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Ecological interactions and symbiosis between algae and fungi
are ancient, widespread, and diverse with many independent
origins. The heterotrophic constraint on fungal nutrition drives
fungal interactions with autotrophic organisms, including algae.
While ancestors of modern fungi may have evolved as parasites
of algae, there remains a latent ability in algae to detect and
respond to fungi through a range of symbioses that are
witnessed today in the astounding diversity of lichens,
associations with corticoid and polypore fungi, and endophytic
associations with macroalgae. Research into algal-fungal
interactions and biotechnological innovation have the potential
to improve our understanding of their diversity and functions in
natural systems, and to harness this knowledge to develop
sustainable and novel approaches for producing food,

energy, and bioproducts.
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Introduction

Interactions between fungi and algae are ancient and di-
verse in form and function, ranging from parasitisms to
mutualisms [1,2]. Such cross-kingdom interactions are
hypothesized to have been essential in the terrestrializa-
tion of Earth, and to have led to evolutionary radiations of
fungal diversity, as well as the origin and radiation of land
plants [3,4]. Lichens are the best-known and most diverse
examples of algal-fungal mutualisms [4], yet new forms of
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symbiosis between fungi and algae continue to be dis-
covered and described [5].

Algal and fungal diversity

Algae constitute a polyphyletic group of eukaryotic
photosynthetic organisms that arose through the en-
dosymbiotic acquisition of a cyanobacterial plastid an-
cestor and account for at least ten major radiations and
eukaryotic clades [6]. The majority of algae are uni-
cellular. However, over the past billion years, multi-
cellularity evolved independently in Chlorophytes, as well
as streptophyte algae enabling the colonization of land
and biological radiations [7,8]. While some algal clades
are strictly photoautotrophic, many are mixotrophic,
switching between heterotrophic and photosynthetic
modes [9]. The capacity of mixotrophic nutrition has
been shown through modeling to increase the efficiency
of energy flow through ocean food webs [10], and may
impact how and when fungi and algae interact.

In contrast to algae, fungi comprise a monophyletic
kingdom of heterotrophic organisms [11]. The early-
branching fungal lineages Cryptomycota, Sanchytriomycota,
and Chytridiomycota are aquatic endoparasites of algae
and other organisms, although the nutrition of chytrids
can span from strict saprotrophs to obligate parasites
[12-14]. Fungi have been hypothesized to have had a
freshwater origin, to have evolved within microbial
crusts colonizing land, or to have originated through the
transition from water to terrestrial environments, leading
to polar multicellular mycelial growth [15,16]. Even
today, Cryptomycota can be found in alpine snow packs
where they parasitize diverse algae from Chorophyta and
Ochrophyta [17,18].

Fungi are osmotrophic organisms and rely on secretory
pathways for interacting with other organisms and for
obtaining carbon, nutrients, and water from their en-
vironment [19]. Fungal heterotrophic nutrition may be
one factor in the landscape of natural selection that may
explain why such a significant amount of fungal biodi-
versity has evolved to be symbiotic and dependent on
photosynthetic organisms [2,20]. This allows fungi to
directly derive their carbon in a high-quality form that
can easily be assimilated. At an ecosystem level, such
multikingdom symbioses between photosynthetic algae
and plants with heterotrophic fungi are likely to improve
the efficiency of energy flowing through terrestrial food
webs [21].
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2 Host-Microbe Interactions: Fungi

The evolution of symbiotic interactions between algae
and fungi necessitates that these organisms coexist spa-
tially and temporally in a habitat during some point of
their life cycle. This is the ecological context that gives
rise to evolutionary processes. It is relevant that early-
branching aquatic fungal lineages evolved to be en-
doparasites of many diverse groups of algae [1,12,32].
This implies that sophisticated and adaptive genetic
networks existed in ancestral fungi for locating, inter-
acting with, and colonizing algae, which may have later
been co-opted to facilitate the evolution of lineage-
specific symbioses between fungi and algae. For ex-
ample, it has been shown that green algae and land
plants share orthologous proteins for recognition of
fungi, homologous to Lysin-motif Receptor-like kinase
receptors [22]. These receptors are involved in symbiosis
and are known to trigger immune responses. [hus,
streptophyte algae were already equipped to detect, and
potentially defend themselves, against fungal parasites
[23]. A comprehensive phylogenomic analysis of green
algal and nonvascular land plant genomes demonstrated
that the common symbiotic signaling pathway that un-
derlies arbuscular mycorrhizal symbiosis predated the
first land plants, indicating that their algal ancestors may
have been preadapted for symbiosis with fungi [22].
Indeed, divergence time estimates indicate that fungi
first occupied terrestrial environments in a mycelial form
around 790 million years ago, after the loss of the fla-
gellum [4]. At this time in Earth’s history, embryophytes
might not have yet differentiated from their closest
aquatic green algal relatives (Zygnematophyceae), thus,
fungi would have been living in associations with ex-
isting microbial communities, including terrestrial green
algae. This scenario has been hypothesized to provide
the context to explain the extreme diversity (~20 000
species) of fungi that associate with algae, predominantly
those that form lichen symbioses [4].

