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Abstract. We present a domain-specific type theory for constructions
and proofs in category theory. The type theory axiomatizes notions of
category, functor, profunctor and a generalized form of natural trans-
formations. The type theory imposes an ordered linear restriction on
standard predicate logic, which guarantees that all functions between
categories are functorial, all relations are profunctorial, and all trans-
formations are natural by construction, with no separate proofs neces-
sary. Important category-theoretic proofs such as the Yoneda lemma and
Co-yoneda lemma become simple type-theoretic proofs about the rela-
tionship between unit, tensor and (ordered) function types, and can be
seen to be ordered refinements of theorems in predicate logic. The type
theory is sound and complete for a categorical model in virtual equip-

ments, which model both internal and enriched category theory. While
the proofs in our type theory look like standard set-based arguments, the
syntactic discipline ensure that all proofs and constructions carry over
to enriched and internal settings as well.

1 Introduction

Category theory is a branch of mathematics that studies higher-dimensional
typed algebraic structures. Originally developed for applications to homologi-
cal algebra, it was quickly discovered that categorical structures were common
in logic and computer science. Formal systems like logics, type theories and
programming languages typically have sound and complete models given by
notions of structured categories [32, 31, 35]. This Curry-Howard-Lambek corre-
spondence applies to simply typed lambda calculus [31], computational lambda
calculus [35], linear logic [25] dependent type theory [15, 46], and many other
type theories designed based on category-theoretic semantics. The syntax of a
type theory should present an initial object in its category of models, a category-
theoretic reformulation of logical soundness and completeness.

While this research program has been quite successful, category-theoretic
notions can be overwhelming for beginners. In a traditional set-theoretic for-
mulation, notions such as adjoint functors and limits produce a proliferation of
“naturality” and “functoriality” side-conditions that must be discharged. For
example, when constructing an adjoint pair of functors between two categories,



a näıve approach would define all of the data of the action on objects, action on
arrows, prove the functoriality of such actions, as well as construct two families
of transformations, prove they are natural and then finally proving a pair of
equalities relating compositions of natural transformations. Carrying out these
proofs explicitly is quite tedious and many newcomers are left with the impres-
sion that category theory is full of long, but ultimately trivial constructions.
This complexity is compounded when moving from ordinary category theory to
enriched and internal category theory, where constructions must be additionally
proven continuous, monotone, etc, in addition to natural or functorial. However,
these generalizations are often exactly what is needed for programming language
applications; for example, domain-, metric- and step-index-enriched categories
have been used to model recursive programming languages and internal cat-
egories have been used to model parametricity and gradual typing [54, 10, 45,
37].

Fortunately, the tools of category theory itself can be employed to simplify
this complexity, specifically the tools of higher category theory. As an analogy in
differential calculus, when an adept analyst writes down a function, they do not
expand out the ǫ−δ definition of continuity for a function and proceed from first
principles, but rather use certain syntactic principles for defining functions that
are continuous by construction — e.g. that composition of continuous functions is
continuous. Similar principles apply to category theory itself: functors and natu-
ral transformations are closed under composition and whiskering operations, and
experienced category theorists rely on these syntactic principles to eliminate the
tedium of explicit proofs. In the case of category theory, these principles can be
formalized using algebraic structures such as 2-categories, bicategories, Yoneda
structures, (virtual) double categories, pro-arrow equipments [7, 57, 50, 33, 18],
an approach known as formal category theory. In these structures, rather than
defining notions of category, functor and natural transformation from first prin-
ciples, they are axiomatized in a manner similar to how a category axiomatizes
a notion of space and homomorphism. Proofs in formal category theory apply
to enriched and internal settings, which are instances of the formal axioms. A
downside is that these algebraic structures are quite complicated, and practition-
ers typically employ either an algebraic combinator syntax (formalized in [19])
or a 2-dimensional diagrammatic language that can be quite beautiful and ele-
gant, but is also somewhat removed from the traditional formulation of category
theory in terms of sets and functions.

In this work, we apply the techniques of categorical logic to define a more
familiar logical syntax for carrying out constructions and proofs in formal cate-
gory theory. We call the resulting theory virtual equipment type theory (VETT)
as (hyperdoctrines of) virtual equipments [33, 18], a particular semantic model
of formal category theory, provide a sound and complete notion of model for the
theory. VETT provides syntax for categories, functors, profunctors, and natural
transformations, which are defined using familiar term syntax and βη reasoning
principles for λ-functions, bound variables, tuples, etc. By adhering to a syn-
tactic discipline, the logic guarantees that all functor terms are automatically



functorial, and all natural transformation terms are natural. More specifically,
the syntax for transformations is a kind of indexed, ordered linear lambda calcu-
lus, where the indexing ensures that transformations are correctly natural and
the ordering and linearity ensure that the proofs are valid in a large class of en-
riched and internal categories, such as enrichment in a non-symmetric monoidal
category. VETT provides an alternative to algebraic and string-diagram syn-
taxes for working with virtual equipments, similar to how the lambda calculus
provides an alternative to categorical combinators and string diagram calculi for
cartesian closed categories.

The syntax of VETT is an indexed, ordered linear, proof-relevant variant of
predicate logic over a unary type theory. Just as a predicate logic has a notion of
type, term, relation and implication, VETT is based on four analogous category-
theoretic concepts: categories, functors, profunctors and natural transformations
of profunctors. Categories are treated like types, and the unary functors we con-
sider in this paper are each represented by a term whose type is a category and
whose one free variable ranges over a category. The analog of a relation is a
profunctor (defined below), which is written like a set with free category vari-
ables. Like the restriction to unary functors, we restrict to profunctors with two
free variables. The logic is proof-relevant in that the implications of relations are
generalized to natural transformations of profunctors, and we use a λ-calculus
notation to describe these “proof terms”. This analogy to predicate logic can be
made formal: any construction in VETT can be erased to a corresponding con-
struction or proof in predicate logic, as sets, functions, relations, and implication
of relations define a (somewhat degenerate) virtual equipment.

While the restricted syntax developed in this paper does not express some
important concepts such as functor categories or opposite categories, the re-
striction is natural in that it corresponds exactly to virtual equipments, a well-
understood notion of model that can express a great deal of fundamental results
and constructions in category theory [44, 48]. Moreover, we can work around
these unary/binary restrictions to some extent by viewing the type theory as a
domain-specific language embedded in a metalanguage. For example, while we
cannot talk about functor categories, we can state a theorem that quantifies
over functors using the meta-language’s “external” universal quantifier (which
does not have automatic functoriality/naturality properties). To support this,
VETT includes a third layer, an extensional dependent type theory in the style
of Martin-Löf type theory. All of our ordered predicate logic judgments are also
indexed by a context from this dependent type theory, and the type theory
includes universe types for categories, functors, profunctors and natural trans-
formations. This allow us to formalize theorems the object logic is too restrictive
to encode, analogous to 2-level [52, 2, 40] or indexed type theories [28, 16, 53, 30].

While we emphasize the applications to enriched and internal category theory
in this work, there is potential for more direct application to programming lan-
guage semantics. Ordinary predicate logic is the foundation for proof-theoretic
presentations of logical relations, such as Abadi-Plotkin logic for parametricity
and LSLR and Iris for step-indexed logical relations proofs [41, 21, 29]. We con-



jecture that VETT might similarly serve as the foundation for a logic of ordered
structures, which abound in applications: rewriting and approximation relations
can both be modeled as orderings and logical relations involving these structures
are proven to respect orderings; operational logical relations must be downward-
closed and approximation relations should satisfy transitivity. Just as LSLR and
Iris release the user from the syntactic burden of explicit step-indexing, VETT
may be used to release the user from the syntactic burden of proving downward-
closure or transitivity side-conditions. Additionally, VETT may serve as the
basis of a future domain specific proof assistant for category-theoretic proofs.
To pilot-test this, we have formalized the syntax of VETT in Agda 2.6.2.2, us-
ing the rewrite mechanism to make VETT’s substitution and β-reduction rules
definitional equalities.3 We have used this lightweight implementation to check
a number of examples.

Basics of Profunctors. While we assume the reader has some background
knowledge of category theory, we briefly define profunctors, which are not in-
cluded in many introductory texts. Recall that a category ❈ has a collection of
objects and morphisms with identity and composition, and a functor F : ❈→ ❉

is a function on objects and a function on morphisms that preserves identity and
composition. A category can be thought of as a generalization of a preordered
set, which has a set of elements and a binary relation on its objects satisfying
reflexivity and transitivity. A category is then a proof-relevant preorder, where
morphisms are the proofs of ordering, and the reflexivity and transitivity proofs
must satisfy identity and unit equations. A functor is then a proof-relevant mono-
tone function. Given categories C and D, a profunctor R from C to D, written
R : ❈ 9 ❉ is a functor R : ❈o × ❉ → Set4. Because a profunctor outputs a
Set rather than a proposition, it is itself a proof-relevant relation. Thinking of
categories as proof-relevant preorders, functoriality says that the profunctor is
downward-closed in❈ and upward-closed in❉. Given profunctors R,S : ❈9 ❉,
a homomorphism from R to S is a natural transformation, which in the pre-
ordered setting is simply an implication of relations.

Profunctors are very useful for formalizing category theory, but an additional
reason we make them a basic concept of VETT is that they allow us to give a
universal property for the type of “morphisms in a category❈”. This is analogous
to how the J elimination rule for the identity type in Martin-Löf type theory
gives a universal property for morphisms in a groupoid (the special case of a
category where all morphisms are invertible) [27, 6, 51]. The reason profunctors
are useful for this purpose is that, for any category ❈, Hom❈ : ❈ 9 ❈ is
a profunctor. On preorders this is just the preorder’s ordering relation itself.
Moreover, the hom profunctor is the unit for a composition of profunctors R⊙S
which is defined as a co-end. The composition of profunctors is a generalization
of the composition of relations, and just as the equality relation is the identity
for the composition of relations, the hom profunctor is the identity for this
composition. The unit law for the hom profunctor can be seen as a “morphism

3 https://github.com/maxsnew/virtual-equipments/blob/master/agda/STC.agda
4
❈

o is the notation we use for the opposite category of ❈



induction” principle, analogous to the “path induction” used in homotopy type
theory (though in this paper we consider only ordinary 1-dimensional categories,
not higher generalizations).

