
 1 

Impacts of wildfire-season air quality on park and playground visitation in the Northwest United 
States 
 

Katrina Mullan 
Department of Economics, University of Montana  

katrina.mullan@umontana.edu 
 

Teigan Avery 
Department of Economics, University of Montana  

teigan.avery16@gmail.com 
 

Patrick Boise 
Rural Institute, University of Montana 

patrick.boise@umt.edu 
 

Cindy Leary 
Center for Population Health Research, University of Montana 

cindy.leary@mso.umt.edu 
 

William L. Rice 
Department of Society and Conservation, University of Montana 

will.rice@mso.umt.edu 
 

Erin O. Semmens 
School of Public and Community Health Sciences, University of Montana 

erin.semmens@mso.umt.edu 
 

 
 
 
 
 
 
 
 
 
Acknowledgements 
We thank Erin Landguth and Alan Swanson for sharing the PM2.5 raster dataset, and providing detailed 
explanations of the modeling approaches used to create these data. This research was supported by the 
National Institute of General Medical Sciences of the National Institutes of Health Award Number 
P20GM130418. 
  



 2 

 
 
Impacts of wildfire-season air quality on park and playground visitation in the Northwest 

United States 
 

Abstract 

A significant cost of wildfires is the exposure of local and regional populations to air pollution from smoke, 
which can travel hundreds of miles from the source fire and is associated with significant negative health 
consequences. Wildfires are increasing in frequency and intensity in the United States, driven by historic 
fire management approaches and global climate change. These influences will take many decades or longer 
to reverse, so the main opportunities for mitigating health effects involve minimizing human exposure 
through changes in behavior or infrastructure. One key recommendation for reducing pollution exposures 
during wildfire smoke events is to limit time and physical activity outdoors, but there is limited evidence 
on the extent to which people make this change. We estimate how use of parks and playgrounds changes 
with air quality during wildfire season in the northwest United States. We find small reductions in park and 
playground visits on moderately polluted days, and large reductions, to 50-60% of baseline visits, when 
pollution levels are high. Disaggregating results by neighborhood characteristics, we find a significantly 
greater behavioral response to moderate levels of air pollution in neighborhoods with higher socio-
economic status, although responses to high levels of pollution are similar across neighborhood types.  
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1. Introduction 

Wildfire seasons are growing more intense and longer in duration due to climate change and land 

management practices (Abatzoglou and Williams 2016; Brotons et al. 2013; Steel, Safford, and Viers 2015).  

While this is a global phenomenon, communities in the western United States are among those experiencing 

impacts ranging from episodic smoke exposure to catastrophic wildfire events. A significant cost of 

wildfires is the exposure of the local and regional population to air pollution from smoke, which can travel 

hundreds of miles from the source fire (Burke et al. 2021). Exposure to wildfire smoke is associated with 

acute respiratory symptoms and increased rates of hospitalizations (Liu et al. 2017; Moeltner et al. 2013); 

and evidence is growing that it also affects long-term cardiovascular and respiratory health as well as birth 

outcomes (Abdo et al. 2019; Holstius et al. 2012; Rosales-Rueda and Triyana 2019) and mental health (To, 

Eboreime, and Agyapong 2021). Fine particulate matter (particulate matter less than 2.5 microns in 

diameter, PM2.5) is a key component of wildfire smoke implicated in these effects; when inhaled, PM2.5 can 

travel deep into the lungs, causing inflammation and a wide range of health impacts across the life course. 

There is also evidence that the composition of wildfire smoke is more damaging to health than pollution 

from other sources with equivalent concentrations of PM2.5, particularly when structures are burned 

(Aguilera et al. 2021; Balmes 2018; Xu et al. 2020).  

Health impacts of wildfire smoke vary by demographic and socioeconomic characteristics, and by prior 

smoke events (Kondo et al. 2019; Heft-Neal et al. 2022). Unlike the urban air pollution context, in which 

differences in impacts may be explained by socioeconomic disparities in exposure (Gray, Edwards, and 

Miranda 2013; Goodman et al. 2011; Currie, Voorheis, and Walker 2020), evidence suggests that exposure 

to wildfire smoke is similar across socio-economic groups (Burke et al. 2021), implying that heterogeneity 

in outcomes occurs for other reasons (Davies et al. 2018). One potential determinant of differences in health 

outcomes is the degree to which people take action to reduce air pollutant exposures during wildfire events. 

Recommended protective actions include staying indoors with windows and doors closed and reducing 

activities that generate indoor air pollutants (e.g., vacuuming or use of certain cooking methods); using 

portable air cleaners; limiting strenuous activity; and wearing N95 respirators (US Environmental 

Protection Agency 2019; 2020). Guidelines emphasize the importance of preventive actions for vulnerable 

populations, such as older adults, pregnant people, and young children (US Environmental Protection 

Agency 2020). Surveys suggest that many people are aware of these recommendations, and that that a 

majority report taking some exposure reduction action (Richardson, Champ, and Loomis 2012; Rappold et 

al. 2019). Data from social media posts and internet searches also indicate that people are less happy during 

wildfire smoke events, and that they seek information on air quality and potential protective technologies 

such as air purifiers and face masks when such events occur (Burke et al. 2022). However, there remains 
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limited observational evidence on the extent to which people take particular actions, and the contexts in 

which they do so.  

We know that people take averting action when exposed or alerted to urban air pollution. Numbers of 

pedestrians and cyclists decrease when pollution levels are high, particularly for trips that are likely to be 

related to leisure rather than work (Choi, Yoon, and Kim 2019; Saberian, Heyes, and Rivers 2017). People 

are observed to respond to air pollution information with lower visitation to leisure-related locations such 

as zoos and sports events (Graff Zivin and Neidell 2009; Janke 2014; Yoo 2021), and reductions in overall 

strenuous outdoor activity (Ward and Beatty 2016). Consumer data from Chinese cities show increases in 

purchases of face masks and portable air cleaners when pollution is high, with stronger effects in higher-

income locations (Sun, Kahn, and Zheng 2017; Junjie Zhang and Mu 2018; Ito and Zhang 2020). Averting 

responses to wildfire smoke are likely to differ from responses to pollution from sources such as industrial 

activity and transportation. The latter are primarily of concern in large urban areas, whereas wildfire smoke 

can affect people at all points on the urban-rural continuum and will often be most severe in less populated 

regions with high forest density (Davies et al. 2018). There is evidence that preventative health behaviors 

differ in rural compared with urban areas (Matthews et al. 2017). In addition, the density of air quality 

monitors is typically lower outside of large cities (Watson et al. 1997), so people exposed to wildfire smoke 

may have access to less, or lower quality, information on the level of pollution at their specific location. 

The temporal patterns of wildfire smoke and industrial and transport-related pollution also differ. Wildfire 

season in temperate regions such as North America and Europe typically coincides with summer, a time 

when people are more likely to spend time outdoors. Urban sources tend to generate consistent air pollution 

with relatively limited fluctuation, whereas pollution from wildfire smoke may be low for much of the fire 

season, with episodic spikes that can be very high (Childs et al. 2022). 

While we would expect responses to pollution from smoke to be different from responses to pollution from 

industrial or other sources, less is known about averting behavior in the context of wildfire smoke. An 

evidence base is emerging; for example, Burke et al (2022) use cellphone mobility data to determine that 

US residents are less likely to leave their home on smoke-affected days, with strong responses at relatively 

low levels of PM2.5 exposure. They also find some evidence that people leave their residence altogether 

when smoke levels are particularly high. Gellman et al. (2022) use data on reservations at US public 

campgrounds, and find only a small reduction in campground use with proximity to, or smoke from, 

wildfires. Rosenthal et al. (2020) observe significant reductions in step counts on days with high air 

pollution during the 2017 and 2018 California wildfire seasons. The conflicting findings so far about the 

magnitude of responses to smoke suggest differences in willingness or ability to take averting actions across 

different types of behaviors, and perhaps across individuals. Our first contribution to this literature is to use 
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a novel dependent variable, visitation at public parks, to estimate the degree to which people reduce a 

common type of outdoor activity on days with poor air quality during wildfire season. Reducing time and 

activity outdoors is a key element of the public health guidance for wildfire smoke events, particularly for 

children and adolescents (US Environmental Protection Agency 2015). As with campground use, variation 

in park use is likely to largely capture discretionary recreational activity as opposed to required work 

activity outdoors, although it is less likely to be planned in advance. In addition, we contribute to the 

literature on how people respond to pollution from wildfires by separately estimating effects for the 

playground areas within our sample parks, which we expect to primarily reflect actions taken by carers of 

young children; and by examining heterogeneity in the behavioral response by income and education level, 

city size, and air quality in the prior week. 