Figure 1

Lichens: the quintessential algal-fungal
symbiosis

Lichens are perhaps the most well-known and ecologi-
cally successful form(s) of algal-fungal symbioses
(Figure 1d). Lichens are estimated to colonize nearly 8%
of Earth’s surface where they play important roles in soil
formation, stabilization, and functioning, particularly in
dryland and tundra ecosystems [24-26]. One particularly
intriguing aspect of the lichen symbiosis is the mor-
phological diversity that arises from these complex
symbioses, called a holobiont, which distinguishes them
from that of the individual and distinct lichen-forming
organisms. Such specialized structures and growth forms
distinguish lichens from other algal-fungal symbioses.
Further, the lichen holobiont is able to occupy niches
that neither partner could occupy independently. Al-
though lichens have long been considered to be com-
posed of a single fungal and algal species, it was recently
shown that basidiomycete yeasts (i.e. Cystobasiodiomy-
cetes) can be part of the lichen holobiont, and can impact
lichen metabolism and phenotypes [27,28]. Further,
while photosynthetic and N-fixing cyanobacteria are
known to be associated with many lichens, such as the
Peltigerales, a much larger diversity of bacteria have been
detected in lichen thalli, although their functional roles
are still not clear [29].

Lichenized fungal forms have evolved independently
across Ascomycota and Basidiomycota, however, most li-
chen diversity is found in Lecanoromycetes and
Eurodiomycetes. In contrast, the algal partners of the
majority of lichens belong to Chlorophyta and are largely
dominated by Trebouxiales and Trentepohliales, and in
some known cases Odhrophyta or streptophyte algae [30].
Still, even new lineages of green algae, including within
Trebouxia, are being found associated with lichenized
fungi [2,31]. For further details on lichen diversity,
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Examples of algal-fungal interactions. (a) Chytrid PSC-L40 on Mougeotia sp. Image by Kensuke Seto, used with permission [32]. (b) Vertical section of
the Lyomyces crust with a distinct algal layer described as alcobiosis [5], used with permission. (c) Intracellular Nannochloropsis microalgae within
Linnemannia elongata hyphae [47]; image by Zhi-Yan Du, used with permission. (d) Section of lichen thallus of Lecidea uniformis; image by Jason

Hollinger. E. Image of Trametes versicolor showing bands of green algae growing on the pileus.
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ecology, symbiosis, and evolution, a recent review on the
evolutionary biology of lichen symbioses covers these
topics in depth [2].

Noncanonical algal-fungal symbiosis

Aside from lichens, there are a number of other examples
of algal-fungal interactions. As already mentioned, chytrid
fungi and Crypfomycota are known to be endoparasites of
microalgae (Figure 1a) [12-14]. However, their diversity
is still undercharacterized and consequently characterized
as ‘dark-fungal matter’ [32]. Recently, in a workflow that
included baiting, culturing, photographing, and single-cell
sequencing, 71 phylogenetic lineages belonging to seven
phylum-level clades of fungi were documented, with
most of the species being novel [32]. Given that micro-
algae are increasingly being cultivated in bioreactors and
open-pond systems at industrial-scale for biomass, oil, and
bioproducts, outbreaks caused by fungi, including chy-
trids and Aphelidiales, in particular, can be economically
impactful [33,34].