Outline. In Section 2 we introduce the syntax of VETT. In Section 3 we
demonstrate how to use our syntax for formal category theory. In Section 4, we
develop some model theory for VETT, including a sound and complete notion
of categorical model and sound interpretation in virtual equipments modeling
ordinary, enriched and internal category theory. In Section 5, we discuss related
type theories and potential extensions.

2 Syntax of VETT

In Figure 1 we give a table summarizing the relationship between the judgments
and connectives of higher-order predicate logic with our ordered variant. Due
to the incorporation of variance, some unordered concepts generalize to multi-
ple different ordered notions. For instance, covariant and contravariant presheaf
categories generalize the power set. Further, because we only have binary rela-
tions rather than relations of arbitrary arity, we have only restricted forms of
universal and existential quantification which come combined with implications
and conjunctions.

Higher-Order Logic Virtual Equipment Type Theory

Set X Category C

X × Y C× D

1 1
PX P+X and P−X

{(x, y) ∈ X × Y |R(x, y)}
∑

α:C;β:D
R

Function f(x : X) : Y Functor/Object α : ❈ ⊢ A : ❉
Relation R(x, y) Profunctor/Set α : ❈;β : ❉ ⊢ R

R ∧Q R×Q
⊤ 1

∀x.P ⇒ Q P ⊲∀α:❈Q and Q ∀α:❈⊳P

∃x.P ∧Q P
∃α:❈

⊙ Q
x =X y α→❈ β

Proof ∀−→α .R1 ∧ · · · ⇒ Q Nat. Trans./Element α1, x1 : R1(α1, α2), . . . ⊢ t : Q

Fig. 1. Analogy between Higher-Order Logic and VETT Judgments and Connectives

The syntactic forms of VETT are given in Figure 2. First, we have cate-
gories, which are analogous to sorts in a first-order theory. We have M a base
sort, product and unit sorts, as well as the graph of a profunctor and the nega-
tive and positive presheaf categories. Next, objects a, b, c are the syntax for the
functors between categories. We call them objects rather than functors, because



in type-theoretic style, a functor is viewed as a “generalized object” parameter-
ized by an input variable α : ❈. Next, sets P,Q,R are the syntax for sets. These
sets denote profunctors, i.e., a categorification of relations. Similar to functors,
rather than writing profunctors as functions ❈o ×❉ → Set, we write them as
sets with a contravariant variable α : ❈ and a covariant variable β : ❉. The sets
we can define are the Hom-set, the tensor and internal hom, as well as products
of sets, profunctors applied to two objects and elements of positive and nega-
tive presheaves. Finally we have elements of sets, which correspond to natural
transformations of multiple inputs, where again we view natural transformations
valued in a profunctor as generalized elements of profunctors.

After these forms we have types and terms, which represent the meta-language
that we use to talk about categories/profunctors/natural transformations. In ad-
dition to standard dependent type theory with Π and Σ and identity types, we
have universes of categories, functors, profunctors and natural transformations.

Finally we have several forms of context which are used in the theory. The
contexts Γ of term variables with their types are as usual; we write “Γ type context”
to indicate that a context is well-formed. We name the remaining contexts after
the judgements that they are used by. The set contexts Ξ, which will be used to
type-check sets, contain object variables with their categories. The two forms of
set context are α : ❈, containing one variable that can be used both contravari-
antly and covariantly, and α : ❈;β : ❉, containing a contravariant variable α
and covariant variable β. Finally, the transformation contexts Φ contain element
variables with their sets, alternating with those sets’ object variables with their
categories. A typical Φ has the shape

α1 : ❈1, x1 : R1(α1, α2), α2 : ❈2, x2 : R2(α2, α3), . . . , Rn(αn, αn+1), αn+1 : ❈n+1

and represents the composition of the “relations” R1, R2, R3, . . . , Rn. We write
d−(Φ) for the first category variable in Φ (which we regard as the negative or
contravariant position), d+(Φ) for the last category variable in Φ (which we
regard as the positive or covariant position) and use the notation d±Ξ with the
same meaning. We write Φ1 . Φ2 for the append of two transformation contexts,
which is only well-formed when the last variable in Φ1 is equal to the first variable
in Φ2. Formal inductive definitions are in the appendix, but intuitively:

d−(α1 : ❈1, x1 : R1(α1, α2), . . . , xn : Rn(αn, αn), αn+1 : ❈n+1) = α1 : ❈1

d+(α1 : ❈1, x1 : R1(α1, α2), . . . , xn : Rn(αn, αn), αn+1 : ❈n+1) = αn+1 : ❈n+1

(Φ1, β : ❉) . (β : ❉, Φ2) = Φ1, β : ❉, Φ2

Next, we overview our basic judgement forms. We have

– Categories: Γ ⊢ ❈ Cat, where Γ type context.
– Objects/functors: Γ | α : ❈ ⊢ a : ❉, where Γ ⊢ ❈ Cat and Γ ⊢ ❉ Cat. Ob-

jects are typed with an input object variable α : ❈ and an output category
❉; in the semantics, objects are modeled as functors ❈→ ❉.

– Sets/profunctors: Γ | Ξ ⊢ S Set, where Γ ⊢ Ξ set context. A set S is typed
with respect to a set context Ξ to describe its covariant/contravariant depen-
dence on some input objects. Sets are semantically modeled as profunctors.



Categories ❈,❉,❊ ::= ⌊M⌋ | ❈×❉ | ✶ |
∑

α;β
P | P−

❈ | P+
❈

Objects a, b, c ::= α |Ma | (a, b) | () | πia | (a−, a+, s) | π−a | π+a | λα : ❈.R

Sets P,Q,R ::= a→❈ b | P
∃β

⊙ Q | P ⊲∀β Q | S ∀α⊳R | 1 | P ×Q
|M(a; b) | b ∈ a | a ∋ b

Elements s, t, u ::= x | ind→(α.t, b1, s, b2) | idb | ind⊙(x, β, y.r; s) | (s, b, t) | s ⊲
a t

| λ⊲(x, α).s | s a⊳ t | λ⊳(α, x).s | πis | (s1, s2) | () | πea |Mb

Type A,B,C ::= . . . | SmallCat | Cat | Fun❈❉ | Prof❈❉ | ∀α : ❈.R
Term L,M,N ::= . . . | ⌈❈⌉ | λα : ❈.a | λ(α : ❈;β : ❉).R | λα.t

Type Context Γ,∆ ::= · | Γ,X : A
Set Context Ξ,Z ::= α : ❈ | α : ❈;β : ❉

Trans. Context Φ, Ψ ::= α : ❈ | Φ, x : P, β : ❉

Fig. 2. VETT Syntactic Forms

– Elements/natural transformations: Γ | Φ ⊢ s : R, where Γ ⊢ Φ trans. context
and Γ | Φ ⊢ R Set. A transformation s has a context Φ of transformation
variables and a single output set R. To be well-formed, the context and set
must be parameterized by the same contravariant and covariant object vari-
ables. To ensure this, we use a coercion operation Φ from transformation
contexts to set contexts that erases everything in the context but the left-
most and right-most object variables (α : ❈ = α : ❈ and Φ = d−(Φ); d+(Φ)).

– Meta-language types and terms: Γ ⊢ A Type and Γ ⊢M : A as in standard
dependent type theory.

The variable rules for objects and elements are

Γ | α : ❈ ⊢ α : ❈ Γ | α : ❈, x : R, β : ❉ ⊢ x : R

As when using variables in linear logic, the latter rule applies only when the con-
text contains a single set R. All syntactic forms typed in context admit an action
of substitution. For types and terms, this is as usual. Objects α : ❈ ⊢ a : ❉ can
be substituted for object variables β : ❉ in other objects. We can also substitute
objects into sets, that is, if we have a set P parameterized by a contravariant
variable α : ❈ and a covariant variable β : ❉, then we can substitute objects
a : ❈ and b : ❉ for these variables P [a/α; b/β]. This generalizes the ordinary
precomposition of a relation by a function. Semantically this is the “restriction”
of a profunctor along two functors, which is just composition of functors if a pro-
functor is viewed as a functor to Set. Modeling this operation as a substitution
considerably simplifies reasoning using profunctors. Finally we have the action
of substitution on elements/natural transformations. First, we can substitute
elements/natural transformations for the set variables in elements, denoting the
composition of natural transformations. Second, an element is also parameter-
ized by a contravariant and a covariant category variable α;β. We can think
of natural transformations as polymorphic in the categories involved, and so



when we make a transformation substitution, we also instantiate the polymor-
phic category variables with objects. The full syntactic details of substitution
are included in the appendix.

2.1 Category Connectives

In this section we discuss some connectives for constructing categories, which are
specified by introduction and elimination rules in Figure 3 (the βη equality and
substitution rules are included in the appendix). The introduction and elimina-
tion rules make use of functors, profunctors, and natural transformations. First
we introduce the additive connectives: the unit category 1 and product cate-
gory ❈×❉ have the usual introduction and elimination rules defining functors
to/from them. Next, we introduce the graph of a profunctor

∑
α;β P . Just as a

relation R : A × B → Set can be viewed as a subset {(a, b) ∈ A × B|R(a, b)},
any profunctor P : ❈o

− ×❉+ → Set can be viewed as a category with a functor
to ❈−×❉+ (no op), specifically a two-sided discrete fibration. In set-based cat-
egory theory, the objects of

∑
α;β P are triples (a−, a+, s : P (a−, a+)) and mor-

phisms from (a−, a+, s) to (a′−, a
′
+, s

′) are pairs of morphisms f− : a− → a′− and
f+ : a+ → a′+ such that P (id, f+)(s) = P (f−, id)(s

′). With various choices of P ,
this connective can be used to define the arrow category, slice category, comma
category and category of elements. In our syntax we define it as the universal
category ❈ equipped with functors to ❈− and ❈+ and a natural transformation
to P .

Lastly, we define the negative and positive presheaf categories P−❈ and
P+❉. These are given a syntax suggestive of the fact that they generalize the
notion of a powerset, and so can be thought of as “power categories”. Note that
we include a restriction that the input category is small, which is an inductively
defined by saying all base categories are small, the unit is small, product of small
categories is small and the graph of a profunctor over small categories is small.
Notably, the presheaf categories themselves are not small. The negative presheaf
category is defined by its universal property that a functor into it ❉ → P−❈

is equivalent to a profunctor ❈o × ❉ → Set. The introduction rule constructs
an object of the negative presheaf category from such a profunctor and the
elimination rule inverts it. We use the notation p ∈ a for the elements of the
induced profunctor. Since a occurs in a negative position, it must depend only
on the contravariant variable d−Ξ and vice-versa for p. The positive presheaf
category is then the dual. In ordinary set-theoretic category theory the negative
presheaf category is the usual presheaf category Set❈

o

, and the positive presheaf
category is the opposite of the dual presheaf category (Set❉)o.