We estimate an averting response to air pollution during wildfire season in the northwest United States. In 

this region alone, 5,800 fires totaling 2.7 million acres burned in 2021, which represents 38% of burned 

area in the United States and is more than double the area burned in the region in 2011 (Insurance 

Information Institute 2021). In the United States as a whole, wildfires are an important source of air 

pollution, and becoming the primary source, as urban air quality improves and wildfire frequency and 

intensity increase with high fuel loads and climate change (Burke et al. 2021; Clay, Muller, and Wang 

2021). We estimate the effect of air quality on park and playground visitation during the main wildfire 

season in cities of different sizes in the states of Washington, Oregon, Idaho and Montana. Although we 

include total air pollution from all sources rather than from wildfires alone, seasonal comparisons show that 

air quality is almost always Good outside of wildfire season at these study sites, indicating that the pollution 

we observe is largely attributable to fires. Visitation is measured using the number of mobile devices 

recorded within park boundaries by the Near Vista platform. We use a Poisson model with spatial and 

temporal fixed effects to examine how park use changes on days with moderate or high levels of PM2.5 

relative to days with low levels. Overall, we see reductions in park visits as air quality deteriorates. On days 

with PM2.5 categorized as Moderate or Unhealthy for Sensitive Groups, observed devices within park 

boundaries average around 90% of the number on Good days. Visits fall to 80% of the baseline rates on 

days categorized as Unhealthy, and 60% of baseline on days classed as Very Unhealthy or Hazardous. 

Disaggregating results by neighborhood characteristics, we find that individuals in all neighborhoods 

reduce park use by similar amounts when air quality is Very Unhealthy or Hazardous, but only the parks 

used by communities with high levels of income and education see substantial reductions in use when air 

quality is Moderate or Unhealthy for Sensitive Groups. 

Understanding averting responses to wildfire smoke is particularly important because the trends in wildfire 

frequency and intensity will take many years to respond to policy intervention. One major driver is climate 
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change, which requires global policy action to slow or reverse. The other is the history of fire suppression 

which can be addressed through prescribed burning, but only over a timescale of decades or longer (Finney 

et al. 2007). As a result, the policy levers available to reduce the negative health effects of wildfire smoke 

are primarily those that reduce exposure through changes in behavior or infrastructure. Understanding the 

actions that people take to limit their own exposure, and the circumstances in which people do not take 

recommended actions, is a prerequisite for design of interventions to limit the negative consequences of air 

pollution from wildfires. In addition, as with other environmental exposures, the total costs of wildfire 

smoke consist of the health costs plus any costs associated with averting behavior (Graff Zivin and Neidell 

2013).  Knowledge of the type and amount of averting behavior that people engage in to reduce health 

impacts of wildfire smoke is therefore needed when estimating the economic costs of wildfires to inform 

fire management decisions (Kochi et al. 2010; Bayham et al. 2022).  

2. Data 

Our dependent variable is the number of visits to individual parks and playgrounds in the northwest United 

States, estimated using the locations of mobile devices (such as cellphones) relative to park or playground 

boundaries. We use daily counts of mobile device ‘visits’ to each sample location during the months of 

June, July, August and September of 2020 and 2021. We merge daily particulate matter (PM2.5) estimates 

at a 1-km resolution with our parks and playgrounds by polygon. We also merge additional information on 

daily weather conditions and state-level stay-at-home orders related to the COVID-19 pandemic by date 

and polygon.  

2.1 Study area  

Our study area includes the states of Idaho, Montana, Oregon and Washington. Each of these states ranked 

in the top six within the United States for acres burned by wildfires in 2021 (Insurance Information Institute 

2021). The typical timing, duration and characteristics of wildfire season are similar across these states. 

However, there is considerable spatial and temporal variation in occurrence and intensity of fires and smoke 

within each season in the region. There is also variation in population density and socio-economic and 

demographic characteristics. The 13 cities included in the analysis are displayed in Figure 1. These cities 

were selected to capture variation in biophysical zone, defined using two-digit hydrologic units in the 

northwestern portion of the United States: 1) Missouri and 2) Pacific Northwest. To ensure a range of city 

sizes, we also stratified by small (less than 100,000), midsize (less than 250,000 and greater than or equal 

to 100,000), and large (250,000 or more) populations–as determined by the U.S. Department of Education 

(National Center for Eduation Statistics 2006).  
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Spatial extents of parks and playgrounds within the sample cities were acquired from the U.S. ParkServe® 

Dataset (Trust for Public Lands 2022). This dataset contains separate shapefiles for parks and the 

playgrounds falling within park boundaries. We included all parks that also contain playgrounds in each of 

the sample cities in the study. Park characteristics vary widely from city plazas to wildlands, and the 

frequency of different park types is likely to differ across states and between city types, which could 

introduce bias to our estimated effects if users of different spaces respond to air pollution in different ways. 

We therefore limit the sample of parks to those that (i) contain playgrounds (and therefore exclude very 

small greenspaces, linear greenways and large wildland areas) and (ii) fall within city boundaries. This 

creates a broadly comparable set of parks for which we can interpret our findings. Averting responses are 

likely to be different for different types of users e.g. commuters using greenways; sports teams using athletic 

facilities; or people on multi-day trips in wildland areas. Rather than combining all of these, our analysis 

allows us to better understand changes in recreational activities that occur in the types of urban parks that 

exist across all the cities in our sample. For the purposes of our analysis, we remove the playground extents 

from their respective, encompassing park extents using the Erase tool in ArcGIS Pro. Therefore, visitation 

within the playgrounds is assessed separately from visitation within the surrounding park, as one aim is to 

evaluate responses to wildfires by carers of young children relative to the wider population. 

2.2 Park and playground visits 

We use the number of unique mobile devices observed within a park or playground boundary on a given 

day to measure park and playground visitation. Rather than interpreting this as the number of people visiting 

the location, we use these data to capture variation in daily visitation. Mobile device location data is 

increasingly used in such a manner in park and outdoor recreation research (see review by Whitney et al. 

2022), as well as in other contexts such as responses to Covid-19 (Couture et al. 2022; Xiong et al. 2020) 

and movements of refugees (Beine et al. 2021). Such data can be obtained from a number of vendors that 

both aggregate and anonymize location data. Data for this study come from the Near Vista platform, which 

captures information from a sample of about 30% of United States cellphone users (Lawson 2021), and has 

been previously used in a similar parks context (Rice et al. 2022). These data are gathered using Software 

Development Kits which are embedded into device web browsers and other applications (e.g., weather 

apps, way-finding apps, etc.) with whom device users elect to share their location (Near 2021). As of 2021, 

Near reported over 100,000 applications from which its panel of location data was drawn (Near 2021).  

The historic location of devices within Near’s panel can be aggregated within a defined spatial extent (e.g., 

a park or playground) for a given window of time (in our case, one day). Additionally, the common evening 

location of a device (i.e., where a device spends the majority of its nights throughout the year) is recorded 

for all devices observed within this defined spatial extent, and the demographics of that common evening 
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location (measured at the US Census block group-level) can be used as a proxy for estimating users’ socio-

economic and demographic characteristics. We extract mobile device location data for all parks containing 

playgrounds and their respective playgrounds within each of the 13 cities included in the study. Extracted 

data include the number of unique devices visiting each park and playground for every day of the 2020 and 

2021 wildfire seasons (June 1st through September 30th). Additionally, the common evening locations for 

each day’s visitors are recorded and tabulated separately for each park and playground. The common 

evening locations are reported as the annual proportions of visitors to each park and playground from each 

census block group (Near 2021; Rice et al. 2022). Demographic data from the 2016-2020 American 

Community Survey are linked with each park or playground based on the census block groups from which 

visitors come, to understand the population served by each park and classify parks based on the average 

income and education levels of their visitors’ neighborhoods. 