Algal symbionts growing in association of polypore wood-
degrading fungi have been previously reported and
characterized [30,35,36]. These are commonly observed
in nature as green bands or patches growing across the
pileus of basidiocarps of Cerrena, Fomes, Lenzites, Stereum,
Trichaptum, and Trametes spp. (Figure le). These algal—
fungal associations do not appear to be particularly se-
lective, and consist of diverse green algal partners
composed of one to few species of Chlamydomonas, Des-
mococcus, Elliptochloris, Interfilum, Klebsormidium, Pseudo-
coccomyxa,  Scotiellopsis,  Sporotetras,  Stichococcus, and
Trebouxia, as sometime photosynthetic Cyanobacteria |37].
Efforts to label and trace carbon flow between the sym-
bionts with "CO, have demonstrated the capacity of
Trametes to utilize photosynthesized carbon from algal
symbionts, however, the transfer amounts and rates were
low [35]. More recent "*CO, labeling experiments show
that fixed '*CO, by the algae could be traced to fungal
basidiocarps as well as the decomposing wood that the
fungal mycelial network had colonized [37].

Recently, a noncanonical but pervasive algal-fungal sym-
biosis referred to as alcobiosis, was described between algal
members of Trebouxiales and a diversity of corticoid fungal
symbionts belonging to Agaricomycetes. These included
Exidiopsis calcea, Tubulicrinis subulatus, Lyomyces sambuci,
Resinicium bicolor, Skvortzovia furfuracea, Kneiffiella abieticola,
Botryobasidium botryosum, Exidiopsis calcea, and Xylodon spp.
— fungal species generally considered to be saprotrophs
[5]. In this apparent mutualism that is found on bark and
decomposing wood, green algaec form a stratified layer
beneath the crustose fungal basidiomata, sometimes
growing within the substrate, and in the case of Lyomyces
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sambuci— Desmococcus form goniocyst-like bundles char-
acterized as algae surrounded by fungal hyphae (Figure 1b)
[5]. Alcobiosis appears to be facultative, whereby the algae
and the fungal symbionts can live independent of each
other, yet when growing together, the algae thrive and in
the case of Lyomyces sambuci — Desmococcus carbon transfer
from the algal to the fungal partner was verified through
isotope ratio mass spectrometry [5]. Interestingly, it ap-
pears that snails may help in the stimulation and co-dis-
persal of these symbionts [5].

Macroalgal mycobiomes and environmental
sequencing

Some fungi are known to be algicolous endophytes of
macroalgae, where they colonize their algal hosts without
causing symptoms [38,39]. Macroalgae, including those of
Chorophyta, Rhodophyta, and Ochrophyta, are primarily co-
lonized by filamentous ascomycetes, including but not
limited to Penicillium, Aspergillus, Cladosporium, and Pseu-
dogymnoascus, yeasts, including Mezschnikowia, Rhodotorula,
and Cryptococcus, and in some cases early- branching
fungal lineages such as Mortierellaceae [38]. In culture-
based studies on macroalgae, individual macroalgal hosts
were shown to be colonized by a few dominant species of
saprotrophic fungi, and these algicolous fungal taxa were
capable of producing enzymes for degrading algal biomass
as a means for utilizing algal-derived carbon [40,41]. Re-
search into algicolous fungal endophytes of brown algae
has also demonstrated that fungal pyrenocine metabolites
were protective against oomycete and protist pathogens of
algae, indicating the mycobiome may provide a defensive
function to the benefit of their algal host [42].

While most fungal diversity within macroalgac may be
culturable, the ability of culture-independent methods
for accessing fungal diversity has improved our resolu-
tion and ability to detect fungal diversity and complexity
associated with various focal host species and environ-
ments. For instance, a recent study used I'T'S amplicon
sequencing to access fungal diversity within the brown
macroalgae  Turbinaria and Sargassum (as well as
sponges), and found that the brown algae mycobiome
was dominated by Botryosphaeriales, Chaetothyriales,
FEurotiales, and Hypocreales [43]. In particular, Trichoderma
was identified as a core member of these macroalgae
mycobiomes [43]. In another study that combined cul-
ture-based and culture-independent approaches to
characterize fungal diversity within brown and red algae,
culture-independent methods based on I'TS2 amplicon
sequencing detected a much higher diversity of fungi
than did culturing, and found the mycobiomes were
largely composed of Ascomycetes, including many putative
novel taxa [44]. Further, algal mycobiomes differed be-
tween host species and host tissue types [44].
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4 Host-Microbe Interactions: Fungi