2.2 Set Connectives

Next, in Figure 4, we cover the connectives for the sets/profunctors, which clas-
sify elements/natural transformations (the β/η-rules are in the appendix). First,
the unit set a→❈ b is our syntax for the profunctor of morphisms in ❈ instan-
tiated at generalized objects a and b. Its introduction and elimination rules are



Unit:
Γ ⊢ 1 Cat Γ | α : C ⊢ () : 1

Product:
Γ ⊢ ❈1 Cat ❈2 Cat

Γ ⊢ ❈1 ×❈2 Cat

Γ | α : ❈ ⊢ a1 : ❈1 Γ | α : ❈ ⊢ a2 : ❈2

Γ | α : ❈ ⊢ (a1, a2) : ❈1 ×❈2

Γ | α : ❈ ⊢ a : ❈1 ×❈2

Γ | α : ❈ ⊢ πia : ❈i

Graph of a profunctor:
Γ | α : ❈; β : ❉ ⊢ P Set

Γ ⊢
∑

α;β

P Cat

Γ | α : ❈ ⊢ a− : ❈− Γ | α : ❈ ⊢ a+ : ❈+ Γ | α : ❈ ⊢ s : P [a−/α; a+/β]

Γ | α : ❈ ⊢ (a−, a+, s) :
∑

α:❈−;β:❈+

P

Γ | α : ❈ ⊢ a :
∑

α:❈−;β

P

Γ | α : ❈ ⊢ π−a : ❈−

Γ | α : ❈ ⊢ a :
∑

α;β:C+

P

Γ | α : ❈ ⊢ π+a : ❈+

Γ | α : ❈ ⊢ a :
∑

α;β

P

Γ | α : ❈ ⊢ πea : P [π−a/α;π+a/β]

Negative Presheaf:

Γ ⊢ ❈ Cat ❈ Small

Γ ⊢ P
−
❈ Cat

Γ | d
−
Ξ ⊢ a : ❈ Γ | d

+
Ξ ⊢ p : P

−
❈

Γ | Ξ ⊢ a ∈ p Set

Γ | α : ❈; β : ❉ ⊢ R : Set

Γ | β : ❉ ⊢ λα : ❈.R : P
−
❈

Positive Presehaf:

Γ ⊢ ❉ Cat ❉ Small

Γ ⊢ P
+
❉ Cat

Γ | d
−
Ξ ⊢ p : P

+
❉ Γ | d

+
Ξ ⊢ a : ❉

Γ | Ξ ⊢ p ∋ a Set

Γ | α : ❈; β : ❉ ⊢ R : Set

Γ | α : ❈ ⊢ λβ : ❉.R : P
+
❉

Fig. 3. Category Conectives

analogous to the usual rules for equality in intensional Martin-Löf type theory.
The introduction rule is the identity morphism (reflexivity) and the elimination
rule is an induction principle: we can use a term of s : a→❈ b by specifying
the behavior when s is of the form idα in the form of a continuation α.t. Like
the J elimination rule for equality in Martin-Löf type theory, P must be “fully
general”, i.e. well-typed for variables α and β. This is because for distinct vari-
ables α and β, α→❈ β denotes the unit in a virtual double category, which has a
universal property, but a→❈ b denotes a restriction of the unit, which in general
does not. Those familiar with linear logic as in e.g. [42] might expect a more
general rule, where the continuation t is allowed to use variables that are not
used in s, i.e., have a context Φl . Φr and the conclusion of the rule to have a
context Φl . Φ . Φr. Because of dependency, this is not necessarily well-formed
in cases where the endpoints a and b of a→❈ b are not distinct variables. How-
ever, the instances of this more general rule that do type check are derivable
from our more restricted rule using right/left-hom types.

The tensor product of sets is a kind of combined existential quantifier and

monoidal product, which we combine into a single notation P
∃β
⊙ Q, where β

is the covariant variable of P and the contravariant variable of Q. Then the
covariant variable of the tensor product is the covariant variable of Q and the
contravariant variable similarly comes from P . In ordinary category theory, this
is the composition of profunctors, and is defined by a coend of a product. We
require that the variable β quantifies over a small category ❉, as in general this
composite doesn’t exist for large categories. The introduction and elimination are



like those for a combined tensor product and existential type: the introduction
rule is a pair of terms, with an appropriate instantiation of β, and the elimination
rule says to use a term of a tensor product, it is sufficient to specify the behavior
on two elements typed with an arbitrary middle object β.

Next, we introduce the contravariant (P ∀α⊳R) and covariant (R⊲∀α P ) homs
of sets, which are different from each other because we are in an ordered logic.
These are a kind of universally quantified function type, where the universally
quantified variable must occur with the same variance in domain and codomain.
In the contravariant case, it occurs as the contravariant variable in both, and
vice-versa for the covariant case. To highlight this, the notation for the con-
travariant dependence puts the quantified variable on the left of the triangle, as
contravariant variables occur to the left of the covariant variable, and similarly
the covariant hom has the quantified variable on the right. Similar to ordered
lambda calculus, the covariant hom is right-associative while the contravariant
hom is left-associative. Then the covariant variable of the contravariant hom set
is the covariant variable of the codomain and, and the contravariant variable of
the hom set is the covariant variable of the domain, as the two contravariances
cancel. The covariant hom is dual. Semantically, in ordinary category theory
these are known as the hom of profunctors and are adjoint to the composition of
profunctors [8]. The two connectives have similar introduction and elimination
rules in the form of λ terms abstracting over both the object of the category
and the element of the set, and appropriate application forms. To keep with our
invariant that the variable occurrences occur left to right in the term syntax in
a manner matching the context, we write the covariant application in the usual
order s ⊲a t where the function is on the left and the argument is on the right,
and the contravariant application in the flipped order. We also write the instan-
tiating object as a superscript to de-emphasize it, as in practice it can often be
inferred.

Finally, we have the cartesian unit and product sets, which are analogous to
the normal unit and product of types. The most notable point to emphasize is
that in the formation rule for the product, the two subformulae should have the
same covariant and contravariant dependence (as with linear logic, some con-
structions can syntactically use a variable more than once and still be “linear”).

2.3 Type Connectives

Finally, we briefly describe the connectives for the “meta-logic”, which extends
Martin-Löf type theory with Π/Σ and extensional identity types (with their
standard rules). We use extensional identity types so that the description of
models is simpler, but intensional identity types could be used instead. The types
we include are universes for the object categorical logic: types of small categories
and locally small categories, functors, profunctors and natural transformations.
The rule for the types of small categories and (large) categories are very similar:
any definable category defines an element of type Cat, and any element of that
type can be reflected back into a category. The only difference for SmallCat is
that the categories involved additionally satisfy ❈ Small. Again we elide the βη



Unit/morphism set:

Γ | d
−
Ξ ⊢ a1 : ❈

Γ | d
+
Ξ ⊢ a2 : ❈

Γ | Ξ ⊢ a1 →❈ a2 Set

Γ | β : ❉ ⊢ a : ❈

Γ | β : ❉ ⊢ ida : a→❈ a

Γ | α : ❈; β : ❈ ⊢ P Set
Γ | α : ❈ ⊢ t : P [α/α;α/β]

Γ | Φ ⊢ s : a→❈ b

Γ | Φ ⊢ ind→(α.t, A, s, B) : P [a/α; b/β]

Tensor product:
❉ Small

Γ | d
−
Ξ; β : ❉ ⊢ P Set

Γ | β : ❉; d
+
Ξ ⊢ Q Set

Γ | Ξ ⊢ P
∃β:❉

⊙ Q Set

Γ | d
+
Ψs ⊢ b : ❉

Γ | Ψs ⊢ s : P [b/β]
Γ | Ψt ⊢ t : Q[b/β]

Γ | Ψs . Ψt ⊢ (s, b, t) : P
∃β:❉

⊙ Q

Γ | Φl . x : P, β : ❉, y : Q . Φr ⊢ t : R

Γ | Φm ⊢ s : P
∃β:❉

⊙ Q

Γ | Φl . Φm . Φr ⊢ ind⊙(x, β, y.t; s) : R

Right hom:

d
+
Ξ Small

Γ | d
+
Ξ;α : ❈ ⊢ R Set

Γ | d
−
Ξ;α : ❈ ⊢ P Set

Γ | Ξ ⊢ R⊲
∀α:❈

P Set

Γ | Φ, x : R,α : ❈ ⊢ t : P

Γ | Φ ⊢ λ
⊲
(x : R,α : ❈).t : R⊲

∀α:❈
P

Γ | Φf ⊢ s : R⊲
∀α:❈

P

d
+
Φa ⊢ a : ❈

Φa ⊢ t : R[a/α]

Γ | Φf . Φa ⊢ s ⊲
a
t : P [a/α]

Left hom:

d
−
Ξ Small

Γ | α : ❈; d
−
Ξ ⊢ R Set

Γ | α : ❈; d
+
Ξ ⊢ P Set

Γ | Ξ ⊢ P
∀α:❈

⊳R Set

Γ | α : ❈, x : R,Φ ⊢ t : P

Γ | Φ ⊢ λ
⊳
(α : ❈, x : R).t : P

∀α:❈
⊳R

Γ | d
−
Φa ⊢ a : ❈

Γ | Φa ⊢ s : R[a/α]

Γ | Φf ⊢ t : P
∀α:❈

⊳R

Γ | Φa . Φf ⊢ s
a
⊳ t : P [a/α]

Cartesian unit and products:
Γ | Ξ ⊢ 1 Set Γ | Φ ⊢ () : 1

Γ | Ξ ⊢ R Set
Γ | Ξ ⊢ S Set

Γ | Ξ ⊢ R × S Set

∀i ∈ {1, 2}. Γ | Φ ⊢ si : Ri

Γ | Φ ⊢ (s1, s2) : R1 × R2

Γ | Φ ⊢ s : R1 × R2

Γ | Φ ⊢ πis : Ri

Fig. 4. Set Connectives

principles, which state that ⌈−⌉ and ⌊−⌋ are mutually inverse. Since every small
category❈ Small is a category❈ Cat, there is a definable inclusion function from
SmallCat to Cat and the βη properties ensure that this is a monomorphism.