The average count of unique mobile devices observed per day within the parks in our sample is 28 and the 

average count within playgrounds is 7.6 (Table 1). However, the absolute values are not very meaningful 

as our data only include a proportion of the total number of devices, and the number of devices only 

represents a proportion of the total number of people as some visitors may not have mobile devices with 

them, particularly if they are young children. We therefore focus on how the relative number of devices 

varies with daily air quality and other factors. Rice et al. (2022) ground-truth the representativeness of 

campsite visitors’ common evening locations (as acquired from Near) with population-level home locales 

(zip codes) of campsite visitors (obtained through reservation records), and find high levels of spatial 

correlation (ranging from .860 to .995) across all five campgrounds in their study. Near (2022) show that, 

while overall correlation between recorded common evening locations is high (Pearson correlation 

coefficient of 0.97), their sample slightly overrepresents those with incomes of $25,000-$50,000 and 

slightly underrepresents those with low (< $10,000) or high (> $75,000) incomes. In addition, people over 

60 years of age and those who did not finish high school are slightly underrepresented. 

Figure 2 shows the weekly median and upper- and lower-quartile counts of observed devices in parks during 

the period June-September in 2020 and 2021 for each state in our study area. The median device counts are 

similar for each state, but the upper-quartile counts are typically higher in Oregon and Washington because 

these states have large cities, with a small number of heavily visited parks, which Idaho and Montana do 

not. The data for 2020 in all four states show increases in park visits in early June, followed by fairly 

consistent counts until decreases are observed in September. In 2021, we see increases in park visits in 

early-July; a drop in visits in August; and some resurgence in September to differing degrees in all four 

states. Within these weekly patterns, there is considerable daily variation in park visitation.  
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2.3 Air quality 

We use daily 1-km resolution maps of surface PM2.5 for the western United States from 2003 - 2021 

(Swanson et al. 2022). These PM2.5 layers were created using average daily US Environmental Protection 

Agency (EPA) Air Quality Station monitoring observations (US Environmental Protection Agency 2012) 

fit through a geographically weighted regression model. Variables in the regression model included daily 

Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) satellite data 

(Lyapustin et al. 2018), and meteorological conditions, human activities and local topography combining 

to account for the impacts of stagnant air and inversions. Use of these modeled PM2.5 estimates enables us 

to account for the fine-scale variation in air quality between parks located in the same city, which would 

not be captured with data obtained directly from the sparsely distributed EPA monitors themselves 

(Filonchyk, Peterson, and Sun 2022). 

The daily 1-km2 PM2.5 data are averaged across the boundaries of the census block group in which the park 

or playground is located, as provided by the US Census Bureau. We use the ‘extract’ function from the 

exactextractr package (Baston, ISciences, and Baston 2022) in R (R. Core Team 2016) to calculate the 

daily census block group PM2.5 averages, weighted by the percent of each 1-km pixel contained within 

respective boundaries. These PM2.5 daily averages are linked with the park and playground visitation 

observations based on the census block group of the park. Figure 2 shows the mean PM2.5 concentrations 

in μg/m3  and median number of mobile devices observed in sample parks during the period June-September 

in 2020 and 2021 for each state in our study area. Air quality was relatively good in June and July of 2020 

in all four states, with deterioration in mid-August in Idaho and Montana and in September in Oregon and 

Washington. Poor air quality was observed for much of the fire season in 2021: from early-July in Idaho 

and Montana and from early-August in Oregon and Washington. The park visit data shows fluctuation over 

the weeks and months of the fire seasons in each state and year. Decreases in park visits are observed to 

fall during particularly strong peaks in PM2.5, especially in Oregon and Washington. However, it is evident 

that there are other influences on visit frequency over time and space which are necessary to control for in 

our analysis. 

For our main analyses, we transform the continuous estimate of PM2.5 concentrations in the census block 

group surrounding each sample park into an ordinal variable corresponding to the levels of the US Air 

Quality Index (AQI) for PM2.5 developed by the US EPA (US Environmental Protection Agency 2018). 

This transformation allows us to interpret our results in the context of the information available to the public 

about air quality and its health effects. The levels of our ordinal variable are: Good (PM2.5 concentrations 

of 0-12μg/m3), Moderate (PM2.5 concentrations of 12.1-35.4μg/m3), Unhealthy for Sensitive Groups (PM2.5 

concentrations of 35.5-55.4μg/m3), Unhealthy (PM2.5 concentrations of 55.5-150.4μg/m3), Very Unhealthy 
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or Hazardous (PM2.5 concentrations greater than 150.4 μg/m3). We combine the Very Unhealthy and 

Hazardous categories because of the small number of observations with daily PM2.5 concentrations at either 

level. We can see from Figure 3 that the majority of park-days in all states and months in our sample have 

Good air quality, and all days observed in June are recorded as Good. Moderate air quality is observed 

frequently in Idaho and Montana in July, August and September and less frequently in Oregon and 

Washington. A small number of days are observed as Unhealthy for Sensitive Groups or Unhealthy in each 

state, with most occurrences in August and September. Days with a 24hr mean of Very Unhealthy or 

Hazardous air quality are primarily observed in Oregon and Washington in September (specifically 

September 2020), and infrequently in Idaho and Montana.  

We use estimates of total PM2.5 rather than estimates for wildfire-specific PM2.5 (e.g. Childs et al. 2022, 

Zhang et al. 2023) because the Swanson et al (2022) data are calibrated for the topography, climate and 

sparse monitoring network of our study region. Specifically, the model was developed to capture the spatial 

variation in air quality resulting from inversion and drainage flow features common in the Intermountain 

West, particularly during wildfire season (Swanson et al. 2022). In addition, the total PM2.5 data are 

available at a finer spatial resolution than current publicly available wildfire-specific PM2.5 datasets, which 

allows us to capture variation between parks. Figures 2 and 3 support our underlying assumption that the 

variation in PM2.5 during the summer months in our study cities is primarily attributable to wildfire smoke 

rather than to industrial and transportation-related sources. As noted above, in all states, PM2.5 falls in the 

Good category for all weeks in June. The Northwest Annual Fire Reports for 2020 and 2021 describe 

minimal fire activity in June in Washington, Oregon and Idaho, with substantial increases from July through 

September (Northwest Interagency Coordination Center 2020; 2021). In principle, we would expect 

behavioral responses to total PM2.5 rather than solely the proportion derived from wildfire smoke. However, 

as the focus of the study is on responses to wildfire-specific PM2.5, we test the robustness of our assumption 

that wildfires are the primary source of PM2.5 in the season and locations we examine by limiting analysis 

to the Small and Midsize cities, where other sources of pollution are more rare.    

In principle, travel to parks (or lack of travel to parks) could influence air quality. However, it is unlikely 

to have a large enough effect to move PM2.5 from one AQI category to another. As noted in the previous 

paragraph, during the month of June when wildfires were not active, we observe zero days with AQI values 

that are categorized as worse than “Good”. This indicates that total vehicle use occurring in our sample 

cities does not generate enough air pollution to reach the “Moderate” category. According to the National 

Household Travel Survey, only 2.6% of all U.S. vehicle miles traveled are for any form of recreation 

(Federal Highway Administration 2022), of which a subset represents travel to urban parks and 

playgrounds, many of which are within walking distance of individuals’ homes. Therefore, we do not view 
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the effect of travel to parks on air quality as a sufficiently large source of endogeneity to influence our 

results. 

2.4 Other independent variables 

Daily weather station data for each of the study sites were obtained from the Global Historical Climatology 

Network (GHCN)-Daily (National Centers for Environmental Education 2022).  Based on the geocoded 

location of each weather station and park centroid coordinates, we assigned each park and playground a 

daily minimum temperature, maximum temperature, and precipitation amount. These observations were 

taken from the closest weather station in euclidean distance, although the exact weather station used was 

allowed to change daily given that weather variables could have missing values from certain weather 

stations. We also compare specifications using daily estimates for each park centroid of maximum 

temperature, precipitation, and vapor pressure deficit from Parameter-elevation Regressions on 

Independent Slopes Model (PRISM). Vapor pressure deficit is one approach for quantifying humidity. The 

PRISM Climate Group at Oregon State University publishes daily and monthly gridded climate datasets at 

the 4km resolution for the conterminous US using weather station data combined with elevation, coastal 

effects, temperature inversions, and terrain barriers (PRISM Climate Group 2024).   