Synthetic algal-fungal interactions

In addition to algal-fungal interactions that have been
discovered in nature, there are intriguing examples of
mutualistic interactions that can be induced between
various algal and fungal partners in the lab that are not
known to interact in nature, considered here as synthetic
symbioses. This latent capacity for mutualism and co-
dependence was elegantly shown through spontaneous
mutualistic interactions between Chlamydomonas and
Saccharomyces under conditions of atmospheric CO,
limitation, whereby glucose is metabolized by the yeast
into CO, that the algae can fix through photosynthesis,
and nitrate is reduced by the algac to ammonium,
making it available to the yeast [45]. Such synthetic and
obligate mutualisms spontaneously formed between
other diverse yeast and Chlamydomonas species, only so
long as the partners were metabolically dependent upon
each other for usable forms of carbon and nitrogen, in-
dicating a nutrient basis for the interaction. The obligate
nature of these interactions breaks down if supple-
mented forms of usable carbon or nitrogen are supplied
to the cocultures. Further, Chlamydomonas was shown to
interact with the filamentous fungus Aspergillus nidulans
forming a tight fungal-algal contact interface. However,
obligate associations were only formed between mutant
isolates unable to reduce nitrite. In a more recent study
that combined these two organisms with a toxigenic
bacterium, Aspergillus nidulans was found to protect
Chlamydomonas reinhardtii from azalomycin F, an algi-
cidal compound secreted by Streptomyces iranensis [46].
Chlamydomonas reinhardtii cells exhibited chemotaxis
toward Aspergillus nidulans mycelium and increased algal
survival, which appeared to be a consequence of polar
lipids in Aspergillus nidulans that bind and neutralize the
toxin.

In another example of spontaneous mutualisms occur-
ring in a lab setting, the fungal species Linnemannia
elongata (=Mortierella elongata) was shown to attract and
flocculate the microalgae Nannochloropsis oceanica [47].
This interaction phenotype was conserved among only
certain Mortierellaceae species among the diverse panel of
fungal taxa assessed, and was accompanied by the loss of
the smooth outer component of the Nannochloropsis cell
wall revealing pseudopodia-like structures that appeared
to fuse with the fungal cell wall. Through isotope tracer
experiments using independently "C- and "N-labeled
fungal and algal cells, a net carbon transfer to the fungal
colony from living algal cells in physical contact with the
mycelium was observed. However, this was not observed
in treatments with heat-killed algal cells or those sepa-
rated from the fungus by a membrane, demonstrating a
biotrophic nature underlying this interaction. In contrast,
a net transfer of nitrogen to the algae from the fungus
was found, yet, no contact between the cells was needed
for this transfer. Perhaps most remarkable, through

longer-term (30-day) interaction studies, and under
carbon-limited conditions, the Nannochloropsis cells were
found to internalize with living fungal cells, where they
were able to mitotically divide and colonize the fungal
tissue. While fungal endophytes are common in macro-
algae, this is perhaps the only example of algae colo-
nizing and becoming internalized within fungal cells
(Figure 1c¢).

Biotechnology and applications related to
algal-fungal interactions

Given the propensity of microalgae for producing neutral
lipids and polyunsaturated fatty acids, along with other
industrially important metabolites that can be produced
natively or through engineering, there has been a con-
certed effort to cultivate microalgae at large scales to
sustainably produce algal biomass for food, energy, and
industry [48,49]. Yet, while microalgae can be grown
sustainably using wastewater and materials, harvesting
microalgae still poses many challenges as centrifugation
is energy-intensive, and chemical flocculants can com-
promise downstream processing [50]. Further, there
continue to be challenges in controlling fungal patho-
gens of algae in cultivation systems [51]. Interestingly,
metabolites produced by fungal endophytes of macro-
algac may have utility in managing diseases in aqua-
cultural systems, including those of microalgae [52].