Next, we have the types of all functors and profunctors between any two
fixed categories. The introduction and elimination forms are those for unary and
binary function types respectively, where metalanguage terms of type Fun❈❉
can be used to construct an object/functor, while metalanguage terms of type
Prof❈❉ can be used to construct a set/profunctor.

Finally we include a type ∀α : ❈.P which we call the set of “natural ele-
ments” of P . The name comes from the case that P is of the form F (α)→G(α)
in which case the type ∀α : ❈.F (α)→G(α) can be interpreted as the set of
all natural transformations from F to G. More generally this is modeled as an
end, and we notate it with a universal quantifier (just as we do for the quanti-
fiers in left/right hom types). Syntactically, ∀α.P is a meta-language type that
represents elements/natural transformations with exactly one free variable.



Γ ⊢ SmallCat

Γ ⊢ ❈ Small

Γ ⊢ ⌈❈⌉ : SmallCat

Γ ⊢ M : SmallCat

Γ ⊢ ⌊M⌋ Small Γ ⊢ Cat

Γ ⊢ ❈ Cat

Γ ⊢ ⌈❈⌉ : Cat

Γ ⊢ M : Cat

Γ ⊢ ⌊M⌋ Cat

Γ ⊢ ❈ Cat Γ ⊢ ❉ Cat

Γ ⊢ Fun❈❉ Type

Γ | α : ❈ ⊢ A : ❉

Γ ⊢ λα : ❈.A : Fun❈❉

Γ | α : ❈ ⊢ A : ❉ Γ ⊢ M : Fun❉❊

Γ | α : ❈ ⊢ MA : ❊

Γ ⊢ ❈ Cat Γ ⊢ ❉ Cat

Γ ⊢ Prof❈❉ Type

Γ | α : ❈; β : ❉ ⊢ R Set

Γ ⊢ λα : ❈; β : ❉.R : Prof❈❉

Γ ⊢ M : Prof❈❉

Γ | d
−
Ξ ⊢ A : ❈

Γ | d
+
Ξ ⊢ B : ❈

Γ | Ξ ⊢ MAB Set

Γ | α : ❈ ⊢ P Set

Γ ⊢ ∀α : ❈.P Type

Γ | α : ❈ ⊢ t : P

Γ ⊢ λα.t : ∀α.P

Γ ⊢ M : ∀α.P Γ | β : ❉ ⊢ a : ❈

Γ | β : ❉ ⊢ M
a
: P [a/α]

Fig. 5. Type Connectives

3 Formal Category Theory in VETT

To demonstrate what formal category theory in VETT looks like, we demon-
strate some basic definitions and theorems. While it is well known that much
category theory can be formalized in virtual equipments, we show these exam-
ples to demonstrate how the VETT syntax gives a more familiar syntax to these
constructions, while still avoiding the need for explicit naturality and functorial-
ity side conditions. We have mechanized some of the results in this section (e.g.
Lemma 2 and Lemma 3 and the maps in Lemma 4) in Agda.5

First, we using the elimination for the unit set, we can see that all construc-
tions are (pro-)functorial:

Construction 1 For any small category ❈, we can construct natural elements

1. Identity: ∀α : ❈.α→❈ α
2. Composition: ∀α1 : ❈.(α1 →❈ α2) ⊲

∀α2:❈(α2 →❈ α3) ⊲
∀α3:❈(α1 →❈ α3)

3. Functoriality: for any F : Fun❈❉, ∀α1 : ❈.(α1 →❈ α2) ⊲
∀α2:❈(F (α1)→❉ F (α2)).

4. Profunctoriality: for any R : Prof❈❉ if ❉ is small then
∀α1 : ❈.(α1 →❈ α2) ⊲

∀α2:❈Rα2β2 ⊲
∀β2:❉(β2 →❉ β1) ⊲

∀β1:❉Rα1β1

Identity and Composition generalize the reflexivity and transitivity properties of
equality, respectively, with the lack of symmetry being a key feature of the gener-
alization. In addition, we can prove that the (pro)-functoriality axioms commute
with the composition proof by the η principle for the unit. (Pro-)Functoriality
generalizes the statement that all functions and relations respect equality. Nat-
urality is more complex to state, and it is a statement about the proofs so it has
no analog in ordinary higher-order logic. The following version is stated for any
profunctor, with the usual case of naturality arising when Rαβ = Fα→❈Gβ.

Lemma 1 (Naturality). For any t : ∀α : ❈.R(α;α), by composing with pro-
functoriality, we can construct terms α1 : ❈, f : α1 →❈ α2, α2 : ❈ ⊢ lcomp(f, tα2)
and rcomp(tα1 , f) : R(α1;α2) that are both equal to ind→(f, t).

5 https://github.com/maxsnew/virtual-equipments/blob/master/agda/Examples.agda



Next, we turn to some of the central theorems of category theory, the Yoneda
and Co-Yoneda lemmas. Despite being ultimately quite elementary, these are no-
toriously abstract. In VETT, we view these as ordered generalizations of some
very simple tautologies about equality. For instance, the Yoneda lemma gener-
alizes the equivalence between the formulae ∀y.x = y ⇒ Py and Px for any
x.

Lemma 2. Let α : ❈ and π : P+❈. Then

1. (Yoneda) The profunctor (α→❈ α
′) ⊲∀α

′

(π ∋ α′) is isomorphic to π ∋ α

2. (Co-Yoneda) The profunctor (π ∋ α′)
∃α′

⊙ (α′ → α) is isomorphic to π ∋ α

The proofs both follow from the unit elimination rule, which is essentially the
Yoneda lemma—the two cases of showing (1) is an isomorphism are precisely
the β and η rules for the unit.

Next, we have the “Fubini” theorems, which relate the tensor and hom types.
The statement and proofs for these theorems are analogous to proofs relating
tensor and hom in ordered logic. For instance, the second isomorphism below is
analogous to the equivalence (P ⊙Q) ⊸ R ∼= P ⊸ Q⊸ R in ordered logic.

Lemma 3 (Fubini). The following isomorphisms hold when the corresponding
profunctors are well typed.

1. P (α;β)
∃β
⊙(Q(β; γ)

∃γ
⊙ R(γ; δ)) ∼= (P (α;β)

∃β
⊙ Q(β; γ))

∃γ
⊙ R(γ; δ)

2. (P (δ;β)
∃β
⊙ Q(β; γ)) ⊲∀γ S(α; γ) ∼= P (δ;β) ⊲∀β Q(β; γ) ⊲∀γ S(α; γ)

3. S(γ; δ) ∀γ⊳(P (γ;β)
∃β
⊙ Q(β;α)) ∼= S(γ; δ) ∀γ⊳P (γ;β) ∀β⊳Q(β;α)

4. Q(δ; γ) ⊲∀γ(S(β; γ) ∀β⊳P (β;α)) ∼= (Q(δ; γ) ⊲∀γ S(β; γ)) ∀β⊳P (β;α)
5. ∀α.P (α;β) ⊲∀β Q(α;β) ∼= ∀β.Q(α;β) ∀α⊳P (α;β)

Proof. We show one case as an example, the forward direction of (1) is given by
λα.λ⊲(x, δ).ind⊙(p, β, y.ind⊙(q, γ, r.((p, β, q), γ, r); y);x)

Next, we can prove that two definitions of an adjunction are equivalent:

Lemma 4. For R : Fun❉❈ and L : Fun❈❉, the following are in bijection:

1. An isomorphism of profunctors (Lα→❉ β) ∼= (α→❈Rβ)
2. A unit η : ∀α.α→❈R(Lα) and co-unit ε : ∀β.L(R(β))→❉ β satisfying tri-

angle identities.

Proof. Given the forward homomorphism lr, we can construct η = λα.lrα ⊲Lα idα.
Given the unit we can reconstruct the forward homomorphism using comp (com-
position) and fctor (functoriality) from Construction 1 as
compα ⊲R(Lα) ηα ⊲Rβ(fctor(R)Lα ⊲β f).

We can define weighted limits, which as special cases include ordinary limits
and Kan extensions.



Definition 1. For a functor D : Fun❏❈ and a profunctor W : Prof❑❏, the
limit of D weighted by W is (if it exists) a functor limWD : Fun❑❈ with an
isomorphism α→❈(lim

WD )k ∼=Wkj ⊲∀j(α→❈Dj)

This generalizes the usual definition that a morphism into a limit is a cone over
the diagram (α→❈Dj) to be parameterized by a weight Wkj. Then we can
prove the well-known theorem that right adjoints preserve (weighted) limits:

Theorem 1. If limWD exists and is a limit and R : Fun❈❈′ has a left adjoint
L, then λκ.R((limWD )κ) is the limit of λj.R(Dj) weighted by W .

Proof.

γ→R((limWD )κ) ∼= Lγ→(limWD )κ ∼=Wkj ⊲∀j Lγ→Dj ∼=Wkj ⊲∀j γ→R(Dj)

This is a high level proof in terms of isomorphisms that may be written in
VETT. The first two steps are the instantiation of assumptions (adjointness,
weighted limits). The last step uses the fact that a natural isomorphisms lift to
natural isomorphism of homs of profunctors. The construction of this isomor-
phism illustrates how naturality need not be proved explicitly in VETT. For
any φ : ∀α.R′αβ ⊲∀β Rαβ and ψ : ∀γ.Sγβ ⊲∀β S′γβ we can construct a natural
transformation φ ⊲ ψ : ∀γ.(Rαβ ⊲∀β Sγβ) ⊲∀αR′αβ ⊲∀β S′γβ as
λγ.λ⊲(f, α).λ⊲(r, β).ψγ ⊲β(f ⊲β(φα ⊲β r)). Furthermore if φ and ψ have inverses,
then φ−1 ⊲ ψ−1 is the inverse of φ ⊲ ψ.

4 Semantics

Next, we develop the basics of the model theory for VETT. First, we define
a sound and complete notion of categorical model based on hyperdoctrines of
virtual equipments. Then we instantiate this general notion of model to show that
the VETT can be interpreted in ordinary category theory as well as enriched,
internal and indexed notions.

First, we can model the judgmental structure of the unary type theory and
predicate logic in virtual double categories that are split fibrant and have a notion
of small object [33, 18]. We briefly recount the structure present in a virtual
double category, but see [18] for a precise definition of the composition rules for
2-cells and functor of virtual double categories.