Stay-at-home orders related to the SARS-CoV-2 outbreak were in effect in some areas during the first 

portion of 2020. Using data collected by the COVID-19 US State Policy (CUSP) database (Raifman et al. 

2020), we include a binary variable indicating whether a state-wide stay-at-home/shelter-in-place order was 

in effect on the given date. Oregon’s order remained in effect the longest, ending on June 19, 2020. 

Washington’s order ended on Jun 1, 2020, and orders for Montana and Idaho ended April 26 and May 1, 

respectively, both of which are before our data begin. 

For analysis of heterogeneity in the impact of air quality on park use, we categorize parks based on the 

income and education levels of the neighborhoods their visitors come from. Each mobile device is 

associated with a common evening location, which is typically the user’s home address (Rice et al. 2022; 

UberMedia 2021). This is used to estimate the proportion of visitors to a given park or playground who live 

in each of the census block groups from which visitors to that site are drawn during the year. We use these 

proportions, in combination with 2016-2020 American Community Survey data on the shares of the block 

group populations with income of > $75,000/year and the shares with at least some college education, to 

create weighted averages of income and education levels in the home neighborhoods of visitors to each 

park in our sample. This does not tell us the characteristics of individual park visitors, but allows us to 

compare parks that largely serve residents of higher income or higher education neighborhoods with those 

that serve residents of lower income or lower education neighborhoods. To estimate the regression models, 
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we assign parks to terciles of ‘high’, ‘medium’ and ‘low’ neighborhood income and education, using the 

2020 and 2021 weighted averages of visitor common evening locations described above. 

We also define parks as located in Small, Midsize or Large cities for the heterogeneity analysis. Small cities 

have a population of less than 100,000, Midsize cities have a population of between 100,000 and 250,000, 

and Large cities have a population greater than 250,000. 

3. Empirical Strategy 

We estimate the effect of air quality on park visitation, measured using the number of mobile devices 

recorded by the Near Vista platform. As our dependent variable is nonnegative and highly dispersed, we 

use a Poisson specification, with the following conditional mean:  

𝐸[𝑉𝑖𝑠𝑖𝑡𝑠!"|𝐴𝑄!" , 𝑿!" , 𝛼! , 𝛿"] = 	𝛼!exp	(𝛽𝐴𝑄!" + 𝑿𝒊𝒕𝛾 + 𝜹𝒕 + 𝜀!")  (Equation 1) 

The count of park visits, Visitsit, is a function of the air quality, AQit, in a given park on a particular day, 

conditional on park (𝛼!) a vector of time (𝜹𝒕) fixed effects and a vector of time varying controls such as 

weather and restrictions implemented to reduce the spread of Covid-19 (𝑿!"). The number of recorded 

mobile devices is not a count of the number of people in the park, as not everyone carries a mobile device 

and not all devices share data with Near. The use of the fixed-effects pseudo-Poisson maximumum 

likelihood model allows us to focus on the change in devices on days with poor air quality relative to days 

with good air quality, which we use to approximate the change in visits. 

The fixed-effects pseudo-Poisson maximum likelihood model has the advantage of being consistent under 

general distributional assumptions, provided that the conditional mean is correctly specified (Wooldridge 

1999). In our case, the distribution of the dependent variable approximates an exponential function, with 

around 6% of observations taking a value of zero, many low values, and few large values. Given this 

distribution, the Poisson specification is suitable as long as robust standard errors are specified to account 

for overdispersion (Wooldridge 2010). We estimate all models with cluster robust standard errors at the 

park or playground level. We use the package PPMLHDFE in Stata 17 to estimate Pseudo-Poisson 

Maximum Likelihood with High Dimensional Fixed Effects for all models, enabling the inclusion of unit 

and time fixed effects and their interactions (Correia, Guimarães, and Zylkin 2020). 

We include spatial fixed effects to control for potential spatial correlation between average air quality 

through the fire season and rates of park visitation across different parks. Our preferred specification uses 

park or playground fixed effects, and alternative specifications use county or state fixed effects. We also 

use year, month and day-of-week fixed effects to control for temporal correlation between the periods 
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within the fire season when fire activity is typically high and times when people are more likely to be 

outdoors, for example because of school schedules or vacation travel. Our preferred specification includes 

state-specific time fixed effects and day-of-week fixed effects that vary by month.  

Air quality is a categorical measure reflecting the guidance issued by the EPA and other organizations about 

the appropriate actions to take in different air quality conditions. This allows us to estimate nonlinear 

responses depending on the severity of the air pollution. We control for weather related effects using the 

daily high temperature (in degrees fahrenheit) and total precipitation (in inches). These are included in 

quadratic form to account for nonlinear effects. For example, people may initially spend more time outside 

as temperatures increase, but return to indoor locations on very hot days. Our data spans the early months 

of the Covid-19 pandemic in 2020 when some states had stay-at-home orders from their governors’ offices, 

reducing what may have otherwise been higher visitation days. We include state-level Covid-19 restrictions 

as time varying covariates to control for any biases resulting from this variation.  

Difference between states in prevalence of, and cultural attitudes to, Covid-19 persisted after formal 

regulations were lifted, which may also have influenced the patterns of park use. Our preferred specification 

therefore includes month-by-state and year-by-state fixed effects to control for these potential spatial 

patterns in the influence of Covid-19. These also control for other sources of spatial and temporal variation 

in park use such as differences in seasonal patterns of tourism across states that may be correlated with 

spatial and temporal variation in seasonal patterns of fire and smoke activity. The month fixed effects also 

control for effects such as public holidays and school vacations that are similar across the whole study 

region, while the year fixed effects capture any general trends in park use. The other main temporal 

influence on park visitation is the day of the week, particularly as weekdays may differ from weekends.  In 

our preferred specification, we include ‘day-of-week’-by-month to allow for different weekly patterns of 

use during school vacations and peak tourist seasons relative to months when most people are at school or 

work. 

We use city and neighborhood characteristics to assess heterogeneity in the behavioral responses to air 

quality. We do not have information on the individual characteristics of park visitors. However, we do have 

annual frequencies for common evening locations of observed devices for each park. We use weighted 

averages of the demographic characteristics of these common evening locations to approximate the average 

income and education levels of the neighborhoods from which the visitors to a particular park typically 

come. We interact these neighborhood characteristics with the categorical measure of air quality to explore 

whether behavioral responses to air pollution differ between parks that serve high vs. low-income 

neighborhoods or neighborhoods with high vs. low average levels of education. We also interact air quality 
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with city-size to explore whether responses are different in small, midsize and large cities, as the 

characteristics of parks and the ways in which they are used are likely to vary. Our measures of income and 

education vary by park, but only minimally within parks (i.e. one observation per year), and city size varies 

by city, but not by park within a city. We therefore use county fixed effects instead of park fixed effects to 

estimate these interactions. We confirm using the main specifications that the results do not vary 

substantially with the level of the spatial fixed effects.  

 
4. Results  

We estimate the effect of air quality on park visits (Table 2a and Figure 4a) and playground visits (Table 

2b and Figure 4b). We also estimate heterogeneous effects by city and neighborhood characteristics (Figure 

5) and test for robustness of our findings to key modeling choices (Table 3). These results are described 

below.  

Results are presented as incidence rate ratios (IRR) of observed devices on days when air quality is not 

categorized as Good relative to days when air quality is categorized as Good, under alternative 

specifications as described above. The IRR is obtained by exponentiating the coefficients of the Poisson 

models and can be interpreted as the rate of visitation (number of observed devices per day) at each AQI 

category relative to the baseline rate of visitation on Good days. All specifications include quadratics for 

temperature and precipitation and an indicator variable for whether a Covid-19 stay-at-home order was in 

place in the observed county on the day of the observation. Models are estimated using standard errors 

clustered at the park level. 

