18 Levard, C.; Hotze, E. M.; Lowry, G. V.; Brown, G. E. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. *Environ. Sci. Technol.* **2012**, *46*, 6900– 6914.

19 Hui, J.; O'Dell, Z. J.; Rao, A.; Riley, K. R. In Situ Quantification of Silver Nanoparticle Dissolution Kinetics in Simulated Sweat Using Linear Sweep Stripping Voltammetry. *Environ. Sci. Technol.* **2019**, *53*, 13117-13125.

20 Pei, X.-L.; Guan, Z.-J.; Nan, Z.-N.; Wang, Q.-M. Heterometallic Coinage Metal Acetylenediide Clusters Showing Tailored Thermochromic Luminescence. *Angew. Chem. Int. Ed.* **2021**, *60*, 14381-14384.

21 Yam; V. W.-W.; Au, V. K.-M.; Leung, S. Y.-L. Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes. *Chem. Rev.* **2015**, *115*, 7589-7728.

22 Custer, P. D.; Garrison, J. C.; Tessier, C. A.; Youngs, W. J. Anion Directed Synthesis of Paddlane and Trisilver Tweezer Complexes Based upon Silver Coordination Chemistry. *J. Am. Chem. Soc.* **2005**, *127*, 5738-5739.

23 Zhou, Y.-P.; Liu, E.-B.; Wang, J.; Chao, H.-Y. Highly  $\text{Ag}^+$  Selective Tripodal Gold(I) Acetylide-based “Off-On” Luminescence Chemosensors based on  ${}^3(\pi\pi^*)$  Emission Switching. *Inorg. Chem.* **2013**, *52*, 8629-8637.

24 Martin-Lasanta, A.; Alvarez de Cienfuegos, L.; Johnson, A.; Miguel, D.; Mota, A. J.; Orte, A.; Ruedas-Rama, M. J.; Ribagorda, M.; Cardenas, D. J.; Carreno, M. C.; Echavarren, A. M.; Cuerva, J. M. Novel ortho-OPE metallofoldamers: binding induced folding promoted by nucleating  $\text{Ag(I)}$ -alkyne interactions. *Chem Sci.* **2014**, *5*, 4582-4591.

25 Dias, H. V. R.; Flores, J. A.; Wu, J.; Kroll, P. Monomeric Copper(I), Silver(I), and Gold(I) Alkyne Complexes and the Coinage Metal Family Group Trends. *J. Am. Chem. Soc.* **2009**, *131*, 11249-11255.

26 Packheiser, R.; Walfort, B.; Lang, H. Heterobi- and Heterotrimetallic Transition Metal Complexes with Carbon-Rich Bridging Units. *Organometallics* **2006**, *25*, 4579-4587.

27 Janssen, M. D.; Köhler, K.; Herres, M.; Dedieu, A.; Smeets, W. J. J.; Spek, A. L.; Grove, D. M.; Lang, H.; Van Koten, G. Monomeric Bis( $\eta^2$ -alkyne) Complexes of Copper(I) and Silver(I) with  $\eta^1$ -Bonded Alkyl, Vinyl, and Aryl Ligands. *J. Am. Chem. Soc.* **1996**, *118*, 4817-4829.

28 Back, S.; Gossage, R. A.; Lutz, M.; Del Río, I.; Spek, A. L.; Lang, H.; van Koten, G. Bis-ortho-chelated Diaminoaryl Platinum Compounds with  $\sigma$ -Acetylene Substituents. Investigations into Their Stability and Subsequent Construction of Multimetallic Systems. The Crystal Structure of  $[(\mu^2-[(\eta^2-\text{NCN})\text{Pt}(\eta^1-\text{CO})\text{C:CSiMe}_3])\text{Co}_2(\text{CO})_6]$  (NCN = 2,6-Bis[(dimethylamino)methyl]phenyl). *Organometallics* **2000**, *19*, 3296-3304.

29 Penner, G. H.; Liu, X. Silver NMR spectroscopy. *Prog. Nucl. Magn. Reson. Spectrosc.* **2006**, *49*, 151-167.

30 Zanger, K.; Armitage, I. M. Silver and Gold NMR. *Met.-Based Drugs* **1999**, *6*, 239-245.

31 Barreiro, E.; Casas, J. S.; Couce, M. D.; Sanchez, A.; Sordo, J.; Varela, J. M.; Vazquez-Lopez, M. New structural features in triphenylphosphinesilver(I) sulfanylcarboxylates. *Dalton Trans.* **2005**, *9*, 1707-1715.

32 Tate, B. K.; Jordan, A. J; Bacsa, J.; Sadighi, J. P. Stable Mono- and Dinuclear Organosilver Complexes. *Organometallics* **2017**, *36*, 964-974.

33 Hansen, C.; Docherty, S. R.; Cao, W.; Yakimov, A. V.; Coperet, C.  $^{109}\text{Ag}$  NMR chemical shift as a descriptor for Brønsted acidity from molecules to materials. *Chem. Sci.* **2024**, *15*, 3028-3032.

34 Guinand, L.; Hobt, K. L.; Mittermaier, E.; Rößler, E.; Schwenk, A.; Schneider, H.  $^{109}\text{Ag}$  NMR- Study of the Selective Solvation of the  $\text{Ag}^+$  Ion in Solvent Mixtures of Water and the Organic Solvents: Pyridine, Acetonitrile, and Dimethyl Sulfoxide. *Z. Naturforsch., A: Phys. Sci.* **1984**, *39a*, 83-94.