Definition 2. A virtual double category V consists of

1. A category Vo of “objects and vertical arrows”
2. A set Vh of “horizontal arrows” with source and target functions s, t : Vh →

Vo
2

3. Sets of 2-cells of the following form, with appropriate “multi-categorical”
notions of identity and composition:

C0 · · · Cn

φ

D0 D1

Rn
p

f g

S
p

R0
p



We say that the 2-cell φ has S as codomain, the sequence R0 . . . Rn as domain
and call f and g the left and right “frames”, or that φ is framed by f and g.

We say a virtual double category is split fibrant when it has a choice of re-
strictions, that is, for any horizontal arrow R : C 9 D and vertical arrows
f : C ′ → C and g : D′ → D there is a chosen horizontal arrow R(f, g) : C ′ 9 D′

with a cartesian 2-cell to R framed by f, g and these chosen cartesian lifts are
functorial in f, g ([47]). A choice of small objects is a subset of the objects
Vs ⊆ Vo. A morphism of split fibrant virtual double categories with small ob-
jects is a functor of the virtual double categories that additionally preserves the
restrictions and smallness of objects. This defines a category fVDCs.

In the presence of restrictions, every 2-cell can be represented as a “globular”
2-cell where the left and right frame are identities [47]. For example the 2-cell
φ above can be represented as one with the same domain but whose codomain
is S(f, g). This property is crucial for the completeness of our semantics as we
only include a syntax for these globular terms (proof of Construction 2). Each
component of this definition has a direct correspondence to a syntactic structure
in VETT. The objects of Vo models the category judgment and the morphisms
model the functor judgment. The set Vh models the profunctor judgment. A
composable string R0 · · ·Rn models the profunctor contexts. The 2-cells corre-
spond to the natural transformation judgment where we have taken the restric-
tion S(F,G) of the codomain. Note that Cruttwell and Shulman define a virtual
equipment to be a virtual double category with all restrictions and all units. The
units are the model of the unit of profunctors connective and so all of our models
with the unit will be virtual equipments, hence the name VETT.

To model the dependent type theory and indexing of category-theoretic judg-
ments by a Γ with an action of substitution, we use a variation on Lawvere’s
notion of hyperdoctrine for modeling predicate logic[32]6:

Definition 3 (VETT Judgmental model). A VETT judgmental model (VMJ)
is a pair of a category with families C and a functor V (−) : Co → fVDCs.

Categories with families C model dependent type theory [23] and for each se-
mantic context Γ , V Γ models the VETT judgments in context Γ , with the
functoriality modeling the fact that all of these judgments admit a well-behaved
action of substitution. A VMJ is then precisely the structure corresponding to
the judgments and actions of substitution in VETT.

Construction 2 (Syntactic Model) The syntax of VETT with with any sub-
set of connectives are included presents a VMJ .

Proof. Define the category of families using the dependent type structure and
the virtual equipment structure having (α-equivalence classes of) syntactic cat-
egories as objects, functors/sets as vertical/horizontal arrows and interpreting

6 note that unlike in hyperdoctrines, we do not require quantifiers adjoint to substi-
tution



compositions/restrictions as substitutions. The biggest gap between syntax and
semantics is in the definition of the 2-cells. A 2-cell from
(α1 : ❈1;α2 : ❈2 ⊢ R1), (α2 : ❈2;α3 : ❈3 ⊢ R2), . . . to (β1 : ❉1;β2 : ❉2 ⊢ S)
with frames α1 : ❈1 ⊢ b1 : ❉1 and αn : ❈n ⊢ b2 : ❉2 is given by a term
x1 : R1, x2 : R2 . . . ⊢ s : S[b1/β1; b2/β2]. Composition is defined by substitution.

Then the connectives of VETT each precisely correspond to a universal con-
struction in a VMJ . The Π,Σ, Id types correspond to their standard semantics
in a CwF and the connectives for categories and profunctors correspond to uni-
versal constructions in the virtual double categories. Products of categories are
interpreted as products in the vertical category, and products of sets as products
in the category of pro-arrows and 2-cells. The units, tensor and covariant and
contravariant homs are modeled by the universal properties of the same names,
as described in [47]. The graph of a profunctor is modeled by tabulators [26].
Finally, the covariant and contravariant presheaf categories can be described as
a weakening of the definition of a Yoneda equipment from [20] to virtual double
categories. More detailed descriptions of these universal properties are included
in the extended version [38]. Then the soundness and completeness of this notion
of categorical model is formalized by the following initiality theorem.

Theorem 2 (Initiality). The syntax of VETT with any subset of connectives
that includes the hom types presents a VMJ that is initial in the category of VMJ

with the chosen instances of the universal properties and functors that preserve
such chosen instances.

Proof. The construction 2 can be extended for any connective modularly, with
the exception that the unit relies on the presence of hom sets in order to satisfy
the “distributivity” requirement that its elimination can occur in any context.
Then we can construct the unique morphism to any HVE induction on syntax.

Now that we have a category-theoretic notion of model, we give some model
construction theorems that can be used to justify our intuitive notion of seman-
tics in (enriched, internal, indexed) category theory. First, we can extend any
set-theoretic model of the category theoretic judgments to a hyperdoctrine of
models where the category of families is the category of sets:

Construction 3 Given a V ∈ fVDCs, we can construct a VMJ V− : Set →
vDblr by defining of (VΓ )o to be functions VΓ

o , and similarly for morphisms and
2-cells with all operations given pointwise.

Then to define a model of VETT with a collection of connectives it is sufficient
to construct a virtual equipment with the corresponding universal properties.
The “standard model” is the virtual double category of locally small categories
where the small objects are the small categories.

Construction 4 Fix a cardinal κ. The virtual double category Catκ is defined
to have as objects locally κ-small categories, small objects as κ-small categories,
vertical morphisms as functors, horizontal arrows as functors ❈o ×❉ → κSet



and 2-cells as morphisms of profunctors. Restriction of profunctors is given by
composition, which is strictly associative and unital. CatU has objects satisfying
the universal properties of all connectives in VETT.

More generally, categories internal to, enriched in and/or indexed by suffi-
ciently nice categories define a virtual equipment that model the connectives
of VETT. We highlight one example from the literature that is highly general:
Shulman’s enriched indexed categories [48]. Shulman’s construction defines a
virtual double category of large and small V-categories for any pseudofunctor
V : So → MonCat where S is a category with finite products. He gives ex-
amples that show that this subsumes ordinary internal, enriched and indexed
categories for suitable choices of V, as well as more general categories that can
be thought of as both indexed and enriched. This is slightly weaker then what we
require: to have split restrictions, we need that V be a strict functor, not merely
a pseudo-functor. This is analogous to the situation for dependent type theory,
where syntactic substitution is strictly associative, but semantic substitution is
typically given by pullback, which is only associative up to unique isomorphism.
Shulman’s construction carries over when the functor is strict but some of their
example instances would require a strictification theorem.

Construction 5 (Shulman [48]) Given any functor V : So → SymMonCat
such that S and V have sufficiently well-behaved (indexed) κ-products, then there
is a virtual equipment V − Cat whose objects are locally κ-small V-categories,
small objects are κ-small V-categories etc. This virtual equipment has objects
satisfying all of the universal properties needed for a model of VETT.

A final model that uses a CwF that is not Set would be given by taking
extensional dependent type theory as the CwF and interpreting the category-
theoretic constructions by their definitions inside type theory.

5 Related and Future Work

We now compare VETT with other calculi for formal category theory.
Cáccamo and Winskel [13] develop a formal language for defining categories,

functors (of many variables) and proving existence of natural equivalences be-
tween them. Their system can encode profunctors as functors into Set. Their
natural equivalence judgment does not have proof terms or equality between
equivalences and they do not support natural transformations. Additionally,
they only consider ordinary categories as the intended model and do not de-
velop a more general semantics. Riehl and Verity [44] use a formal language
of virtual equipments to prove results valid for ∞-categories without concrete
manipulation of model categories. They formalize this language as a theory in
Makkai’s framework of first-order logic with dependent sorts (FOLDS). While
this previous work has the same models as VETT, we believe that the syntax
we propose in this paper formalizes informal arguments more directly, as shown
in Section 3. This is because FOLDS approach approach is entirely relational,



whereas we formalize concepts like restriction of a profunctor or composition of
natural transformations as functional operations (substitution). In particular,
this means that our calculus requires only vertically degenerate squares (ele-
ments/natural transformations) as a “user-facing” notion, with general squares
occurring only in the admissible substitution operations.

The coend calculus [34] is an informal syntax for manipulating profunctors
involving ends and coends; an extension of VETT to treat profunctors of many
variables of different variances may provide a formal treatment of it.

Myers [36] provides a string diagram calculus for double categories and pro-
arrow equipments, generalizing string diagrams for monoidal categories. These
are an alternative approach to type-theoretic calculi, with the string diagrams
typically making tensor products simpler to work with, while a type-theoretic
calculus like VETT makes the closed structure P ⊲∀αQ simpler to work with by
using bound variables.

Cartesian bicategories are similar to equipments but they axiomatize the
bicategory of profunctors rather than the full double category of functors and
profunctors [14]. Frey [24] describes preliminary work on a proof system for
Cartesian bicateogires. Their profunctors are more general than in VETT in as
they may have 0, 1 or more covariant or contravariant variables. But they do
not have a term syntax for functors or natural transformations.

Our work in this paper fits broadly into a line of work on directed dependent
type theories, a type theory where the identity type is interpreted as morphisms
in a (possibly ∞-)category. In directed type theories based on a bisimplicial
model [43, 12, 56, 55], morphism types are defined using an interval object, like
in cubical type theory [9, 17, 5, 4], and universal properties like “morphism in-
duction” are an internally definable property of certain types. Other type the-
ories [39, 1] define morphism types via an induction principle, corresponding to
the lifting properties of certain kinds of fibrations of categories. While these pre-
vious works can express some constructions on Cat that are not expressible in
VETT, because VETT is more restricted, VETT contrariwise has more mod-
els, for instance categories enriched in non-cartesian monoidal categories, so the
theorems that are provable in VETT apply in more settings.

Finally, some variations on double categories have been used to model the
structure of certain program logics. GTT [37] is a logic for vertically thin pro-
arrow equipments, where there is at most one vertical arrow or 2-cell of any tyepe,
so their calculus does not include functor or transformation judgments. Another
similar calculus is System P [22] which is an internal language of reflexive graph
categories, which are like double categories without horizontal composition.