 

4.1 Park visitation 

Across all specifications, observed devices are significantly lower on days that do not have Good air quality. 

All except for model (1), with state fixed effects, show consecutively increasing reductions in park visitation 

as the severity of air pollution increases through each of the categories from Good to Very 

Unhealthy/Hazardous. The magnitude of the effects is very similar at each level of air quality for models 

(2)-(4), with county or park fixed effects. As noted, they differ in the model with state fixed effects (1), 

which is likely to be result of spatial patterns of population density, which influences park visitation rates, 

and frequency of smoke events. Our preferred specification is model (4), with park, state-by-month, state-

by-year, and month-by-day of week fixed effects. On days with Moderate air quality, the number of devices 

observed on average in a sample park is 0.94 times the base rate, i.e. the number of devices observed in the 

same park on days with Good air quality. It is slightly lower, at 0.9 times the base visitation rate, on days 
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that are categorized as Unhealthy for Sensitive Groups. On Unhealthy and Very Unhealthy/Hazardous days, 

visits fall on average to 0.78 and 0.62 times the base rate respectively. Based on the mean number of 

observed mobile devices (28.4), this translates to approximately 1.7 fewer devices on “Moderate” days; 2.8 

fewer on Unhealthy for Sensitive Groups days; 6.2 fewer on Unhealthy days; and 10.8 fewer on Very 

Unhealthy/Hazardous days in the mean park, although these numbers would be lower for less-visited parks 

and substantially higher for the most-visited parks. These numbers of observed devices cannot be directly 

translated to numbers of visitors because we do not have data on the exact number of visitors that the mobile 

devices represent, although it is estimated to be approximately 30% of United States cellphone users 

(Lawson 2021). 

Figure 4a, which plots these effects, highlights the nonlinear relationship between the levels of AQI and 

park visitation. The difference between the number of observed devices on days with air quality that is 

Moderate vs. Unhealthy for Sensitive Groups is not statistically significant at the 5% level (although both 

are significantly lower than Good days). We do see a statistically significant drop in observed devices as 

air quality worsens from Unhealthy for Sensitive Groups to Unhealthy, and a larger and more significant 

decrease between the Unhealthy and Very Unhealthy/Hazardous categories. 

4.2 Playground visitation 

We estimate equivalent specifications to estimate observed devices within the boundaries of playgrounds 

as a function of PM2.5 AQI category. This is intended to primarily reflect visits by caregivers of the young 

children as a point of comparison with the broader population of park users. Young children are more 

sensitive to health effects of air pollution, which is reflected in the activity guidelines issued by the EPA 

and others. However, they may also experience larger benefits from park visits, which would influence the 

defensive behaviors adopted by their caregivers.  

The results for playground visits are more sensitive to the specification used, particularly the level of the 

spatial fixed effects (Table 2b). This is likely to be because the average daily number of observed devices 

within playground boundaries is lower than within park boundaries. In general, playground visits are 

significantly lower on days with air pollution, relative to the base rate on days with Good air quality, 

although specifications with state or county fixed effects do not show consecutive reductions in visitation 

with each increasingly polluted category of air quality.  

In our preferred specification (model (4) and Figure 4b), the pattern of visits to playgrounds is broadly 

similar to the pattern for parks in that there is a small, but statistically significant, decrease in visits on days 

with Moderate air quality to 0.95 times the base rate on days with Good air quality. The reduction in visits 
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between days with Moderate air quality and days with Unhealthy for Sensitive Groups air quality (to 0.93 

times the base rate) is not statistically significant. We see larger reductions in playground visits as air quality 

deteriorates to Unhealthy, with only 0.6 times the number of observed devices relative to Good days; and 

further reductions on Very Unhealthy/Hazardous days to 0.5 times the base visitation rate.  

Comparing the park and playground results, we see a slightly smaller reduction in playground visits than 

park visits at lower levels of air pollution (Moderate or Unhealthy for Sensitive Groups), but a larger 

reduction in playground visits than park visits in the most severe categories of air pollution. However, the 

fairly large standard errors on playground visits mean that these differences are not statistically significant. 

4.3 Heterogeneous responses to air pollution 

In addition to the average effects of air pollution on park visits, we estimate how these effects vary by 

neighborhood characteristics, city size, and previous air quality.  

Neighborhood characteristics represent weighted averages of all neighborhoods from which people visit a 

given park. Education is measured as the share of the population with more than some college education, 

and income is measured as the share of the population with an income greater than $75,000/year. The results 

for neighborhood education and neighborhood income levels are similar as these variables are highly 

correlated. The most notable finding is that in parks visited by people from neighborhoods with high 

average levels of education or income, there is a large reduction in visits as soon as air quality declines 

from Good to Moderate. Visits to these parks then stay fairly constant as air quality deteriorates further 

(Figure 5a and b). In contrast, no significant reduction in visits is observed to parks where most visitors 

come from neighborhoods with medium or low levels of education or income when air quality is Moderate 

or Unhealthy for Sensitive Groups. There is some reduction in visits to parks used by residents of middle-

education or low-income neighborhoods when air quality is Unhealthy. When air quality is Very Unhealthy 

or Hazardous, visits are reduced by a similar amount in all neighborhood types, including high income and 

high education neighborhoods. Taken together, these results suggest that when air pollution is severe, 

everyone changes behavior in similar ways. However, individuals from neighborhoods with higher levels 

of education or income begin to respond at much lower levels of pollution. 

We disaggregate the effects by the size of the city in which the park is located, where large cities have 

populations of more than 250,000, medium cities have 100,000 - 250,000 people, and small cities have 

fewer than 100,000 people (Fig 5c). The change in park visits at Moderate levels of air pollution are small 

in magnitude, and similar across all city sizes. We see incrementally greater reductions in park visits as air 
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quality worsens in all city sizes. However, the reductions are greater for large cities, particularly at 

Unhealthy, Very Unhealthy and Hazardous levels of PM2.5. 

Finally, we compare responses to different levels of air pollution when the prior day was worse than 

Moderate with responses when the prior day was Good or Moderate. We consistently see greater reductions 

in park visits if air quality was poor the previous day, although these differences only become statistically 

significant as pollution on the current day becomes severe. Ideally we would estimate the effects of each 

level of prior air pollution of different durations prior to the ‘current’ day. However, we do not have 

sufficient numbers of days with worse than Moderate air pollution averaged over 24 hours to precisely 

identify these effects. Broadly, these results indicate that the response may increase rather decrease over 

time, possibly because people are more likely to adjust their plans if they are primed for the likelihood of a 

polluted day. 

4.4 Robustness to alternative samples and specifications 

One limitation of this analysis is that the main independent variable, PM2.5 potentially represents air 

pollution from a range of sources, while we are primarily interested in how people respond to pollution 

from wildfire smoke. We therefore estimate the effect of PM2.5 on park visits with the largest cities of 

Seattle and Portland excluded from the sample. While all days in our study period are recorded as Good in 

these cities during the month of June (when substantial fire activity had not yet begun), people in larger 

cities are more likely to be subject to pollution from transportation and industrial sources. We find that the 

results with large cities excluded (Table 3, column 2) show a similar overall pattern to the results from the 

base model with all cities included (Table 3, column 1). However, the responses at each level of air pollution 

are slightly smaller in the restricted sample than in the full sample. This accords with Figure 5c, showing 

the differences in responses by city size, indicating that the differences are likely to be due to different 

populations rather than different sources of air pollution. 

We estimate responses to air pollution with the 10% of parks with the highest levels of visitation and the 

10% of parks with the lowest levels of visitation (Table 3, columns 3 and 4), to determine if either of these 

park types is strongly influencing the results. Parks with particularly high or low visitation may differ from 

others in the sample in unobservable ways, and may be more subject to idiosyncratic influences on visitor 

numbers. For example, heavily-visited parks may be more likely to hold sports or cultural events that draw 

large numbers on particular days. Alternatively, a little-visited park would be subject to a large proportional 

increase in visits from a single group. The results with low-visit parks excluded are almost identical to the 

base results with the full sample. When high-visit parks are excluded, we no longer observe a statistically 

significant response when air quality is Moderate or Unhealthy for Sensitive Groups. The response to 
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pollution levels that are Unhealthy or Very Unhealthy/Hazardous is similar to the response within the full 

sample.  