35 Elschenbroich, C.; Salzer, A. The Organometallic Chemistry of Transition Metals. In *Organometallics*, 2<sup>nd</sup> ed.; VCH: Weinheim, 1992. Crabtree, R. A. ed.; Wiley: New York, 1988.

36 Letinois-Halbes, U.; Pale, P.; Berger, S. Ag NMR as a Tool for Mechanistic Studies of Ag-Catalyzed Reactions: Evidence for in Situ Formation of Alkyn-1-yl Silver from Alkynes and Silver Salts. *J. Org. Chem.* **2005**, *70*, 9185-9190.

37 Asay, M.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Synthesis of Allenylidene Lithium and Silver Complexes, and Subsequent Transmetalation Reactions. *Angew. Chem. Int. Ed.* **2009**, *48*, 4796-4799.

38 Noonikara-Poyil, A.; Ridlen, S. G.; Fernandez, I.; Dias, H. V. R. Isolable acetylene complexes of copper and silver. *Chem. Sci.* **2022**, *13*, 7190-7203.

39 Lang, H.; Kohler, K.; Blau, S.  $\mu^2$ -Alkyne copper(I) and silver(I) compounds; from polymeric  $[\text{M}^{\text{I}}\text{R}]_n$  to monomeric  $[\text{M}^{\text{I}}\text{R}]$  units (M = Cu, Ag). *Coord. Chem. Rev.* **1995**, *143*, 113-168.

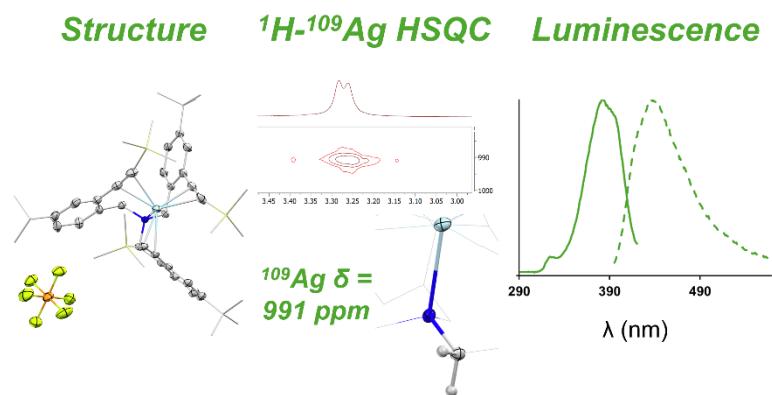
40 Motloch, P.; Jašík, J.; Roithová, J. Gold(I) and Silver(I)  $\pi$ -Complexes with Unsaturated Hydrocarbons. *Organometallics* **2021**, *40*, 1492-1502.

41 Mehara, J.; Watson, B. T.; Noonikara-Poyil, A.; Zacharias, A. O.; Roithová, J.; Dias, H. V. R. Binding Interactions in Copper, Silver, and Gold  $\pi$ -complexes. *Chem. Eur. J.* **2022**, *28*, e202103884.

42 El-Ghamry, M. R.; Frei, R. W.; Higgs, G. W. Determination of submicrogram amounts of silver(I) by quenching of fluorescence. *Anal. Chim. Acta* **1969**, *47*, 41-48.

43 Al-Thaqafy, S. H.; Asiri, A. M.; Zayed, M. E. M.; Alam, M. Z.; Ahmad, A.; Fatima, M.; Kumar, S.; Khan, S. A. Physicochemical investigation and fluorescence quenching of biologically active

pyrrole-containing push-pull chromophore by Ag nanoparticles. *J. Mol. Struct.* **2023**, *1274*, p. 1, 134421.


44 Lapsheva, E.; Yang, Q.; Cheisson, T.; Pandey, P.; Carroll, P. J.; Gau, M. R.; Schelter, E. J. Electronic Structure Studies and Photophysics of Luminescent Th(IV) Anilido and Imido Complexes. *Inorg. Chem.* **2023**, *62*, 6155-6168.

45 Liu, N.; Liu, L.; Zhong, X.-X.; Li, F.-B.; Li, F.-Y.; Qin, H.-M. Ethynyl  $\pi$ -coordinated and non-coordinated mononuclear Cu(I) halide diphosphine complexes: synthesis and photophysical studies. *New J. Chem.* **2022**, *46*, 3236-3247.

46 Devadoss, C.; Bharathi, P.; Moore, J. S. Energy Transfer in Dendritic Macromolecules: Molecular Size Effects and the Role of an Energy Gradient. *J. Am. Chem. Soc.* **1996**, *118*, 9635-9644.

47 Greco, N. J.; Hysell, M.; Goldenberg, J. R.; Rheingold, A. L.; Tor, Y. Alkyne-containing chelating ligands: synthesis, properties and metal coordination of 1,2-di(quinolin-8-yl)ethyne. *Dalton Trans.* **2006**, 2288-2290.

## TOC Graphic



## Synopsis

The synthesis and characterization of a tethered, trigonal *tris*-alkyne silver(I) complex is presented. Structural, spectroscopic, and luminescence studies offer insights into the nature of the silver-alkyne  $\pi$ -interactions, a motif with interest in the fields of luminescence, separations, and catalysis.