In future work, VETT could incorporate functor categories by generalizing
the unary type theory of functors to functors of many variables, in which case
ordinary λ calculus can be used to define functor categories as function types,
and incorporate multi-variable profunctors as in [24]. This would require to the
models to have a monoidal structure. Ideas from coeffects and enriched category
theory may be useful for defining opposite categories [49, 11].
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A Details of VETT Syntax and Syntactic Metatheory

A.1 Contexts and Substitutions

In Figure 6 we include the formation rules and definitions of the three kinds
of contexts that are used in VETT. In Figure 7 we give definitions for well-
typedness of the corresponding three kinds of substitutions.

Γ type context TyCtxForm · type context MtTyCtx

Γ type context Γ ⊢ A Type

Γ,X : A type context
TyCtxExt

Γ type context

Γ ⊢ Ξ set context
BoundaryForm

Γ ⊢ ❈ Cat

Γ ⊢ α : ❈ set context
BoundarySingle

Γ ⊢ ❈ Cat Γ ⊢ ❉ Cat

Γ ⊢ α : ❈;β : ❉ set context
BoundaryDbl

Γ type context

Γ ⊢ Φ trans. context
TransCtxForm

Γ ⊢ ❈ Cat

Γ ⊢ α : ❈ trans. context
TransCtxMt

Γ ⊢ Φ trans. context Γ | d+Φ;β : ❉ ⊢ R Set

Γ ⊢ Φ, x : R, β : ❉ trans. context
TransCtxExt

Fig. 6. Contexts

These definitions involve several operations d±Φ, Φ and Φ . Ψ on contexts
(and their functorial lift to substitutions) that we now define.



Term Substitution γ, δ ::= · | γ,M/X
Object Substitution ξ, ζ ::= a/α | a/α; b/β

Transformation Substitution φ, ψ ::= a/α | φ, s/x, ψ

∆ type context Γ type context

∆ ⊢ γ :: Γ
TermSubstFormation

∆ ⊢ · :: · TermSubstMt

∆ ⊢ γ :: Γ ∆ ⊢M : A[γ]

∆ ⊢ γ,M/X :: Γ,X : A
TermSubstExt

Γ ⊢ Z set context Γ ⊢ Ξ set context

Γ | Z ⊢ ξ :: Ξ
BoundarySubstFormation

Γ | α : ❈ ⊢ b : ❉

Γ | α : ❈ ⊢ b/β :: β : ❉
BoundarySubstSingle

Γ | d−Ξ ⊢ a : ❈ Γ | d+Ξ ⊢ b : ❉

Γ | Ξ ⊢ a/α; b/β :: (α : ❈;β : ❉)
BoundarySubstDbl

Γ ⊢ Ψ trans. context Γ ⊢ Φ trans. context

Γ | Ψ ⊢ φ :: Φ
ElementSubstFormation

Γ | β : ❈ ⊢ a : ❈

Γ | β : ❈ ⊢ a/α : (α : ❈)
ElementSubstMt

Γ | Ψ ⊢ φ :: Φ d+Ψ = d−Ψ ′Γ | Ψ ′ ⊢ t : R[d+φ; b/β] Γ | d+Ψ ′ ⊢ b : ❉

Γ | Ψ . Ψ ′ ⊢ φ, t/x, b/β :: (Φ, x : R, β : ❉)
ElementSubstExt

Fig. 7. Substitution



Definition 4. We define operations d± that project out the covariant and con-
travariant boundary of a set context. This can be typed with the admissible rule

Γ ⊢ Φ trans. context

Γ ⊢ d±Φ set context
(*)

This is defined as

d±(α : ❈) = α : ❈

d−(Φ, x : R,Ψ) = d−Φ

d+(Φ, x : R,Ψ) = d−Ψ

This operation extends to the substitutions with admissible rule

Γ | Ψ ⊢ φ :: Φ

Γ | d±Ψ ⊢ d±φ :: d±Φ
(*)

defined as

d±(a/α) = a/α

d−(φ, t/x, ψ) = d−φ

d+(φ, t/x, ψ) = d+ψ

Note that d±Φ will always be a set context with a single variable α : ❈—we
exploit the fact that we have these singleton set contexts to avoid introducing
a separate syntactic class of category contexts α : ❈ and substitutions between
them.

Definition 5. We define the operation of restricting a set context to both sides
of its boundary with admissible typing

Γ ⊢ Φ trans. context

Γ ⊢ Φ set context
(*)

and definition

α : ❈ = α : ❈

Φ, x : R,Ψ = d−Φ; d+Ψ

The extension to substitutions has admissible typing

Γ | Ψ ⊢ φ :: Φ

Γ | Ψ ⊢ φ : Φ
(*)

and definition

b/β = b/β

φ = d−φ; d+φ otherwise



Finally, we define the operation of “horizontal composition” of set contexts
Φ . Ψ and its functorial lift φ . ψ.

Definition 6. We define horizontal composition of transformation contexts with
the admissible typing rule

Γ ⊢ Φ trans. context Γ ⊢ Ψ trans. context d+Φ = d−Ψ

Γ ⊢ Φ . Ψ trans. context
(*)

as follows

Φ . α : ❈ = Φ

Φ . (Ψ, x : R,α : ❈) = (Φ . Ψ), x : R,α : ❈

And we extend this to an operation on substitutions with the admissible rule

Γ | Ψ ⊢ φ : Φ Γ | Ψ ′ ⊢ φ′ : Φ′ d+φ = d−φ′

Γ | Ψ . Ψ ′ ⊢ φ . φ′ :: Φ . Φ′ (*)

Defined as follows

φ . a/α = φ

φ . (ψ, s/x, a/α) = (φ . ψ), s/x, a/α

Lemma 5 (Horizontal Category of Contexts/Substitutions). Horizontal
composition of contexts is associative (when defined)

(Φ . Ψ) . Σ = Φ . (Ψ . Σ)

and unital with identity for ❈ given by the single category variable context α : ❈:

α : ❈ . Φ = Φ = Φ . β : ❉

when d−Φ = α : ❈ and d+Φ = β : ❉.
These properties extend to the horizontal composition of element substitu-

tions:

φ . (ψ . σ) = (φ . ψ) . σ

where the identity is the single variable substitution:

a/α . φ = φ = φ . b/β

when d−φ = a/α and d+φ = b/β.

Next, we define the actions of substitutions on terms. We elide the obvious
action of term substitutions γ and include only the more unusual substructural
substitutions.



Definition 7 (Substitution Actions). For any Γ | α : ❈ ⊢ a : ❉ and Γ | β :
❉ ⊢ b : ❊, we define Γ | α : ❈ ⊢ b[a/β] : ❊ by recursion on b:

β[a/β] = a

(M b)[a/β] =M (b[a/β])

(b1, b2)[a/β] = (b1[a/β], b2[a/β])

(πib)[a/β] = πib[a/β]

()[a/β] = ()

(π±b)[a/β] = π±b[a/β]

(b−, b+, s)[a/β] = (b−[a/β], b+[a/β], s[a/β])

(λα.R)[a/β] = λα.R[a/β]

Simultaneously, for Γ | Ψ ⊢ φ : Φ and Γ | Φ ⊢ s : R we define
Γ | Ψ ⊢ s[φ] : R[φ] by recursion on s:

x[a/α, t/x, b/β] = t

M b[a/α] =M b[a/α]

ind→(α.t, b1, s, b2)[φ] = ind→(α.t, b1[d
−φ], s[φ], b2[d

+φ])

(idb)[a/α] = idb[a/α]

ind⊙(x, β, y.r; s)[φl . φm . φr] = ind⊙(x, β, y.r[φl, x/x, β/β . β/β, y/y, φr]; s[φm])

(s, b, t)[φs . φt] = (s[φs], b[d
+φs], t[φt])

(s ⊲a t)[φf . φa] = s[φf ] ⊲
a[d+φf ] t[φa]

(λ⊲(x, α).s)[φ] = λ⊲(x, α).s[φ, x/x, α/α]

(s a⊳ t)[φa . φf ] = s[φf ]
a[d−φf ]⊳ t[φa]

(λ⊳(α, x).s)[φ] = λ⊳(α, x).s[α/α, x/x, φ]

(πis)[φ] = πis[φ]

(s1, s2)[φ] = (s1[φ], s2[φ])

()[φ] = ()

Several rules assume the substitution is in a particular form, such as the tensor
elimination which expects an input context φs . φt. The fact that the context can
be uniquely decomposed in a well-typed way follows from an inversion principle
(Lemma 6) for well-typed substitutions.



And finally, for Γ | Ξ ′ ⊢ ξ : Ξ and Γ | Ξ ⊢ P Set, we define Γ | Ξ ′ ⊢ P [ξ] Set
by recursion on P :

(M ab)[ξ] =M (a[d−ξ]) (b[d+ξ])

(a→❈ b)[ξ] = a[d−ξ]→❈ b[d
+ξ]

(P
∃β
⊙ Q)[ξ] = P [d−ξ;β/β]

∃β
⊙ P [β/β; d+ξ]

(R⊲∀α P )[ξ] = R[d+ξ;α/α] ⊲∀α P [d−ξ;α/α]

(Q ∀α⊳P )[ξ] = Q[α/α; d+ξ] ∀α⊳P [α/α; d−ξ]

1[ξ] = 1

(P1 × P2)[ξ] = P1[ξ]× P2[ξ]

Lemma 6 (Inversion).

1. If Φ ⊢ ψ :: (α : ❈) then Φ = β : ❉ for some ❉ and ψ = a/α where
β : ❉ ⊢ a : ❈.

2. If Φ ⊢ ψ :: Ψ1 . Ψ2, then there exists unique Φ1, Φ2, ψ1, ψ2 such that Φ =
Φ1 . Φ2 and Φ1 ⊢ ψ1 :: Ψ1 and Φ2 ⊢ ψ2 : Ψ2 and ψ = ψ1 . ψ2.

A.2 Equational Theory

Next we present the βη rules that generate the equational theory of the terms. In
keeping with the extensional style of the type theory, we do not present explicit
transitivity, congruence, or transport rules, but rather consider these as inherent
to the notion of equality. This can be formalized by modeling the terms of our
type theory as a quotient inductive inductive type [3]. We elide the types on the
β rules, as they can be inferred from the shape of the term, but include them
for clarity on the η rules.

A.3 Generalized Unit Elimination

The unit elimination rule presented in Section 2 is more restrictive than universal
property of a unit in a virtual double category that we use in the semantics. So
in order for our calculus to be complete for virtual equipments with units, we
need to show that the more general unit elimination principle is admissible and
satisfies the correct βη rules.