As temperature and air quality are likely to be correlated, and both will influence outdoor activity, we re-

estimate the base model with a more flexible functional form for temperature to allow for nonlinearities 

beyond the quadratic relationship (Table 3, column 5). We include temperature in 5 degree Fahrenheit bins. 

The influence of air quality on park visits is almost identical to the base model. The coefficients on the 

temperature bins show increases in park use from 46 degrees to 105 degrees, with visits decreasing on days 

with maximum temperatures of more than 105 degrees. It is likely that people time their visits for periods 

during the day when temperatures are below their maximum, although we do not capture this with daily 

data. We also re-estimate the model using PRISM gridded weather data, which avoids the issue of missing 

weather station data and allows for inclusion of vapor pressure deficit as a measure of humidity (Table 3, 

column 6). We find that park visitation is slightly higher when air quality is Moderate to Unhealthy and 

slightly lower when air quality is Very Unhealthy or worse. However the results are substantively the same. 

We estimate the model using a continuous rather than categorical measure of PM2.5, and estimating the 

marginal effects at the thresholds for each AQI category. Continuous PM2.5 is included in quadratic form, 

to allow for nonlinear responses. The estimated effects of air pollution on park visits are similar in this 

specification (Table 3, column 7), when compared with the base model using categorical AQI (Table 3, 

column 1). Finally, we compare the results from the Poisson specification with those from a Linear 

Probability model. Table 4 shows the coefficients from the latter, along with the implied proportions of 

observed devices when air quality is poor relative to the baseline numbers of devices when air quality is 

“Good”. We use the mean number of observed devices for this comparison with the Incidence Rate Ratios 

from the Poisson models. We find that the results are extremely similar across the two models.   

5. Conclusions 

Wildfire smoke is an increasingly dominant source of air pollution, with severe consequences for human 

health (Abdo et al. 2019; Aguilera et al. 2021; Liu et al. 2017; Moeltner et al. 2013; Xu et al. 2020). The 

main drivers of these wildfire trends are historic fire management approaches that have led to high current 

fuel loads in forested areas, and the warmer, drier conditions associated with global climate change (Burke 

et al. 2021). These influences will take many decades or longer to reverse, so the main opportunities for 

mitigating negative health effects involve minimizing exposure through changes in behavior or 

infrastructure. One key recommendation for reducing pollution exposures during wildfire season is to limit 

time and physical activity outdoors. There is evidence that people reduce outdoor activities in response to 

urban air pollution or pollution alerts (e.g. Graff Zivin and Neidell 2009; Ward and Beatty 2016; Yoo 2021). 
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However, less is known about how people respond to air pollution during wildfire events, particularly in 

less urban settings. In the United States, PM2.5 associated with wildfire smoke reaches much higher levels 

than PM2.5 associated with urban and industrial pollution. In the Northwest United States, smoke is also 

limited to the summer season, when people may be on vacation and are planning to spend time outdoors. 

These differences are likely to affect the type and degree of behavioral response. 

Our indicator of outdoor activity is the number of mobile devices observed within the boundaries of parks 

or playgrounds. While these do not tell us exactly how many people visited a given park or playground, 

they provide a measure of variation in visitation on days with poor air quality relative to days with good air 

quality. Overall, we see reductions in park and playground visits as air quality deteriorates. On days 

categorized as Moderate or Unhealthy for Sensitive Groups, significantly fewer visits are observed within 

park and playground boundaries, although the effect is not large, with visits falling to 90-94% of the number 

of visits observed on Good days in parks, and 93-95% of the baseline in playgrounds. EPA guidelines 

encourage outdoor activity on Moderate days for everyone except those who are unusually sensitive to air 

pollution, who may wish to avoid prolonged exertion. Similarly, guidelines for days that are Unhealthy for 

Sensitive Groups suggest that members of sensitive groups, such as people with heart or lung disease, older 

adults, children and teenagers, should reduce exertion but not avoid going outside altogether. A small 

reduction in outdoor activity is consistent with these recommendations.  

Our results show significantly larger reductions in park and playground visits on days categorized as 

Unhealthy to less than 80% of baseline visits in parks, and 60% of baseline visits in playgrounds. On these 

days, members of sensitive groups are recommended to consider moving activities indoors, while others 

are recommended only to reduce outdoor exertion. Park visits fall still further on days classed as Very 

Unhealthy or Hazardous days, to 60% of baseline in parks and 50% of baseline in playgrounds. Guidelines 

for Very Unhealthy days suggest that sensitive groups avoid all physical activity outdoors and everyone 

considers moving activities indoors, and guidelines for Hazardous days are that everyone remains indoors.  

One limitation of this analysis is that we do not observe all visits to parks and playgrounds, but rather the 

number of mobile devices. We therefore express all results in terms of the relative number of devices 

observed on days with poor air quality relative to days with Good air quality. To interpret this as reflecting 

variation in the number of visits, we must assume that the approximately 30% of people with mobile devices 

that report information to the Near Vista platform change their behavior in similar ways to park visitors that 

are not recorded. Analysis conducted by Near suggests that while the sample is largely representative of 

the US population, older adults and those who did not finish high school are slightly underrepresented. We 

would expect older adults to be more responsive to air pollution due to greater sensitivity to negative health 
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effects. Conversely, our heterogeneity analysis shows that those with lower education are less responsive 

to moderate levels of air pollution than those with higher levels of education. Therefore these effects will 

to some degree offset each other. Beyond the question of representativeness among adults, we are unlikely 

to observe young children in the dataset because they typically do not carry mobile devices. We address 

this by separately estimating changes in visits for parks and playgrounds, as the latter are more likely to be 

used by caregivers of young children.  

A second limitation is that we do not observe adjustments to length of time for park or playground use 

within a given day for those who perhaps reduce exposure to air pollution but do not forgo visits altogether. 

Our air quality measures are based on 24hr averages, although the level of pollution is likely to vary during 

the day. Therefore, even on a day where the average level of PM2.5 is high, there may be a period where it 

is relatively better and some people may time their outdoor activity for that period. Alternatively, people 

may avoid park visits during a bad period of a relatively clear day. Also, we only observe whether someone 

enters a park or playground, and not how long they spend there or what they do. We expect that some of 

those who continue using parks and playgrounds reduce the amount of time they spend, reduce their level 

of exertion, or both as air quality deteriorates. Our results therefore indicate a lower bound on overall 

changes in outdoor activity.  

Given that the estimated changes in park use represent a lower bound on behavioral response to air pollution 

during wildfire season, it is notable that our results indicate substantial changes in behavior, particularly 

when air quality becomes very poor. This could be in direct response to health guidelines, and reflect 

awareness of the health effects of smoke exposure. It may also be because people find it unpleasant to be 

outside or because outdoor events such as sports competitions or social gatherings are cancelled. While we 

observe a large response to poor air quality, our results also show that many people continue to visit parks 

and playgrounds, even when there are significant negative health consequences from doing so. A potential 

explanation for this is that for some individuals, the costs of forgoing park visits are high relative to the 

actual or perceived benefits. 

Estimates of willingness to pay to avoid morbidity effects of wildfire smoke are fairly similar, regardless 

of methods used: Richardson et al. (2013) estimate willingness to pay to avoid one symptom day at US$1141 

using defensive behavior methods, and US$125 using contingent valuation methods. Jones et al. (2016) 

estimate a value of US$162 per symptom day based on defensive use of air filters, and Jones (2016) 

estimates the value of avoided symptoms at US$157/day using life satisfaction methods. These estimates 

 
1 All values in this section have been converted to 2023 US $ 
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are higher than values based on cost of illness because they include symptoms that do not necessarily lead 

to treatment, but they are considerably lower than estimated mortality costs associated with smoke exposure 

(Dittrich and McCallum 2020). 

Although there are health benefits from reducing park use when PM2.5 levels are high, there are also 

substantial costs associated with doing so. Costs of avoiding outdoor activities or benefits from engaging 

in outdoor activities have been estimated using stated preference surveys. For example, Mansfield et al. 