A number of studies have now shown interactions be-
tween fungi and microalgae that can be harnessed
technologically for bioflocculation of microalgae, thus
improving the harvesting efficiency of these systems
[48,50,53]. Although the mechanisms of bioflocculation
are not understood in all cases, one mechanism for this
interaction has to do with cell-wall surface charge of the
organisms whereby positively charged fungi attract ne-
gatively charged microalgae [53]. In the case of Asper-
gillus niger and Chlorella vulgaris, this attraction has been
optimized with extracellular polymeric substances to
improve harvesting efficiency while reducing energy and
harvesting time [53]. Cell-wall attachment and extra-
cellular polymeric substances were suggested to be re-
sponsible for flocculation efficiency of Chlamydomonas
reinhardtii by the fungus Mortierella alpina [54]. In an-
other example, the oleaginous fungus Linnemannia elon-
gata was used to bioflocculate Nannochloropsis oceanica
and not only improved the recovery of the algae, but also
improved the oil yield and composition of the bio-
flocculants [55].

In addition to the use of fungi for the bioflocculation of
algae, numerous value-added compounds can be ob-
tained from the coculture biomass, including fatty acids,
polysaccharides, triglycerides, pigments, surfactants, and
vitamins that have industrial relevance [56].

Current Opinion in Microbiology 2024, 79:102452
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Types of algal-fungal interactions.

Common name Fungi Algae Habitat Citations
Endoparasites Cryptomycota Green algae Aquatic [1,13,32,51]
Chytridiomycota Yellow-green algae
Diatoms
Glaucophytes
Lichens Lecanoromycetes Trebuxiales Terrestrial [2,31]
Eurodiomycetes
Agaricomycetes
Alcobiosis Agaricomycetes Trebuxiales Terrestrial [5]
Polypore epiphytes Polyporales Green algae Terrestrial [30,35-37]
Algicolous endophytes Eurotiales Chlorophyta Aquatic [38-41,43,44]
Yeasts Rhodophyta
Mortierellales Ochrophyta
Chaetothyriales
Botryosphaeria
Synthetic symbioses Aspergillus spp, Chlamydomonas spp. Aquatic [45-49,54-57]

Saccharomyces spp.
Ganoderma lucidum
Mortierellales

Chilorella vulgaris
Nannochloropsis oceanica

New tools and techniques continue to be developed to
study algal-fungal interactions, and may have bio-
technological potential. For example, a recent approach
involves the use of 3D-printed living architecture em-
bedded with fungal-algal cocultures with nanocellulose
hydrogel. Another study used the white-rot fungus
Ganoderma lucidum and microalgae Chlorella vulgaris to
form algal-fungal pellets and demonstrated their effi-
ciency at removing antibiotics and nutrients from was-
tewater [57]. Such emerging approaches could help in
developing experimentally tractable synthetic systems
for studying the evolution and ecology of algal-fungal
symbioses, while generating new approaches and sus-
tainable technologies for developing bioproducts and
industrial biomaterials.

Conclusions

Heterotrophic fungi and autotrophic algae have a long
history of ecological and evolutionary interactions that
include parasitism and different types of nutritional
symbioses (‘Table 1). It is clear that much of the living
fungal dark matter, known only from environmental
sequencing, includes early-branching aquatic fungal di-
versity whose ecology is still not well- understood or
described [32,58]. Environmental amplicon sequencing
has helped to demonstrate the diversity of fungi asso-
ciated with algae in nature, but new approaches, in-
cluding bait-assisted culturing coupled with microscopy
and single-cell sequencing, are poised to improve our
understanding of the poorly understood fungal diversity
and function in aquatic ecosystems and soils [32,59].
Ancestral fungi were parasites of microalgae and other
organisms, thus, fungi and algae have each evolved ge-
netic mechanisms and receptors for detecting and re-
sponding to each other, from ancient gene circuits that
originated before terrestrialization. This may in part

explain how algae and fungi appear to be preadapted to
forming symbioses with each other, including the mul-
tiple origins of lichen symbiosis, alcobiosis, and other
algal-fungal interaction types. The basis, limits, and
contingencies to forming nutritional symbioses are still
not well-resolved. Fungal endophytes associated with
macroalgae are derived from halotolerant terrestrial
lineages, but have acquired the enzymatic capacity for
accessing algal-derived carbon. New techniques, in-
cluding machine learning and 3D printing, provide new
opportunities to test and utilize biotic interactions for
the good of humanity. Through further research and
biotechnological innovation, we have the opportunity to
harness algal-fungal interactions to improve our under-
standing of natural systems and to use this knowledge to
develop sustainable technology approaches for produ-
cing food, energy, and bioproducts while decarbonizing
the economy.
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