The more general rules are as follows

Φ[α/α−] . Ψ [α/α+] ⊢ t : P [α/α−;α/α+]

Φ, x : α− → α+, Ψ ⊢ indΦ;Ψ
→ (α.t;x) : P

UnitElim

(indΦ;Ψ
→ (α.t;x))[φ, idα, ψ] = t[φ . ψ]

Φ, x : α− → α+, Ψ ⊢ s : P

Φ, x : α− → α+, Ψ ⊢ s = indΦ;Ψ
→ (α.s[α/α−, idα/x, α/α+];x) : P



⌊⌈❈⌉⌋ = ❈
SmallCatβ

Γ ⊢M : SmallCat

Γ ⊢ ⌈⌊M⌋⌉ =M : SmallCat
SmallCatη

⌊⌈❈⌉⌋ = ❈
Catβ

Γ ⊢M : Cat

Γ ⊢ ⌈⌊M⌋⌉ =M : Cat
Catη

(λα.b) a = b[a/α]
Fctorβ

Γ ⊢M : Fun❈❉

Γ ⊢M = λα.M α : Fun❈❉
Fctorη

(λαβ.P ) a b = P [a/α; b/β]
Profβ

Γ ⊢M : Prof❈❉

Γ ⊢M = λαβ.M αβ : Prof❈❉
Profη

(λα.s)a = s[a/α]
NatEltβ

Γ ⊢M : ∀α.P

Γ ⊢M = λα.M a : ∀α.P
NatEltη

(λα.R) ∈ a = R[a/α]
NegPresheafβ

Γ | β : ❉ ⊢ p : P−
❈

p = λα.p ∈ α
NegPresheafη

(λβ.R) ∋ b = R[b/β]
NegPresheafβ

Γ | α : ❈ ⊢ p : P+
❉

p = λβ.p ∋ β
PosPresheafη

π−(a−, a+, s) = a−
Graphβ−

π+(a−, a+, s) = a+
Graphβ+

πe(a−, a+, s) = s
Graphβe

Γ | α : ❈ ⊢ b :
∑

β−;β+

P

Γ | α : ❈ ⊢ b = (π−b, π+b, πeb) :
∑

β−;β+

P
Graphη

Γ | α : ❈ ⊢ a : 1

Γ | α : ❈ ⊢ a = () : 1
1η

πi(a1, a2) = ai
×β

Γ | α : ❈ ⊢ a : ❉1 ×❉2

Γ | α : ❈ ⊢ a = (π1a, π2a) : ❉1 ×❉2

×η

Fig. 8. βη Equality for type and object connectives



(λ⊲(x, α).s) ⊲a t = s[t/x, a/α]
CovHomβ

Γ | Φ ⊢ s : R⊲∀α P

Γ | Φ ⊢ s = λ⊲(x, α).s ⊲α x
CovHomη

s a⊳(λ⊳(α, x).t) = t[a/α, s/x]
ConHomβ

Γ | Φ ⊢ t : P ∀α⊳R

Γ | Φ ⊢ t = λ⊳(α, x).x α⊳ t : P ∀α⊳R
ConHomη

(ind→(α.t, a, ida, a)) = t[a/α]
Unitβ

Γ | α1 : ❈, z : α1 →❈ α2, α2 : ❈ ⊢ s : R

Γ | α1 : ❈, z : α1 →❈ α2, α2 : ❈ ⊢ s = ind→(α.s[α/α1; idα/z, α/α2], α1, z, α2) : R
Unitη

ind⊙(x, β, y.r; (s, b, t)) = t[s/x; b/β; t/y]
Tensorβ

Γ | Φ, z : P
∃β

⊙ Q,Ψ ⊢ s : R

Γ | Φ, z : P
∃β

⊙ Q,Ψ ⊢ s = ind⊙(x, β, y.s[(x, β, y)/z]; s) : P
∃β

⊙ Q

Tensorη

Φ ⊢ s : 1

Φ ⊢ s = () : 1
1η

πi(s1, s2) = si
×β

Φ ⊢ s : P ×Q

Φ ⊢ s = (π1s, π2s) : P ×Q
×η

Fig. 9. βη Equality for set connectives



The rule is more general because it allows the elimination of an input of
the unit type with non-trivial contexts Φ, Ψ surrounding it, whereas the rule
presented earlier would only allow this elimination if x were the only variable.
We did not include this more general rule as a basic inference rule because it
requires an additional explicit substitution for the context Φ, x : α− → α+, Ψ ,
which would require making the substitutions part of the basic syntax. In the
presence of hom types, we can prove this more general elimination is admissible,
because the judgment

Φ, x : α− → α+, Ψ ⊢ s : P

is in natural bijection with the judgment

α−, x : α− → α+, α+ ⊢ s : Φ ⊲ P ⊳ Ψ

where Ψ ⊲P ⊳Φ (note the reversal of order) is a type constructed by recursion on
Φ and Ψ using uses the hom types. The function applications for the hom types
then provide a more lightweight way to incorporate the explicit substitution into
the definition of the type theory.

Definition 8 (Generalized Unit Elimination). We define indΦ;Ψ
→ (α.t;x) by

induction on Φ/Ψ .

indα−;α+

→ (α.t;x) = ind→(α.t, α−, x, α+)

indα−;Ψ,y,β
→ (α.t;x) = (indα−;Ψ

→ (α.λ⊲(y, β).t;x)) ⊲β y

indβ,y,Φ;Ψ
→ (α.t;x) = y β⊳(indα−;Ψ

→ (α.λ⊳(β, y).t;x))

Lemma 7 (Generalized Unit Elim βη). The admissible generalized unit
elimination satisfies the described βη equations.

Proof. By induction on Φ/Ψ First, β

– If Φ = Ψ = α

(ind→(α.t, α−, x, α+))[α, idα, α] = ind→(α.t, α, id,α)

= t (Unitβ)

– If Φ = α and Ψ = Ψ, y, β

((indα−;Ψ
→ (α.λ⊲(y, β).t;x)) ⊲β y)[φ, idα, ψ, s/y, b/β] = ((indα−;Ψ

→ (α.λ⊲(y, β).t;x)[[φ, idα, ψ]]) ⊲
b s)

(Definition)

= (λ⊲(y, β).t[φ, ψ] ⊲b s)
(Induction)

= t[φ, ψ, s/y, b/β]
(Homβ)

– Φ = β, y, Φ case is similar to previous.



Next η.

– Φ = α− and Ψ = α+:

indα−;α+

→ (α.s[α/α−, idα/x, α/α+];x) = ind→(α.s[α/α−, idα/x, α/α+], α1, x, α2)

Which is equal to s by the primitive unit η.
– Φ = α− and Ψ = Ψ, y, β:

s = λ⊲(y, β).s ⊲β y (Hom η)

= (indα−;Ψ
→ (α.λ⊲(y, β).s[idα/x];x)) ⊲

β y (Induction)

= indΦ;Ψ,y,β
→ (α.s[idα/x];x) (Definition)

B Details of Formal Category Theory Examples

Next, we provide some further details for some of the examples of the formal
category theory constructions and theorems from Section 3.

Definition 9 (Synthetic Composition/Functoriality). We provide the def-
initions of the terms in Construction 1

1. Identity id = λα.idα
2. Composition comp = λα1.λ

⊲(f, α2).ind→(α.g ⊲∀α3 g, α1, f, α2)
3. Functoriality fctor(F ) = λα1.λ

⊲(f, α2).ind→(α.idF α, α1, f, α2)
4. Profunctoriality

prof(R) = λα1.λ
⊲(f, α2).ind→(α.λ⊲(r, β1).λ

⊲(g, β2).r
α⊳(ind→(β.λ⊳(α, r).r, β1, g, β2)), α1, f, α2)

We can also define left and right composition for profunctors by applying the
profunctorial action to an identity morphism on one side or the other:

lcomp(R) = λα1.λ
⊲(f, α2).λ

⊲(r, β).prof(R)α1 ⊲α2 f ⊲β r ⊲β idβ

rcomp(R) = λα.λ⊲(r, β1).λ
⊲(g, β2).prof(R)

α ⊲α idα ⊲
β1 r ⊲β2 g

Associativity and unit follow by βη for unit and homs.

Lemma 8 (Naturality). For any t : ∀α : ❈.R(α;α),

λα1.λ
⊲(f, α2).lcomp(R)α1 ⊲α2 f ⊲α2 tα2 = λα1.λ

⊲(f, α2).rcomp(R)α1 ⊲α1 tα1 ⊲α2 f

Proof. Expanding the definitions and applying β reductions, both are equal to
λα1.λ

⊲(f, α2).ind→(α.tα, α1, f, α2)

Lemma 9 (Yoneda, Co-Yoneda). Let αo : ❈ and π : P+❈. Then
(Yoneda) The profunctor α′ →❈ α⊲

∀α′

α′ ∈ π is isomorphic to α ∈ π

(Co-Yoneda) The profunctor α→ α′
∃α′

⊙ α ∈ π is isomorphic to α ∈ π



Proof. We show Yoneda in detail.