(2006) estimate parents’ marginal willingness to pay to avoid a 1-day restriction on outdoor activity for 

their child at US$52. Rosenberger et al. (2017) review multiple studies, and estimate the consumer surplus 

associated with outdoor recreation activities such as picnicking, relaxing in nature, and hiking, walking or 

running at US$40-100 per activity. There may also be physical or mental health costs from reductions in 

exercise and time in nature. Zhang et al. (2022) find that an additional 30 minutes/week of greenspace 

activity significantly reduces observed and self-reported measures of physical and mental health, and 

Barton and Pretty (2010) find the greatest marginal effect of physical activity in greenspace on mood and 

self-esteem results from the first 5 minutes. This suggests that there are likely to be important health 

consequences from avoiding parks altogether. In addition, since parks and playgrounds are typically free to 

visit, additional costs may be incurred if replacement activities require entrance fees or other expenditure, 

for example indoor swimming pools, cinemas, cafes or shopping malls.  

As well as estimating average changes in park use, we also examine heterogeneity in changes in visits to 

parks vs playgrounds, and by neighborhood type. There is evidence that the health consequences of 

exposure to wildfire smoke can be greater in low socio-economic status neighborhoods relative to high 

socio-economic status neighborhoods (Rappold et al. 2012; Reid et al. 2023). This is despite similar wildfire 

smoke exposures by neighborhood type (Heft-Neal et al. 2022). One explanation for observed disparities 

in health impacts is that there are pre-existing differences in risk factors that determine susceptibility to 

negative health effects or in access to healthcare (Reid et al. 2023). Our results highlight the additional role 

of variation in adoption of defensive behaviors as a contributor to disparities in health impacts of wildfire 

smoke. Understanding the extent to which this variation reflects differences in the benefits and costs of 

avoiding park use can inform policy interventions to mitigate the overall effects of wildfire smoke exposure.  

The first type of heterogeneity we consider is use of parks compared with playgrounds. We estimate results 

separately for these locations because playgrounds are likely to have a larger share of children, a sensitive 

group, than parks as a whole. In playgrounds, we see a slightly smaller reduction in visits on Moderate or 

Unhealthy for Sensitive Groups days, relative to baseline, but a larger response on Unhealthy and Very 

Unhealthy/Hazardous days. This larger response to high levels of pollution in places visited by young 
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children, who are a more sensitive group, suggests that caregivers of these children are aware that it is 

particularly important for them to avoid outdoor activity when air pollution is bad. In other words, the 

perceived benefits of avoiding exposure are high. However, the more limited response on Moderate and 

Unhealthy for Sensitive Groups days in playgrounds relative to parks suggests that the costs of remaining 

indoors may also be relatively high for young children and their caregivers compared with the general 

population. 

The second source of heterogeneity we consider is among parks that serve neighborhoods with different 

economic and demographic characteristics. One potential reason for the smaller response to moderately 

severe levels of air pollution in neighborhoods with low and medium levels of income and education 

compared with neighborhoods with high levels of income and education is differences in knowledge of the 

health impacts of pollution or access to information about air quality on a given day. However, previous 

research suggests that although individuals with more education have more knowledge about health effects 

of air pollution, the size of the effect is not large (Del Ponte et al. 2022), and searches for air quality 

information do not differ by income level (Burke et al. 2022).  

An alternative explanation is that the differential responses are driven by differences in benefits or costs of 

avoiding outdoor activity. The benefits of staying indoors are a function of the degree to which indoor air 

quality is better than outdoor air quality. This will depend on the inherent characteristics of housing 

structures and behavioral choices such as keeping windows and doors closed. Burke et al. (2022) find that 

structural factors result in higher infiltration in low-income neighborhoods, but these effects are largely 

offset by behavioral actions within the home which do not vary with income. Benefits of avoiding park use 

also depend on pre-existing health conditions such as asthma, which is more prevalent among 

disadvantaged socio-demographic groups (Gold and Wright 2005). If differences in benefits of avoiding 

park use were primarily driven by differences in the health risks of wildfire smoke exposure, we would 

therefore expect earlier responses to air pollution in lower socio-economic status neighborhoods. This 

suggests that the costs of avoiding park use may be more important drivers of the observed difference in 

responses than the relative health benefits of doing so: lower-income households are likely to have more 

limited willingness or ability to pay entrance fees for alternative indoor locations such as indoor swimming 

pools, gyms, activity centers or movie theaters. At the same time, the non-monetary costs of staying at 

home will be higher for those with smaller living spaces or fewer options for indoor entertainment.  

To the extent that lower responsiveness in less advantaged neighborhoods could be a rational response to 

differences in costs and benefits of avoiding park use (as opposed to solely based on differences in 

information), there are two key policy implications. The first is that we would expect to observe larger 
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health impacts from similar levels of wildfire smoke exposure, requiring additional resources and support 

for identification and treatment of health outcomes such as respiratory conditions (Liu et al. 2017; Reid et 

al. 2019), cardiovascular illness (Liu et al. 2017; Delfino et al. 2009) and pregnancy complications (Abdo 

et al. 2019; Holstius et al. 2012). Whether socio-economic differences in park use on polluted days are 

driven by lower benefits due to poor indoor air quality, or higher costs related to alternative activities, the 

second main policy implication is that provision of publicly accessible clean-air spaces such as libraries or 

community centers is likely to be important for reducing health disparities resulting from differential 

behavioral responses to wildfire smoke.  
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Tables 
 

Table 1. Descriptive Statistics for polygons representing parks and playgrounds (N = 108,092) 

Statistic Mean St. Dev. Min Max 

Observed Devices 17.9 50.1 0 911 

Parks only 28.2 59.9 0 911 

Playgrounds only 7.55 34.9 0 911 

Particulate Matter (µg/m3) 13.7 31.8 0.881 436 

Max Temp (F°) 80.3 10.4 46 116 

Precipitation (in.) 0.038 0.141 0.000 2.19 
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Table 2a. Incidence rate ratio of observed mobile devices within park boundaries for daily categories of 
PM2.5 Air Quality Index (AQI) 

 Park Visitation 

 (1) (2) (3) (4) 

Good (baseline) 1.00 1.00 1.00 1.00 
 - - - - 
     
Moderate 0.889*** 0.916*** 0.916*** 0.938*** 
 (0.0270) (0.0218) (0.0200) (0.0166) 
     
Unhealthy for Sensitive Groups 0.905*** 0.889*** 0.882*** 0.899*** 
 (0.0346) (0.0281) (0.0262) (0.0288) 
     
Unhealthy 0.745*** 0.753*** 0.769*** 0.782*** 
 (0.0428) (0.0289) (0.0308) (0.0306) 
     
Very Unhealthy/Hazardous 0.647*** 0.634*** 0.618*** 0.617*** 
 (0.0467) (0.0372) (0.0333) (0.0317) 
     
Park FE No No Yes Yes 
County FE No Yes No No 
State FE Yes No No No 
Year, month, day-of-week FE Yes Yes Yes No 
State x year and state x month FE No No No Yes 
Month x day-of-week FE No No No Yes 
Weather and COVID-19 
Restrictions Yes Yes Yes Yes 

Observations 108092 108092 108092 108092 
Pseudo R2 0.0211 0.104 0.825 0.827 
Wald Chi2 114.9 147.2 180.1 196.0 
Notes: Incidence rate ratios (i.e. exponentiated coefficients) from fixed-effects Poisson regression model, with 
standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01, where the null hypothesis is IRR = 1. Incidence 
rate ratios are calculated relative to baseline of Good air quality. The model specifications in columns (1), (2) and 
(3) include state, county and park fixed effects, respectively, with year, month and day-of-week fixed effects in all 
cases. Model (4) includes park fixed effects, with state-specific year and month fixed effects and month-specific 
day-of-week fixed effects. All specifications include temperature and precipitation in quadratic form, and binary 
indicators of whether a Covid-19 stay-at-home order was in place on a given day. Standard errors are clustered at the 
park level. 
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Table 2b. Incidence rate ratio of observed mobile devices within playground boundaries for daily 
categories of PM2.5 Air Quality Index (AQI) 
 Playground visitation 
 (1) (2) (3) (4) 