– The left-to-right homomorphism is defined as

M = λα.λ⊲(φ, π).φ ⊲α idα

– The right-to-left homomorphism is defined as

N = λπ.λ⊲(x, α).λ⊲(f, α).′x π⊳ ind→(α.λ⊳(π, x).x, α′, f, α)

– First, right-to-left-to-right:

λπ.λ⊲(x, α).Mα ⊲π(Nπ ⊲α x) = λπ.λ⊲(x, α).Mα ⊲π(λ⊲(f, α′).x π⊳ ind→(α.λ⊳(π, x).x, α′, f, α))

= λπ.λ⊲(x, α).(λ⊲(f, α′).x π⊳ ind→(α.λ⊳(π, x).x, α′, f, α)) ⊲α idα

= λπ.λ⊲(x, α).x π⊳ ind→(α.λ⊳(π, x).x, α′, idα, α)
(covhomβ)

= λπ.λ⊲(x, α).x π⊳(λ⊳(π, x).x) (unitβ)

= λπ.λ⊲(x, α).x (contrahomβ)

– Left-to-right-to-left

λα.λ⊲(φ, π).Nπ ⊲α(Mα ⊲π φ)

= λα.λ⊲(φ, π).λ⊲(f, α′).(Mα ⊲π φ) π⊳ ind→(α.λ⊳(π, x).x, α′, f, α)

= λα.λ⊲(φ, π).λ⊲(f, α′).(φα ⊲α idα)
π⊳ ind→(α.λ⊳(π, x).x, α′, f, α)

= λα.λ⊲(φ, π).λ⊲(f, α′).ind→(α.((φα ⊲α idα)
π⊳ ind→(α.λ⊳(π, x).x, α, idα, α)), α

′, f, α)
(unit η)

= λα.λ⊲(φ, π).λ⊲(f, α′).ind→(α.((φα ⊲α idα)
π⊳ λ⊳(π, x).x), α′, f, α)

(unit β)

= λα.λ⊲(φ, π).λ⊲(f, α′).ind→(α.((φα ⊲α idα)), α
′, f, α) (contrahom β)

= λα.λ⊲(φ, π).λ⊲(f, α′).(φα
′

⊲α f) (unit η)

= λα.λ⊲(φ, π).φ (covhom η)

Lemma 10 (Fubini). We show two of the Fubini cases in detail:

1. S(γ; δ) ∀γ⊳(P (γ;β)
∃β
⊙ Q(β;α)) ∼= S(γ; δ) ∀γ⊳P (γ;β) ∀β⊳Q(β;α)

2. ∀α.P (α;β) ⊲∀β Q(α;β) ∼= ∀β.Q(α;β) ∀α⊳P (α;β)

Proof. 1. This is a form of Currying isomorphism, as the λ term makes clear:

– Left to Right

λα.λ⊲(h, δ).λ⊳(β, q).λ⊳(γ, p).(p, β, q) γ⊳ h



– Right to Left

λα.λ⊲(k, δ).λ⊳(γ, w).ind⊙(p, β, q.q
β⊳ p γ⊳ k;w)

– Left to Right to Left

λα.λ⊲(h, δ).λ⊳(γ, w).ind⊙(p, β, q.(p
γ⊳ q β⊳(λ⊳(β, q).λ⊳(γ, p).(p, β, q) γ⊳ h));w)

= λα.λ⊲(h, δ).λ⊳(γ, w).ind⊙(p, β, q.(p
γ⊳ (λ⊳(γ, p).(p, β, q) γ⊳ h));w)

(contrahomβ)

= λα.λ⊲(h, δ).λ⊳(γ, w).ind⊙(p, β, q.((p, β, q)
γ⊳ h);w) (contrahomβ)

= λα.λ⊲(h, δ).λ⊳(γ, w).w γ⊳ h (tensorη)

= λα.λ⊲(h, h). (contrahomη)

– Right to Left to Right

λα.λ⊲(k, δ).λ⊳(β, q).λ⊳(γ, p).(p, β, q) γ⊳(λ⊳(γ, w).ind⊙(p, β, q.p
γ⊳ q β⊳ k;w))

= λα.λ⊲(k, δ).λ⊳(β, q).λ⊳(γ, p).ind⊙(p, β, q.p
γ⊳ q β⊳ k; (p, β, q))

= λα.λ⊲(k, δ).λ⊳(β, q).λ⊳(γ, p).p γ⊳ q β⊳ k

= λα.λ⊲(k, δ).λ⊳(β, q).q β⊳ k

= λα.λ⊲(k, δ).k

2. This isomorphism relates left and right homs. Unlike the previous cases, the
isomorphism is of types, not sets/profunctors.
– Left to right

λX.λβ.λ⊳(α, p).Xα ⊲β p

– Right to left
λY.λα.λ⊲(p, β).p α⊳ Y β

– Left to right to left

λX.λα.λ⊲(p, β).p α⊳(λβ.λ⊳(α, p).Xα ⊲β p)β

= λX.λα.λ⊲(p, β).p α⊳ (λ⊳(α, p).Xα ⊲β p) (nat.elt.β)

= λX.λα.λ⊲(p, β).Xα ⊲β p (contrahomβ)

= λX.λα.Xα (contrahomη)

= λX.X (nat.elt.η)

– The other case is similar.

Lemma 11 (Equivalent Definitions of Adjoints). We show that given a
morphism of profunctors

∀α.Lα→ β ⊲∀β α→Rβ

we can extract a unit natural transformation η : ∀α.α→R(Lα) and vice-versa.



Proof. The construction is exactly the ordinary proof but formalized in VETT
syntax. Given the morphism of profunctors M , we define the unit by evaluating
at the identity:

∀α.Mα ⊲α idα

and given the unit η, we can define a morphism of profunctors by composing the
unit with the functorial lift of the input:

∀α.f ⊲∀β comp(ηα, fctor(R)(f))

That this is an isomorphism follows by a similar argument to the proof of the
Yoneda lemma.

C Details of Semantics

In this section, we provide the full descriptions of the universal properties in a
virtual equipment corresponding to each connective in VETT.

Definition 10 (Universal Properties for Category Connectives). Let V
be a virtual equipment.

1. Let C be a small object, then a contravariant presheaf object P−C is an object
with natural isomorphism Vo(A,P

−C) ∼= {R ∈ Vh | s(R) = C ∧ t(R) = A}
2. Let C be a small object, then a covariant presheaf object P+C is an object

with natural isomorphism Vo(A,P
+C) ∼= {R ∈ Vh | t(R) = C ∧ s(R) = A}

3. Let R be a horizontal arrow, then a tabulator
∫
R is an object with natural

isomorphism Vo(A,
∫
R) ∼=

∑
f :Vo(A,s(R))

∑
g:Vo(A,t(R)) V2(·; f ; g;R)

4. A nullary product is an object 1 with natural isomorphism Vo(A, 1) ∼= 1
5. A binary product of B and C is an object B × C with natural isomorphism

Vo(A,B × C) ∼= Vo(A,B)× Vo(A,C)

Definition 11 (Universal Properties for Set Connectives). Let V be a
virtual equipment.

1. A unit UC for an object C is a horizontal arrow UC with s(UC) = t(Uc) = C

with natural isomorphism V2(
−→
P ,Uc,

−→
Q ; f ; g;R) ∼= V2(

−→
P ,

−→
Q ; f ; g;R)

2. A tensor of horizontal arrows P and Q where t(P ) = s(Q) is a horizontal
arrow P ⊙ Q with s(P ⊙ Q) = s(P ) and t(P ⊙ Q) = t(Q) with natural

isomorphism V2(
−→
R,P ⊙Q,

−→
S ; f ; g;T ) ∼= V2(

−→
R,P,Q,

−→
S ; f ; g;T ).

3. A covariant hom of P and Q where t(P ) = t(Q) is a horizontal arrow P ⊲
Q with s(P ⊲ Q) = s(Q) and t(P ⊲ Q) = s(P ) with natural isomorphism

V2(
−→
R ; f ; id;P ⊲ Q) ∼= V2(

−→
R,P ; f ; id;Q)

4. A contravariant hom of P and Q where s(P ) = s(Q) is a horizontal arrow
P ⊳ Q with s(P ⊳ Q) = t(Q) and t(P ⊳ Q) = t(P ) with natural isomorphism

V2(
−→
R ; id; g;P ⊳ Q) ∼= V2(Q,

−→
R ; id; g;P )

5. A nullary product for an object C is a horizontal arrow 1C with s(1C) =

t(1C) = C with natural isomorphism V2(
−→
P ; f ; g; 1C) ∼= 1



6. A binary product of horizontal arrows P and Q where s(P ) = s(Q) and
t(P ) = t(Q) is a horizontal arrow P × Q with s(P × Q) = s(P ) and t(P ×

Q) = t(P ) with natural isomorphism V2(
−→
R ; f ; g;P ×Q) ∼= V2(

−→
R ; f ; g;P ) ×

V2(
−→
R ; f ; g;Q)

We require that in our models, units exist for all objects, tensors and homs
overs small objects exist and all finite products exist. We additionally require
that the choice of tensors, homs and products commute strictly with restrictions
in that

1. (P ⊙Q)(f, g) = (P (f, id)⊙Q(id, g))

2. (P ⊲ Q)(f, g) = (P (g, id) ⊲ Q(f, id))

3. (P ⊳ Q)(f, g) = (P (id, g) ⊳ Q(id, f))

4. 1(f, g) = 1

5. (P ×Q)(f, g) = (P (f, g)×Q(f, g))

Note that these equations necessarily hold up to isomorphism, even if we do not
require them to commute strictly.

C.1 Completeness

Next we describe the syntactic properties of substitution that are needed in order
to prove the completeness theorem, that is, that the syntax of VETT presents
a hyperdoctrine of virtual equipments.

Definition 12 (Syntactic Virtual Equipment). Fix a context Γ . Define a
virtual equipment SynΓ as follows:

1. The vertical category SynΓo has categories Γ ⊢ ❈ Cat as objects, small cat-
egories as small objects and as arrows from ❈ to ❉ objects α : ❈ ⊢ b : ❉
modulo renaming of the input variable. Composition is given by substitution
and identity is the variable.

2. The horizontal arrows are the sets α : ❈;β : ❉ ⊢ R (up to renaming α and
β) with source ❈ and target ❉.

3. Note that composable strings
−→
R of horizontal arrows are in bijection with

contexts Φ. Then we can define a 2-cell SynΓ2 (Φ, a, b, S) to be an element
Γ | Φ ⊢ s : S[a/α; b/β].

Composition is defined by substitution t[φ] as substitutions are in bijection
with the “sequences of 2-cells” used in the definition of a virtual equipment.
Associativity says that t[φ][ψ] = t[φ[ψ]] where the composition φ[ψ] is defined
below and corresponds exactly to the associativity rule in a virtual equipment.

The unit is the variable, and they are unital as x[s/x] = s and s[
−−→
x/x] = s.

4. Restriction along vertical arrows is given by substitution R(a, b) = R[a/α; b/β].
This is strictly associative and unital, and the cartesian cell from R to
R[a/α; b/β] is just the identity x : R[a/α; b/β] ⊢ x : R[a/α; b/β].



Definition 13. We define the vertical composition of transformation substitu-
tions φ[ψ] inductively on φ.

(a/α)[b/β] = a[b/β]/α

(φ1, t/x, a/α)[ψ1 . ψ2] = φ1[ψ1], t[ψ2], a[d
+ψ2]

This covers all cases by lemma 6.
We define the vertical identity idΦ by induction on Φ

idα:❈ = α/α

idΦ,x:R,α:❈ = idΦ, x/x, α/α

By induction this is seen to be associative:

φ[ψ][σ] = φ[ψ[σ]]

and unital
idΦ[φ] = φ = φ[idΨ ]