Good (baseline) 1.00 1.00 1.00 1.00 
 - - - - 
     
Moderate 0.720*** 0.905*** 0.917*** 0.953*** 
 (0.0430) (0.0274) (0.0212) (0.0172) 
     
Unhealthy for Sensitive Groups 0.999 0.914* 0.899*** 0.931*** 
 (0.0609) (0.0438) (0.0214) (0.0241) 
     
Unhealthy 0.281*** 0.566*** 0.579*** 0.602*** 
 (0.0502) (0.0548) (0.0514) (0.0469) 
     
Very Unhealthy/Hazardous 0.438*** 0.488*** 0.482*** 0.498*** 
 (0.0405) (0.0457) (0.0470) (0.0451) 

Playground FE No No Yes Yes 
County FE No Yes No No 
State FE Yes No No No 
Year, month, day-of-week FE Yes Yes Yes No 
State x year and state x month FE No No No Yes 
Month X day-of-week FE No No No Yes 
Weather and COVID-19 
Restrictions Yes Yes Yes Yes 

Observations 106970 106970 106970 106970 
Pseudo R2 0.344 0.488 0.844 0.848 
Wald Chi2 320.0 152.4 260.7 293.3 
Notes: Incidence rate ratios (i.e. exponentiated coefficients) from fixed-effects Poisson regression model, with 
standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01, where the null hypothesis is IRR = 1. Incidence 
rate ratios are calculated relative to baseline of Good air quality. The model specifications in columns (1), (2) and 
(3) include state, county and playground fixed effects, respectively, with year, month and day-of-week fixed effects 
in all cases. Model (4) includes playground fixed effects, with state-specific year and month fixed effects and 
month-specific day-of-week fixed effects. All specifications include temperature and precipitation in quadratic form, 
and binary indicators of whether a Covid-19 stay-at-home order was in place on a given day. Standard errors are 
clustered at the playground level. 
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Table 3. Robustness to alternative specifications (Parks) 
 (1) (2) (3) (4) (5) (6) (7) 
 Base model Excluding 

large cities 
Excluding 

low-visit parks 
Excluding 

high-visit parks 
Flexible temperature 
specification (5o F bins) 

Gridded weather 
(incl. vapor 

pressure deficit) 

Continuous PM2.5 
(marginal effects 
at AQI cutoffs) 

Moderate 0.938*** 0.960* 0.938*** 0.997 0.937*** 0.944*** 0.920*** 
 (0.0166) (0.0233) (0.0166) (0.00833) (0.0166) (0.0158) (0.012) 
        
Unhealthy for Sensitive Groups 0.899*** 0.935 0.899*** 0.995 0.900*** 0.926*** 0.860*** 
 (0.0288) (0.0382) (0.0288) (0.0122) (0.0290) (0.0271) (0.019) 
        
Unhealthy 0.782*** 0.857*** 0.783*** 0.833*** 0.779*** 0.790*** 0.674*** 
 (0.0306) (0.0315) (0.0306) (0.0177) (0.0298) (0.0297) (0.031) 
        
Very Unhealthy/Hazardous 0.617*** 0.703*** 0.620*** 0.644*** 0.616*** 0.594*** 0.595*** 
 (0.0317) (0.0327) (0.0318) (0.0172) (0.0313) (0.0316) (0.029) 
Park FE Yes Yes Yes Yes Yes Yes Yes 
County FE No No No No No No No 
State FE No No No No No No No 
Year, month, day-of-week FE No No No No No No No 
State x year and state x month FE Yes Yes Yes Yes Yes Yes Yes 
Month x day-of-week FE Yes Yes Yes Yes Yes Yes Yes 
Weather and COVID-19 
Restrictions 

Yes Yes Yes Yes Yes Yes Yes 

Observations 108092 59780 101369 98299 108092 108092 108092 
Pseudo R2 0.827 0.821 0.820 0.641 0.827 0.826 0.827 
Wald Chi2 196.0 119.4 194.1 409.9 321.5 144.8 207.2 

Notes: Incidence rate ratios (i.e. exponentiated coefficients) from fixed-effects Poisson regression model, with standard errors in parentheses. * p < 0.10, ** p < 
0.05, *** p < 0.01, where the null hypothesis is IRR = 1. Incidence rate ratios are calculated relative to baseline of Good air quality. All specifications include 
temperature, precipitation and binary indicators of whether a Covid-19 stay-at-home order was in place on a given day. Temperature and precipitation are 
included in quadratic form with the exception of Column 5 in which temperature is included in bins of 5 degrees Fahrenheit. Standard errors are clustered at the 
park level. The results in Column 6 show the marginal effects of PM2.5 at the AQI cutoffs for Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy and 
Very Unhealthy, based on estimation of park visits as a function of a quadratic of continuous PM2.5. 
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Table 4: Comparison of linear probability model with Poisson specification 
 (1) 

Base model 
(Poisson) 

(2) 
Coefficients from 
Linear Probability 

Model 

(3) 
Proportion of visits relative 
to baseline of “Good” AQI 
(using mean visits = 28.37) 

Moderate 0.938*** -1.743*** 0.939 
 (0.0166) (0.539)  
    
Unhealthy for 
Sensitive Groups 0.899*** -2.780*** 0.902 

 (0.0288) (0.906)  
    
Unhealthy 0.782*** -5.967*** 0.790 
 (0.0306) (1.025)  
    
Very 
Unhealthy/Hazardous 0.617*** -9.590*** 0.662 

 (0.0317) (1.014)  
Observations 108092 108092  
Notes: Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01. Column (2) shows the coefficients on each 
AQI category from a linear probability model with Observed Devices as the dependent variable. We calculate the 
implied proportion of visits relative to baseline visits to each park on “Good” days for comparison with the 
incidence rate ratios from the Poisson specification, and display these in Column (3) 
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Figures 
 

 
Figure 1. PM 2.5 Concentrations on September 9, 2020 

 
Notes: This map includes the thirteen cities selected for this study, including the number of parks with playgrounds 
(as found in the ParkServe® database) within each of the selected cities. The number of parks and playgrounds 
included in the study are equal, as each playground corresponds to the park in which it is situated. In an attempt to 
show the variability in air quality common in this region, PM 2.5 concentrations from September 9, 2020 are 
displayed as an example of the daily 1-km resolution maps of surface fine particulate matter used in this study. 
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Figure 2. Device count and PM2.5 by state and week-of-year 

 
Notes: Median device counts and mean AQI are measured within the spatial boundaries of polygons representing 
individual parks. The panels show daily values by state and year for Idaho (ID), Montana (MT), Oregon (OR) and 
Washington (WA). 
 
 
 
 
Figure 3. AQI distribution by month and state 

 
Notes: Each bar shows the proportion of days within a given state and month that fall in each AQI category based on 
24hr PM2.5 concentrations. 
 



 37 

 
 
 
 
 
Figure 4. Impacts of air pollution on observed devices within boundaries of a) Parks and b) Playgrounds 

 
Notes: Incidence rate ratio of visits to parks (a) and playgrounds (b) on days when the 24hr mean concentration of 
PM2.5 falls with each AQI category. Poisson regression models with park/playground, state-by-month, state-by-year, 
and month-by-day or week fixed effects and time variant controls for temperature, precipitation and Covid-19 stay-
at-home orders.   
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Figure 5. Heterogeneous effects of air pollution on park visits 

 
Notes: Incidence rate ratio of visits to parks on days when the 24hr mean concentration of PM2.5 falls with each AQI 
category. Poisson regression models with park/playground, state-by-month, state-by-year, and month-by-day or 
week fixed effects and time variant controls for temperature, precipitation and Covid-19 stay-at-home orders. 
Results are disaggregated using weighted averages of education (a) and income (b) in the neighborhoods 
representing the “common evening location” of visitors to each park; by the size of the city in which the park is 
located (c) where Small cities have fewer than 100,000 residents, Midsize cities have 100,000-250,000 residents, 
and Large cities have more than 250,000 residents; or by whether the AQI was rated higher than Moderate the 
previous day, based on the 24hr mean concentration of PM2.5 (d). 
 
 


